1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106 
107 static cl::opt<bool> JumpThreadingFreezeSelectCond(
108     "jump-threading-freeze-select-cond",
109     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
110     cl::Hidden);
111 
112 static cl::opt<bool> ThreadAcrossLoopHeaders(
113     "jump-threading-across-loop-headers",
114     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
115     cl::init(false), cl::Hidden);
116 
117 
118 namespace {
119 
120   /// This pass performs 'jump threading', which looks at blocks that have
121   /// multiple predecessors and multiple successors.  If one or more of the
122   /// predecessors of the block can be proven to always jump to one of the
123   /// successors, we forward the edge from the predecessor to the successor by
124   /// duplicating the contents of this block.
125   ///
126   /// An example of when this can occur is code like this:
127   ///
128   ///   if () { ...
129   ///     X = 4;
130   ///   }
131   ///   if (X < 3) {
132   ///
133   /// In this case, the unconditional branch at the end of the first if can be
134   /// revectored to the false side of the second if.
135   class JumpThreading : public FunctionPass {
136     JumpThreadingPass Impl;
137 
138   public:
139     static char ID; // Pass identification
140 
141     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
142         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
143       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
144     }
145 
146     bool runOnFunction(Function &F) override;
147 
148     void getAnalysisUsage(AnalysisUsage &AU) const override {
149       AU.addRequired<DominatorTreeWrapperPass>();
150       AU.addPreserved<DominatorTreeWrapperPass>();
151       AU.addRequired<AAResultsWrapperPass>();
152       AU.addRequired<LazyValueInfoWrapperPass>();
153       AU.addPreserved<LazyValueInfoWrapperPass>();
154       AU.addPreserved<GlobalsAAWrapperPass>();
155       AU.addRequired<TargetLibraryInfoWrapperPass>();
156       AU.addRequired<TargetTransformInfoWrapperPass>();
157     }
158 
159     void releaseMemory() override { Impl.releaseMemory(); }
160   };
161 
162 } // end anonymous namespace
163 
164 char JumpThreading::ID = 0;
165 
166 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
167                 "Jump Threading", false, false)
168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
172 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
173                 "Jump Threading", false, false)
174 
175 // Public interface to the Jump Threading pass
176 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
177   return new JumpThreading(InsertFr, Threshold);
178 }
179 
180 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
181   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
182   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
183 }
184 
185 // Update branch probability information according to conditional
186 // branch probability. This is usually made possible for cloned branches
187 // in inline instances by the context specific profile in the caller.
188 // For instance,
189 //
190 //  [Block PredBB]
191 //  [Branch PredBr]
192 //  if (t) {
193 //     Block A;
194 //  } else {
195 //     Block B;
196 //  }
197 //
198 //  [Block BB]
199 //  cond = PN([true, %A], [..., %B]); // PHI node
200 //  [Branch CondBr]
201 //  if (cond) {
202 //    ...  // P(cond == true) = 1%
203 //  }
204 //
205 //  Here we know that when block A is taken, cond must be true, which means
206 //      P(cond == true | A) = 1
207 //
208 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
209 //                               P(cond == true | B) * P(B)
210 //  we get:
211 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
212 //
213 //  which gives us:
214 //     P(A) is less than P(cond == true), i.e.
215 //     P(t == true) <= P(cond == true)
216 //
217 //  In other words, if we know P(cond == true) is unlikely, we know
218 //  that P(t == true) is also unlikely.
219 //
220 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
221   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
222   if (!CondBr)
223     return;
224 
225   uint64_t TrueWeight, FalseWeight;
226   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
227     return;
228 
229   if (TrueWeight + FalseWeight == 0)
230     // Zero branch_weights do not give a hint for getting branch probabilities.
231     // Technically it would result in division by zero denominator, which is
232     // TrueWeight + FalseWeight.
233     return;
234 
235   // Returns the outgoing edge of the dominating predecessor block
236   // that leads to the PhiNode's incoming block:
237   auto GetPredOutEdge =
238       [](BasicBlock *IncomingBB,
239          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
240     auto *PredBB = IncomingBB;
241     auto *SuccBB = PhiBB;
242     SmallPtrSet<BasicBlock *, 16> Visited;
243     while (true) {
244       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
245       if (PredBr && PredBr->isConditional())
246         return {PredBB, SuccBB};
247       Visited.insert(PredBB);
248       auto *SinglePredBB = PredBB->getSinglePredecessor();
249       if (!SinglePredBB)
250         return {nullptr, nullptr};
251 
252       // Stop searching when SinglePredBB has been visited. It means we see
253       // an unreachable loop.
254       if (Visited.count(SinglePredBB))
255         return {nullptr, nullptr};
256 
257       SuccBB = PredBB;
258       PredBB = SinglePredBB;
259     }
260   };
261 
262   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263     Value *PhiOpnd = PN->getIncomingValue(i);
264     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
265 
266     if (!CI || !CI->getType()->isIntegerTy(1))
267       continue;
268 
269     BranchProbability BP =
270         (CI->isOne() ? BranchProbability::getBranchProbability(
271                            TrueWeight, TrueWeight + FalseWeight)
272                      : BranchProbability::getBranchProbability(
273                            FalseWeight, TrueWeight + FalseWeight));
274 
275     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
276     if (!PredOutEdge.first)
277       return;
278 
279     BasicBlock *PredBB = PredOutEdge.first;
280     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
281     if (!PredBr)
282       return;
283 
284     uint64_t PredTrueWeight, PredFalseWeight;
285     // FIXME: We currently only set the profile data when it is missing.
286     // With PGO, this can be used to refine even existing profile data with
287     // context information. This needs to be done after more performance
288     // testing.
289     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
290       continue;
291 
292     // We can not infer anything useful when BP >= 50%, because BP is the
293     // upper bound probability value.
294     if (BP >= BranchProbability(50, 100))
295       continue;
296 
297     SmallVector<uint32_t, 2> Weights;
298     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
299       Weights.push_back(BP.getNumerator());
300       Weights.push_back(BP.getCompl().getNumerator());
301     } else {
302       Weights.push_back(BP.getCompl().getNumerator());
303       Weights.push_back(BP.getNumerator());
304     }
305     PredBr->setMetadata(LLVMContext::MD_prof,
306                         MDBuilder(PredBr->getParent()->getContext())
307                             .createBranchWeights(Weights));
308   }
309 }
310 
311 /// runOnFunction - Toplevel algorithm.
312 bool JumpThreading::runOnFunction(Function &F) {
313   if (skipFunction(F))
314     return false;
315   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
316   // Jump Threading has no sense for the targets with divergent CF
317   if (TTI->hasBranchDivergence())
318     return false;
319   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
320   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
321   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
322   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
323   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
324   std::unique_ptr<BlockFrequencyInfo> BFI;
325   std::unique_ptr<BranchProbabilityInfo> BPI;
326   if (F.hasProfileData()) {
327     LoopInfo LI{DominatorTree(F)};
328     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
329     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
330   }
331 
332   bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
333                               std::move(BFI), std::move(BPI));
334   if (PrintLVIAfterJumpThreading) {
335     dbgs() << "LVI for function '" << F.getName() << "':\n";
336     LVI->printLVI(F, DTU.getDomTree(), dbgs());
337   }
338   return Changed;
339 }
340 
341 PreservedAnalyses JumpThreadingPass::run(Function &F,
342                                          FunctionAnalysisManager &AM) {
343   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
344   // Jump Threading has no sense for the targets with divergent CF
345   if (TTI.hasBranchDivergence())
346     return PreservedAnalyses::all();
347   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
348   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
349   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
350   auto &AA = AM.getResult<AAManager>(F);
351   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
352 
353   std::unique_ptr<BlockFrequencyInfo> BFI;
354   std::unique_ptr<BranchProbabilityInfo> BPI;
355   if (F.hasProfileData()) {
356     LoopInfo LI{DominatorTree(F)};
357     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
358     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
359   }
360 
361   bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
362                          std::move(BFI), std::move(BPI));
363 
364   if (PrintLVIAfterJumpThreading) {
365     dbgs() << "LVI for function '" << F.getName() << "':\n";
366     LVI.printLVI(F, DTU.getDomTree(), dbgs());
367   }
368 
369   if (!Changed)
370     return PreservedAnalyses::all();
371   PreservedAnalyses PA;
372   PA.preserve<DominatorTreeAnalysis>();
373   PA.preserve<LazyValueAnalysis>();
374   return PA;
375 }
376 
377 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
378                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
379                                 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
380                                 bool HasProfileData_,
381                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
382                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
383   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
384   TLI = TLI_;
385   TTI = TTI_;
386   LVI = LVI_;
387   AA = AA_;
388   DTU = DTU_;
389   BFI.reset();
390   BPI.reset();
391   // When profile data is available, we need to update edge weights after
392   // successful jump threading, which requires both BPI and BFI being available.
393   HasProfileData = HasProfileData_;
394   auto *GuardDecl = F.getParent()->getFunction(
395       Intrinsic::getName(Intrinsic::experimental_guard));
396   HasGuards = GuardDecl && !GuardDecl->use_empty();
397   if (HasProfileData) {
398     BPI = std::move(BPI_);
399     BFI = std::move(BFI_);
400   }
401 
402   // Reduce the number of instructions duplicated when optimizing strictly for
403   // size.
404   if (BBDuplicateThreshold.getNumOccurrences())
405     BBDupThreshold = BBDuplicateThreshold;
406   else if (F.hasFnAttribute(Attribute::MinSize))
407     BBDupThreshold = 3;
408   else
409     BBDupThreshold = DefaultBBDupThreshold;
410 
411   // JumpThreading must not processes blocks unreachable from entry. It's a
412   // waste of compute time and can potentially lead to hangs.
413   SmallPtrSet<BasicBlock *, 16> Unreachable;
414   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
415   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
416   DominatorTree &DT = DTU->getDomTree();
417   for (auto &BB : F)
418     if (!DT.isReachableFromEntry(&BB))
419       Unreachable.insert(&BB);
420 
421   if (!ThreadAcrossLoopHeaders)
422     findLoopHeaders(F);
423 
424   bool EverChanged = false;
425   bool Changed;
426   do {
427     Changed = false;
428     for (auto &BB : F) {
429       if (Unreachable.count(&BB))
430         continue;
431       while (processBlock(&BB)) // Thread all of the branches we can over BB.
432         Changed = true;
433 
434       // Jump threading may have introduced redundant debug values into BB
435       // which should be removed.
436       if (Changed)
437         RemoveRedundantDbgInstrs(&BB);
438 
439       // Stop processing BB if it's the entry or is now deleted. The following
440       // routines attempt to eliminate BB and locating a suitable replacement
441       // for the entry is non-trivial.
442       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
443         continue;
444 
445       if (pred_empty(&BB)) {
446         // When processBlock makes BB unreachable it doesn't bother to fix up
447         // the instructions in it. We must remove BB to prevent invalid IR.
448         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
449                           << "' with terminator: " << *BB.getTerminator()
450                           << '\n');
451         LoopHeaders.erase(&BB);
452         LVI->eraseBlock(&BB);
453         DeleteDeadBlock(&BB, DTU);
454         Changed = true;
455         continue;
456       }
457 
458       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
459       // is "almost empty", we attempt to merge BB with its sole successor.
460       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
461       if (BI && BI->isUnconditional()) {
462         BasicBlock *Succ = BI->getSuccessor(0);
463         if (
464             // The terminator must be the only non-phi instruction in BB.
465             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
466             // Don't alter Loop headers and latches to ensure another pass can
467             // detect and transform nested loops later.
468             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
469             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
470           RemoveRedundantDbgInstrs(Succ);
471           // BB is valid for cleanup here because we passed in DTU. F remains
472           // BB's parent until a DTU->getDomTree() event.
473           LVI->eraseBlock(&BB);
474           Changed = true;
475         }
476       }
477     }
478     EverChanged |= Changed;
479   } while (Changed);
480 
481   LoopHeaders.clear();
482   return EverChanged;
483 }
484 
485 // Replace uses of Cond with ToVal when safe to do so. If all uses are
486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
487 // because we may incorrectly replace uses when guards/assumes are uses of
488 // of `Cond` and we used the guards/assume to reason about the `Cond` value
489 // at the end of block. RAUW unconditionally replaces all uses
490 // including the guards/assumes themselves and the uses before the
491 // guard/assume.
492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
493   assert(Cond->getType() == ToVal->getType());
494   auto *BB = Cond->getParent();
495   // We can unconditionally replace all uses in non-local blocks (i.e. uses
496   // strictly dominated by BB), since LVI information is true from the
497   // terminator of BB.
498   replaceNonLocalUsesWith(Cond, ToVal);
499   for (Instruction &I : reverse(*BB)) {
500     // Reached the Cond whose uses we are trying to replace, so there are no
501     // more uses.
502     if (&I == Cond)
503       break;
504     // We only replace uses in instructions that are guaranteed to reach the end
505     // of BB, where we know Cond is ToVal.
506     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
507       break;
508     I.replaceUsesOfWith(Cond, ToVal);
509   }
510   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
511     Cond->eraseFromParent();
512 }
513 
514 /// Return the cost of duplicating a piece of this block from first non-phi
515 /// and before StopAt instruction to thread across it. Stop scanning the block
516 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
517 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
518                                              BasicBlock *BB,
519                                              Instruction *StopAt,
520                                              unsigned Threshold) {
521   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
522   /// Ignore PHI nodes, these will be flattened when duplication happens.
523   BasicBlock::const_iterator I(BB->getFirstNonPHI());
524 
525   // FIXME: THREADING will delete values that are just used to compute the
526   // branch, so they shouldn't count against the duplication cost.
527 
528   unsigned Bonus = 0;
529   if (BB->getTerminator() == StopAt) {
530     // Threading through a switch statement is particularly profitable.  If this
531     // block ends in a switch, decrease its cost to make it more likely to
532     // happen.
533     if (isa<SwitchInst>(StopAt))
534       Bonus = 6;
535 
536     // The same holds for indirect branches, but slightly more so.
537     if (isa<IndirectBrInst>(StopAt))
538       Bonus = 8;
539   }
540 
541   // Bump the threshold up so the early exit from the loop doesn't skip the
542   // terminator-based Size adjustment at the end.
543   Threshold += Bonus;
544 
545   // Sum up the cost of each instruction until we get to the terminator.  Don't
546   // include the terminator because the copy won't include it.
547   unsigned Size = 0;
548   for (; &*I != StopAt; ++I) {
549 
550     // Stop scanning the block if we've reached the threshold.
551     if (Size > Threshold)
552       return Size;
553 
554     // Bail out if this instruction gives back a token type, it is not possible
555     // to duplicate it if it is used outside this BB.
556     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
557       return ~0U;
558 
559     // Blocks with NoDuplicate are modelled as having infinite cost, so they
560     // are never duplicated.
561     if (const CallInst *CI = dyn_cast<CallInst>(I))
562       if (CI->cannotDuplicate() || CI->isConvergent())
563         return ~0U;
564 
565     if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
566             == TargetTransformInfo::TCC_Free)
567       continue;
568 
569     // All other instructions count for at least one unit.
570     ++Size;
571 
572     // Calls are more expensive.  If they are non-intrinsic calls, we model them
573     // as having cost of 4.  If they are a non-vector intrinsic, we model them
574     // as having cost of 2 total, and if they are a vector intrinsic, we model
575     // them as having cost 1.
576     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
577       if (!isa<IntrinsicInst>(CI))
578         Size += 3;
579       else if (!CI->getType()->isVectorTy())
580         Size += 1;
581     }
582   }
583 
584   return Size > Bonus ? Size - Bonus : 0;
585 }
586 
587 /// findLoopHeaders - We do not want jump threading to turn proper loop
588 /// structures into irreducible loops.  Doing this breaks up the loop nesting
589 /// hierarchy and pessimizes later transformations.  To prevent this from
590 /// happening, we first have to find the loop headers.  Here we approximate this
591 /// by finding targets of backedges in the CFG.
592 ///
593 /// Note that there definitely are cases when we want to allow threading of
594 /// edges across a loop header.  For example, threading a jump from outside the
595 /// loop (the preheader) to an exit block of the loop is definitely profitable.
596 /// It is also almost always profitable to thread backedges from within the loop
597 /// to exit blocks, and is often profitable to thread backedges to other blocks
598 /// within the loop (forming a nested loop).  This simple analysis is not rich
599 /// enough to track all of these properties and keep it up-to-date as the CFG
600 /// mutates, so we don't allow any of these transformations.
601 void JumpThreadingPass::findLoopHeaders(Function &F) {
602   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
603   FindFunctionBackedges(F, Edges);
604 
605   for (const auto &Edge : Edges)
606     LoopHeaders.insert(Edge.second);
607 }
608 
609 /// getKnownConstant - Helper method to determine if we can thread over a
610 /// terminator with the given value as its condition, and if so what value to
611 /// use for that. What kind of value this is depends on whether we want an
612 /// integer or a block address, but an undef is always accepted.
613 /// Returns null if Val is null or not an appropriate constant.
614 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
615   if (!Val)
616     return nullptr;
617 
618   // Undef is "known" enough.
619   if (UndefValue *U = dyn_cast<UndefValue>(Val))
620     return U;
621 
622   if (Preference == WantBlockAddress)
623     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
624 
625   return dyn_cast<ConstantInt>(Val);
626 }
627 
628 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
629 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
630 /// in any of our predecessors.  If so, return the known list of value and pred
631 /// BB in the result vector.
632 ///
633 /// This returns true if there were any known values.
634 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
635     Value *V, BasicBlock *BB, PredValueInfo &Result,
636     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
637     Instruction *CxtI) {
638   // This method walks up use-def chains recursively.  Because of this, we could
639   // get into an infinite loop going around loops in the use-def chain.  To
640   // prevent this, keep track of what (value, block) pairs we've already visited
641   // and terminate the search if we loop back to them
642   if (!RecursionSet.insert(V).second)
643     return false;
644 
645   // If V is a constant, then it is known in all predecessors.
646   if (Constant *KC = getKnownConstant(V, Preference)) {
647     for (BasicBlock *Pred : predecessors(BB))
648       Result.emplace_back(KC, Pred);
649 
650     return !Result.empty();
651   }
652 
653   // If V is a non-instruction value, or an instruction in a different block,
654   // then it can't be derived from a PHI.
655   Instruction *I = dyn_cast<Instruction>(V);
656   if (!I || I->getParent() != BB) {
657 
658     // Okay, if this is a live-in value, see if it has a known value at the end
659     // of any of our predecessors.
660     //
661     // FIXME: This should be an edge property, not a block end property.
662     /// TODO: Per PR2563, we could infer value range information about a
663     /// predecessor based on its terminator.
664     //
665     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
666     // "I" is a non-local compare-with-a-constant instruction.  This would be
667     // able to handle value inequalities better, for example if the compare is
668     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
669     // Perhaps getConstantOnEdge should be smart enough to do this?
670     for (BasicBlock *P : predecessors(BB)) {
671       // If the value is known by LazyValueInfo to be a constant in a
672       // predecessor, use that information to try to thread this block.
673       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
674       if (Constant *KC = getKnownConstant(PredCst, Preference))
675         Result.emplace_back(KC, P);
676     }
677 
678     return !Result.empty();
679   }
680 
681   /// If I is a PHI node, then we know the incoming values for any constants.
682   if (PHINode *PN = dyn_cast<PHINode>(I)) {
683     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
684       Value *InVal = PN->getIncomingValue(i);
685       if (Constant *KC = getKnownConstant(InVal, Preference)) {
686         Result.emplace_back(KC, PN->getIncomingBlock(i));
687       } else {
688         Constant *CI = LVI->getConstantOnEdge(InVal,
689                                               PN->getIncomingBlock(i),
690                                               BB, CxtI);
691         if (Constant *KC = getKnownConstant(CI, Preference))
692           Result.emplace_back(KC, PN->getIncomingBlock(i));
693       }
694     }
695 
696     return !Result.empty();
697   }
698 
699   // Handle Cast instructions.
700   if (CastInst *CI = dyn_cast<CastInst>(I)) {
701     Value *Source = CI->getOperand(0);
702     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
703                                         RecursionSet, CxtI);
704     if (Result.empty())
705       return false;
706 
707     // Convert the known values.
708     for (auto &R : Result)
709       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
710 
711     return true;
712   }
713 
714   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
715     Value *Source = FI->getOperand(0);
716     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
717                                         RecursionSet, CxtI);
718 
719     erase_if(Result, [](auto &Pair) {
720       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
721     });
722 
723     return !Result.empty();
724   }
725 
726   // Handle some boolean conditions.
727   if (I->getType()->getPrimitiveSizeInBits() == 1) {
728     using namespace PatternMatch;
729     if (Preference != WantInteger)
730       return false;
731     // X | true -> true
732     // X & false -> false
733     Value *Op0, *Op1;
734     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
735         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
736       PredValueInfoTy LHSVals, RHSVals;
737 
738       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
739                                           RecursionSet, CxtI);
740       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
741                                           RecursionSet, CxtI);
742 
743       if (LHSVals.empty() && RHSVals.empty())
744         return false;
745 
746       ConstantInt *InterestingVal;
747       if (match(I, m_LogicalOr()))
748         InterestingVal = ConstantInt::getTrue(I->getContext());
749       else
750         InterestingVal = ConstantInt::getFalse(I->getContext());
751 
752       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
753 
754       // Scan for the sentinel.  If we find an undef, force it to the
755       // interesting value: x|undef -> true and x&undef -> false.
756       for (const auto &LHSVal : LHSVals)
757         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
758           Result.emplace_back(InterestingVal, LHSVal.second);
759           LHSKnownBBs.insert(LHSVal.second);
760         }
761       for (const auto &RHSVal : RHSVals)
762         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
763           // If we already inferred a value for this block on the LHS, don't
764           // re-add it.
765           if (!LHSKnownBBs.count(RHSVal.second))
766             Result.emplace_back(InterestingVal, RHSVal.second);
767         }
768 
769       return !Result.empty();
770     }
771 
772     // Handle the NOT form of XOR.
773     if (I->getOpcode() == Instruction::Xor &&
774         isa<ConstantInt>(I->getOperand(1)) &&
775         cast<ConstantInt>(I->getOperand(1))->isOne()) {
776       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
777                                           WantInteger, RecursionSet, CxtI);
778       if (Result.empty())
779         return false;
780 
781       // Invert the known values.
782       for (auto &R : Result)
783         R.first = ConstantExpr::getNot(R.first);
784 
785       return true;
786     }
787 
788   // Try to simplify some other binary operator values.
789   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
790     if (Preference != WantInteger)
791       return false;
792     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
793       PredValueInfoTy LHSVals;
794       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
795                                           WantInteger, RecursionSet, CxtI);
796 
797       // Try to use constant folding to simplify the binary operator.
798       for (const auto &LHSVal : LHSVals) {
799         Constant *V = LHSVal.first;
800         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
801 
802         if (Constant *KC = getKnownConstant(Folded, WantInteger))
803           Result.emplace_back(KC, LHSVal.second);
804       }
805     }
806 
807     return !Result.empty();
808   }
809 
810   // Handle compare with phi operand, where the PHI is defined in this block.
811   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
812     if (Preference != WantInteger)
813       return false;
814     Type *CmpType = Cmp->getType();
815     Value *CmpLHS = Cmp->getOperand(0);
816     Value *CmpRHS = Cmp->getOperand(1);
817     CmpInst::Predicate Pred = Cmp->getPredicate();
818 
819     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
820     if (!PN)
821       PN = dyn_cast<PHINode>(CmpRHS);
822     if (PN && PN->getParent() == BB) {
823       const DataLayout &DL = PN->getModule()->getDataLayout();
824       // We can do this simplification if any comparisons fold to true or false.
825       // See if any do.
826       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
827         BasicBlock *PredBB = PN->getIncomingBlock(i);
828         Value *LHS, *RHS;
829         if (PN == CmpLHS) {
830           LHS = PN->getIncomingValue(i);
831           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
832         } else {
833           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
834           RHS = PN->getIncomingValue(i);
835         }
836         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
837         if (!Res) {
838           if (!isa<Constant>(RHS))
839             continue;
840 
841           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
842           auto LHSInst = dyn_cast<Instruction>(LHS);
843           if (LHSInst && LHSInst->getParent() == BB)
844             continue;
845 
846           LazyValueInfo::Tristate
847             ResT = LVI->getPredicateOnEdge(Pred, LHS,
848                                            cast<Constant>(RHS), PredBB, BB,
849                                            CxtI ? CxtI : Cmp);
850           if (ResT == LazyValueInfo::Unknown)
851             continue;
852           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
853         }
854 
855         if (Constant *KC = getKnownConstant(Res, WantInteger))
856           Result.emplace_back(KC, PredBB);
857       }
858 
859       return !Result.empty();
860     }
861 
862     // If comparing a live-in value against a constant, see if we know the
863     // live-in value on any predecessors.
864     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
865       Constant *CmpConst = cast<Constant>(CmpRHS);
866 
867       if (!isa<Instruction>(CmpLHS) ||
868           cast<Instruction>(CmpLHS)->getParent() != BB) {
869         for (BasicBlock *P : predecessors(BB)) {
870           // If the value is known by LazyValueInfo to be a constant in a
871           // predecessor, use that information to try to thread this block.
872           LazyValueInfo::Tristate Res =
873             LVI->getPredicateOnEdge(Pred, CmpLHS,
874                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
875           if (Res == LazyValueInfo::Unknown)
876             continue;
877 
878           Constant *ResC = ConstantInt::get(CmpType, Res);
879           Result.emplace_back(ResC, P);
880         }
881 
882         return !Result.empty();
883       }
884 
885       // InstCombine can fold some forms of constant range checks into
886       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
887       // x as a live-in.
888       {
889         using namespace PatternMatch;
890 
891         Value *AddLHS;
892         ConstantInt *AddConst;
893         if (isa<ConstantInt>(CmpConst) &&
894             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
895           if (!isa<Instruction>(AddLHS) ||
896               cast<Instruction>(AddLHS)->getParent() != BB) {
897             for (BasicBlock *P : predecessors(BB)) {
898               // If the value is known by LazyValueInfo to be a ConstantRange in
899               // a predecessor, use that information to try to thread this
900               // block.
901               ConstantRange CR = LVI->getConstantRangeOnEdge(
902                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
903               // Propagate the range through the addition.
904               CR = CR.add(AddConst->getValue());
905 
906               // Get the range where the compare returns true.
907               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
908                   Pred, cast<ConstantInt>(CmpConst)->getValue());
909 
910               Constant *ResC;
911               if (CmpRange.contains(CR))
912                 ResC = ConstantInt::getTrue(CmpType);
913               else if (CmpRange.inverse().contains(CR))
914                 ResC = ConstantInt::getFalse(CmpType);
915               else
916                 continue;
917 
918               Result.emplace_back(ResC, P);
919             }
920 
921             return !Result.empty();
922           }
923         }
924       }
925 
926       // Try to find a constant value for the LHS of a comparison,
927       // and evaluate it statically if we can.
928       PredValueInfoTy LHSVals;
929       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
930                                           WantInteger, RecursionSet, CxtI);
931 
932       for (const auto &LHSVal : LHSVals) {
933         Constant *V = LHSVal.first;
934         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
935         if (Constant *KC = getKnownConstant(Folded, WantInteger))
936           Result.emplace_back(KC, LHSVal.second);
937       }
938 
939       return !Result.empty();
940     }
941   }
942 
943   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
944     // Handle select instructions where at least one operand is a known constant
945     // and we can figure out the condition value for any predecessor block.
946     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
947     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
948     PredValueInfoTy Conds;
949     if ((TrueVal || FalseVal) &&
950         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
951                                             WantInteger, RecursionSet, CxtI)) {
952       for (auto &C : Conds) {
953         Constant *Cond = C.first;
954 
955         // Figure out what value to use for the condition.
956         bool KnownCond;
957         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
958           // A known boolean.
959           KnownCond = CI->isOne();
960         } else {
961           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
962           // Either operand will do, so be sure to pick the one that's a known
963           // constant.
964           // FIXME: Do this more cleverly if both values are known constants?
965           KnownCond = (TrueVal != nullptr);
966         }
967 
968         // See if the select has a known constant value for this predecessor.
969         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
970           Result.emplace_back(Val, C.second);
971       }
972 
973       return !Result.empty();
974     }
975   }
976 
977   // If all else fails, see if LVI can figure out a constant value for us.
978   assert(CxtI->getParent() == BB && "CxtI should be in BB");
979   Constant *CI = LVI->getConstant(V, CxtI);
980   if (Constant *KC = getKnownConstant(CI, Preference)) {
981     for (BasicBlock *Pred : predecessors(BB))
982       Result.emplace_back(KC, Pred);
983   }
984 
985   return !Result.empty();
986 }
987 
988 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
989 /// in an undefined jump, decide which block is best to revector to.
990 ///
991 /// Since we can pick an arbitrary destination, we pick the successor with the
992 /// fewest predecessors.  This should reduce the in-degree of the others.
993 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
994   Instruction *BBTerm = BB->getTerminator();
995   unsigned MinSucc = 0;
996   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
997   // Compute the successor with the minimum number of predecessors.
998   unsigned MinNumPreds = pred_size(TestBB);
999   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1000     TestBB = BBTerm->getSuccessor(i);
1001     unsigned NumPreds = pred_size(TestBB);
1002     if (NumPreds < MinNumPreds) {
1003       MinSucc = i;
1004       MinNumPreds = NumPreds;
1005     }
1006   }
1007 
1008   return MinSucc;
1009 }
1010 
1011 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1012   if (!BB->hasAddressTaken()) return false;
1013 
1014   // If the block has its address taken, it may be a tree of dead constants
1015   // hanging off of it.  These shouldn't keep the block alive.
1016   BlockAddress *BA = BlockAddress::get(BB);
1017   BA->removeDeadConstantUsers();
1018   return !BA->use_empty();
1019 }
1020 
1021 /// processBlock - If there are any predecessors whose control can be threaded
1022 /// through to a successor, transform them now.
1023 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1024   // If the block is trivially dead, just return and let the caller nuke it.
1025   // This simplifies other transformations.
1026   if (DTU->isBBPendingDeletion(BB) ||
1027       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1028     return false;
1029 
1030   // If this block has a single predecessor, and if that pred has a single
1031   // successor, merge the blocks.  This encourages recursive jump threading
1032   // because now the condition in this block can be threaded through
1033   // predecessors of our predecessor block.
1034   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1035     return true;
1036 
1037   if (tryToUnfoldSelectInCurrBB(BB))
1038     return true;
1039 
1040   // Look if we can propagate guards to predecessors.
1041   if (HasGuards && processGuards(BB))
1042     return true;
1043 
1044   // What kind of constant we're looking for.
1045   ConstantPreference Preference = WantInteger;
1046 
1047   // Look to see if the terminator is a conditional branch, switch or indirect
1048   // branch, if not we can't thread it.
1049   Value *Condition;
1050   Instruction *Terminator = BB->getTerminator();
1051   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1052     // Can't thread an unconditional jump.
1053     if (BI->isUnconditional()) return false;
1054     Condition = BI->getCondition();
1055   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1056     Condition = SI->getCondition();
1057   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1058     // Can't thread indirect branch with no successors.
1059     if (IB->getNumSuccessors() == 0) return false;
1060     Condition = IB->getAddress()->stripPointerCasts();
1061     Preference = WantBlockAddress;
1062   } else {
1063     return false; // Must be an invoke or callbr.
1064   }
1065 
1066   // Keep track if we constant folded the condition in this invocation.
1067   bool ConstantFolded = false;
1068 
1069   // Run constant folding to see if we can reduce the condition to a simple
1070   // constant.
1071   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1072     Value *SimpleVal =
1073         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1074     if (SimpleVal) {
1075       I->replaceAllUsesWith(SimpleVal);
1076       if (isInstructionTriviallyDead(I, TLI))
1077         I->eraseFromParent();
1078       Condition = SimpleVal;
1079       ConstantFolded = true;
1080     }
1081   }
1082 
1083   // If the terminator is branching on an undef or freeze undef, we can pick any
1084   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1085   auto *FI = dyn_cast<FreezeInst>(Condition);
1086   if (isa<UndefValue>(Condition) ||
1087       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1088     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1089     std::vector<DominatorTree::UpdateType> Updates;
1090 
1091     // Fold the branch/switch.
1092     Instruction *BBTerm = BB->getTerminator();
1093     Updates.reserve(BBTerm->getNumSuccessors());
1094     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1095       if (i == BestSucc) continue;
1096       BasicBlock *Succ = BBTerm->getSuccessor(i);
1097       Succ->removePredecessor(BB, true);
1098       Updates.push_back({DominatorTree::Delete, BB, Succ});
1099     }
1100 
1101     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1102                       << "' folding undef terminator: " << *BBTerm << '\n');
1103     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1104     ++NumFolds;
1105     BBTerm->eraseFromParent();
1106     DTU->applyUpdatesPermissive(Updates);
1107     if (FI)
1108       FI->eraseFromParent();
1109     return true;
1110   }
1111 
1112   // If the terminator of this block is branching on a constant, simplify the
1113   // terminator to an unconditional branch.  This can occur due to threading in
1114   // other blocks.
1115   if (getKnownConstant(Condition, Preference)) {
1116     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1117                       << "' folding terminator: " << *BB->getTerminator()
1118                       << '\n');
1119     ++NumFolds;
1120     ConstantFoldTerminator(BB, true, nullptr, DTU);
1121     if (HasProfileData)
1122       BPI->eraseBlock(BB);
1123     return true;
1124   }
1125 
1126   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1127 
1128   // All the rest of our checks depend on the condition being an instruction.
1129   if (!CondInst) {
1130     // FIXME: Unify this with code below.
1131     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1132       return true;
1133     return ConstantFolded;
1134   }
1135 
1136   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1137     // If we're branching on a conditional, LVI might be able to determine
1138     // it's value at the branch instruction.  We only handle comparisons
1139     // against a constant at this time.
1140     // TODO: This should be extended to handle switches as well.
1141     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1142     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1143     if (CondBr && CondConst) {
1144       // We should have returned as soon as we turn a conditional branch to
1145       // unconditional. Because its no longer interesting as far as jump
1146       // threading is concerned.
1147       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1148 
1149       LazyValueInfo::Tristate Ret =
1150           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1151                               CondConst, CondBr, /*UseBlockValue=*/false);
1152       if (Ret != LazyValueInfo::Unknown) {
1153         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1154         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1155         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1156         ToRemoveSucc->removePredecessor(BB, true);
1157         BranchInst *UncondBr =
1158           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1159         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1160         ++NumFolds;
1161         CondBr->eraseFromParent();
1162         if (CondCmp->use_empty())
1163           CondCmp->eraseFromParent();
1164         // We can safely replace *some* uses of the CondInst if it has
1165         // exactly one value as returned by LVI. RAUW is incorrect in the
1166         // presence of guards and assumes, that have the `Cond` as the use. This
1167         // is because we use the guards/assume to reason about the `Cond` value
1168         // at the end of block, but RAUW unconditionally replaces all uses
1169         // including the guards/assumes themselves and the uses before the
1170         // guard/assume.
1171         else if (CondCmp->getParent() == BB) {
1172           auto *CI = Ret == LazyValueInfo::True ?
1173             ConstantInt::getTrue(CondCmp->getType()) :
1174             ConstantInt::getFalse(CondCmp->getType());
1175           replaceFoldableUses(CondCmp, CI);
1176         }
1177         DTU->applyUpdatesPermissive(
1178             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1179         if (HasProfileData)
1180           BPI->eraseBlock(BB);
1181         return true;
1182       }
1183 
1184       // We did not manage to simplify this branch, try to see whether
1185       // CondCmp depends on a known phi-select pattern.
1186       if (tryToUnfoldSelect(CondCmp, BB))
1187         return true;
1188     }
1189   }
1190 
1191   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1192     if (tryToUnfoldSelect(SI, BB))
1193       return true;
1194 
1195   // Check for some cases that are worth simplifying.  Right now we want to look
1196   // for loads that are used by a switch or by the condition for the branch.  If
1197   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1198   // which can then be used to thread the values.
1199   Value *SimplifyValue = CondInst;
1200 
1201   if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1202     // Look into freeze's operand
1203     SimplifyValue = FI->getOperand(0);
1204 
1205   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1206     if (isa<Constant>(CondCmp->getOperand(1)))
1207       SimplifyValue = CondCmp->getOperand(0);
1208 
1209   // TODO: There are other places where load PRE would be profitable, such as
1210   // more complex comparisons.
1211   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1212     if (simplifyPartiallyRedundantLoad(LoadI))
1213       return true;
1214 
1215   // Before threading, try to propagate profile data backwards:
1216   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1217     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1218       updatePredecessorProfileMetadata(PN, BB);
1219 
1220   // Handle a variety of cases where we are branching on something derived from
1221   // a PHI node in the current block.  If we can prove that any predecessors
1222   // compute a predictable value based on a PHI node, thread those predecessors.
1223   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1224     return true;
1225 
1226   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1227   // the current block, see if we can simplify.
1228   PHINode *PN = dyn_cast<PHINode>(
1229       isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1230                                 : CondInst);
1231 
1232   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1233     return processBranchOnPHI(PN);
1234 
1235   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1236   if (CondInst->getOpcode() == Instruction::Xor &&
1237       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1238     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1239 
1240   // Search for a stronger dominating condition that can be used to simplify a
1241   // conditional branch leaving BB.
1242   if (processImpliedCondition(BB))
1243     return true;
1244 
1245   return false;
1246 }
1247 
1248 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1249   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1250   if (!BI || !BI->isConditional())
1251     return false;
1252 
1253   Value *Cond = BI->getCondition();
1254   // Assuming that predecessor's branch was taken, if pred's branch condition
1255   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1256   // freeze(Cond) is either true or a nondeterministic value.
1257   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1258   // without affecting other instructions.
1259   auto *FICond = dyn_cast<FreezeInst>(Cond);
1260   if (FICond && FICond->hasOneUse())
1261     Cond = FICond->getOperand(0);
1262   else
1263     FICond = nullptr;
1264 
1265   BasicBlock *CurrentBB = BB;
1266   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1267   unsigned Iter = 0;
1268 
1269   auto &DL = BB->getModule()->getDataLayout();
1270 
1271   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1272     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1273     if (!PBI || !PBI->isConditional())
1274       return false;
1275     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1276       return false;
1277 
1278     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1279     Optional<bool> Implication =
1280         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1281 
1282     // If the branch condition of BB (which is Cond) and CurrentPred are
1283     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1284     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1285       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1286           FICond->getOperand(0))
1287         Implication = CondIsTrue;
1288     }
1289 
1290     if (Implication) {
1291       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1292       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1293       RemoveSucc->removePredecessor(BB);
1294       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1295       UncondBI->setDebugLoc(BI->getDebugLoc());
1296       ++NumFolds;
1297       BI->eraseFromParent();
1298       if (FICond)
1299         FICond->eraseFromParent();
1300 
1301       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1302       if (HasProfileData)
1303         BPI->eraseBlock(BB);
1304       return true;
1305     }
1306     CurrentBB = CurrentPred;
1307     CurrentPred = CurrentBB->getSinglePredecessor();
1308   }
1309 
1310   return false;
1311 }
1312 
1313 /// Return true if Op is an instruction defined in the given block.
1314 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1315   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1316     if (OpInst->getParent() == BB)
1317       return true;
1318   return false;
1319 }
1320 
1321 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1322 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1323 /// This is an important optimization that encourages jump threading, and needs
1324 /// to be run interlaced with other jump threading tasks.
1325 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1326   // Don't hack volatile and ordered loads.
1327   if (!LoadI->isUnordered()) return false;
1328 
1329   // If the load is defined in a block with exactly one predecessor, it can't be
1330   // partially redundant.
1331   BasicBlock *LoadBB = LoadI->getParent();
1332   if (LoadBB->getSinglePredecessor())
1333     return false;
1334 
1335   // If the load is defined in an EH pad, it can't be partially redundant,
1336   // because the edges between the invoke and the EH pad cannot have other
1337   // instructions between them.
1338   if (LoadBB->isEHPad())
1339     return false;
1340 
1341   Value *LoadedPtr = LoadI->getOperand(0);
1342 
1343   // If the loaded operand is defined in the LoadBB and its not a phi,
1344   // it can't be available in predecessors.
1345   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1346     return false;
1347 
1348   // Scan a few instructions up from the load, to see if it is obviously live at
1349   // the entry to its block.
1350   BasicBlock::iterator BBIt(LoadI);
1351   bool IsLoadCSE;
1352   if (Value *AvailableVal = FindAvailableLoadedValue(
1353           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1354     // If the value of the load is locally available within the block, just use
1355     // it.  This frequently occurs for reg2mem'd allocas.
1356 
1357     if (IsLoadCSE) {
1358       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1359       combineMetadataForCSE(NLoadI, LoadI, false);
1360     };
1361 
1362     // If the returned value is the load itself, replace with an undef. This can
1363     // only happen in dead loops.
1364     if (AvailableVal == LoadI)
1365       AvailableVal = UndefValue::get(LoadI->getType());
1366     if (AvailableVal->getType() != LoadI->getType())
1367       AvailableVal = CastInst::CreateBitOrPointerCast(
1368           AvailableVal, LoadI->getType(), "", LoadI);
1369     LoadI->replaceAllUsesWith(AvailableVal);
1370     LoadI->eraseFromParent();
1371     return true;
1372   }
1373 
1374   // Otherwise, if we scanned the whole block and got to the top of the block,
1375   // we know the block is locally transparent to the load.  If not, something
1376   // might clobber its value.
1377   if (BBIt != LoadBB->begin())
1378     return false;
1379 
1380   // If all of the loads and stores that feed the value have the same AA tags,
1381   // then we can propagate them onto any newly inserted loads.
1382   AAMDNodes AATags = LoadI->getAAMetadata();
1383 
1384   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1385 
1386   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1387 
1388   AvailablePredsTy AvailablePreds;
1389   BasicBlock *OneUnavailablePred = nullptr;
1390   SmallVector<LoadInst*, 8> CSELoads;
1391 
1392   // If we got here, the loaded value is transparent through to the start of the
1393   // block.  Check to see if it is available in any of the predecessor blocks.
1394   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1395     // If we already scanned this predecessor, skip it.
1396     if (!PredsScanned.insert(PredBB).second)
1397       continue;
1398 
1399     BBIt = PredBB->end();
1400     unsigned NumScanedInst = 0;
1401     Value *PredAvailable = nullptr;
1402     // NOTE: We don't CSE load that is volatile or anything stronger than
1403     // unordered, that should have been checked when we entered the function.
1404     assert(LoadI->isUnordered() &&
1405            "Attempting to CSE volatile or atomic loads");
1406     // If this is a load on a phi pointer, phi-translate it and search
1407     // for available load/store to the pointer in predecessors.
1408     Type *AccessTy = LoadI->getType();
1409     const auto &DL = LoadI->getModule()->getDataLayout();
1410     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1411                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1412                        AATags);
1413     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1414                                               PredBB, BBIt, DefMaxInstsToScan,
1415                                               AA, &IsLoadCSE, &NumScanedInst);
1416 
1417     // If PredBB has a single predecessor, continue scanning through the
1418     // single predecessor.
1419     BasicBlock *SinglePredBB = PredBB;
1420     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1421            NumScanedInst < DefMaxInstsToScan) {
1422       SinglePredBB = SinglePredBB->getSinglePredecessor();
1423       if (SinglePredBB) {
1424         BBIt = SinglePredBB->end();
1425         PredAvailable = findAvailablePtrLoadStore(
1426             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1427             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1428             &NumScanedInst);
1429       }
1430     }
1431 
1432     if (!PredAvailable) {
1433       OneUnavailablePred = PredBB;
1434       continue;
1435     }
1436 
1437     if (IsLoadCSE)
1438       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1439 
1440     // If so, this load is partially redundant.  Remember this info so that we
1441     // can create a PHI node.
1442     AvailablePreds.emplace_back(PredBB, PredAvailable);
1443   }
1444 
1445   // If the loaded value isn't available in any predecessor, it isn't partially
1446   // redundant.
1447   if (AvailablePreds.empty()) return false;
1448 
1449   // Okay, the loaded value is available in at least one (and maybe all!)
1450   // predecessors.  If the value is unavailable in more than one unique
1451   // predecessor, we want to insert a merge block for those common predecessors.
1452   // This ensures that we only have to insert one reload, thus not increasing
1453   // code size.
1454   BasicBlock *UnavailablePred = nullptr;
1455 
1456   // If the value is unavailable in one of predecessors, we will end up
1457   // inserting a new instruction into them. It is only valid if all the
1458   // instructions before LoadI are guaranteed to pass execution to its
1459   // successor, or if LoadI is safe to speculate.
1460   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1461   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1462   // It requires domination tree analysis, so for this simple case it is an
1463   // overkill.
1464   if (PredsScanned.size() != AvailablePreds.size() &&
1465       !isSafeToSpeculativelyExecute(LoadI))
1466     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1467       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1468         return false;
1469 
1470   // If there is exactly one predecessor where the value is unavailable, the
1471   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1472   // unconditional branch, we know that it isn't a critical edge.
1473   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1474       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1475     UnavailablePred = OneUnavailablePred;
1476   } else if (PredsScanned.size() != AvailablePreds.size()) {
1477     // Otherwise, we had multiple unavailable predecessors or we had a critical
1478     // edge from the one.
1479     SmallVector<BasicBlock*, 8> PredsToSplit;
1480     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1481 
1482     for (const auto &AvailablePred : AvailablePreds)
1483       AvailablePredSet.insert(AvailablePred.first);
1484 
1485     // Add all the unavailable predecessors to the PredsToSplit list.
1486     for (BasicBlock *P : predecessors(LoadBB)) {
1487       // If the predecessor is an indirect goto, we can't split the edge.
1488       // Same for CallBr.
1489       if (isa<IndirectBrInst>(P->getTerminator()) ||
1490           isa<CallBrInst>(P->getTerminator()))
1491         return false;
1492 
1493       if (!AvailablePredSet.count(P))
1494         PredsToSplit.push_back(P);
1495     }
1496 
1497     // Split them out to their own block.
1498     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1499   }
1500 
1501   // If the value isn't available in all predecessors, then there will be
1502   // exactly one where it isn't available.  Insert a load on that edge and add
1503   // it to the AvailablePreds list.
1504   if (UnavailablePred) {
1505     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1506            "Can't handle critical edge here!");
1507     LoadInst *NewVal = new LoadInst(
1508         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1509         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1510         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1511         UnavailablePred->getTerminator());
1512     NewVal->setDebugLoc(LoadI->getDebugLoc());
1513     if (AATags)
1514       NewVal->setAAMetadata(AATags);
1515 
1516     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1517   }
1518 
1519   // Now we know that each predecessor of this block has a value in
1520   // AvailablePreds, sort them for efficient access as we're walking the preds.
1521   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1522 
1523   // Create a PHI node at the start of the block for the PRE'd load value.
1524   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1525   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1526                                 &LoadBB->front());
1527   PN->takeName(LoadI);
1528   PN->setDebugLoc(LoadI->getDebugLoc());
1529 
1530   // Insert new entries into the PHI for each predecessor.  A single block may
1531   // have multiple entries here.
1532   for (pred_iterator PI = PB; PI != PE; ++PI) {
1533     BasicBlock *P = *PI;
1534     AvailablePredsTy::iterator I =
1535         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1536 
1537     assert(I != AvailablePreds.end() && I->first == P &&
1538            "Didn't find entry for predecessor!");
1539 
1540     // If we have an available predecessor but it requires casting, insert the
1541     // cast in the predecessor and use the cast. Note that we have to update the
1542     // AvailablePreds vector as we go so that all of the PHI entries for this
1543     // predecessor use the same bitcast.
1544     Value *&PredV = I->second;
1545     if (PredV->getType() != LoadI->getType())
1546       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1547                                                P->getTerminator());
1548 
1549     PN->addIncoming(PredV, I->first);
1550   }
1551 
1552   for (LoadInst *PredLoadI : CSELoads) {
1553     combineMetadataForCSE(PredLoadI, LoadI, true);
1554   }
1555 
1556   LoadI->replaceAllUsesWith(PN);
1557   LoadI->eraseFromParent();
1558 
1559   return true;
1560 }
1561 
1562 /// findMostPopularDest - The specified list contains multiple possible
1563 /// threadable destinations.  Pick the one that occurs the most frequently in
1564 /// the list.
1565 static BasicBlock *
1566 findMostPopularDest(BasicBlock *BB,
1567                     const SmallVectorImpl<std::pair<BasicBlock *,
1568                                           BasicBlock *>> &PredToDestList) {
1569   assert(!PredToDestList.empty());
1570 
1571   // Determine popularity.  If there are multiple possible destinations, we
1572   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1573   // blocks with known and real destinations to threading undef.  We'll handle
1574   // them later if interesting.
1575   MapVector<BasicBlock *, unsigned> DestPopularity;
1576 
1577   // Populate DestPopularity with the successors in the order they appear in the
1578   // successor list.  This way, we ensure determinism by iterating it in the
1579   // same order in std::max_element below.  We map nullptr to 0 so that we can
1580   // return nullptr when PredToDestList contains nullptr only.
1581   DestPopularity[nullptr] = 0;
1582   for (auto *SuccBB : successors(BB))
1583     DestPopularity[SuccBB] = 0;
1584 
1585   for (const auto &PredToDest : PredToDestList)
1586     if (PredToDest.second)
1587       DestPopularity[PredToDest.second]++;
1588 
1589   // Find the most popular dest.
1590   using VT = decltype(DestPopularity)::value_type;
1591   auto MostPopular = std::max_element(
1592       DestPopularity.begin(), DestPopularity.end(),
1593       [](const VT &L, const VT &R) { return L.second < R.second; });
1594 
1595   // Okay, we have finally picked the most popular destination.
1596   return MostPopular->first;
1597 }
1598 
1599 // Try to evaluate the value of V when the control flows from PredPredBB to
1600 // BB->getSinglePredecessor() and then on to BB.
1601 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1602                                                        BasicBlock *PredPredBB,
1603                                                        Value *V) {
1604   BasicBlock *PredBB = BB->getSinglePredecessor();
1605   assert(PredBB && "Expected a single predecessor");
1606 
1607   if (Constant *Cst = dyn_cast<Constant>(V)) {
1608     return Cst;
1609   }
1610 
1611   // Consult LVI if V is not an instruction in BB or PredBB.
1612   Instruction *I = dyn_cast<Instruction>(V);
1613   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1614     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1615   }
1616 
1617   // Look into a PHI argument.
1618   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1619     if (PHI->getParent() == PredBB)
1620       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1621     return nullptr;
1622   }
1623 
1624   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1625   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1626     if (CondCmp->getParent() == BB) {
1627       Constant *Op0 =
1628           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1629       Constant *Op1 =
1630           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1631       if (Op0 && Op1) {
1632         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1633       }
1634     }
1635     return nullptr;
1636   }
1637 
1638   return nullptr;
1639 }
1640 
1641 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1642                                                ConstantPreference Preference,
1643                                                Instruction *CxtI) {
1644   // If threading this would thread across a loop header, don't even try to
1645   // thread the edge.
1646   if (LoopHeaders.count(BB))
1647     return false;
1648 
1649   PredValueInfoTy PredValues;
1650   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1651                                        CxtI)) {
1652     // We don't have known values in predecessors.  See if we can thread through
1653     // BB and its sole predecessor.
1654     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1655   }
1656 
1657   assert(!PredValues.empty() &&
1658          "computeValueKnownInPredecessors returned true with no values");
1659 
1660   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1661              for (const auto &PredValue : PredValues) {
1662                dbgs() << "  BB '" << BB->getName()
1663                       << "': FOUND condition = " << *PredValue.first
1664                       << " for pred '" << PredValue.second->getName() << "'.\n";
1665   });
1666 
1667   // Decide what we want to thread through.  Convert our list of known values to
1668   // a list of known destinations for each pred.  This also discards duplicate
1669   // predecessors and keeps track of the undefined inputs (which are represented
1670   // as a null dest in the PredToDestList).
1671   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1672   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1673 
1674   BasicBlock *OnlyDest = nullptr;
1675   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1676   Constant *OnlyVal = nullptr;
1677   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1678 
1679   for (const auto &PredValue : PredValues) {
1680     BasicBlock *Pred = PredValue.second;
1681     if (!SeenPreds.insert(Pred).second)
1682       continue;  // Duplicate predecessor entry.
1683 
1684     Constant *Val = PredValue.first;
1685 
1686     BasicBlock *DestBB;
1687     if (isa<UndefValue>(Val))
1688       DestBB = nullptr;
1689     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1690       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1691       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1692     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1693       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1694       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1695     } else {
1696       assert(isa<IndirectBrInst>(BB->getTerminator())
1697               && "Unexpected terminator");
1698       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1699       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1700     }
1701 
1702     // If we have exactly one destination, remember it for efficiency below.
1703     if (PredToDestList.empty()) {
1704       OnlyDest = DestBB;
1705       OnlyVal = Val;
1706     } else {
1707       if (OnlyDest != DestBB)
1708         OnlyDest = MultipleDestSentinel;
1709       // It possible we have same destination, but different value, e.g. default
1710       // case in switchinst.
1711       if (Val != OnlyVal)
1712         OnlyVal = MultipleVal;
1713     }
1714 
1715     // If the predecessor ends with an indirect goto, we can't change its
1716     // destination. Same for CallBr.
1717     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1718         isa<CallBrInst>(Pred->getTerminator()))
1719       continue;
1720 
1721     PredToDestList.emplace_back(Pred, DestBB);
1722   }
1723 
1724   // If all edges were unthreadable, we fail.
1725   if (PredToDestList.empty())
1726     return false;
1727 
1728   // If all the predecessors go to a single known successor, we want to fold,
1729   // not thread. By doing so, we do not need to duplicate the current block and
1730   // also miss potential opportunities in case we dont/cant duplicate.
1731   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1732     if (BB->hasNPredecessors(PredToDestList.size())) {
1733       bool SeenFirstBranchToOnlyDest = false;
1734       std::vector <DominatorTree::UpdateType> Updates;
1735       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1736       for (BasicBlock *SuccBB : successors(BB)) {
1737         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1738           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1739         } else {
1740           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1741           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1742         }
1743       }
1744 
1745       // Finally update the terminator.
1746       Instruction *Term = BB->getTerminator();
1747       BranchInst::Create(OnlyDest, Term);
1748       ++NumFolds;
1749       Term->eraseFromParent();
1750       DTU->applyUpdatesPermissive(Updates);
1751       if (HasProfileData)
1752         BPI->eraseBlock(BB);
1753 
1754       // If the condition is now dead due to the removal of the old terminator,
1755       // erase it.
1756       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1757         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1758           CondInst->eraseFromParent();
1759         // We can safely replace *some* uses of the CondInst if it has
1760         // exactly one value as returned by LVI. RAUW is incorrect in the
1761         // presence of guards and assumes, that have the `Cond` as the use. This
1762         // is because we use the guards/assume to reason about the `Cond` value
1763         // at the end of block, but RAUW unconditionally replaces all uses
1764         // including the guards/assumes themselves and the uses before the
1765         // guard/assume.
1766         else if (OnlyVal && OnlyVal != MultipleVal &&
1767                  CondInst->getParent() == BB)
1768           replaceFoldableUses(CondInst, OnlyVal);
1769       }
1770       return true;
1771     }
1772   }
1773 
1774   // Determine which is the most common successor.  If we have many inputs and
1775   // this block is a switch, we want to start by threading the batch that goes
1776   // to the most popular destination first.  If we only know about one
1777   // threadable destination (the common case) we can avoid this.
1778   BasicBlock *MostPopularDest = OnlyDest;
1779 
1780   if (MostPopularDest == MultipleDestSentinel) {
1781     // Remove any loop headers from the Dest list, threadEdge conservatively
1782     // won't process them, but we might have other destination that are eligible
1783     // and we still want to process.
1784     erase_if(PredToDestList,
1785              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1786                return LoopHeaders.contains(PredToDest.second);
1787              });
1788 
1789     if (PredToDestList.empty())
1790       return false;
1791 
1792     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1793   }
1794 
1795   // Now that we know what the most popular destination is, factor all
1796   // predecessors that will jump to it into a single predecessor.
1797   SmallVector<BasicBlock*, 16> PredsToFactor;
1798   for (const auto &PredToDest : PredToDestList)
1799     if (PredToDest.second == MostPopularDest) {
1800       BasicBlock *Pred = PredToDest.first;
1801 
1802       // This predecessor may be a switch or something else that has multiple
1803       // edges to the block.  Factor each of these edges by listing them
1804       // according to # occurrences in PredsToFactor.
1805       for (BasicBlock *Succ : successors(Pred))
1806         if (Succ == BB)
1807           PredsToFactor.push_back(Pred);
1808     }
1809 
1810   // If the threadable edges are branching on an undefined value, we get to pick
1811   // the destination that these predecessors should get to.
1812   if (!MostPopularDest)
1813     MostPopularDest = BB->getTerminator()->
1814                             getSuccessor(getBestDestForJumpOnUndef(BB));
1815 
1816   // Ok, try to thread it!
1817   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1818 }
1819 
1820 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1821 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1822 /// simplifications we can do based on inputs to the phi node.
1823 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1824   BasicBlock *BB = PN->getParent();
1825 
1826   // TODO: We could make use of this to do it once for blocks with common PHI
1827   // values.
1828   SmallVector<BasicBlock*, 1> PredBBs;
1829   PredBBs.resize(1);
1830 
1831   // If any of the predecessor blocks end in an unconditional branch, we can
1832   // *duplicate* the conditional branch into that block in order to further
1833   // encourage jump threading and to eliminate cases where we have branch on a
1834   // phi of an icmp (branch on icmp is much better).
1835   // This is still beneficial when a frozen phi is used as the branch condition
1836   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1837   // to br(icmp(freeze ...)).
1838   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1839     BasicBlock *PredBB = PN->getIncomingBlock(i);
1840     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1841       if (PredBr->isUnconditional()) {
1842         PredBBs[0] = PredBB;
1843         // Try to duplicate BB into PredBB.
1844         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1845           return true;
1846       }
1847   }
1848 
1849   return false;
1850 }
1851 
1852 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1853 /// a xor instruction in the current block.  See if there are any
1854 /// simplifications we can do based on inputs to the xor.
1855 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1856   BasicBlock *BB = BO->getParent();
1857 
1858   // If either the LHS or RHS of the xor is a constant, don't do this
1859   // optimization.
1860   if (isa<ConstantInt>(BO->getOperand(0)) ||
1861       isa<ConstantInt>(BO->getOperand(1)))
1862     return false;
1863 
1864   // If the first instruction in BB isn't a phi, we won't be able to infer
1865   // anything special about any particular predecessor.
1866   if (!isa<PHINode>(BB->front()))
1867     return false;
1868 
1869   // If this BB is a landing pad, we won't be able to split the edge into it.
1870   if (BB->isEHPad())
1871     return false;
1872 
1873   // If we have a xor as the branch input to this block, and we know that the
1874   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1875   // the condition into the predecessor and fix that value to true, saving some
1876   // logical ops on that path and encouraging other paths to simplify.
1877   //
1878   // This copies something like this:
1879   //
1880   //  BB:
1881   //    %X = phi i1 [1],  [%X']
1882   //    %Y = icmp eq i32 %A, %B
1883   //    %Z = xor i1 %X, %Y
1884   //    br i1 %Z, ...
1885   //
1886   // Into:
1887   //  BB':
1888   //    %Y = icmp ne i32 %A, %B
1889   //    br i1 %Y, ...
1890 
1891   PredValueInfoTy XorOpValues;
1892   bool isLHS = true;
1893   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1894                                        WantInteger, BO)) {
1895     assert(XorOpValues.empty());
1896     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1897                                          WantInteger, BO))
1898       return false;
1899     isLHS = false;
1900   }
1901 
1902   assert(!XorOpValues.empty() &&
1903          "computeValueKnownInPredecessors returned true with no values");
1904 
1905   // Scan the information to see which is most popular: true or false.  The
1906   // predecessors can be of the set true, false, or undef.
1907   unsigned NumTrue = 0, NumFalse = 0;
1908   for (const auto &XorOpValue : XorOpValues) {
1909     if (isa<UndefValue>(XorOpValue.first))
1910       // Ignore undefs for the count.
1911       continue;
1912     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1913       ++NumFalse;
1914     else
1915       ++NumTrue;
1916   }
1917 
1918   // Determine which value to split on, true, false, or undef if neither.
1919   ConstantInt *SplitVal = nullptr;
1920   if (NumTrue > NumFalse)
1921     SplitVal = ConstantInt::getTrue(BB->getContext());
1922   else if (NumTrue != 0 || NumFalse != 0)
1923     SplitVal = ConstantInt::getFalse(BB->getContext());
1924 
1925   // Collect all of the blocks that this can be folded into so that we can
1926   // factor this once and clone it once.
1927   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1928   for (const auto &XorOpValue : XorOpValues) {
1929     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1930       continue;
1931 
1932     BlocksToFoldInto.push_back(XorOpValue.second);
1933   }
1934 
1935   // If we inferred a value for all of the predecessors, then duplication won't
1936   // help us.  However, we can just replace the LHS or RHS with the constant.
1937   if (BlocksToFoldInto.size() ==
1938       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1939     if (!SplitVal) {
1940       // If all preds provide undef, just nuke the xor, because it is undef too.
1941       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1942       BO->eraseFromParent();
1943     } else if (SplitVal->isZero()) {
1944       // If all preds provide 0, replace the xor with the other input.
1945       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1946       BO->eraseFromParent();
1947     } else {
1948       // If all preds provide 1, set the computed value to 1.
1949       BO->setOperand(!isLHS, SplitVal);
1950     }
1951 
1952     return true;
1953   }
1954 
1955   // If any of predecessors end with an indirect goto, we can't change its
1956   // destination. Same for CallBr.
1957   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1958         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1959                isa<CallBrInst>(Pred->getTerminator());
1960       }))
1961     return false;
1962 
1963   // Try to duplicate BB into PredBB.
1964   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1965 }
1966 
1967 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1968 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1969 /// NewPred using the entries from OldPred (suitably mapped).
1970 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1971                                             BasicBlock *OldPred,
1972                                             BasicBlock *NewPred,
1973                                      DenseMap<Instruction*, Value*> &ValueMap) {
1974   for (PHINode &PN : PHIBB->phis()) {
1975     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1976     // DestBlock.
1977     Value *IV = PN.getIncomingValueForBlock(OldPred);
1978 
1979     // Remap the value if necessary.
1980     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1981       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1982       if (I != ValueMap.end())
1983         IV = I->second;
1984     }
1985 
1986     PN.addIncoming(IV, NewPred);
1987   }
1988 }
1989 
1990 /// Merge basic block BB into its sole predecessor if possible.
1991 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1992   BasicBlock *SinglePred = BB->getSinglePredecessor();
1993   if (!SinglePred)
1994     return false;
1995 
1996   const Instruction *TI = SinglePred->getTerminator();
1997   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1998       SinglePred == BB || hasAddressTakenAndUsed(BB))
1999     return false;
2000 
2001   // If SinglePred was a loop header, BB becomes one.
2002   if (LoopHeaders.erase(SinglePred))
2003     LoopHeaders.insert(BB);
2004 
2005   LVI->eraseBlock(SinglePred);
2006   MergeBasicBlockIntoOnlyPred(BB, DTU);
2007 
2008   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
2009   // BB code within one basic block `BB`), we need to invalidate the LVI
2010   // information associated with BB, because the LVI information need not be
2011   // true for all of BB after the merge. For example,
2012   // Before the merge, LVI info and code is as follows:
2013   // SinglePred: <LVI info1 for %p val>
2014   // %y = use of %p
2015   // call @exit() // need not transfer execution to successor.
2016   // assume(%p) // from this point on %p is true
2017   // br label %BB
2018   // BB: <LVI info2 for %p val, i.e. %p is true>
2019   // %x = use of %p
2020   // br label exit
2021   //
2022   // Note that this LVI info for blocks BB and SinglPred is correct for %p
2023   // (info2 and info1 respectively). After the merge and the deletion of the
2024   // LVI info1 for SinglePred. We have the following code:
2025   // BB: <LVI info2 for %p val>
2026   // %y = use of %p
2027   // call @exit()
2028   // assume(%p)
2029   // %x = use of %p <-- LVI info2 is correct from here onwards.
2030   // br label exit
2031   // LVI info2 for BB is incorrect at the beginning of BB.
2032 
2033   // Invalidate LVI information for BB if the LVI is not provably true for
2034   // all of BB.
2035   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2036     LVI->eraseBlock(BB);
2037   return true;
2038 }
2039 
2040 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2041 /// ValueMapping maps old values in BB to new ones in NewBB.
2042 void JumpThreadingPass::updateSSA(
2043     BasicBlock *BB, BasicBlock *NewBB,
2044     DenseMap<Instruction *, Value *> &ValueMapping) {
2045   // If there were values defined in BB that are used outside the block, then we
2046   // now have to update all uses of the value to use either the original value,
2047   // the cloned value, or some PHI derived value.  This can require arbitrary
2048   // PHI insertion, of which we are prepared to do, clean these up now.
2049   SSAUpdater SSAUpdate;
2050   SmallVector<Use *, 16> UsesToRename;
2051 
2052   for (Instruction &I : *BB) {
2053     // Scan all uses of this instruction to see if it is used outside of its
2054     // block, and if so, record them in UsesToRename.
2055     for (Use &U : I.uses()) {
2056       Instruction *User = cast<Instruction>(U.getUser());
2057       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2058         if (UserPN->getIncomingBlock(U) == BB)
2059           continue;
2060       } else if (User->getParent() == BB)
2061         continue;
2062 
2063       UsesToRename.push_back(&U);
2064     }
2065 
2066     // If there are no uses outside the block, we're done with this instruction.
2067     if (UsesToRename.empty())
2068       continue;
2069     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2070 
2071     // We found a use of I outside of BB.  Rename all uses of I that are outside
2072     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2073     // with the two values we know.
2074     SSAUpdate.Initialize(I.getType(), I.getName());
2075     SSAUpdate.AddAvailableValue(BB, &I);
2076     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2077 
2078     while (!UsesToRename.empty())
2079       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2080     LLVM_DEBUG(dbgs() << "\n");
2081   }
2082 }
2083 
2084 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2085 /// arguments that come from PredBB.  Return the map from the variables in the
2086 /// source basic block to the variables in the newly created basic block.
2087 DenseMap<Instruction *, Value *>
2088 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2089                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2090                                      BasicBlock *PredBB) {
2091   // We are going to have to map operands from the source basic block to the new
2092   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2093   // block, evaluate them to account for entry from PredBB.
2094   DenseMap<Instruction *, Value *> ValueMapping;
2095 
2096   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2097   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2098   // might need to rewrite the operand of the cloned phi.
2099   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2100     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2101     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2102     ValueMapping[PN] = NewPN;
2103   }
2104 
2105   // Clone noalias scope declarations in the threaded block. When threading a
2106   // loop exit, we would otherwise end up with two idential scope declarations
2107   // visible at the same time.
2108   SmallVector<MDNode *> NoAliasScopes;
2109   DenseMap<MDNode *, MDNode *> ClonedScopes;
2110   LLVMContext &Context = PredBB->getContext();
2111   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2112   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2113 
2114   // Clone the non-phi instructions of the source basic block into NewBB,
2115   // keeping track of the mapping and using it to remap operands in the cloned
2116   // instructions.
2117   for (; BI != BE; ++BI) {
2118     Instruction *New = BI->clone();
2119     New->setName(BI->getName());
2120     NewBB->getInstList().push_back(New);
2121     ValueMapping[&*BI] = New;
2122     adaptNoAliasScopes(New, ClonedScopes, Context);
2123 
2124     // Remap operands to patch up intra-block references.
2125     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2126       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2127         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2128         if (I != ValueMapping.end())
2129           New->setOperand(i, I->second);
2130       }
2131   }
2132 
2133   return ValueMapping;
2134 }
2135 
2136 /// Attempt to thread through two successive basic blocks.
2137 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2138                                                          Value *Cond) {
2139   // Consider:
2140   //
2141   // PredBB:
2142   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2143   //   %tobool = icmp eq i32 %cond, 0
2144   //   br i1 %tobool, label %BB, label ...
2145   //
2146   // BB:
2147   //   %cmp = icmp eq i32* %var, null
2148   //   br i1 %cmp, label ..., label ...
2149   //
2150   // We don't know the value of %var at BB even if we know which incoming edge
2151   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2152   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2153   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2154 
2155   // Require that BB end with a Branch for simplicity.
2156   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2157   if (!CondBr)
2158     return false;
2159 
2160   // BB must have exactly one predecessor.
2161   BasicBlock *PredBB = BB->getSinglePredecessor();
2162   if (!PredBB)
2163     return false;
2164 
2165   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2166   // unconditional branch, we should be merging PredBB and BB instead. For
2167   // simplicity, we don't deal with a switch.
2168   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2169   if (!PredBBBranch || PredBBBranch->isUnconditional())
2170     return false;
2171 
2172   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2173   // PredBB.
2174   if (PredBB->getSinglePredecessor())
2175     return false;
2176 
2177   // Don't thread through PredBB if it contains a successor edge to itself, in
2178   // which case we would infinite loop.  Suppose we are threading an edge from
2179   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2180   // successor edge to itself.  If we allowed jump threading in this case, we
2181   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2182   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2183   // with another jump threading opportunity from PredBB.thread through PredBB
2184   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2185   // would keep peeling one iteration from PredBB.
2186   if (llvm::is_contained(successors(PredBB), PredBB))
2187     return false;
2188 
2189   // Don't thread across a loop header.
2190   if (LoopHeaders.count(PredBB))
2191     return false;
2192 
2193   // Avoid complication with duplicating EH pads.
2194   if (PredBB->isEHPad())
2195     return false;
2196 
2197   // Find a predecessor that we can thread.  For simplicity, we only consider a
2198   // successor edge out of BB to which we thread exactly one incoming edge into
2199   // PredBB.
2200   unsigned ZeroCount = 0;
2201   unsigned OneCount = 0;
2202   BasicBlock *ZeroPred = nullptr;
2203   BasicBlock *OnePred = nullptr;
2204   for (BasicBlock *P : predecessors(PredBB)) {
2205     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2206             evaluateOnPredecessorEdge(BB, P, Cond))) {
2207       if (CI->isZero()) {
2208         ZeroCount++;
2209         ZeroPred = P;
2210       } else if (CI->isOne()) {
2211         OneCount++;
2212         OnePred = P;
2213       }
2214     }
2215   }
2216 
2217   // Disregard complicated cases where we have to thread multiple edges.
2218   BasicBlock *PredPredBB;
2219   if (ZeroCount == 1) {
2220     PredPredBB = ZeroPred;
2221   } else if (OneCount == 1) {
2222     PredPredBB = OnePred;
2223   } else {
2224     return false;
2225   }
2226 
2227   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2228 
2229   // If threading to the same block as we come from, we would infinite loop.
2230   if (SuccBB == BB) {
2231     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2232                       << "' - would thread to self!\n");
2233     return false;
2234   }
2235 
2236   // If threading this would thread across a loop header, don't thread the edge.
2237   // See the comments above findLoopHeaders for justifications and caveats.
2238   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2239     LLVM_DEBUG({
2240       bool BBIsHeader = LoopHeaders.count(BB);
2241       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2242       dbgs() << "  Not threading across "
2243              << (BBIsHeader ? "loop header BB '" : "block BB '")
2244              << BB->getName() << "' to dest "
2245              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2246              << SuccBB->getName()
2247              << "' - it might create an irreducible loop!\n";
2248     });
2249     return false;
2250   }
2251 
2252   // Compute the cost of duplicating BB and PredBB.
2253   unsigned BBCost = getJumpThreadDuplicationCost(
2254       TTI, BB, BB->getTerminator(), BBDupThreshold);
2255   unsigned PredBBCost = getJumpThreadDuplicationCost(
2256       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2257 
2258   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2259   // individually before checking their sum because getJumpThreadDuplicationCost
2260   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2261   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2262       BBCost + PredBBCost > BBDupThreshold) {
2263     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2264                       << "' - Cost is too high: " << PredBBCost
2265                       << " for PredBB, " << BBCost << "for BB\n");
2266     return false;
2267   }
2268 
2269   // Now we are ready to duplicate PredBB.
2270   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2271   return true;
2272 }
2273 
2274 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2275                                                     BasicBlock *PredBB,
2276                                                     BasicBlock *BB,
2277                                                     BasicBlock *SuccBB) {
2278   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2279                     << BB->getName() << "'\n");
2280 
2281   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2282   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2283 
2284   BasicBlock *NewBB =
2285       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2286                          PredBB->getParent(), PredBB);
2287   NewBB->moveAfter(PredBB);
2288 
2289   // Set the block frequency of NewBB.
2290   if (HasProfileData) {
2291     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2292                      BPI->getEdgeProbability(PredPredBB, PredBB);
2293     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2294   }
2295 
2296   // We are going to have to map operands from the original BB block to the new
2297   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2298   // to account for entry from PredPredBB.
2299   DenseMap<Instruction *, Value *> ValueMapping =
2300       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2301 
2302   // Copy the edge probabilities from PredBB to NewBB.
2303   if (HasProfileData)
2304     BPI->copyEdgeProbabilities(PredBB, NewBB);
2305 
2306   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2307   // This eliminates predecessors from PredPredBB, which requires us to simplify
2308   // any PHI nodes in PredBB.
2309   Instruction *PredPredTerm = PredPredBB->getTerminator();
2310   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2311     if (PredPredTerm->getSuccessor(i) == PredBB) {
2312       PredBB->removePredecessor(PredPredBB, true);
2313       PredPredTerm->setSuccessor(i, NewBB);
2314     }
2315 
2316   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2317                                   ValueMapping);
2318   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2319                                   ValueMapping);
2320 
2321   DTU->applyUpdatesPermissive(
2322       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2323        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2324        {DominatorTree::Insert, PredPredBB, NewBB},
2325        {DominatorTree::Delete, PredPredBB, PredBB}});
2326 
2327   updateSSA(PredBB, NewBB, ValueMapping);
2328 
2329   // Clean up things like PHI nodes with single operands, dead instructions,
2330   // etc.
2331   SimplifyInstructionsInBlock(NewBB, TLI);
2332   SimplifyInstructionsInBlock(PredBB, TLI);
2333 
2334   SmallVector<BasicBlock *, 1> PredsToFactor;
2335   PredsToFactor.push_back(NewBB);
2336   threadEdge(BB, PredsToFactor, SuccBB);
2337 }
2338 
2339 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2340 bool JumpThreadingPass::tryThreadEdge(
2341     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2342     BasicBlock *SuccBB) {
2343   // If threading to the same block as we come from, we would infinite loop.
2344   if (SuccBB == BB) {
2345     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2346                       << "' - would thread to self!\n");
2347     return false;
2348   }
2349 
2350   // If threading this would thread across a loop header, don't thread the edge.
2351   // See the comments above findLoopHeaders for justifications and caveats.
2352   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2353     LLVM_DEBUG({
2354       bool BBIsHeader = LoopHeaders.count(BB);
2355       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2356       dbgs() << "  Not threading across "
2357           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2358           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2359           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2360     });
2361     return false;
2362   }
2363 
2364   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2365       TTI, BB, BB->getTerminator(), BBDupThreshold);
2366   if (JumpThreadCost > BBDupThreshold) {
2367     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2368                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2369     return false;
2370   }
2371 
2372   threadEdge(BB, PredBBs, SuccBB);
2373   return true;
2374 }
2375 
2376 /// threadEdge - We have decided that it is safe and profitable to factor the
2377 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2378 /// across BB.  Transform the IR to reflect this change.
2379 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2380                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2381                                    BasicBlock *SuccBB) {
2382   assert(SuccBB != BB && "Don't create an infinite loop");
2383 
2384   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2385          "Don't thread across loop headers");
2386 
2387   // And finally, do it!  Start by factoring the predecessors if needed.
2388   BasicBlock *PredBB;
2389   if (PredBBs.size() == 1)
2390     PredBB = PredBBs[0];
2391   else {
2392     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2393                       << " common predecessors.\n");
2394     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2395   }
2396 
2397   // And finally, do it!
2398   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2399                     << "' to '" << SuccBB->getName()
2400                     << ", across block:\n    " << *BB << "\n");
2401 
2402   LVI->threadEdge(PredBB, BB, SuccBB);
2403 
2404   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2405                                          BB->getName()+".thread",
2406                                          BB->getParent(), BB);
2407   NewBB->moveAfter(PredBB);
2408 
2409   // Set the block frequency of NewBB.
2410   if (HasProfileData) {
2411     auto NewBBFreq =
2412         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2413     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2414   }
2415 
2416   // Copy all the instructions from BB to NewBB except the terminator.
2417   DenseMap<Instruction *, Value *> ValueMapping =
2418       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2419 
2420   // We didn't copy the terminator from BB over to NewBB, because there is now
2421   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2422   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2423   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2424 
2425   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2426   // PHI nodes for NewBB now.
2427   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2428 
2429   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2430   // eliminates predecessors from BB, which requires us to simplify any PHI
2431   // nodes in BB.
2432   Instruction *PredTerm = PredBB->getTerminator();
2433   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2434     if (PredTerm->getSuccessor(i) == BB) {
2435       BB->removePredecessor(PredBB, true);
2436       PredTerm->setSuccessor(i, NewBB);
2437     }
2438 
2439   // Enqueue required DT updates.
2440   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2441                                {DominatorTree::Insert, PredBB, NewBB},
2442                                {DominatorTree::Delete, PredBB, BB}});
2443 
2444   updateSSA(BB, NewBB, ValueMapping);
2445 
2446   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2447   // over the new instructions and zap any that are constants or dead.  This
2448   // frequently happens because of phi translation.
2449   SimplifyInstructionsInBlock(NewBB, TLI);
2450 
2451   // Update the edge weight from BB to SuccBB, which should be less than before.
2452   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2453 
2454   // Threaded an edge!
2455   ++NumThreads;
2456 }
2457 
2458 /// Create a new basic block that will be the predecessor of BB and successor of
2459 /// all blocks in Preds. When profile data is available, update the frequency of
2460 /// this new block.
2461 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2462                                                ArrayRef<BasicBlock *> Preds,
2463                                                const char *Suffix) {
2464   SmallVector<BasicBlock *, 2> NewBBs;
2465 
2466   // Collect the frequencies of all predecessors of BB, which will be used to
2467   // update the edge weight of the result of splitting predecessors.
2468   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2469   if (HasProfileData)
2470     for (auto Pred : Preds)
2471       FreqMap.insert(std::make_pair(
2472           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2473 
2474   // In the case when BB is a LandingPad block we create 2 new predecessors
2475   // instead of just one.
2476   if (BB->isLandingPad()) {
2477     std::string NewName = std::string(Suffix) + ".split-lp";
2478     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2479   } else {
2480     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2481   }
2482 
2483   std::vector<DominatorTree::UpdateType> Updates;
2484   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2485   for (auto NewBB : NewBBs) {
2486     BlockFrequency NewBBFreq(0);
2487     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2488     for (auto Pred : predecessors(NewBB)) {
2489       Updates.push_back({DominatorTree::Delete, Pred, BB});
2490       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2491       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2492         NewBBFreq += FreqMap.lookup(Pred);
2493     }
2494     if (HasProfileData) // Apply the summed frequency to NewBB.
2495       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2496   }
2497 
2498   DTU->applyUpdatesPermissive(Updates);
2499   return NewBBs[0];
2500 }
2501 
2502 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2503   const Instruction *TI = BB->getTerminator();
2504   assert(TI->getNumSuccessors() > 1 && "not a split");
2505 
2506   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2507   if (!WeightsNode)
2508     return false;
2509 
2510   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2511   if (MDName->getString() != "branch_weights")
2512     return false;
2513 
2514   // Ensure there are weights for all of the successors. Note that the first
2515   // operand to the metadata node is a name, not a weight.
2516   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2517 }
2518 
2519 /// Update the block frequency of BB and branch weight and the metadata on the
2520 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2521 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2522 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2523                                                      BasicBlock *BB,
2524                                                      BasicBlock *NewBB,
2525                                                      BasicBlock *SuccBB) {
2526   if (!HasProfileData)
2527     return;
2528 
2529   assert(BFI && BPI && "BFI & BPI should have been created here");
2530 
2531   // As the edge from PredBB to BB is deleted, we have to update the block
2532   // frequency of BB.
2533   auto BBOrigFreq = BFI->getBlockFreq(BB);
2534   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2535   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2536   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2537   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2538 
2539   // Collect updated outgoing edges' frequencies from BB and use them to update
2540   // edge probabilities.
2541   SmallVector<uint64_t, 4> BBSuccFreq;
2542   for (BasicBlock *Succ : successors(BB)) {
2543     auto SuccFreq = (Succ == SuccBB)
2544                         ? BB2SuccBBFreq - NewBBFreq
2545                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2546     BBSuccFreq.push_back(SuccFreq.getFrequency());
2547   }
2548 
2549   uint64_t MaxBBSuccFreq =
2550       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2551 
2552   SmallVector<BranchProbability, 4> BBSuccProbs;
2553   if (MaxBBSuccFreq == 0)
2554     BBSuccProbs.assign(BBSuccFreq.size(),
2555                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2556   else {
2557     for (uint64_t Freq : BBSuccFreq)
2558       BBSuccProbs.push_back(
2559           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2560     // Normalize edge probabilities so that they sum up to one.
2561     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2562                                               BBSuccProbs.end());
2563   }
2564 
2565   // Update edge probabilities in BPI.
2566   BPI->setEdgeProbability(BB, BBSuccProbs);
2567 
2568   // Update the profile metadata as well.
2569   //
2570   // Don't do this if the profile of the transformed blocks was statically
2571   // estimated.  (This could occur despite the function having an entry
2572   // frequency in completely cold parts of the CFG.)
2573   //
2574   // In this case we don't want to suggest to subsequent passes that the
2575   // calculated weights are fully consistent.  Consider this graph:
2576   //
2577   //                 check_1
2578   //             50% /  |
2579   //             eq_1   | 50%
2580   //                 \  |
2581   //                 check_2
2582   //             50% /  |
2583   //             eq_2   | 50%
2584   //                 \  |
2585   //                 check_3
2586   //             50% /  |
2587   //             eq_3   | 50%
2588   //                 \  |
2589   //
2590   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2591   // the overall probabilities are inconsistent; the total probability that the
2592   // value is either 1, 2 or 3 is 150%.
2593   //
2594   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2595   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2596   // the loop exit edge.  Then based solely on static estimation we would assume
2597   // the loop was extremely hot.
2598   //
2599   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2600   // shouldn't make edges extremely likely or unlikely based solely on static
2601   // estimation.
2602   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2603     SmallVector<uint32_t, 4> Weights;
2604     for (auto Prob : BBSuccProbs)
2605       Weights.push_back(Prob.getNumerator());
2606 
2607     auto TI = BB->getTerminator();
2608     TI->setMetadata(
2609         LLVMContext::MD_prof,
2610         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2611   }
2612 }
2613 
2614 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2615 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2616 /// If we can duplicate the contents of BB up into PredBB do so now, this
2617 /// improves the odds that the branch will be on an analyzable instruction like
2618 /// a compare.
2619 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2620     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2621   assert(!PredBBs.empty() && "Can't handle an empty set");
2622 
2623   // If BB is a loop header, then duplicating this block outside the loop would
2624   // cause us to transform this into an irreducible loop, don't do this.
2625   // See the comments above findLoopHeaders for justifications and caveats.
2626   if (LoopHeaders.count(BB)) {
2627     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2628                       << "' into predecessor block '" << PredBBs[0]->getName()
2629                       << "' - it might create an irreducible loop!\n");
2630     return false;
2631   }
2632 
2633   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2634       TTI, BB, BB->getTerminator(), BBDupThreshold);
2635   if (DuplicationCost > BBDupThreshold) {
2636     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2637                       << "' - Cost is too high: " << DuplicationCost << "\n");
2638     return false;
2639   }
2640 
2641   // And finally, do it!  Start by factoring the predecessors if needed.
2642   std::vector<DominatorTree::UpdateType> Updates;
2643   BasicBlock *PredBB;
2644   if (PredBBs.size() == 1)
2645     PredBB = PredBBs[0];
2646   else {
2647     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2648                       << " common predecessors.\n");
2649     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2650   }
2651   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2652 
2653   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2654   // of PredBB.
2655   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2656                     << "' into end of '" << PredBB->getName()
2657                     << "' to eliminate branch on phi.  Cost: "
2658                     << DuplicationCost << " block is:" << *BB << "\n");
2659 
2660   // Unless PredBB ends with an unconditional branch, split the edge so that we
2661   // can just clone the bits from BB into the end of the new PredBB.
2662   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2663 
2664   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2665     BasicBlock *OldPredBB = PredBB;
2666     PredBB = SplitEdge(OldPredBB, BB);
2667     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2668     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2669     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2670     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2671   }
2672 
2673   // We are going to have to map operands from the original BB block into the
2674   // PredBB block.  Evaluate PHI nodes in BB.
2675   DenseMap<Instruction*, Value*> ValueMapping;
2676 
2677   BasicBlock::iterator BI = BB->begin();
2678   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2679     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2680   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2681   // mapping and using it to remap operands in the cloned instructions.
2682   for (; BI != BB->end(); ++BI) {
2683     Instruction *New = BI->clone();
2684 
2685     // Remap operands to patch up intra-block references.
2686     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2687       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2688         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2689         if (I != ValueMapping.end())
2690           New->setOperand(i, I->second);
2691       }
2692 
2693     // If this instruction can be simplified after the operands are updated,
2694     // just use the simplified value instead.  This frequently happens due to
2695     // phi translation.
2696     if (Value *IV = SimplifyInstruction(
2697             New,
2698             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2699       ValueMapping[&*BI] = IV;
2700       if (!New->mayHaveSideEffects()) {
2701         New->deleteValue();
2702         New = nullptr;
2703       }
2704     } else {
2705       ValueMapping[&*BI] = New;
2706     }
2707     if (New) {
2708       // Otherwise, insert the new instruction into the block.
2709       New->setName(BI->getName());
2710       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2711       // Update Dominance from simplified New instruction operands.
2712       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2713         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2714           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2715     }
2716   }
2717 
2718   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2719   // add entries to the PHI nodes for branch from PredBB now.
2720   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2721   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2722                                   ValueMapping);
2723   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2724                                   ValueMapping);
2725 
2726   updateSSA(BB, PredBB, ValueMapping);
2727 
2728   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2729   // that we nuked.
2730   BB->removePredecessor(PredBB, true);
2731 
2732   // Remove the unconditional branch at the end of the PredBB block.
2733   OldPredBranch->eraseFromParent();
2734   if (HasProfileData)
2735     BPI->copyEdgeProbabilities(BB, PredBB);
2736   DTU->applyUpdatesPermissive(Updates);
2737 
2738   ++NumDupes;
2739   return true;
2740 }
2741 
2742 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2743 // a Select instruction in Pred. BB has other predecessors and SI is used in
2744 // a PHI node in BB. SI has no other use.
2745 // A new basic block, NewBB, is created and SI is converted to compare and
2746 // conditional branch. SI is erased from parent.
2747 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2748                                           SelectInst *SI, PHINode *SIUse,
2749                                           unsigned Idx) {
2750   // Expand the select.
2751   //
2752   // Pred --
2753   //  |    v
2754   //  |  NewBB
2755   //  |    |
2756   //  |-----
2757   //  v
2758   // BB
2759   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2760   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2761                                          BB->getParent(), BB);
2762   // Move the unconditional branch to NewBB.
2763   PredTerm->removeFromParent();
2764   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2765   // Create a conditional branch and update PHI nodes.
2766   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2767   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2768   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2769   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2770 
2771   // The select is now dead.
2772   SI->eraseFromParent();
2773   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2774                                {DominatorTree::Insert, Pred, NewBB}});
2775 
2776   // Update any other PHI nodes in BB.
2777   for (BasicBlock::iterator BI = BB->begin();
2778        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2779     if (Phi != SIUse)
2780       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2781 }
2782 
2783 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2784   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2785 
2786   if (!CondPHI || CondPHI->getParent() != BB)
2787     return false;
2788 
2789   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2790     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2791     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2792 
2793     // The second and third condition can be potentially relaxed. Currently
2794     // the conditions help to simplify the code and allow us to reuse existing
2795     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2796     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2797       continue;
2798 
2799     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2800     if (!PredTerm || !PredTerm->isUnconditional())
2801       continue;
2802 
2803     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2804     return true;
2805   }
2806   return false;
2807 }
2808 
2809 /// tryToUnfoldSelect - Look for blocks of the form
2810 /// bb1:
2811 ///   %a = select
2812 ///   br bb2
2813 ///
2814 /// bb2:
2815 ///   %p = phi [%a, %bb1] ...
2816 ///   %c = icmp %p
2817 ///   br i1 %c
2818 ///
2819 /// And expand the select into a branch structure if one of its arms allows %c
2820 /// to be folded. This later enables threading from bb1 over bb2.
2821 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2822   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2823   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2824   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2825 
2826   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2827       CondLHS->getParent() != BB)
2828     return false;
2829 
2830   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2831     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2832     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2833 
2834     // Look if one of the incoming values is a select in the corresponding
2835     // predecessor.
2836     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2837       continue;
2838 
2839     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2840     if (!PredTerm || !PredTerm->isUnconditional())
2841       continue;
2842 
2843     // Now check if one of the select values would allow us to constant fold the
2844     // terminator in BB. We don't do the transform if both sides fold, those
2845     // cases will be threaded in any case.
2846     LazyValueInfo::Tristate LHSFolds =
2847         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2848                                 CondRHS, Pred, BB, CondCmp);
2849     LazyValueInfo::Tristate RHSFolds =
2850         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2851                                 CondRHS, Pred, BB, CondCmp);
2852     if ((LHSFolds != LazyValueInfo::Unknown ||
2853          RHSFolds != LazyValueInfo::Unknown) &&
2854         LHSFolds != RHSFolds) {
2855       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2856       return true;
2857     }
2858   }
2859   return false;
2860 }
2861 
2862 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2863 /// same BB in the form
2864 /// bb:
2865 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2866 ///   %s = select %p, trueval, falseval
2867 ///
2868 /// or
2869 ///
2870 /// bb:
2871 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2872 ///   %c = cmp %p, 0
2873 ///   %s = select %c, trueval, falseval
2874 ///
2875 /// And expand the select into a branch structure. This later enables
2876 /// jump-threading over bb in this pass.
2877 ///
2878 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2879 /// select if the associated PHI has at least one constant.  If the unfolded
2880 /// select is not jump-threaded, it will be folded again in the later
2881 /// optimizations.
2882 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2883   // This transform would reduce the quality of msan diagnostics.
2884   // Disable this transform under MemorySanitizer.
2885   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2886     return false;
2887 
2888   // If threading this would thread across a loop header, don't thread the edge.
2889   // See the comments above findLoopHeaders for justifications and caveats.
2890   if (LoopHeaders.count(BB))
2891     return false;
2892 
2893   for (BasicBlock::iterator BI = BB->begin();
2894        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2895     // Look for a Phi having at least one constant incoming value.
2896     if (llvm::all_of(PN->incoming_values(),
2897                      [](Value *V) { return !isa<ConstantInt>(V); }))
2898       continue;
2899 
2900     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2901       using namespace PatternMatch;
2902 
2903       // Check if SI is in BB and use V as condition.
2904       if (SI->getParent() != BB)
2905         return false;
2906       Value *Cond = SI->getCondition();
2907       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2908       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2909     };
2910 
2911     SelectInst *SI = nullptr;
2912     for (Use &U : PN->uses()) {
2913       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2914         // Look for a ICmp in BB that compares PN with a constant and is the
2915         // condition of a Select.
2916         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2917             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2918           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2919             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2920               SI = SelectI;
2921               break;
2922             }
2923       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2924         // Look for a Select in BB that uses PN as condition.
2925         if (isUnfoldCandidate(SelectI, U.get())) {
2926           SI = SelectI;
2927           break;
2928         }
2929       }
2930     }
2931 
2932     if (!SI)
2933       continue;
2934     // Expand the select.
2935     Value *Cond = SI->getCondition();
2936     if (InsertFreezeWhenUnfoldingSelect &&
2937         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2938       Cond = new FreezeInst(Cond, "cond.fr", SI);
2939     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2940     BasicBlock *SplitBB = SI->getParent();
2941     BasicBlock *NewBB = Term->getParent();
2942     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2943     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2944     NewPN->addIncoming(SI->getFalseValue(), BB);
2945     SI->replaceAllUsesWith(NewPN);
2946     SI->eraseFromParent();
2947     // NewBB and SplitBB are newly created blocks which require insertion.
2948     std::vector<DominatorTree::UpdateType> Updates;
2949     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2950     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2951     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2952     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2953     // BB's successors were moved to SplitBB, update DTU accordingly.
2954     for (auto *Succ : successors(SplitBB)) {
2955       Updates.push_back({DominatorTree::Delete, BB, Succ});
2956       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2957     }
2958     DTU->applyUpdatesPermissive(Updates);
2959     return true;
2960   }
2961   return false;
2962 }
2963 
2964 /// Try to propagate a guard from the current BB into one of its predecessors
2965 /// in case if another branch of execution implies that the condition of this
2966 /// guard is always true. Currently we only process the simplest case that
2967 /// looks like:
2968 ///
2969 /// Start:
2970 ///   %cond = ...
2971 ///   br i1 %cond, label %T1, label %F1
2972 /// T1:
2973 ///   br label %Merge
2974 /// F1:
2975 ///   br label %Merge
2976 /// Merge:
2977 ///   %condGuard = ...
2978 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2979 ///
2980 /// And cond either implies condGuard or !condGuard. In this case all the
2981 /// instructions before the guard can be duplicated in both branches, and the
2982 /// guard is then threaded to one of them.
2983 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2984   using namespace PatternMatch;
2985 
2986   // We only want to deal with two predecessors.
2987   BasicBlock *Pred1, *Pred2;
2988   auto PI = pred_begin(BB), PE = pred_end(BB);
2989   if (PI == PE)
2990     return false;
2991   Pred1 = *PI++;
2992   if (PI == PE)
2993     return false;
2994   Pred2 = *PI++;
2995   if (PI != PE)
2996     return false;
2997   if (Pred1 == Pred2)
2998     return false;
2999 
3000   // Try to thread one of the guards of the block.
3001   // TODO: Look up deeper than to immediate predecessor?
3002   auto *Parent = Pred1->getSinglePredecessor();
3003   if (!Parent || Parent != Pred2->getSinglePredecessor())
3004     return false;
3005 
3006   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3007     for (auto &I : *BB)
3008       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3009         return true;
3010 
3011   return false;
3012 }
3013 
3014 /// Try to propagate the guard from BB which is the lower block of a diamond
3015 /// to one of its branches, in case if diamond's condition implies guard's
3016 /// condition.
3017 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3018                                     BranchInst *BI) {
3019   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3020   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3021   Value *GuardCond = Guard->getArgOperand(0);
3022   Value *BranchCond = BI->getCondition();
3023   BasicBlock *TrueDest = BI->getSuccessor(0);
3024   BasicBlock *FalseDest = BI->getSuccessor(1);
3025 
3026   auto &DL = BB->getModule()->getDataLayout();
3027   bool TrueDestIsSafe = false;
3028   bool FalseDestIsSafe = false;
3029 
3030   // True dest is safe if BranchCond => GuardCond.
3031   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3032   if (Impl && *Impl)
3033     TrueDestIsSafe = true;
3034   else {
3035     // False dest is safe if !BranchCond => GuardCond.
3036     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3037     if (Impl && *Impl)
3038       FalseDestIsSafe = true;
3039   }
3040 
3041   if (!TrueDestIsSafe && !FalseDestIsSafe)
3042     return false;
3043 
3044   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3045   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3046 
3047   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3048   Instruction *AfterGuard = Guard->getNextNode();
3049   unsigned Cost =
3050       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3051   if (Cost > BBDupThreshold)
3052     return false;
3053   // Duplicate all instructions before the guard and the guard itself to the
3054   // branch where implication is not proved.
3055   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3056       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3057   assert(GuardedBlock && "Could not create the guarded block?");
3058   // Duplicate all instructions before the guard in the unguarded branch.
3059   // Since we have successfully duplicated the guarded block and this block
3060   // has fewer instructions, we expect it to succeed.
3061   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3062       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3063   assert(UnguardedBlock && "Could not create the unguarded block?");
3064   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3065                     << GuardedBlock->getName() << "\n");
3066   // Some instructions before the guard may still have uses. For them, we need
3067   // to create Phi nodes merging their copies in both guarded and unguarded
3068   // branches. Those instructions that have no uses can be just removed.
3069   SmallVector<Instruction *, 4> ToRemove;
3070   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3071     if (!isa<PHINode>(&*BI))
3072       ToRemove.push_back(&*BI);
3073 
3074   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3075   assert(InsertionPoint && "Empty block?");
3076   // Substitute with Phis & remove.
3077   for (auto *Inst : reverse(ToRemove)) {
3078     if (!Inst->use_empty()) {
3079       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3080       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3081       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3082       NewPN->insertBefore(InsertionPoint);
3083       Inst->replaceAllUsesWith(NewPN);
3084     }
3085     Inst->eraseFromParent();
3086   }
3087   return true;
3088 }
3089