1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/PassManager.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/BlockFrequency.h" 64 #include "llvm/Support/BranchProbability.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar.h" 70 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 71 #include "llvm/Transforms/Utils/Cloning.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/SSAUpdater.h" 74 #include "llvm/Transforms/Utils/ValueMapper.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <memory> 81 #include <utility> 82 83 using namespace llvm; 84 using namespace jumpthreading; 85 86 #define DEBUG_TYPE "jump-threading" 87 88 STATISTIC(NumThreads, "Number of jumps threaded"); 89 STATISTIC(NumFolds, "Number of terminators folded"); 90 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 91 92 static cl::opt<unsigned> 93 BBDuplicateThreshold("jump-threading-threshold", 94 cl::desc("Max block size to duplicate for jump threading"), 95 cl::init(6), cl::Hidden); 96 97 static cl::opt<unsigned> 98 ImplicationSearchThreshold( 99 "jump-threading-implication-search-threshold", 100 cl::desc("The number of predecessors to search for a stronger " 101 "condition to use to thread over a weaker condition"), 102 cl::init(3), cl::Hidden); 103 104 static cl::opt<bool> PrintLVIAfterJumpThreading( 105 "print-lvi-after-jump-threading", 106 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 107 cl::Hidden); 108 109 static cl::opt<bool> JumpThreadingFreezeSelectCond( 110 "jump-threading-freeze-select-cond", 111 cl::desc("Freeze the condition when unfolding select"), cl::init(false), 112 cl::Hidden); 113 114 static cl::opt<bool> ThreadAcrossLoopHeaders( 115 "jump-threading-across-loop-headers", 116 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 117 cl::init(false), cl::Hidden); 118 119 120 namespace { 121 122 /// This pass performs 'jump threading', which looks at blocks that have 123 /// multiple predecessors and multiple successors. If one or more of the 124 /// predecessors of the block can be proven to always jump to one of the 125 /// successors, we forward the edge from the predecessor to the successor by 126 /// duplicating the contents of this block. 127 /// 128 /// An example of when this can occur is code like this: 129 /// 130 /// if () { ... 131 /// X = 4; 132 /// } 133 /// if (X < 3) { 134 /// 135 /// In this case, the unconditional branch at the end of the first if can be 136 /// revectored to the false side of the second if. 137 class JumpThreading : public FunctionPass { 138 JumpThreadingPass Impl; 139 140 public: 141 static char ID; // Pass identification 142 143 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) 144 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { 145 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 146 } 147 148 bool runOnFunction(Function &F) override; 149 150 void getAnalysisUsage(AnalysisUsage &AU) const override { 151 AU.addRequired<DominatorTreeWrapperPass>(); 152 AU.addPreserved<DominatorTreeWrapperPass>(); 153 AU.addRequired<AAResultsWrapperPass>(); 154 AU.addRequired<LazyValueInfoWrapperPass>(); 155 AU.addPreserved<LazyValueInfoWrapperPass>(); 156 AU.addPreserved<GlobalsAAWrapperPass>(); 157 AU.addRequired<TargetLibraryInfoWrapperPass>(); 158 AU.addRequired<TargetTransformInfoWrapperPass>(); 159 } 160 161 void releaseMemory() override { Impl.releaseMemory(); } 162 }; 163 164 } // end anonymous namespace 165 166 char JumpThreading::ID = 0; 167 168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 169 "Jump Threading", false, false) 170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 173 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 174 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 175 "Jump Threading", false, false) 176 177 // Public interface to the Jump Threading pass 178 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { 179 return new JumpThreading(InsertFr, Threshold); 180 } 181 182 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { 183 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; 184 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 185 } 186 187 // Update branch probability information according to conditional 188 // branch probability. This is usually made possible for cloned branches 189 // in inline instances by the context specific profile in the caller. 190 // For instance, 191 // 192 // [Block PredBB] 193 // [Branch PredBr] 194 // if (t) { 195 // Block A; 196 // } else { 197 // Block B; 198 // } 199 // 200 // [Block BB] 201 // cond = PN([true, %A], [..., %B]); // PHI node 202 // [Branch CondBr] 203 // if (cond) { 204 // ... // P(cond == true) = 1% 205 // } 206 // 207 // Here we know that when block A is taken, cond must be true, which means 208 // P(cond == true | A) = 1 209 // 210 // Given that P(cond == true) = P(cond == true | A) * P(A) + 211 // P(cond == true | B) * P(B) 212 // we get: 213 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 214 // 215 // which gives us: 216 // P(A) is less than P(cond == true), i.e. 217 // P(t == true) <= P(cond == true) 218 // 219 // In other words, if we know P(cond == true) is unlikely, we know 220 // that P(t == true) is also unlikely. 221 // 222 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 223 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 224 if (!CondBr) 225 return; 226 227 uint64_t TrueWeight, FalseWeight; 228 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 229 return; 230 231 if (TrueWeight + FalseWeight == 0) 232 // Zero branch_weights do not give a hint for getting branch probabilities. 233 // Technically it would result in division by zero denominator, which is 234 // TrueWeight + FalseWeight. 235 return; 236 237 // Returns the outgoing edge of the dominating predecessor block 238 // that leads to the PhiNode's incoming block: 239 auto GetPredOutEdge = 240 [](BasicBlock *IncomingBB, 241 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 242 auto *PredBB = IncomingBB; 243 auto *SuccBB = PhiBB; 244 SmallPtrSet<BasicBlock *, 16> Visited; 245 while (true) { 246 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 247 if (PredBr && PredBr->isConditional()) 248 return {PredBB, SuccBB}; 249 Visited.insert(PredBB); 250 auto *SinglePredBB = PredBB->getSinglePredecessor(); 251 if (!SinglePredBB) 252 return {nullptr, nullptr}; 253 254 // Stop searching when SinglePredBB has been visited. It means we see 255 // an unreachable loop. 256 if (Visited.count(SinglePredBB)) 257 return {nullptr, nullptr}; 258 259 SuccBB = PredBB; 260 PredBB = SinglePredBB; 261 } 262 }; 263 264 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 265 Value *PhiOpnd = PN->getIncomingValue(i); 266 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 267 268 if (!CI || !CI->getType()->isIntegerTy(1)) 269 continue; 270 271 BranchProbability BP = 272 (CI->isOne() ? BranchProbability::getBranchProbability( 273 TrueWeight, TrueWeight + FalseWeight) 274 : BranchProbability::getBranchProbability( 275 FalseWeight, TrueWeight + FalseWeight)); 276 277 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 278 if (!PredOutEdge.first) 279 return; 280 281 BasicBlock *PredBB = PredOutEdge.first; 282 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 283 if (!PredBr) 284 return; 285 286 uint64_t PredTrueWeight, PredFalseWeight; 287 // FIXME: We currently only set the profile data when it is missing. 288 // With PGO, this can be used to refine even existing profile data with 289 // context information. This needs to be done after more performance 290 // testing. 291 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 292 continue; 293 294 // We can not infer anything useful when BP >= 50%, because BP is the 295 // upper bound probability value. 296 if (BP >= BranchProbability(50, 100)) 297 continue; 298 299 SmallVector<uint32_t, 2> Weights; 300 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 301 Weights.push_back(BP.getNumerator()); 302 Weights.push_back(BP.getCompl().getNumerator()); 303 } else { 304 Weights.push_back(BP.getCompl().getNumerator()); 305 Weights.push_back(BP.getNumerator()); 306 } 307 PredBr->setMetadata(LLVMContext::MD_prof, 308 MDBuilder(PredBr->getParent()->getContext()) 309 .createBranchWeights(Weights)); 310 } 311 } 312 313 /// runOnFunction - Toplevel algorithm. 314 bool JumpThreading::runOnFunction(Function &F) { 315 if (skipFunction(F)) 316 return false; 317 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 318 // Jump Threading has no sense for the targets with divergent CF 319 if (TTI->hasBranchDivergence()) 320 return false; 321 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 322 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 323 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 324 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 325 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 326 std::unique_ptr<BlockFrequencyInfo> BFI; 327 std::unique_ptr<BranchProbabilityInfo> BPI; 328 if (F.hasProfileData()) { 329 LoopInfo LI{DominatorTree(F)}; 330 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 331 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 332 } 333 334 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 335 std::move(BFI), std::move(BPI)); 336 if (PrintLVIAfterJumpThreading) { 337 dbgs() << "LVI for function '" << F.getName() << "':\n"; 338 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 339 } 340 return Changed; 341 } 342 343 PreservedAnalyses JumpThreadingPass::run(Function &F, 344 FunctionAnalysisManager &AM) { 345 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 346 // Jump Threading has no sense for the targets with divergent CF 347 if (TTI.hasBranchDivergence()) 348 return PreservedAnalyses::all(); 349 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 350 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 351 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 352 auto &AA = AM.getResult<AAManager>(F); 353 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 354 355 std::unique_ptr<BlockFrequencyInfo> BFI; 356 std::unique_ptr<BranchProbabilityInfo> BPI; 357 if (F.hasProfileData()) { 358 LoopInfo LI{DominatorTree(F)}; 359 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 360 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 361 } 362 363 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 364 std::move(BFI), std::move(BPI)); 365 366 if (PrintLVIAfterJumpThreading) { 367 dbgs() << "LVI for function '" << F.getName() << "':\n"; 368 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 369 } 370 371 if (!Changed) 372 return PreservedAnalyses::all(); 373 PreservedAnalyses PA; 374 PA.preserve<GlobalsAA>(); 375 PA.preserve<DominatorTreeAnalysis>(); 376 PA.preserve<LazyValueAnalysis>(); 377 return PA; 378 } 379 380 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 381 LazyValueInfo *LVI_, AliasAnalysis *AA_, 382 DomTreeUpdater *DTU_, bool HasProfileData_, 383 std::unique_ptr<BlockFrequencyInfo> BFI_, 384 std::unique_ptr<BranchProbabilityInfo> BPI_) { 385 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 386 TLI = TLI_; 387 LVI = LVI_; 388 AA = AA_; 389 DTU = DTU_; 390 BFI.reset(); 391 BPI.reset(); 392 // When profile data is available, we need to update edge weights after 393 // successful jump threading, which requires both BPI and BFI being available. 394 HasProfileData = HasProfileData_; 395 auto *GuardDecl = F.getParent()->getFunction( 396 Intrinsic::getName(Intrinsic::experimental_guard)); 397 HasGuards = GuardDecl && !GuardDecl->use_empty(); 398 if (HasProfileData) { 399 BPI = std::move(BPI_); 400 BFI = std::move(BFI_); 401 } 402 403 // Reduce the number of instructions duplicated when optimizing strictly for 404 // size. 405 if (BBDuplicateThreshold.getNumOccurrences()) 406 BBDupThreshold = BBDuplicateThreshold; 407 else if (F.hasFnAttribute(Attribute::MinSize)) 408 BBDupThreshold = 3; 409 else 410 BBDupThreshold = DefaultBBDupThreshold; 411 412 // JumpThreading must not processes blocks unreachable from entry. It's a 413 // waste of compute time and can potentially lead to hangs. 414 SmallPtrSet<BasicBlock *, 16> Unreachable; 415 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 416 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 417 DominatorTree &DT = DTU->getDomTree(); 418 for (auto &BB : F) 419 if (!DT.isReachableFromEntry(&BB)) 420 Unreachable.insert(&BB); 421 422 if (!ThreadAcrossLoopHeaders) 423 findLoopHeaders(F); 424 425 bool EverChanged = false; 426 bool Changed; 427 do { 428 Changed = false; 429 for (auto &BB : F) { 430 if (Unreachable.count(&BB)) 431 continue; 432 while (processBlock(&BB)) // Thread all of the branches we can over BB. 433 Changed = true; 434 435 // Jump threading may have introduced redundant debug values into BB 436 // which should be removed. 437 // Remove redundant pseudo probes as well. 438 if (Changed) 439 RemoveRedundantDbgInstrs(&BB, true); 440 441 // Stop processing BB if it's the entry or is now deleted. The following 442 // routines attempt to eliminate BB and locating a suitable replacement 443 // for the entry is non-trivial. 444 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 445 continue; 446 447 if (pred_empty(&BB)) { 448 // When processBlock makes BB unreachable it doesn't bother to fix up 449 // the instructions in it. We must remove BB to prevent invalid IR. 450 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 451 << "' with terminator: " << *BB.getTerminator() 452 << '\n'); 453 LoopHeaders.erase(&BB); 454 LVI->eraseBlock(&BB); 455 DeleteDeadBlock(&BB, DTU); 456 Changed = true; 457 continue; 458 } 459 460 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 461 // is "almost empty", we attempt to merge BB with its sole successor. 462 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 463 if (BI && BI->isUnconditional()) { 464 BasicBlock *Succ = BI->getSuccessor(0); 465 if ( 466 // The terminator must be the only non-phi instruction in BB. 467 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 468 // Don't alter Loop headers and latches to ensure another pass can 469 // detect and transform nested loops later. 470 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 471 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 472 RemoveRedundantDbgInstrs(Succ, true); 473 // BB is valid for cleanup here because we passed in DTU. F remains 474 // BB's parent until a DTU->getDomTree() event. 475 LVI->eraseBlock(&BB); 476 Changed = true; 477 } 478 } 479 } 480 EverChanged |= Changed; 481 } while (Changed); 482 483 LoopHeaders.clear(); 484 return EverChanged; 485 } 486 487 // Replace uses of Cond with ToVal when safe to do so. If all uses are 488 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 489 // because we may incorrectly replace uses when guards/assumes are uses of 490 // of `Cond` and we used the guards/assume to reason about the `Cond` value 491 // at the end of block. RAUW unconditionally replaces all uses 492 // including the guards/assumes themselves and the uses before the 493 // guard/assume. 494 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { 495 assert(Cond->getType() == ToVal->getType()); 496 auto *BB = Cond->getParent(); 497 // We can unconditionally replace all uses in non-local blocks (i.e. uses 498 // strictly dominated by BB), since LVI information is true from the 499 // terminator of BB. 500 replaceNonLocalUsesWith(Cond, ToVal); 501 for (Instruction &I : reverse(*BB)) { 502 // Reached the Cond whose uses we are trying to replace, so there are no 503 // more uses. 504 if (&I == Cond) 505 break; 506 // We only replace uses in instructions that are guaranteed to reach the end 507 // of BB, where we know Cond is ToVal. 508 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 509 break; 510 I.replaceUsesOfWith(Cond, ToVal); 511 } 512 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 513 Cond->eraseFromParent(); 514 } 515 516 /// Return the cost of duplicating a piece of this block from first non-phi 517 /// and before StopAt instruction to thread across it. Stop scanning the block 518 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 519 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 520 Instruction *StopAt, 521 unsigned Threshold) { 522 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 523 /// Ignore PHI nodes, these will be flattened when duplication happens. 524 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 525 526 // FIXME: THREADING will delete values that are just used to compute the 527 // branch, so they shouldn't count against the duplication cost. 528 529 unsigned Bonus = 0; 530 if (BB->getTerminator() == StopAt) { 531 // Threading through a switch statement is particularly profitable. If this 532 // block ends in a switch, decrease its cost to make it more likely to 533 // happen. 534 if (isa<SwitchInst>(StopAt)) 535 Bonus = 6; 536 537 // The same holds for indirect branches, but slightly more so. 538 if (isa<IndirectBrInst>(StopAt)) 539 Bonus = 8; 540 } 541 542 // Bump the threshold up so the early exit from the loop doesn't skip the 543 // terminator-based Size adjustment at the end. 544 Threshold += Bonus; 545 546 // Sum up the cost of each instruction until we get to the terminator. Don't 547 // include the terminator because the copy won't include it. 548 unsigned Size = 0; 549 for (; &*I != StopAt; ++I) { 550 551 // Stop scanning the block if we've reached the threshold. 552 if (Size > Threshold) 553 return Size; 554 555 // Debugger intrinsics don't incur code size. 556 if (isa<DbgInfoIntrinsic>(I)) continue; 557 558 // Pseudo-probes don't incur code size. 559 if (isa<PseudoProbeInst>(I)) 560 continue; 561 562 // If this is a pointer->pointer bitcast, it is free. 563 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 564 continue; 565 566 // Freeze instruction is free, too. 567 if (isa<FreezeInst>(I)) 568 continue; 569 570 // Bail out if this instruction gives back a token type, it is not possible 571 // to duplicate it if it is used outside this BB. 572 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 573 return ~0U; 574 575 // All other instructions count for at least one unit. 576 ++Size; 577 578 // Calls are more expensive. If they are non-intrinsic calls, we model them 579 // as having cost of 4. If they are a non-vector intrinsic, we model them 580 // as having cost of 2 total, and if they are a vector intrinsic, we model 581 // them as having cost 1. 582 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 583 if (CI->cannotDuplicate() || CI->isConvergent()) 584 // Blocks with NoDuplicate are modelled as having infinite cost, so they 585 // are never duplicated. 586 return ~0U; 587 else if (!isa<IntrinsicInst>(CI)) 588 Size += 3; 589 else if (!CI->getType()->isVectorTy()) 590 Size += 1; 591 } 592 } 593 594 return Size > Bonus ? Size - Bonus : 0; 595 } 596 597 /// findLoopHeaders - We do not want jump threading to turn proper loop 598 /// structures into irreducible loops. Doing this breaks up the loop nesting 599 /// hierarchy and pessimizes later transformations. To prevent this from 600 /// happening, we first have to find the loop headers. Here we approximate this 601 /// by finding targets of backedges in the CFG. 602 /// 603 /// Note that there definitely are cases when we want to allow threading of 604 /// edges across a loop header. For example, threading a jump from outside the 605 /// loop (the preheader) to an exit block of the loop is definitely profitable. 606 /// It is also almost always profitable to thread backedges from within the loop 607 /// to exit blocks, and is often profitable to thread backedges to other blocks 608 /// within the loop (forming a nested loop). This simple analysis is not rich 609 /// enough to track all of these properties and keep it up-to-date as the CFG 610 /// mutates, so we don't allow any of these transformations. 611 void JumpThreadingPass::findLoopHeaders(Function &F) { 612 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 613 FindFunctionBackedges(F, Edges); 614 615 for (const auto &Edge : Edges) 616 LoopHeaders.insert(Edge.second); 617 } 618 619 /// getKnownConstant - Helper method to determine if we can thread over a 620 /// terminator with the given value as its condition, and if so what value to 621 /// use for that. What kind of value this is depends on whether we want an 622 /// integer or a block address, but an undef is always accepted. 623 /// Returns null if Val is null or not an appropriate constant. 624 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 625 if (!Val) 626 return nullptr; 627 628 // Undef is "known" enough. 629 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 630 return U; 631 632 if (Preference == WantBlockAddress) 633 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 634 635 return dyn_cast<ConstantInt>(Val); 636 } 637 638 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 639 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 640 /// in any of our predecessors. If so, return the known list of value and pred 641 /// BB in the result vector. 642 /// 643 /// This returns true if there were any known values. 644 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 645 Value *V, BasicBlock *BB, PredValueInfo &Result, 646 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 647 Instruction *CxtI) { 648 // This method walks up use-def chains recursively. Because of this, we could 649 // get into an infinite loop going around loops in the use-def chain. To 650 // prevent this, keep track of what (value, block) pairs we've already visited 651 // and terminate the search if we loop back to them 652 if (!RecursionSet.insert(V).second) 653 return false; 654 655 // If V is a constant, then it is known in all predecessors. 656 if (Constant *KC = getKnownConstant(V, Preference)) { 657 for (BasicBlock *Pred : predecessors(BB)) 658 Result.emplace_back(KC, Pred); 659 660 return !Result.empty(); 661 } 662 663 // If V is a non-instruction value, or an instruction in a different block, 664 // then it can't be derived from a PHI. 665 Instruction *I = dyn_cast<Instruction>(V); 666 if (!I || I->getParent() != BB) { 667 668 // Okay, if this is a live-in value, see if it has a known value at the end 669 // of any of our predecessors. 670 // 671 // FIXME: This should be an edge property, not a block end property. 672 /// TODO: Per PR2563, we could infer value range information about a 673 /// predecessor based on its terminator. 674 // 675 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 676 // "I" is a non-local compare-with-a-constant instruction. This would be 677 // able to handle value inequalities better, for example if the compare is 678 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 679 // Perhaps getConstantOnEdge should be smart enough to do this? 680 for (BasicBlock *P : predecessors(BB)) { 681 // If the value is known by LazyValueInfo to be a constant in a 682 // predecessor, use that information to try to thread this block. 683 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 684 if (Constant *KC = getKnownConstant(PredCst, Preference)) 685 Result.emplace_back(KC, P); 686 } 687 688 return !Result.empty(); 689 } 690 691 /// If I is a PHI node, then we know the incoming values for any constants. 692 if (PHINode *PN = dyn_cast<PHINode>(I)) { 693 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 694 Value *InVal = PN->getIncomingValue(i); 695 if (Constant *KC = getKnownConstant(InVal, Preference)) { 696 Result.emplace_back(KC, PN->getIncomingBlock(i)); 697 } else { 698 Constant *CI = LVI->getConstantOnEdge(InVal, 699 PN->getIncomingBlock(i), 700 BB, CxtI); 701 if (Constant *KC = getKnownConstant(CI, Preference)) 702 Result.emplace_back(KC, PN->getIncomingBlock(i)); 703 } 704 } 705 706 return !Result.empty(); 707 } 708 709 // Handle Cast instructions. 710 if (CastInst *CI = dyn_cast<CastInst>(I)) { 711 Value *Source = CI->getOperand(0); 712 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 713 RecursionSet, CxtI); 714 if (Result.empty()) 715 return false; 716 717 // Convert the known values. 718 for (auto &R : Result) 719 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 720 721 return true; 722 } 723 724 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 725 Value *Source = FI->getOperand(0); 726 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 727 RecursionSet, CxtI); 728 729 erase_if(Result, [](auto &Pair) { 730 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 731 }); 732 733 return !Result.empty(); 734 } 735 736 // Handle some boolean conditions. 737 if (I->getType()->getPrimitiveSizeInBits() == 1) { 738 using namespace PatternMatch; 739 740 assert(Preference == WantInteger && "One-bit non-integer type?"); 741 // X | true -> true 742 // X & false -> false 743 Value *Op0, *Op1; 744 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 745 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 746 PredValueInfoTy LHSVals, RHSVals; 747 748 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 749 RecursionSet, CxtI); 750 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 751 RecursionSet, CxtI); 752 753 if (LHSVals.empty() && RHSVals.empty()) 754 return false; 755 756 ConstantInt *InterestingVal; 757 if (match(I, m_LogicalOr())) 758 InterestingVal = ConstantInt::getTrue(I->getContext()); 759 else 760 InterestingVal = ConstantInt::getFalse(I->getContext()); 761 762 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 763 764 // Scan for the sentinel. If we find an undef, force it to the 765 // interesting value: x|undef -> true and x&undef -> false. 766 for (const auto &LHSVal : LHSVals) 767 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 768 Result.emplace_back(InterestingVal, LHSVal.second); 769 LHSKnownBBs.insert(LHSVal.second); 770 } 771 for (const auto &RHSVal : RHSVals) 772 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 773 // If we already inferred a value for this block on the LHS, don't 774 // re-add it. 775 if (!LHSKnownBBs.count(RHSVal.second)) 776 Result.emplace_back(InterestingVal, RHSVal.second); 777 } 778 779 return !Result.empty(); 780 } 781 782 // Handle the NOT form of XOR. 783 if (I->getOpcode() == Instruction::Xor && 784 isa<ConstantInt>(I->getOperand(1)) && 785 cast<ConstantInt>(I->getOperand(1))->isOne()) { 786 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 787 WantInteger, RecursionSet, CxtI); 788 if (Result.empty()) 789 return false; 790 791 // Invert the known values. 792 for (auto &R : Result) 793 R.first = ConstantExpr::getNot(R.first); 794 795 return true; 796 } 797 798 // Try to simplify some other binary operator values. 799 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 800 assert(Preference != WantBlockAddress 801 && "A binary operator creating a block address?"); 802 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 803 PredValueInfoTy LHSVals; 804 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 805 WantInteger, RecursionSet, CxtI); 806 807 // Try to use constant folding to simplify the binary operator. 808 for (const auto &LHSVal : LHSVals) { 809 Constant *V = LHSVal.first; 810 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 811 812 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 813 Result.emplace_back(KC, LHSVal.second); 814 } 815 } 816 817 return !Result.empty(); 818 } 819 820 // Handle compare with phi operand, where the PHI is defined in this block. 821 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 822 assert(Preference == WantInteger && "Compares only produce integers"); 823 Type *CmpType = Cmp->getType(); 824 Value *CmpLHS = Cmp->getOperand(0); 825 Value *CmpRHS = Cmp->getOperand(1); 826 CmpInst::Predicate Pred = Cmp->getPredicate(); 827 828 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 829 if (!PN) 830 PN = dyn_cast<PHINode>(CmpRHS); 831 if (PN && PN->getParent() == BB) { 832 const DataLayout &DL = PN->getModule()->getDataLayout(); 833 // We can do this simplification if any comparisons fold to true or false. 834 // See if any do. 835 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 836 BasicBlock *PredBB = PN->getIncomingBlock(i); 837 Value *LHS, *RHS; 838 if (PN == CmpLHS) { 839 LHS = PN->getIncomingValue(i); 840 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 841 } else { 842 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 843 RHS = PN->getIncomingValue(i); 844 } 845 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 846 if (!Res) { 847 if (!isa<Constant>(RHS)) 848 continue; 849 850 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 851 auto LHSInst = dyn_cast<Instruction>(LHS); 852 if (LHSInst && LHSInst->getParent() == BB) 853 continue; 854 855 LazyValueInfo::Tristate 856 ResT = LVI->getPredicateOnEdge(Pred, LHS, 857 cast<Constant>(RHS), PredBB, BB, 858 CxtI ? CxtI : Cmp); 859 if (ResT == LazyValueInfo::Unknown) 860 continue; 861 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 862 } 863 864 if (Constant *KC = getKnownConstant(Res, WantInteger)) 865 Result.emplace_back(KC, PredBB); 866 } 867 868 return !Result.empty(); 869 } 870 871 // If comparing a live-in value against a constant, see if we know the 872 // live-in value on any predecessors. 873 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 874 Constant *CmpConst = cast<Constant>(CmpRHS); 875 876 if (!isa<Instruction>(CmpLHS) || 877 cast<Instruction>(CmpLHS)->getParent() != BB) { 878 for (BasicBlock *P : predecessors(BB)) { 879 // If the value is known by LazyValueInfo to be a constant in a 880 // predecessor, use that information to try to thread this block. 881 LazyValueInfo::Tristate Res = 882 LVI->getPredicateOnEdge(Pred, CmpLHS, 883 CmpConst, P, BB, CxtI ? CxtI : Cmp); 884 if (Res == LazyValueInfo::Unknown) 885 continue; 886 887 Constant *ResC = ConstantInt::get(CmpType, Res); 888 Result.emplace_back(ResC, P); 889 } 890 891 return !Result.empty(); 892 } 893 894 // InstCombine can fold some forms of constant range checks into 895 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 896 // x as a live-in. 897 { 898 using namespace PatternMatch; 899 900 Value *AddLHS; 901 ConstantInt *AddConst; 902 if (isa<ConstantInt>(CmpConst) && 903 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 904 if (!isa<Instruction>(AddLHS) || 905 cast<Instruction>(AddLHS)->getParent() != BB) { 906 for (BasicBlock *P : predecessors(BB)) { 907 // If the value is known by LazyValueInfo to be a ConstantRange in 908 // a predecessor, use that information to try to thread this 909 // block. 910 ConstantRange CR = LVI->getConstantRangeOnEdge( 911 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 912 // Propagate the range through the addition. 913 CR = CR.add(AddConst->getValue()); 914 915 // Get the range where the compare returns true. 916 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 917 Pred, cast<ConstantInt>(CmpConst)->getValue()); 918 919 Constant *ResC; 920 if (CmpRange.contains(CR)) 921 ResC = ConstantInt::getTrue(CmpType); 922 else if (CmpRange.inverse().contains(CR)) 923 ResC = ConstantInt::getFalse(CmpType); 924 else 925 continue; 926 927 Result.emplace_back(ResC, P); 928 } 929 930 return !Result.empty(); 931 } 932 } 933 } 934 935 // Try to find a constant value for the LHS of a comparison, 936 // and evaluate it statically if we can. 937 PredValueInfoTy LHSVals; 938 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 939 WantInteger, RecursionSet, CxtI); 940 941 for (const auto &LHSVal : LHSVals) { 942 Constant *V = LHSVal.first; 943 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 944 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 945 Result.emplace_back(KC, LHSVal.second); 946 } 947 948 return !Result.empty(); 949 } 950 } 951 952 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 953 // Handle select instructions where at least one operand is a known constant 954 // and we can figure out the condition value for any predecessor block. 955 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 956 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 957 PredValueInfoTy Conds; 958 if ((TrueVal || FalseVal) && 959 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 960 WantInteger, RecursionSet, CxtI)) { 961 for (auto &C : Conds) { 962 Constant *Cond = C.first; 963 964 // Figure out what value to use for the condition. 965 bool KnownCond; 966 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 967 // A known boolean. 968 KnownCond = CI->isOne(); 969 } else { 970 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 971 // Either operand will do, so be sure to pick the one that's a known 972 // constant. 973 // FIXME: Do this more cleverly if both values are known constants? 974 KnownCond = (TrueVal != nullptr); 975 } 976 977 // See if the select has a known constant value for this predecessor. 978 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 979 Result.emplace_back(Val, C.second); 980 } 981 982 return !Result.empty(); 983 } 984 } 985 986 // If all else fails, see if LVI can figure out a constant value for us. 987 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 988 Constant *CI = LVI->getConstant(V, CxtI); 989 if (Constant *KC = getKnownConstant(CI, Preference)) { 990 for (BasicBlock *Pred : predecessors(BB)) 991 Result.emplace_back(KC, Pred); 992 } 993 994 return !Result.empty(); 995 } 996 997 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 998 /// in an undefined jump, decide which block is best to revector to. 999 /// 1000 /// Since we can pick an arbitrary destination, we pick the successor with the 1001 /// fewest predecessors. This should reduce the in-degree of the others. 1002 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 1003 Instruction *BBTerm = BB->getTerminator(); 1004 unsigned MinSucc = 0; 1005 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 1006 // Compute the successor with the minimum number of predecessors. 1007 unsigned MinNumPreds = pred_size(TestBB); 1008 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1009 TestBB = BBTerm->getSuccessor(i); 1010 unsigned NumPreds = pred_size(TestBB); 1011 if (NumPreds < MinNumPreds) { 1012 MinSucc = i; 1013 MinNumPreds = NumPreds; 1014 } 1015 } 1016 1017 return MinSucc; 1018 } 1019 1020 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1021 if (!BB->hasAddressTaken()) return false; 1022 1023 // If the block has its address taken, it may be a tree of dead constants 1024 // hanging off of it. These shouldn't keep the block alive. 1025 BlockAddress *BA = BlockAddress::get(BB); 1026 BA->removeDeadConstantUsers(); 1027 return !BA->use_empty(); 1028 } 1029 1030 /// processBlock - If there are any predecessors whose control can be threaded 1031 /// through to a successor, transform them now. 1032 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1033 // If the block is trivially dead, just return and let the caller nuke it. 1034 // This simplifies other transformations. 1035 if (DTU->isBBPendingDeletion(BB) || 1036 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1037 return false; 1038 1039 // If this block has a single predecessor, and if that pred has a single 1040 // successor, merge the blocks. This encourages recursive jump threading 1041 // because now the condition in this block can be threaded through 1042 // predecessors of our predecessor block. 1043 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1044 return true; 1045 1046 if (tryToUnfoldSelectInCurrBB(BB)) 1047 return true; 1048 1049 // Look if we can propagate guards to predecessors. 1050 if (HasGuards && processGuards(BB)) 1051 return true; 1052 1053 // What kind of constant we're looking for. 1054 ConstantPreference Preference = WantInteger; 1055 1056 // Look to see if the terminator is a conditional branch, switch or indirect 1057 // branch, if not we can't thread it. 1058 Value *Condition; 1059 Instruction *Terminator = BB->getTerminator(); 1060 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1061 // Can't thread an unconditional jump. 1062 if (BI->isUnconditional()) return false; 1063 Condition = BI->getCondition(); 1064 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1065 Condition = SI->getCondition(); 1066 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1067 // Can't thread indirect branch with no successors. 1068 if (IB->getNumSuccessors() == 0) return false; 1069 Condition = IB->getAddress()->stripPointerCasts(); 1070 Preference = WantBlockAddress; 1071 } else { 1072 return false; // Must be an invoke or callbr. 1073 } 1074 1075 // Keep track if we constant folded the condition in this invocation. 1076 bool ConstantFolded = false; 1077 1078 // Run constant folding to see if we can reduce the condition to a simple 1079 // constant. 1080 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1081 Value *SimpleVal = 1082 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1083 if (SimpleVal) { 1084 I->replaceAllUsesWith(SimpleVal); 1085 if (isInstructionTriviallyDead(I, TLI)) 1086 I->eraseFromParent(); 1087 Condition = SimpleVal; 1088 ConstantFolded = true; 1089 } 1090 } 1091 1092 // If the terminator is branching on an undef or freeze undef, we can pick any 1093 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1094 auto *FI = dyn_cast<FreezeInst>(Condition); 1095 if (isa<UndefValue>(Condition) || 1096 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1097 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1098 std::vector<DominatorTree::UpdateType> Updates; 1099 1100 // Fold the branch/switch. 1101 Instruction *BBTerm = BB->getTerminator(); 1102 Updates.reserve(BBTerm->getNumSuccessors()); 1103 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1104 if (i == BestSucc) continue; 1105 BasicBlock *Succ = BBTerm->getSuccessor(i); 1106 Succ->removePredecessor(BB, true); 1107 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1108 } 1109 1110 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1111 << "' folding undef terminator: " << *BBTerm << '\n'); 1112 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1113 ++NumFolds; 1114 BBTerm->eraseFromParent(); 1115 DTU->applyUpdatesPermissive(Updates); 1116 if (FI) 1117 FI->eraseFromParent(); 1118 return true; 1119 } 1120 1121 // If the terminator of this block is branching on a constant, simplify the 1122 // terminator to an unconditional branch. This can occur due to threading in 1123 // other blocks. 1124 if (getKnownConstant(Condition, Preference)) { 1125 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1126 << "' folding terminator: " << *BB->getTerminator() 1127 << '\n'); 1128 ++NumFolds; 1129 ConstantFoldTerminator(BB, true, nullptr, DTU); 1130 if (HasProfileData) 1131 BPI->eraseBlock(BB); 1132 return true; 1133 } 1134 1135 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1136 1137 // All the rest of our checks depend on the condition being an instruction. 1138 if (!CondInst) { 1139 // FIXME: Unify this with code below. 1140 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1141 return true; 1142 return ConstantFolded; 1143 } 1144 1145 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1146 // If we're branching on a conditional, LVI might be able to determine 1147 // it's value at the branch instruction. We only handle comparisons 1148 // against a constant at this time. 1149 // TODO: This should be extended to handle switches as well. 1150 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1151 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1152 if (CondBr && CondConst) { 1153 // We should have returned as soon as we turn a conditional branch to 1154 // unconditional. Because its no longer interesting as far as jump 1155 // threading is concerned. 1156 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1157 1158 LazyValueInfo::Tristate Ret = 1159 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1160 CondConst, CondBr, /*UseBlockValue=*/false); 1161 if (Ret != LazyValueInfo::Unknown) { 1162 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1163 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1164 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1165 ToRemoveSucc->removePredecessor(BB, true); 1166 BranchInst *UncondBr = 1167 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1168 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1169 ++NumFolds; 1170 CondBr->eraseFromParent(); 1171 if (CondCmp->use_empty()) 1172 CondCmp->eraseFromParent(); 1173 // We can safely replace *some* uses of the CondInst if it has 1174 // exactly one value as returned by LVI. RAUW is incorrect in the 1175 // presence of guards and assumes, that have the `Cond` as the use. This 1176 // is because we use the guards/assume to reason about the `Cond` value 1177 // at the end of block, but RAUW unconditionally replaces all uses 1178 // including the guards/assumes themselves and the uses before the 1179 // guard/assume. 1180 else if (CondCmp->getParent() == BB) { 1181 auto *CI = Ret == LazyValueInfo::True ? 1182 ConstantInt::getTrue(CondCmp->getType()) : 1183 ConstantInt::getFalse(CondCmp->getType()); 1184 replaceFoldableUses(CondCmp, CI); 1185 } 1186 DTU->applyUpdatesPermissive( 1187 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1188 if (HasProfileData) 1189 BPI->eraseBlock(BB); 1190 return true; 1191 } 1192 1193 // We did not manage to simplify this branch, try to see whether 1194 // CondCmp depends on a known phi-select pattern. 1195 if (tryToUnfoldSelect(CondCmp, BB)) 1196 return true; 1197 } 1198 } 1199 1200 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1201 if (tryToUnfoldSelect(SI, BB)) 1202 return true; 1203 1204 // Check for some cases that are worth simplifying. Right now we want to look 1205 // for loads that are used by a switch or by the condition for the branch. If 1206 // we see one, check to see if it's partially redundant. If so, insert a PHI 1207 // which can then be used to thread the values. 1208 Value *SimplifyValue = CondInst; 1209 1210 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue)) 1211 // Look into freeze's operand 1212 SimplifyValue = FI->getOperand(0); 1213 1214 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1215 if (isa<Constant>(CondCmp->getOperand(1))) 1216 SimplifyValue = CondCmp->getOperand(0); 1217 1218 // TODO: There are other places where load PRE would be profitable, such as 1219 // more complex comparisons. 1220 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1221 if (simplifyPartiallyRedundantLoad(LoadI)) 1222 return true; 1223 1224 // Before threading, try to propagate profile data backwards: 1225 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1226 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1227 updatePredecessorProfileMetadata(PN, BB); 1228 1229 // Handle a variety of cases where we are branching on something derived from 1230 // a PHI node in the current block. If we can prove that any predecessors 1231 // compute a predictable value based on a PHI node, thread those predecessors. 1232 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1233 return true; 1234 1235 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1236 // the current block, see if we can simplify. 1237 PHINode *PN = dyn_cast<PHINode>( 1238 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0) 1239 : CondInst); 1240 1241 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1242 return processBranchOnPHI(PN); 1243 1244 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1245 if (CondInst->getOpcode() == Instruction::Xor && 1246 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1247 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1248 1249 // Search for a stronger dominating condition that can be used to simplify a 1250 // conditional branch leaving BB. 1251 if (processImpliedCondition(BB)) 1252 return true; 1253 1254 return false; 1255 } 1256 1257 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1258 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1259 if (!BI || !BI->isConditional()) 1260 return false; 1261 1262 Value *Cond = BI->getCondition(); 1263 BasicBlock *CurrentBB = BB; 1264 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1265 unsigned Iter = 0; 1266 1267 auto &DL = BB->getModule()->getDataLayout(); 1268 1269 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1270 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1271 if (!PBI || !PBI->isConditional()) 1272 return false; 1273 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1274 return false; 1275 1276 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1277 Optional<bool> Implication = 1278 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1279 if (Implication) { 1280 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1281 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1282 RemoveSucc->removePredecessor(BB); 1283 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1284 UncondBI->setDebugLoc(BI->getDebugLoc()); 1285 ++NumFolds; 1286 BI->eraseFromParent(); 1287 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1288 if (HasProfileData) 1289 BPI->eraseBlock(BB); 1290 return true; 1291 } 1292 CurrentBB = CurrentPred; 1293 CurrentPred = CurrentBB->getSinglePredecessor(); 1294 } 1295 1296 return false; 1297 } 1298 1299 /// Return true if Op is an instruction defined in the given block. 1300 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1301 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1302 if (OpInst->getParent() == BB) 1303 return true; 1304 return false; 1305 } 1306 1307 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1308 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1309 /// This is an important optimization that encourages jump threading, and needs 1310 /// to be run interlaced with other jump threading tasks. 1311 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1312 // Don't hack volatile and ordered loads. 1313 if (!LoadI->isUnordered()) return false; 1314 1315 // If the load is defined in a block with exactly one predecessor, it can't be 1316 // partially redundant. 1317 BasicBlock *LoadBB = LoadI->getParent(); 1318 if (LoadBB->getSinglePredecessor()) 1319 return false; 1320 1321 // If the load is defined in an EH pad, it can't be partially redundant, 1322 // because the edges between the invoke and the EH pad cannot have other 1323 // instructions between them. 1324 if (LoadBB->isEHPad()) 1325 return false; 1326 1327 Value *LoadedPtr = LoadI->getOperand(0); 1328 1329 // If the loaded operand is defined in the LoadBB and its not a phi, 1330 // it can't be available in predecessors. 1331 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1332 return false; 1333 1334 // Scan a few instructions up from the load, to see if it is obviously live at 1335 // the entry to its block. 1336 BasicBlock::iterator BBIt(LoadI); 1337 bool IsLoadCSE; 1338 if (Value *AvailableVal = FindAvailableLoadedValue( 1339 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1340 // If the value of the load is locally available within the block, just use 1341 // it. This frequently occurs for reg2mem'd allocas. 1342 1343 if (IsLoadCSE) { 1344 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1345 combineMetadataForCSE(NLoadI, LoadI, false); 1346 }; 1347 1348 // If the returned value is the load itself, replace with an undef. This can 1349 // only happen in dead loops. 1350 if (AvailableVal == LoadI) 1351 AvailableVal = UndefValue::get(LoadI->getType()); 1352 if (AvailableVal->getType() != LoadI->getType()) 1353 AvailableVal = CastInst::CreateBitOrPointerCast( 1354 AvailableVal, LoadI->getType(), "", LoadI); 1355 LoadI->replaceAllUsesWith(AvailableVal); 1356 LoadI->eraseFromParent(); 1357 return true; 1358 } 1359 1360 // Otherwise, if we scanned the whole block and got to the top of the block, 1361 // we know the block is locally transparent to the load. If not, something 1362 // might clobber its value. 1363 if (BBIt != LoadBB->begin()) 1364 return false; 1365 1366 // If all of the loads and stores that feed the value have the same AA tags, 1367 // then we can propagate them onto any newly inserted loads. 1368 AAMDNodes AATags; 1369 LoadI->getAAMetadata(AATags); 1370 1371 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1372 1373 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1374 1375 AvailablePredsTy AvailablePreds; 1376 BasicBlock *OneUnavailablePred = nullptr; 1377 SmallVector<LoadInst*, 8> CSELoads; 1378 1379 // If we got here, the loaded value is transparent through to the start of the 1380 // block. Check to see if it is available in any of the predecessor blocks. 1381 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1382 // If we already scanned this predecessor, skip it. 1383 if (!PredsScanned.insert(PredBB).second) 1384 continue; 1385 1386 BBIt = PredBB->end(); 1387 unsigned NumScanedInst = 0; 1388 Value *PredAvailable = nullptr; 1389 // NOTE: We don't CSE load that is volatile or anything stronger than 1390 // unordered, that should have been checked when we entered the function. 1391 assert(LoadI->isUnordered() && 1392 "Attempting to CSE volatile or atomic loads"); 1393 // If this is a load on a phi pointer, phi-translate it and search 1394 // for available load/store to the pointer in predecessors. 1395 Type *AccessTy = LoadI->getType(); 1396 const auto &DL = LoadI->getModule()->getDataLayout(); 1397 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1398 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1399 AATags); 1400 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(), 1401 PredBB, BBIt, DefMaxInstsToScan, 1402 AA, &IsLoadCSE, &NumScanedInst); 1403 1404 // If PredBB has a single predecessor, continue scanning through the 1405 // single predecessor. 1406 BasicBlock *SinglePredBB = PredBB; 1407 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1408 NumScanedInst < DefMaxInstsToScan) { 1409 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1410 if (SinglePredBB) { 1411 BBIt = SinglePredBB->end(); 1412 PredAvailable = findAvailablePtrLoadStore( 1413 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1414 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1415 &NumScanedInst); 1416 } 1417 } 1418 1419 if (!PredAvailable) { 1420 OneUnavailablePred = PredBB; 1421 continue; 1422 } 1423 1424 if (IsLoadCSE) 1425 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1426 1427 // If so, this load is partially redundant. Remember this info so that we 1428 // can create a PHI node. 1429 AvailablePreds.emplace_back(PredBB, PredAvailable); 1430 } 1431 1432 // If the loaded value isn't available in any predecessor, it isn't partially 1433 // redundant. 1434 if (AvailablePreds.empty()) return false; 1435 1436 // Okay, the loaded value is available in at least one (and maybe all!) 1437 // predecessors. If the value is unavailable in more than one unique 1438 // predecessor, we want to insert a merge block for those common predecessors. 1439 // This ensures that we only have to insert one reload, thus not increasing 1440 // code size. 1441 BasicBlock *UnavailablePred = nullptr; 1442 1443 // If the value is unavailable in one of predecessors, we will end up 1444 // inserting a new instruction into them. It is only valid if all the 1445 // instructions before LoadI are guaranteed to pass execution to its 1446 // successor, or if LoadI is safe to speculate. 1447 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1448 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1449 // It requires domination tree analysis, so for this simple case it is an 1450 // overkill. 1451 if (PredsScanned.size() != AvailablePreds.size() && 1452 !isSafeToSpeculativelyExecute(LoadI)) 1453 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1454 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1455 return false; 1456 1457 // If there is exactly one predecessor where the value is unavailable, the 1458 // already computed 'OneUnavailablePred' block is it. If it ends in an 1459 // unconditional branch, we know that it isn't a critical edge. 1460 if (PredsScanned.size() == AvailablePreds.size()+1 && 1461 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1462 UnavailablePred = OneUnavailablePred; 1463 } else if (PredsScanned.size() != AvailablePreds.size()) { 1464 // Otherwise, we had multiple unavailable predecessors or we had a critical 1465 // edge from the one. 1466 SmallVector<BasicBlock*, 8> PredsToSplit; 1467 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1468 1469 for (const auto &AvailablePred : AvailablePreds) 1470 AvailablePredSet.insert(AvailablePred.first); 1471 1472 // Add all the unavailable predecessors to the PredsToSplit list. 1473 for (BasicBlock *P : predecessors(LoadBB)) { 1474 // If the predecessor is an indirect goto, we can't split the edge. 1475 // Same for CallBr. 1476 if (isa<IndirectBrInst>(P->getTerminator()) || 1477 isa<CallBrInst>(P->getTerminator())) 1478 return false; 1479 1480 if (!AvailablePredSet.count(P)) 1481 PredsToSplit.push_back(P); 1482 } 1483 1484 // Split them out to their own block. 1485 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1486 } 1487 1488 // If the value isn't available in all predecessors, then there will be 1489 // exactly one where it isn't available. Insert a load on that edge and add 1490 // it to the AvailablePreds list. 1491 if (UnavailablePred) { 1492 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1493 "Can't handle critical edge here!"); 1494 LoadInst *NewVal = new LoadInst( 1495 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1496 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1497 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1498 UnavailablePred->getTerminator()); 1499 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1500 if (AATags) 1501 NewVal->setAAMetadata(AATags); 1502 1503 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1504 } 1505 1506 // Now we know that each predecessor of this block has a value in 1507 // AvailablePreds, sort them for efficient access as we're walking the preds. 1508 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1509 1510 // Create a PHI node at the start of the block for the PRE'd load value. 1511 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1512 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1513 &LoadBB->front()); 1514 PN->takeName(LoadI); 1515 PN->setDebugLoc(LoadI->getDebugLoc()); 1516 1517 // Insert new entries into the PHI for each predecessor. A single block may 1518 // have multiple entries here. 1519 for (pred_iterator PI = PB; PI != PE; ++PI) { 1520 BasicBlock *P = *PI; 1521 AvailablePredsTy::iterator I = 1522 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1523 1524 assert(I != AvailablePreds.end() && I->first == P && 1525 "Didn't find entry for predecessor!"); 1526 1527 // If we have an available predecessor but it requires casting, insert the 1528 // cast in the predecessor and use the cast. Note that we have to update the 1529 // AvailablePreds vector as we go so that all of the PHI entries for this 1530 // predecessor use the same bitcast. 1531 Value *&PredV = I->second; 1532 if (PredV->getType() != LoadI->getType()) 1533 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1534 P->getTerminator()); 1535 1536 PN->addIncoming(PredV, I->first); 1537 } 1538 1539 for (LoadInst *PredLoadI : CSELoads) { 1540 combineMetadataForCSE(PredLoadI, LoadI, true); 1541 } 1542 1543 LoadI->replaceAllUsesWith(PN); 1544 LoadI->eraseFromParent(); 1545 1546 return true; 1547 } 1548 1549 /// findMostPopularDest - The specified list contains multiple possible 1550 /// threadable destinations. Pick the one that occurs the most frequently in 1551 /// the list. 1552 static BasicBlock * 1553 findMostPopularDest(BasicBlock *BB, 1554 const SmallVectorImpl<std::pair<BasicBlock *, 1555 BasicBlock *>> &PredToDestList) { 1556 assert(!PredToDestList.empty()); 1557 1558 // Determine popularity. If there are multiple possible destinations, we 1559 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1560 // blocks with known and real destinations to threading undef. We'll handle 1561 // them later if interesting. 1562 MapVector<BasicBlock *, unsigned> DestPopularity; 1563 1564 // Populate DestPopularity with the successors in the order they appear in the 1565 // successor list. This way, we ensure determinism by iterating it in the 1566 // same order in std::max_element below. We map nullptr to 0 so that we can 1567 // return nullptr when PredToDestList contains nullptr only. 1568 DestPopularity[nullptr] = 0; 1569 for (auto *SuccBB : successors(BB)) 1570 DestPopularity[SuccBB] = 0; 1571 1572 for (const auto &PredToDest : PredToDestList) 1573 if (PredToDest.second) 1574 DestPopularity[PredToDest.second]++; 1575 1576 // Find the most popular dest. 1577 using VT = decltype(DestPopularity)::value_type; 1578 auto MostPopular = std::max_element( 1579 DestPopularity.begin(), DestPopularity.end(), 1580 [](const VT &L, const VT &R) { return L.second < R.second; }); 1581 1582 // Okay, we have finally picked the most popular destination. 1583 return MostPopular->first; 1584 } 1585 1586 // Try to evaluate the value of V when the control flows from PredPredBB to 1587 // BB->getSinglePredecessor() and then on to BB. 1588 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1589 BasicBlock *PredPredBB, 1590 Value *V) { 1591 BasicBlock *PredBB = BB->getSinglePredecessor(); 1592 assert(PredBB && "Expected a single predecessor"); 1593 1594 if (Constant *Cst = dyn_cast<Constant>(V)) { 1595 return Cst; 1596 } 1597 1598 // Consult LVI if V is not an instruction in BB or PredBB. 1599 Instruction *I = dyn_cast<Instruction>(V); 1600 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1601 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1602 } 1603 1604 // Look into a PHI argument. 1605 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1606 if (PHI->getParent() == PredBB) 1607 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1608 return nullptr; 1609 } 1610 1611 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1612 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1613 if (CondCmp->getParent() == BB) { 1614 Constant *Op0 = 1615 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1616 Constant *Op1 = 1617 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1618 if (Op0 && Op1) { 1619 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1620 } 1621 } 1622 return nullptr; 1623 } 1624 1625 return nullptr; 1626 } 1627 1628 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1629 ConstantPreference Preference, 1630 Instruction *CxtI) { 1631 // If threading this would thread across a loop header, don't even try to 1632 // thread the edge. 1633 if (LoopHeaders.count(BB)) 1634 return false; 1635 1636 PredValueInfoTy PredValues; 1637 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1638 CxtI)) { 1639 // We don't have known values in predecessors. See if we can thread through 1640 // BB and its sole predecessor. 1641 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1642 } 1643 1644 assert(!PredValues.empty() && 1645 "computeValueKnownInPredecessors returned true with no values"); 1646 1647 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1648 for (const auto &PredValue : PredValues) { 1649 dbgs() << " BB '" << BB->getName() 1650 << "': FOUND condition = " << *PredValue.first 1651 << " for pred '" << PredValue.second->getName() << "'.\n"; 1652 }); 1653 1654 // Decide what we want to thread through. Convert our list of known values to 1655 // a list of known destinations for each pred. This also discards duplicate 1656 // predecessors and keeps track of the undefined inputs (which are represented 1657 // as a null dest in the PredToDestList). 1658 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1659 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1660 1661 BasicBlock *OnlyDest = nullptr; 1662 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1663 Constant *OnlyVal = nullptr; 1664 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1665 1666 for (const auto &PredValue : PredValues) { 1667 BasicBlock *Pred = PredValue.second; 1668 if (!SeenPreds.insert(Pred).second) 1669 continue; // Duplicate predecessor entry. 1670 1671 Constant *Val = PredValue.first; 1672 1673 BasicBlock *DestBB; 1674 if (isa<UndefValue>(Val)) 1675 DestBB = nullptr; 1676 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1677 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1678 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1679 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1680 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1681 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1682 } else { 1683 assert(isa<IndirectBrInst>(BB->getTerminator()) 1684 && "Unexpected terminator"); 1685 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1686 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1687 } 1688 1689 // If we have exactly one destination, remember it for efficiency below. 1690 if (PredToDestList.empty()) { 1691 OnlyDest = DestBB; 1692 OnlyVal = Val; 1693 } else { 1694 if (OnlyDest != DestBB) 1695 OnlyDest = MultipleDestSentinel; 1696 // It possible we have same destination, but different value, e.g. default 1697 // case in switchinst. 1698 if (Val != OnlyVal) 1699 OnlyVal = MultipleVal; 1700 } 1701 1702 // If the predecessor ends with an indirect goto, we can't change its 1703 // destination. Same for CallBr. 1704 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1705 isa<CallBrInst>(Pred->getTerminator())) 1706 continue; 1707 1708 PredToDestList.emplace_back(Pred, DestBB); 1709 } 1710 1711 // If all edges were unthreadable, we fail. 1712 if (PredToDestList.empty()) 1713 return false; 1714 1715 // If all the predecessors go to a single known successor, we want to fold, 1716 // not thread. By doing so, we do not need to duplicate the current block and 1717 // also miss potential opportunities in case we dont/cant duplicate. 1718 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1719 if (BB->hasNPredecessors(PredToDestList.size())) { 1720 bool SeenFirstBranchToOnlyDest = false; 1721 std::vector <DominatorTree::UpdateType> Updates; 1722 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1723 for (BasicBlock *SuccBB : successors(BB)) { 1724 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1725 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1726 } else { 1727 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1728 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1729 } 1730 } 1731 1732 // Finally update the terminator. 1733 Instruction *Term = BB->getTerminator(); 1734 BranchInst::Create(OnlyDest, Term); 1735 ++NumFolds; 1736 Term->eraseFromParent(); 1737 DTU->applyUpdatesPermissive(Updates); 1738 if (HasProfileData) 1739 BPI->eraseBlock(BB); 1740 1741 // If the condition is now dead due to the removal of the old terminator, 1742 // erase it. 1743 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1744 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1745 CondInst->eraseFromParent(); 1746 // We can safely replace *some* uses of the CondInst if it has 1747 // exactly one value as returned by LVI. RAUW is incorrect in the 1748 // presence of guards and assumes, that have the `Cond` as the use. This 1749 // is because we use the guards/assume to reason about the `Cond` value 1750 // at the end of block, but RAUW unconditionally replaces all uses 1751 // including the guards/assumes themselves and the uses before the 1752 // guard/assume. 1753 else if (OnlyVal && OnlyVal != MultipleVal && 1754 CondInst->getParent() == BB) 1755 replaceFoldableUses(CondInst, OnlyVal); 1756 } 1757 return true; 1758 } 1759 } 1760 1761 // Determine which is the most common successor. If we have many inputs and 1762 // this block is a switch, we want to start by threading the batch that goes 1763 // to the most popular destination first. If we only know about one 1764 // threadable destination (the common case) we can avoid this. 1765 BasicBlock *MostPopularDest = OnlyDest; 1766 1767 if (MostPopularDest == MultipleDestSentinel) { 1768 // Remove any loop headers from the Dest list, threadEdge conservatively 1769 // won't process them, but we might have other destination that are eligible 1770 // and we still want to process. 1771 erase_if(PredToDestList, 1772 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1773 return LoopHeaders.contains(PredToDest.second); 1774 }); 1775 1776 if (PredToDestList.empty()) 1777 return false; 1778 1779 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1780 } 1781 1782 // Now that we know what the most popular destination is, factor all 1783 // predecessors that will jump to it into a single predecessor. 1784 SmallVector<BasicBlock*, 16> PredsToFactor; 1785 for (const auto &PredToDest : PredToDestList) 1786 if (PredToDest.second == MostPopularDest) { 1787 BasicBlock *Pred = PredToDest.first; 1788 1789 // This predecessor may be a switch or something else that has multiple 1790 // edges to the block. Factor each of these edges by listing them 1791 // according to # occurrences in PredsToFactor. 1792 for (BasicBlock *Succ : successors(Pred)) 1793 if (Succ == BB) 1794 PredsToFactor.push_back(Pred); 1795 } 1796 1797 // If the threadable edges are branching on an undefined value, we get to pick 1798 // the destination that these predecessors should get to. 1799 if (!MostPopularDest) 1800 MostPopularDest = BB->getTerminator()-> 1801 getSuccessor(getBestDestForJumpOnUndef(BB)); 1802 1803 // Ok, try to thread it! 1804 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1805 } 1806 1807 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1808 /// a PHI node (or freeze PHI) in the current block. See if there are any 1809 /// simplifications we can do based on inputs to the phi node. 1810 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1811 BasicBlock *BB = PN->getParent(); 1812 1813 // TODO: We could make use of this to do it once for blocks with common PHI 1814 // values. 1815 SmallVector<BasicBlock*, 1> PredBBs; 1816 PredBBs.resize(1); 1817 1818 // If any of the predecessor blocks end in an unconditional branch, we can 1819 // *duplicate* the conditional branch into that block in order to further 1820 // encourage jump threading and to eliminate cases where we have branch on a 1821 // phi of an icmp (branch on icmp is much better). 1822 // This is still beneficial when a frozen phi is used as the branch condition 1823 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1824 // to br(icmp(freeze ...)). 1825 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1826 BasicBlock *PredBB = PN->getIncomingBlock(i); 1827 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1828 if (PredBr->isUnconditional()) { 1829 PredBBs[0] = PredBB; 1830 // Try to duplicate BB into PredBB. 1831 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1832 return true; 1833 } 1834 } 1835 1836 return false; 1837 } 1838 1839 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1840 /// a xor instruction in the current block. See if there are any 1841 /// simplifications we can do based on inputs to the xor. 1842 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1843 BasicBlock *BB = BO->getParent(); 1844 1845 // If either the LHS or RHS of the xor is a constant, don't do this 1846 // optimization. 1847 if (isa<ConstantInt>(BO->getOperand(0)) || 1848 isa<ConstantInt>(BO->getOperand(1))) 1849 return false; 1850 1851 // If the first instruction in BB isn't a phi, we won't be able to infer 1852 // anything special about any particular predecessor. 1853 if (!isa<PHINode>(BB->front())) 1854 return false; 1855 1856 // If this BB is a landing pad, we won't be able to split the edge into it. 1857 if (BB->isEHPad()) 1858 return false; 1859 1860 // If we have a xor as the branch input to this block, and we know that the 1861 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1862 // the condition into the predecessor and fix that value to true, saving some 1863 // logical ops on that path and encouraging other paths to simplify. 1864 // 1865 // This copies something like this: 1866 // 1867 // BB: 1868 // %X = phi i1 [1], [%X'] 1869 // %Y = icmp eq i32 %A, %B 1870 // %Z = xor i1 %X, %Y 1871 // br i1 %Z, ... 1872 // 1873 // Into: 1874 // BB': 1875 // %Y = icmp ne i32 %A, %B 1876 // br i1 %Y, ... 1877 1878 PredValueInfoTy XorOpValues; 1879 bool isLHS = true; 1880 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1881 WantInteger, BO)) { 1882 assert(XorOpValues.empty()); 1883 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1884 WantInteger, BO)) 1885 return false; 1886 isLHS = false; 1887 } 1888 1889 assert(!XorOpValues.empty() && 1890 "computeValueKnownInPredecessors returned true with no values"); 1891 1892 // Scan the information to see which is most popular: true or false. The 1893 // predecessors can be of the set true, false, or undef. 1894 unsigned NumTrue = 0, NumFalse = 0; 1895 for (const auto &XorOpValue : XorOpValues) { 1896 if (isa<UndefValue>(XorOpValue.first)) 1897 // Ignore undefs for the count. 1898 continue; 1899 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1900 ++NumFalse; 1901 else 1902 ++NumTrue; 1903 } 1904 1905 // Determine which value to split on, true, false, or undef if neither. 1906 ConstantInt *SplitVal = nullptr; 1907 if (NumTrue > NumFalse) 1908 SplitVal = ConstantInt::getTrue(BB->getContext()); 1909 else if (NumTrue != 0 || NumFalse != 0) 1910 SplitVal = ConstantInt::getFalse(BB->getContext()); 1911 1912 // Collect all of the blocks that this can be folded into so that we can 1913 // factor this once and clone it once. 1914 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1915 for (const auto &XorOpValue : XorOpValues) { 1916 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1917 continue; 1918 1919 BlocksToFoldInto.push_back(XorOpValue.second); 1920 } 1921 1922 // If we inferred a value for all of the predecessors, then duplication won't 1923 // help us. However, we can just replace the LHS or RHS with the constant. 1924 if (BlocksToFoldInto.size() == 1925 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1926 if (!SplitVal) { 1927 // If all preds provide undef, just nuke the xor, because it is undef too. 1928 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1929 BO->eraseFromParent(); 1930 } else if (SplitVal->isZero()) { 1931 // If all preds provide 0, replace the xor with the other input. 1932 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1933 BO->eraseFromParent(); 1934 } else { 1935 // If all preds provide 1, set the computed value to 1. 1936 BO->setOperand(!isLHS, SplitVal); 1937 } 1938 1939 return true; 1940 } 1941 1942 // If any of predecessors end with an indirect goto, we can't change its 1943 // destination. Same for CallBr. 1944 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1945 return isa<IndirectBrInst>(Pred->getTerminator()) || 1946 isa<CallBrInst>(Pred->getTerminator()); 1947 })) 1948 return false; 1949 1950 // Try to duplicate BB into PredBB. 1951 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1952 } 1953 1954 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1955 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1956 /// NewPred using the entries from OldPred (suitably mapped). 1957 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1958 BasicBlock *OldPred, 1959 BasicBlock *NewPred, 1960 DenseMap<Instruction*, Value*> &ValueMap) { 1961 for (PHINode &PN : PHIBB->phis()) { 1962 // Ok, we have a PHI node. Figure out what the incoming value was for the 1963 // DestBlock. 1964 Value *IV = PN.getIncomingValueForBlock(OldPred); 1965 1966 // Remap the value if necessary. 1967 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1968 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1969 if (I != ValueMap.end()) 1970 IV = I->second; 1971 } 1972 1973 PN.addIncoming(IV, NewPred); 1974 } 1975 } 1976 1977 /// Merge basic block BB into its sole predecessor if possible. 1978 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1979 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1980 if (!SinglePred) 1981 return false; 1982 1983 const Instruction *TI = SinglePred->getTerminator(); 1984 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1985 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1986 return false; 1987 1988 // If SinglePred was a loop header, BB becomes one. 1989 if (LoopHeaders.erase(SinglePred)) 1990 LoopHeaders.insert(BB); 1991 1992 LVI->eraseBlock(SinglePred); 1993 MergeBasicBlockIntoOnlyPred(BB, DTU); 1994 1995 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1996 // BB code within one basic block `BB`), we need to invalidate the LVI 1997 // information associated with BB, because the LVI information need not be 1998 // true for all of BB after the merge. For example, 1999 // Before the merge, LVI info and code is as follows: 2000 // SinglePred: <LVI info1 for %p val> 2001 // %y = use of %p 2002 // call @exit() // need not transfer execution to successor. 2003 // assume(%p) // from this point on %p is true 2004 // br label %BB 2005 // BB: <LVI info2 for %p val, i.e. %p is true> 2006 // %x = use of %p 2007 // br label exit 2008 // 2009 // Note that this LVI info for blocks BB and SinglPred is correct for %p 2010 // (info2 and info1 respectively). After the merge and the deletion of the 2011 // LVI info1 for SinglePred. We have the following code: 2012 // BB: <LVI info2 for %p val> 2013 // %y = use of %p 2014 // call @exit() 2015 // assume(%p) 2016 // %x = use of %p <-- LVI info2 is correct from here onwards. 2017 // br label exit 2018 // LVI info2 for BB is incorrect at the beginning of BB. 2019 2020 // Invalidate LVI information for BB if the LVI is not provably true for 2021 // all of BB. 2022 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2023 LVI->eraseBlock(BB); 2024 return true; 2025 } 2026 2027 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2028 /// ValueMapping maps old values in BB to new ones in NewBB. 2029 void JumpThreadingPass::updateSSA( 2030 BasicBlock *BB, BasicBlock *NewBB, 2031 DenseMap<Instruction *, Value *> &ValueMapping) { 2032 // If there were values defined in BB that are used outside the block, then we 2033 // now have to update all uses of the value to use either the original value, 2034 // the cloned value, or some PHI derived value. This can require arbitrary 2035 // PHI insertion, of which we are prepared to do, clean these up now. 2036 SSAUpdater SSAUpdate; 2037 SmallVector<Use *, 16> UsesToRename; 2038 2039 for (Instruction &I : *BB) { 2040 // Scan all uses of this instruction to see if it is used outside of its 2041 // block, and if so, record them in UsesToRename. 2042 for (Use &U : I.uses()) { 2043 Instruction *User = cast<Instruction>(U.getUser()); 2044 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2045 if (UserPN->getIncomingBlock(U) == BB) 2046 continue; 2047 } else if (User->getParent() == BB) 2048 continue; 2049 2050 UsesToRename.push_back(&U); 2051 } 2052 2053 // If there are no uses outside the block, we're done with this instruction. 2054 if (UsesToRename.empty()) 2055 continue; 2056 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2057 2058 // We found a use of I outside of BB. Rename all uses of I that are outside 2059 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2060 // with the two values we know. 2061 SSAUpdate.Initialize(I.getType(), I.getName()); 2062 SSAUpdate.AddAvailableValue(BB, &I); 2063 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2064 2065 while (!UsesToRename.empty()) 2066 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2067 LLVM_DEBUG(dbgs() << "\n"); 2068 } 2069 } 2070 2071 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2072 /// arguments that come from PredBB. Return the map from the variables in the 2073 /// source basic block to the variables in the newly created basic block. 2074 DenseMap<Instruction *, Value *> 2075 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2076 BasicBlock::iterator BE, BasicBlock *NewBB, 2077 BasicBlock *PredBB) { 2078 // We are going to have to map operands from the source basic block to the new 2079 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2080 // block, evaluate them to account for entry from PredBB. 2081 DenseMap<Instruction *, Value *> ValueMapping; 2082 2083 // Clone the phi nodes of the source basic block into NewBB. The resulting 2084 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2085 // might need to rewrite the operand of the cloned phi. 2086 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2087 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2088 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2089 ValueMapping[PN] = NewPN; 2090 } 2091 2092 // Clone noalias scope declarations in the threaded block. When threading a 2093 // loop exit, we would otherwise end up with two idential scope declarations 2094 // visible at the same time. 2095 SmallVector<MDNode *> NoAliasScopes; 2096 DenseMap<MDNode *, MDNode *> ClonedScopes; 2097 LLVMContext &Context = PredBB->getContext(); 2098 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2099 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2100 2101 // Clone the non-phi instructions of the source basic block into NewBB, 2102 // keeping track of the mapping and using it to remap operands in the cloned 2103 // instructions. 2104 for (; BI != BE; ++BI) { 2105 Instruction *New = BI->clone(); 2106 New->setName(BI->getName()); 2107 NewBB->getInstList().push_back(New); 2108 ValueMapping[&*BI] = New; 2109 adaptNoAliasScopes(New, ClonedScopes, Context); 2110 2111 // Remap operands to patch up intra-block references. 2112 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2113 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2114 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2115 if (I != ValueMapping.end()) 2116 New->setOperand(i, I->second); 2117 } 2118 } 2119 2120 return ValueMapping; 2121 } 2122 2123 /// Attempt to thread through two successive basic blocks. 2124 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2125 Value *Cond) { 2126 // Consider: 2127 // 2128 // PredBB: 2129 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2130 // %tobool = icmp eq i32 %cond, 0 2131 // br i1 %tobool, label %BB, label ... 2132 // 2133 // BB: 2134 // %cmp = icmp eq i32* %var, null 2135 // br i1 %cmp, label ..., label ... 2136 // 2137 // We don't know the value of %var at BB even if we know which incoming edge 2138 // we take to BB. However, once we duplicate PredBB for each of its incoming 2139 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2140 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2141 2142 // Require that BB end with a Branch for simplicity. 2143 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2144 if (!CondBr) 2145 return false; 2146 2147 // BB must have exactly one predecessor. 2148 BasicBlock *PredBB = BB->getSinglePredecessor(); 2149 if (!PredBB) 2150 return false; 2151 2152 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2153 // unconditional branch, we should be merging PredBB and BB instead. For 2154 // simplicity, we don't deal with a switch. 2155 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2156 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2157 return false; 2158 2159 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2160 // PredBB. 2161 if (PredBB->getSinglePredecessor()) 2162 return false; 2163 2164 // Don't thread through PredBB if it contains a successor edge to itself, in 2165 // which case we would infinite loop. Suppose we are threading an edge from 2166 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2167 // successor edge to itself. If we allowed jump threading in this case, we 2168 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2169 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2170 // with another jump threading opportunity from PredBB.thread through PredBB 2171 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2172 // would keep peeling one iteration from PredBB. 2173 if (llvm::is_contained(successors(PredBB), PredBB)) 2174 return false; 2175 2176 // Don't thread across a loop header. 2177 if (LoopHeaders.count(PredBB)) 2178 return false; 2179 2180 // Avoid complication with duplicating EH pads. 2181 if (PredBB->isEHPad()) 2182 return false; 2183 2184 // Find a predecessor that we can thread. For simplicity, we only consider a 2185 // successor edge out of BB to which we thread exactly one incoming edge into 2186 // PredBB. 2187 unsigned ZeroCount = 0; 2188 unsigned OneCount = 0; 2189 BasicBlock *ZeroPred = nullptr; 2190 BasicBlock *OnePred = nullptr; 2191 for (BasicBlock *P : predecessors(PredBB)) { 2192 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2193 evaluateOnPredecessorEdge(BB, P, Cond))) { 2194 if (CI->isZero()) { 2195 ZeroCount++; 2196 ZeroPred = P; 2197 } else if (CI->isOne()) { 2198 OneCount++; 2199 OnePred = P; 2200 } 2201 } 2202 } 2203 2204 // Disregard complicated cases where we have to thread multiple edges. 2205 BasicBlock *PredPredBB; 2206 if (ZeroCount == 1) { 2207 PredPredBB = ZeroPred; 2208 } else if (OneCount == 1) { 2209 PredPredBB = OnePred; 2210 } else { 2211 return false; 2212 } 2213 2214 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2215 2216 // If threading to the same block as we come from, we would infinite loop. 2217 if (SuccBB == BB) { 2218 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2219 << "' - would thread to self!\n"); 2220 return false; 2221 } 2222 2223 // If threading this would thread across a loop header, don't thread the edge. 2224 // See the comments above findLoopHeaders for justifications and caveats. 2225 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2226 LLVM_DEBUG({ 2227 bool BBIsHeader = LoopHeaders.count(BB); 2228 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2229 dbgs() << " Not threading across " 2230 << (BBIsHeader ? "loop header BB '" : "block BB '") 2231 << BB->getName() << "' to dest " 2232 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2233 << SuccBB->getName() 2234 << "' - it might create an irreducible loop!\n"; 2235 }); 2236 return false; 2237 } 2238 2239 // Compute the cost of duplicating BB and PredBB. 2240 unsigned BBCost = 2241 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2242 unsigned PredBBCost = getJumpThreadDuplicationCost( 2243 PredBB, PredBB->getTerminator(), BBDupThreshold); 2244 2245 // Give up if costs are too high. We need to check BBCost and PredBBCost 2246 // individually before checking their sum because getJumpThreadDuplicationCost 2247 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2248 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2249 BBCost + PredBBCost > BBDupThreshold) { 2250 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2251 << "' - Cost is too high: " << PredBBCost 2252 << " for PredBB, " << BBCost << "for BB\n"); 2253 return false; 2254 } 2255 2256 // Now we are ready to duplicate PredBB. 2257 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2258 return true; 2259 } 2260 2261 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2262 BasicBlock *PredBB, 2263 BasicBlock *BB, 2264 BasicBlock *SuccBB) { 2265 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2266 << BB->getName() << "'\n"); 2267 2268 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2269 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2270 2271 BasicBlock *NewBB = 2272 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2273 PredBB->getParent(), PredBB); 2274 NewBB->moveAfter(PredBB); 2275 2276 // Set the block frequency of NewBB. 2277 if (HasProfileData) { 2278 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2279 BPI->getEdgeProbability(PredPredBB, PredBB); 2280 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2281 } 2282 2283 // We are going to have to map operands from the original BB block to the new 2284 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2285 // to account for entry from PredPredBB. 2286 DenseMap<Instruction *, Value *> ValueMapping = 2287 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2288 2289 // Copy the edge probabilities from PredBB to NewBB. 2290 if (HasProfileData) 2291 BPI->copyEdgeProbabilities(PredBB, NewBB); 2292 2293 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2294 // This eliminates predecessors from PredPredBB, which requires us to simplify 2295 // any PHI nodes in PredBB. 2296 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2297 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2298 if (PredPredTerm->getSuccessor(i) == PredBB) { 2299 PredBB->removePredecessor(PredPredBB, true); 2300 PredPredTerm->setSuccessor(i, NewBB); 2301 } 2302 2303 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2304 ValueMapping); 2305 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2306 ValueMapping); 2307 2308 DTU->applyUpdatesPermissive( 2309 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2310 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2311 {DominatorTree::Insert, PredPredBB, NewBB}, 2312 {DominatorTree::Delete, PredPredBB, PredBB}}); 2313 2314 updateSSA(PredBB, NewBB, ValueMapping); 2315 2316 // Clean up things like PHI nodes with single operands, dead instructions, 2317 // etc. 2318 SimplifyInstructionsInBlock(NewBB, TLI); 2319 SimplifyInstructionsInBlock(PredBB, TLI); 2320 2321 SmallVector<BasicBlock *, 1> PredsToFactor; 2322 PredsToFactor.push_back(NewBB); 2323 threadEdge(BB, PredsToFactor, SuccBB); 2324 } 2325 2326 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2327 bool JumpThreadingPass::tryThreadEdge( 2328 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2329 BasicBlock *SuccBB) { 2330 // If threading to the same block as we come from, we would infinite loop. 2331 if (SuccBB == BB) { 2332 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2333 << "' - would thread to self!\n"); 2334 return false; 2335 } 2336 2337 // If threading this would thread across a loop header, don't thread the edge. 2338 // See the comments above findLoopHeaders for justifications and caveats. 2339 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2340 LLVM_DEBUG({ 2341 bool BBIsHeader = LoopHeaders.count(BB); 2342 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2343 dbgs() << " Not threading across " 2344 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2345 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2346 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2347 }); 2348 return false; 2349 } 2350 2351 unsigned JumpThreadCost = 2352 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2353 if (JumpThreadCost > BBDupThreshold) { 2354 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2355 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2356 return false; 2357 } 2358 2359 threadEdge(BB, PredBBs, SuccBB); 2360 return true; 2361 } 2362 2363 /// threadEdge - We have decided that it is safe and profitable to factor the 2364 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2365 /// across BB. Transform the IR to reflect this change. 2366 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2367 const SmallVectorImpl<BasicBlock *> &PredBBs, 2368 BasicBlock *SuccBB) { 2369 assert(SuccBB != BB && "Don't create an infinite loop"); 2370 2371 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2372 "Don't thread across loop headers"); 2373 2374 // And finally, do it! Start by factoring the predecessors if needed. 2375 BasicBlock *PredBB; 2376 if (PredBBs.size() == 1) 2377 PredBB = PredBBs[0]; 2378 else { 2379 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2380 << " common predecessors.\n"); 2381 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2382 } 2383 2384 // And finally, do it! 2385 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2386 << "' to '" << SuccBB->getName() 2387 << ", across block:\n " << *BB << "\n"); 2388 2389 LVI->threadEdge(PredBB, BB, SuccBB); 2390 2391 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2392 BB->getName()+".thread", 2393 BB->getParent(), BB); 2394 NewBB->moveAfter(PredBB); 2395 2396 // Set the block frequency of NewBB. 2397 if (HasProfileData) { 2398 auto NewBBFreq = 2399 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2400 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2401 } 2402 2403 // Copy all the instructions from BB to NewBB except the terminator. 2404 DenseMap<Instruction *, Value *> ValueMapping = 2405 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2406 2407 // We didn't copy the terminator from BB over to NewBB, because there is now 2408 // an unconditional jump to SuccBB. Insert the unconditional jump. 2409 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2410 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2411 2412 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2413 // PHI nodes for NewBB now. 2414 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2415 2416 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2417 // eliminates predecessors from BB, which requires us to simplify any PHI 2418 // nodes in BB. 2419 Instruction *PredTerm = PredBB->getTerminator(); 2420 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2421 if (PredTerm->getSuccessor(i) == BB) { 2422 BB->removePredecessor(PredBB, true); 2423 PredTerm->setSuccessor(i, NewBB); 2424 } 2425 2426 // Enqueue required DT updates. 2427 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2428 {DominatorTree::Insert, PredBB, NewBB}, 2429 {DominatorTree::Delete, PredBB, BB}}); 2430 2431 updateSSA(BB, NewBB, ValueMapping); 2432 2433 // At this point, the IR is fully up to date and consistent. Do a quick scan 2434 // over the new instructions and zap any that are constants or dead. This 2435 // frequently happens because of phi translation. 2436 SimplifyInstructionsInBlock(NewBB, TLI); 2437 2438 // Update the edge weight from BB to SuccBB, which should be less than before. 2439 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2440 2441 // Threaded an edge! 2442 ++NumThreads; 2443 } 2444 2445 /// Create a new basic block that will be the predecessor of BB and successor of 2446 /// all blocks in Preds. When profile data is available, update the frequency of 2447 /// this new block. 2448 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2449 ArrayRef<BasicBlock *> Preds, 2450 const char *Suffix) { 2451 SmallVector<BasicBlock *, 2> NewBBs; 2452 2453 // Collect the frequencies of all predecessors of BB, which will be used to 2454 // update the edge weight of the result of splitting predecessors. 2455 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2456 if (HasProfileData) 2457 for (auto Pred : Preds) 2458 FreqMap.insert(std::make_pair( 2459 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2460 2461 // In the case when BB is a LandingPad block we create 2 new predecessors 2462 // instead of just one. 2463 if (BB->isLandingPad()) { 2464 std::string NewName = std::string(Suffix) + ".split-lp"; 2465 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2466 } else { 2467 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2468 } 2469 2470 std::vector<DominatorTree::UpdateType> Updates; 2471 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2472 for (auto NewBB : NewBBs) { 2473 BlockFrequency NewBBFreq(0); 2474 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2475 for (auto Pred : predecessors(NewBB)) { 2476 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2477 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2478 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2479 NewBBFreq += FreqMap.lookup(Pred); 2480 } 2481 if (HasProfileData) // Apply the summed frequency to NewBB. 2482 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2483 } 2484 2485 DTU->applyUpdatesPermissive(Updates); 2486 return NewBBs[0]; 2487 } 2488 2489 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2490 const Instruction *TI = BB->getTerminator(); 2491 assert(TI->getNumSuccessors() > 1 && "not a split"); 2492 2493 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2494 if (!WeightsNode) 2495 return false; 2496 2497 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2498 if (MDName->getString() != "branch_weights") 2499 return false; 2500 2501 // Ensure there are weights for all of the successors. Note that the first 2502 // operand to the metadata node is a name, not a weight. 2503 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2504 } 2505 2506 /// Update the block frequency of BB and branch weight and the metadata on the 2507 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2508 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2509 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2510 BasicBlock *BB, 2511 BasicBlock *NewBB, 2512 BasicBlock *SuccBB) { 2513 if (!HasProfileData) 2514 return; 2515 2516 assert(BFI && BPI && "BFI & BPI should have been created here"); 2517 2518 // As the edge from PredBB to BB is deleted, we have to update the block 2519 // frequency of BB. 2520 auto BBOrigFreq = BFI->getBlockFreq(BB); 2521 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2522 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2523 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2524 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2525 2526 // Collect updated outgoing edges' frequencies from BB and use them to update 2527 // edge probabilities. 2528 SmallVector<uint64_t, 4> BBSuccFreq; 2529 for (BasicBlock *Succ : successors(BB)) { 2530 auto SuccFreq = (Succ == SuccBB) 2531 ? BB2SuccBBFreq - NewBBFreq 2532 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2533 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2534 } 2535 2536 uint64_t MaxBBSuccFreq = 2537 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2538 2539 SmallVector<BranchProbability, 4> BBSuccProbs; 2540 if (MaxBBSuccFreq == 0) 2541 BBSuccProbs.assign(BBSuccFreq.size(), 2542 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2543 else { 2544 for (uint64_t Freq : BBSuccFreq) 2545 BBSuccProbs.push_back( 2546 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2547 // Normalize edge probabilities so that they sum up to one. 2548 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2549 BBSuccProbs.end()); 2550 } 2551 2552 // Update edge probabilities in BPI. 2553 BPI->setEdgeProbability(BB, BBSuccProbs); 2554 2555 // Update the profile metadata as well. 2556 // 2557 // Don't do this if the profile of the transformed blocks was statically 2558 // estimated. (This could occur despite the function having an entry 2559 // frequency in completely cold parts of the CFG.) 2560 // 2561 // In this case we don't want to suggest to subsequent passes that the 2562 // calculated weights are fully consistent. Consider this graph: 2563 // 2564 // check_1 2565 // 50% / | 2566 // eq_1 | 50% 2567 // \ | 2568 // check_2 2569 // 50% / | 2570 // eq_2 | 50% 2571 // \ | 2572 // check_3 2573 // 50% / | 2574 // eq_3 | 50% 2575 // \ | 2576 // 2577 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2578 // the overall probabilities are inconsistent; the total probability that the 2579 // value is either 1, 2 or 3 is 150%. 2580 // 2581 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2582 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2583 // the loop exit edge. Then based solely on static estimation we would assume 2584 // the loop was extremely hot. 2585 // 2586 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2587 // shouldn't make edges extremely likely or unlikely based solely on static 2588 // estimation. 2589 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2590 SmallVector<uint32_t, 4> Weights; 2591 for (auto Prob : BBSuccProbs) 2592 Weights.push_back(Prob.getNumerator()); 2593 2594 auto TI = BB->getTerminator(); 2595 TI->setMetadata( 2596 LLVMContext::MD_prof, 2597 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2598 } 2599 } 2600 2601 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2602 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2603 /// If we can duplicate the contents of BB up into PredBB do so now, this 2604 /// improves the odds that the branch will be on an analyzable instruction like 2605 /// a compare. 2606 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2607 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2608 assert(!PredBBs.empty() && "Can't handle an empty set"); 2609 2610 // If BB is a loop header, then duplicating this block outside the loop would 2611 // cause us to transform this into an irreducible loop, don't do this. 2612 // See the comments above findLoopHeaders for justifications and caveats. 2613 if (LoopHeaders.count(BB)) { 2614 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2615 << "' into predecessor block '" << PredBBs[0]->getName() 2616 << "' - it might create an irreducible loop!\n"); 2617 return false; 2618 } 2619 2620 unsigned DuplicationCost = 2621 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2622 if (DuplicationCost > BBDupThreshold) { 2623 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2624 << "' - Cost is too high: " << DuplicationCost << "\n"); 2625 return false; 2626 } 2627 2628 // And finally, do it! Start by factoring the predecessors if needed. 2629 std::vector<DominatorTree::UpdateType> Updates; 2630 BasicBlock *PredBB; 2631 if (PredBBs.size() == 1) 2632 PredBB = PredBBs[0]; 2633 else { 2634 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2635 << " common predecessors.\n"); 2636 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2637 } 2638 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2639 2640 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2641 // of PredBB. 2642 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2643 << "' into end of '" << PredBB->getName() 2644 << "' to eliminate branch on phi. Cost: " 2645 << DuplicationCost << " block is:" << *BB << "\n"); 2646 2647 // Unless PredBB ends with an unconditional branch, split the edge so that we 2648 // can just clone the bits from BB into the end of the new PredBB. 2649 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2650 2651 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2652 BasicBlock *OldPredBB = PredBB; 2653 PredBB = SplitEdge(OldPredBB, BB); 2654 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2655 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2656 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2657 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2658 } 2659 2660 // We are going to have to map operands from the original BB block into the 2661 // PredBB block. Evaluate PHI nodes in BB. 2662 DenseMap<Instruction*, Value*> ValueMapping; 2663 2664 BasicBlock::iterator BI = BB->begin(); 2665 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2666 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2667 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2668 // mapping and using it to remap operands in the cloned instructions. 2669 for (; BI != BB->end(); ++BI) { 2670 Instruction *New = BI->clone(); 2671 2672 // Remap operands to patch up intra-block references. 2673 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2674 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2675 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2676 if (I != ValueMapping.end()) 2677 New->setOperand(i, I->second); 2678 } 2679 2680 // If this instruction can be simplified after the operands are updated, 2681 // just use the simplified value instead. This frequently happens due to 2682 // phi translation. 2683 if (Value *IV = SimplifyInstruction( 2684 New, 2685 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2686 ValueMapping[&*BI] = IV; 2687 if (!New->mayHaveSideEffects()) { 2688 New->deleteValue(); 2689 New = nullptr; 2690 } 2691 } else { 2692 ValueMapping[&*BI] = New; 2693 } 2694 if (New) { 2695 // Otherwise, insert the new instruction into the block. 2696 New->setName(BI->getName()); 2697 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2698 // Update Dominance from simplified New instruction operands. 2699 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2700 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2701 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2702 } 2703 } 2704 2705 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2706 // add entries to the PHI nodes for branch from PredBB now. 2707 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2708 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2709 ValueMapping); 2710 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2711 ValueMapping); 2712 2713 updateSSA(BB, PredBB, ValueMapping); 2714 2715 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2716 // that we nuked. 2717 BB->removePredecessor(PredBB, true); 2718 2719 // Remove the unconditional branch at the end of the PredBB block. 2720 OldPredBranch->eraseFromParent(); 2721 if (HasProfileData) 2722 BPI->copyEdgeProbabilities(BB, PredBB); 2723 DTU->applyUpdatesPermissive(Updates); 2724 2725 ++NumDupes; 2726 return true; 2727 } 2728 2729 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2730 // a Select instruction in Pred. BB has other predecessors and SI is used in 2731 // a PHI node in BB. SI has no other use. 2732 // A new basic block, NewBB, is created and SI is converted to compare and 2733 // conditional branch. SI is erased from parent. 2734 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2735 SelectInst *SI, PHINode *SIUse, 2736 unsigned Idx) { 2737 // Expand the select. 2738 // 2739 // Pred -- 2740 // | v 2741 // | NewBB 2742 // | | 2743 // |----- 2744 // v 2745 // BB 2746 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2747 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2748 BB->getParent(), BB); 2749 // Move the unconditional branch to NewBB. 2750 PredTerm->removeFromParent(); 2751 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2752 // Create a conditional branch and update PHI nodes. 2753 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2754 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2755 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2756 2757 // The select is now dead. 2758 SI->eraseFromParent(); 2759 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2760 {DominatorTree::Insert, Pred, NewBB}}); 2761 2762 // Update any other PHI nodes in BB. 2763 for (BasicBlock::iterator BI = BB->begin(); 2764 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2765 if (Phi != SIUse) 2766 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2767 } 2768 2769 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2770 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2771 2772 if (!CondPHI || CondPHI->getParent() != BB) 2773 return false; 2774 2775 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2776 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2777 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2778 2779 // The second and third condition can be potentially relaxed. Currently 2780 // the conditions help to simplify the code and allow us to reuse existing 2781 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2782 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2783 continue; 2784 2785 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2786 if (!PredTerm || !PredTerm->isUnconditional()) 2787 continue; 2788 2789 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2790 return true; 2791 } 2792 return false; 2793 } 2794 2795 /// tryToUnfoldSelect - Look for blocks of the form 2796 /// bb1: 2797 /// %a = select 2798 /// br bb2 2799 /// 2800 /// bb2: 2801 /// %p = phi [%a, %bb1] ... 2802 /// %c = icmp %p 2803 /// br i1 %c 2804 /// 2805 /// And expand the select into a branch structure if one of its arms allows %c 2806 /// to be folded. This later enables threading from bb1 over bb2. 2807 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2808 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2809 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2810 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2811 2812 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2813 CondLHS->getParent() != BB) 2814 return false; 2815 2816 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2817 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2818 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2819 2820 // Look if one of the incoming values is a select in the corresponding 2821 // predecessor. 2822 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2823 continue; 2824 2825 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2826 if (!PredTerm || !PredTerm->isUnconditional()) 2827 continue; 2828 2829 // Now check if one of the select values would allow us to constant fold the 2830 // terminator in BB. We don't do the transform if both sides fold, those 2831 // cases will be threaded in any case. 2832 LazyValueInfo::Tristate LHSFolds = 2833 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2834 CondRHS, Pred, BB, CondCmp); 2835 LazyValueInfo::Tristate RHSFolds = 2836 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2837 CondRHS, Pred, BB, CondCmp); 2838 if ((LHSFolds != LazyValueInfo::Unknown || 2839 RHSFolds != LazyValueInfo::Unknown) && 2840 LHSFolds != RHSFolds) { 2841 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2842 return true; 2843 } 2844 } 2845 return false; 2846 } 2847 2848 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2849 /// same BB in the form 2850 /// bb: 2851 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2852 /// %s = select %p, trueval, falseval 2853 /// 2854 /// or 2855 /// 2856 /// bb: 2857 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2858 /// %c = cmp %p, 0 2859 /// %s = select %c, trueval, falseval 2860 /// 2861 /// And expand the select into a branch structure. This later enables 2862 /// jump-threading over bb in this pass. 2863 /// 2864 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2865 /// select if the associated PHI has at least one constant. If the unfolded 2866 /// select is not jump-threaded, it will be folded again in the later 2867 /// optimizations. 2868 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2869 // This transform would reduce the quality of msan diagnostics. 2870 // Disable this transform under MemorySanitizer. 2871 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2872 return false; 2873 2874 // If threading this would thread across a loop header, don't thread the edge. 2875 // See the comments above findLoopHeaders for justifications and caveats. 2876 if (LoopHeaders.count(BB)) 2877 return false; 2878 2879 for (BasicBlock::iterator BI = BB->begin(); 2880 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2881 // Look for a Phi having at least one constant incoming value. 2882 if (llvm::all_of(PN->incoming_values(), 2883 [](Value *V) { return !isa<ConstantInt>(V); })) 2884 continue; 2885 2886 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2887 using namespace PatternMatch; 2888 2889 // Check if SI is in BB and use V as condition. 2890 if (SI->getParent() != BB) 2891 return false; 2892 Value *Cond = SI->getCondition(); 2893 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2894 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2895 }; 2896 2897 SelectInst *SI = nullptr; 2898 for (Use &U : PN->uses()) { 2899 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2900 // Look for a ICmp in BB that compares PN with a constant and is the 2901 // condition of a Select. 2902 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2903 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2904 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2905 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2906 SI = SelectI; 2907 break; 2908 } 2909 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2910 // Look for a Select in BB that uses PN as condition. 2911 if (isUnfoldCandidate(SelectI, U.get())) { 2912 SI = SelectI; 2913 break; 2914 } 2915 } 2916 } 2917 2918 if (!SI) 2919 continue; 2920 // Expand the select. 2921 Value *Cond = SI->getCondition(); 2922 if (InsertFreezeWhenUnfoldingSelect && 2923 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI, 2924 &DTU->getDomTree())) 2925 Cond = new FreezeInst(Cond, "cond.fr", SI); 2926 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2927 BasicBlock *SplitBB = SI->getParent(); 2928 BasicBlock *NewBB = Term->getParent(); 2929 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2930 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2931 NewPN->addIncoming(SI->getFalseValue(), BB); 2932 SI->replaceAllUsesWith(NewPN); 2933 SI->eraseFromParent(); 2934 // NewBB and SplitBB are newly created blocks which require insertion. 2935 std::vector<DominatorTree::UpdateType> Updates; 2936 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2937 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2938 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2939 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2940 // BB's successors were moved to SplitBB, update DTU accordingly. 2941 for (auto *Succ : successors(SplitBB)) { 2942 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2943 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2944 } 2945 DTU->applyUpdatesPermissive(Updates); 2946 return true; 2947 } 2948 return false; 2949 } 2950 2951 /// Try to propagate a guard from the current BB into one of its predecessors 2952 /// in case if another branch of execution implies that the condition of this 2953 /// guard is always true. Currently we only process the simplest case that 2954 /// looks like: 2955 /// 2956 /// Start: 2957 /// %cond = ... 2958 /// br i1 %cond, label %T1, label %F1 2959 /// T1: 2960 /// br label %Merge 2961 /// F1: 2962 /// br label %Merge 2963 /// Merge: 2964 /// %condGuard = ... 2965 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2966 /// 2967 /// And cond either implies condGuard or !condGuard. In this case all the 2968 /// instructions before the guard can be duplicated in both branches, and the 2969 /// guard is then threaded to one of them. 2970 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 2971 using namespace PatternMatch; 2972 2973 // We only want to deal with two predecessors. 2974 BasicBlock *Pred1, *Pred2; 2975 auto PI = pred_begin(BB), PE = pred_end(BB); 2976 if (PI == PE) 2977 return false; 2978 Pred1 = *PI++; 2979 if (PI == PE) 2980 return false; 2981 Pred2 = *PI++; 2982 if (PI != PE) 2983 return false; 2984 if (Pred1 == Pred2) 2985 return false; 2986 2987 // Try to thread one of the guards of the block. 2988 // TODO: Look up deeper than to immediate predecessor? 2989 auto *Parent = Pred1->getSinglePredecessor(); 2990 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2991 return false; 2992 2993 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2994 for (auto &I : *BB) 2995 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2996 return true; 2997 2998 return false; 2999 } 3000 3001 /// Try to propagate the guard from BB which is the lower block of a diamond 3002 /// to one of its branches, in case if diamond's condition implies guard's 3003 /// condition. 3004 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 3005 BranchInst *BI) { 3006 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3007 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3008 Value *GuardCond = Guard->getArgOperand(0); 3009 Value *BranchCond = BI->getCondition(); 3010 BasicBlock *TrueDest = BI->getSuccessor(0); 3011 BasicBlock *FalseDest = BI->getSuccessor(1); 3012 3013 auto &DL = BB->getModule()->getDataLayout(); 3014 bool TrueDestIsSafe = false; 3015 bool FalseDestIsSafe = false; 3016 3017 // True dest is safe if BranchCond => GuardCond. 3018 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3019 if (Impl && *Impl) 3020 TrueDestIsSafe = true; 3021 else { 3022 // False dest is safe if !BranchCond => GuardCond. 3023 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3024 if (Impl && *Impl) 3025 FalseDestIsSafe = true; 3026 } 3027 3028 if (!TrueDestIsSafe && !FalseDestIsSafe) 3029 return false; 3030 3031 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3032 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3033 3034 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3035 Instruction *AfterGuard = Guard->getNextNode(); 3036 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 3037 if (Cost > BBDupThreshold) 3038 return false; 3039 // Duplicate all instructions before the guard and the guard itself to the 3040 // branch where implication is not proved. 3041 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3042 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3043 assert(GuardedBlock && "Could not create the guarded block?"); 3044 // Duplicate all instructions before the guard in the unguarded branch. 3045 // Since we have successfully duplicated the guarded block and this block 3046 // has fewer instructions, we expect it to succeed. 3047 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3048 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3049 assert(UnguardedBlock && "Could not create the unguarded block?"); 3050 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3051 << GuardedBlock->getName() << "\n"); 3052 // Some instructions before the guard may still have uses. For them, we need 3053 // to create Phi nodes merging their copies in both guarded and unguarded 3054 // branches. Those instructions that have no uses can be just removed. 3055 SmallVector<Instruction *, 4> ToRemove; 3056 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3057 if (!isa<PHINode>(&*BI)) 3058 ToRemove.push_back(&*BI); 3059 3060 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3061 assert(InsertionPoint && "Empty block?"); 3062 // Substitute with Phis & remove. 3063 for (auto *Inst : reverse(ToRemove)) { 3064 if (!Inst->use_empty()) { 3065 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3066 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3067 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3068 NewPN->insertBefore(InsertionPoint); 3069 Inst->replaceAllUsesWith(NewPN); 3070 } 3071 Inst->eraseFromParent(); 3072 } 3073 return true; 3074 } 3075