1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Use.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/InitializePasses.h" 60 #include "llvm/Pass.h" 61 #include "llvm/Support/BlockFrequency.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Cloning.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/SSAUpdater.h" 72 #include "llvm/Transforms/Utils/ValueMapper.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <memory> 79 #include <utility> 80 81 using namespace llvm; 82 using namespace jumpthreading; 83 84 #define DEBUG_TYPE "jump-threading" 85 86 STATISTIC(NumThreads, "Number of jumps threaded"); 87 STATISTIC(NumFolds, "Number of terminators folded"); 88 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 89 90 static cl::opt<unsigned> 91 BBDuplicateThreshold("jump-threading-threshold", 92 cl::desc("Max block size to duplicate for jump threading"), 93 cl::init(6), cl::Hidden); 94 95 static cl::opt<unsigned> 96 ImplicationSearchThreshold( 97 "jump-threading-implication-search-threshold", 98 cl::desc("The number of predecessors to search for a stronger " 99 "condition to use to thread over a weaker condition"), 100 cl::init(3), cl::Hidden); 101 102 static cl::opt<bool> PrintLVIAfterJumpThreading( 103 "print-lvi-after-jump-threading", 104 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 105 cl::Hidden); 106 107 static cl::opt<bool> JumpThreadingFreezeSelectCond( 108 "jump-threading-freeze-select-cond", 109 cl::desc("Freeze the condition when unfolding select"), cl::init(false), 110 cl::Hidden); 111 112 static cl::opt<bool> ThreadAcrossLoopHeaders( 113 "jump-threading-across-loop-headers", 114 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 115 cl::init(false), cl::Hidden); 116 117 118 namespace { 119 120 /// This pass performs 'jump threading', which looks at blocks that have 121 /// multiple predecessors and multiple successors. If one or more of the 122 /// predecessors of the block can be proven to always jump to one of the 123 /// successors, we forward the edge from the predecessor to the successor by 124 /// duplicating the contents of this block. 125 /// 126 /// An example of when this can occur is code like this: 127 /// 128 /// if () { ... 129 /// X = 4; 130 /// } 131 /// if (X < 3) { 132 /// 133 /// In this case, the unconditional branch at the end of the first if can be 134 /// revectored to the false side of the second if. 135 class JumpThreading : public FunctionPass { 136 JumpThreadingPass Impl; 137 138 public: 139 static char ID; // Pass identification 140 141 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) 142 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { 143 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 144 } 145 146 bool runOnFunction(Function &F) override; 147 148 void getAnalysisUsage(AnalysisUsage &AU) const override { 149 AU.addRequired<DominatorTreeWrapperPass>(); 150 AU.addPreserved<DominatorTreeWrapperPass>(); 151 AU.addRequired<AAResultsWrapperPass>(); 152 AU.addRequired<LazyValueInfoWrapperPass>(); 153 AU.addPreserved<LazyValueInfoWrapperPass>(); 154 AU.addPreserved<GlobalsAAWrapperPass>(); 155 AU.addRequired<TargetLibraryInfoWrapperPass>(); 156 } 157 158 void releaseMemory() override { Impl.releaseMemory(); } 159 }; 160 161 } // end anonymous namespace 162 163 char JumpThreading::ID = 0; 164 165 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 166 "Jump Threading", false, false) 167 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 168 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 171 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 172 "Jump Threading", false, false) 173 174 // Public interface to the Jump Threading pass 175 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { 176 return new JumpThreading(InsertFr, Threshold); 177 } 178 179 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { 180 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; 181 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 182 } 183 184 // Update branch probability information according to conditional 185 // branch probability. This is usually made possible for cloned branches 186 // in inline instances by the context specific profile in the caller. 187 // For instance, 188 // 189 // [Block PredBB] 190 // [Branch PredBr] 191 // if (t) { 192 // Block A; 193 // } else { 194 // Block B; 195 // } 196 // 197 // [Block BB] 198 // cond = PN([true, %A], [..., %B]); // PHI node 199 // [Branch CondBr] 200 // if (cond) { 201 // ... // P(cond == true) = 1% 202 // } 203 // 204 // Here we know that when block A is taken, cond must be true, which means 205 // P(cond == true | A) = 1 206 // 207 // Given that P(cond == true) = P(cond == true | A) * P(A) + 208 // P(cond == true | B) * P(B) 209 // we get: 210 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 211 // 212 // which gives us: 213 // P(A) is less than P(cond == true), i.e. 214 // P(t == true) <= P(cond == true) 215 // 216 // In other words, if we know P(cond == true) is unlikely, we know 217 // that P(t == true) is also unlikely. 218 // 219 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 220 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 221 if (!CondBr) 222 return; 223 224 uint64_t TrueWeight, FalseWeight; 225 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 226 return; 227 228 if (TrueWeight + FalseWeight == 0) 229 // Zero branch_weights do not give a hint for getting branch probabilities. 230 // Technically it would result in division by zero denominator, which is 231 // TrueWeight + FalseWeight. 232 return; 233 234 // Returns the outgoing edge of the dominating predecessor block 235 // that leads to the PhiNode's incoming block: 236 auto GetPredOutEdge = 237 [](BasicBlock *IncomingBB, 238 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 239 auto *PredBB = IncomingBB; 240 auto *SuccBB = PhiBB; 241 SmallPtrSet<BasicBlock *, 16> Visited; 242 while (true) { 243 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 244 if (PredBr && PredBr->isConditional()) 245 return {PredBB, SuccBB}; 246 Visited.insert(PredBB); 247 auto *SinglePredBB = PredBB->getSinglePredecessor(); 248 if (!SinglePredBB) 249 return {nullptr, nullptr}; 250 251 // Stop searching when SinglePredBB has been visited. It means we see 252 // an unreachable loop. 253 if (Visited.count(SinglePredBB)) 254 return {nullptr, nullptr}; 255 256 SuccBB = PredBB; 257 PredBB = SinglePredBB; 258 } 259 }; 260 261 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 262 Value *PhiOpnd = PN->getIncomingValue(i); 263 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 264 265 if (!CI || !CI->getType()->isIntegerTy(1)) 266 continue; 267 268 BranchProbability BP = 269 (CI->isOne() ? BranchProbability::getBranchProbability( 270 TrueWeight, TrueWeight + FalseWeight) 271 : BranchProbability::getBranchProbability( 272 FalseWeight, TrueWeight + FalseWeight)); 273 274 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 275 if (!PredOutEdge.first) 276 return; 277 278 BasicBlock *PredBB = PredOutEdge.first; 279 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 280 if (!PredBr) 281 return; 282 283 uint64_t PredTrueWeight, PredFalseWeight; 284 // FIXME: We currently only set the profile data when it is missing. 285 // With PGO, this can be used to refine even existing profile data with 286 // context information. This needs to be done after more performance 287 // testing. 288 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 289 continue; 290 291 // We can not infer anything useful when BP >= 50%, because BP is the 292 // upper bound probability value. 293 if (BP >= BranchProbability(50, 100)) 294 continue; 295 296 SmallVector<uint32_t, 2> Weights; 297 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 298 Weights.push_back(BP.getNumerator()); 299 Weights.push_back(BP.getCompl().getNumerator()); 300 } else { 301 Weights.push_back(BP.getCompl().getNumerator()); 302 Weights.push_back(BP.getNumerator()); 303 } 304 PredBr->setMetadata(LLVMContext::MD_prof, 305 MDBuilder(PredBr->getParent()->getContext()) 306 .createBranchWeights(Weights)); 307 } 308 } 309 310 /// runOnFunction - Toplevel algorithm. 311 bool JumpThreading::runOnFunction(Function &F) { 312 if (skipFunction(F)) 313 return false; 314 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 315 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 316 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 317 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 318 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 319 std::unique_ptr<BlockFrequencyInfo> BFI; 320 std::unique_ptr<BranchProbabilityInfo> BPI; 321 if (F.hasProfileData()) { 322 LoopInfo LI{DominatorTree(F)}; 323 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 324 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 325 } 326 327 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 328 std::move(BFI), std::move(BPI)); 329 if (PrintLVIAfterJumpThreading) { 330 dbgs() << "LVI for function '" << F.getName() << "':\n"; 331 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 332 } 333 return Changed; 334 } 335 336 PreservedAnalyses JumpThreadingPass::run(Function &F, 337 FunctionAnalysisManager &AM) { 338 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 339 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 340 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 341 auto &AA = AM.getResult<AAManager>(F); 342 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 343 344 std::unique_ptr<BlockFrequencyInfo> BFI; 345 std::unique_ptr<BranchProbabilityInfo> BPI; 346 if (F.hasProfileData()) { 347 LoopInfo LI{DominatorTree(F)}; 348 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 349 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 350 } 351 352 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 353 std::move(BFI), std::move(BPI)); 354 355 if (PrintLVIAfterJumpThreading) { 356 dbgs() << "LVI for function '" << F.getName() << "':\n"; 357 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 358 } 359 360 if (!Changed) 361 return PreservedAnalyses::all(); 362 PreservedAnalyses PA; 363 PA.preserve<GlobalsAA>(); 364 PA.preserve<DominatorTreeAnalysis>(); 365 PA.preserve<LazyValueAnalysis>(); 366 return PA; 367 } 368 369 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 370 LazyValueInfo *LVI_, AliasAnalysis *AA_, 371 DomTreeUpdater *DTU_, bool HasProfileData_, 372 std::unique_ptr<BlockFrequencyInfo> BFI_, 373 std::unique_ptr<BranchProbabilityInfo> BPI_) { 374 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 375 TLI = TLI_; 376 LVI = LVI_; 377 AA = AA_; 378 DTU = DTU_; 379 BFI.reset(); 380 BPI.reset(); 381 // When profile data is available, we need to update edge weights after 382 // successful jump threading, which requires both BPI and BFI being available. 383 HasProfileData = HasProfileData_; 384 auto *GuardDecl = F.getParent()->getFunction( 385 Intrinsic::getName(Intrinsic::experimental_guard)); 386 HasGuards = GuardDecl && !GuardDecl->use_empty(); 387 if (HasProfileData) { 388 BPI = std::move(BPI_); 389 BFI = std::move(BFI_); 390 } 391 392 // Reduce the number of instructions duplicated when optimizing strictly for 393 // size. 394 if (BBDuplicateThreshold.getNumOccurrences()) 395 BBDupThreshold = BBDuplicateThreshold; 396 else if (F.hasFnAttribute(Attribute::MinSize)) 397 BBDupThreshold = 3; 398 else 399 BBDupThreshold = DefaultBBDupThreshold; 400 401 // JumpThreading must not processes blocks unreachable from entry. It's a 402 // waste of compute time and can potentially lead to hangs. 403 SmallPtrSet<BasicBlock *, 16> Unreachable; 404 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 405 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 406 DominatorTree &DT = DTU->getDomTree(); 407 for (auto &BB : F) 408 if (!DT.isReachableFromEntry(&BB)) 409 Unreachable.insert(&BB); 410 411 if (!ThreadAcrossLoopHeaders) 412 findLoopHeaders(F); 413 414 bool EverChanged = false; 415 bool Changed; 416 do { 417 Changed = false; 418 for (auto &BB : F) { 419 if (Unreachable.count(&BB)) 420 continue; 421 while (processBlock(&BB)) // Thread all of the branches we can over BB. 422 Changed = true; 423 424 // Jump threading may have introduced redundant debug values into BB 425 // which should be removed. 426 if (Changed) 427 RemoveRedundantDbgInstrs(&BB); 428 429 // Stop processing BB if it's the entry or is now deleted. The following 430 // routines attempt to eliminate BB and locating a suitable replacement 431 // for the entry is non-trivial. 432 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 433 continue; 434 435 if (pred_empty(&BB)) { 436 // When processBlock makes BB unreachable it doesn't bother to fix up 437 // the instructions in it. We must remove BB to prevent invalid IR. 438 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 439 << "' with terminator: " << *BB.getTerminator() 440 << '\n'); 441 LoopHeaders.erase(&BB); 442 LVI->eraseBlock(&BB); 443 DeleteDeadBlock(&BB, DTU); 444 Changed = true; 445 continue; 446 } 447 448 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 449 // is "almost empty", we attempt to merge BB with its sole successor. 450 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 451 if (BI && BI->isUnconditional()) { 452 BasicBlock *Succ = BI->getSuccessor(0); 453 if ( 454 // The terminator must be the only non-phi instruction in BB. 455 BB.getFirstNonPHIOrDbg()->isTerminator() && 456 // Don't alter Loop headers and latches to ensure another pass can 457 // detect and transform nested loops later. 458 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 459 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 460 RemoveRedundantDbgInstrs(Succ); 461 // BB is valid for cleanup here because we passed in DTU. F remains 462 // BB's parent until a DTU->getDomTree() event. 463 LVI->eraseBlock(&BB); 464 Changed = true; 465 } 466 } 467 } 468 EverChanged |= Changed; 469 } while (Changed); 470 471 LoopHeaders.clear(); 472 return EverChanged; 473 } 474 475 // Replace uses of Cond with ToVal when safe to do so. If all uses are 476 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 477 // because we may incorrectly replace uses when guards/assumes are uses of 478 // of `Cond` and we used the guards/assume to reason about the `Cond` value 479 // at the end of block. RAUW unconditionally replaces all uses 480 // including the guards/assumes themselves and the uses before the 481 // guard/assume. 482 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { 483 assert(Cond->getType() == ToVal->getType()); 484 auto *BB = Cond->getParent(); 485 // We can unconditionally replace all uses in non-local blocks (i.e. uses 486 // strictly dominated by BB), since LVI information is true from the 487 // terminator of BB. 488 replaceNonLocalUsesWith(Cond, ToVal); 489 for (Instruction &I : reverse(*BB)) { 490 // Reached the Cond whose uses we are trying to replace, so there are no 491 // more uses. 492 if (&I == Cond) 493 break; 494 // We only replace uses in instructions that are guaranteed to reach the end 495 // of BB, where we know Cond is ToVal. 496 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 497 break; 498 I.replaceUsesOfWith(Cond, ToVal); 499 } 500 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 501 Cond->eraseFromParent(); 502 } 503 504 /// Return the cost of duplicating a piece of this block from first non-phi 505 /// and before StopAt instruction to thread across it. Stop scanning the block 506 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 507 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 508 Instruction *StopAt, 509 unsigned Threshold) { 510 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 511 /// Ignore PHI nodes, these will be flattened when duplication happens. 512 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 513 514 // FIXME: THREADING will delete values that are just used to compute the 515 // branch, so they shouldn't count against the duplication cost. 516 517 unsigned Bonus = 0; 518 if (BB->getTerminator() == StopAt) { 519 // Threading through a switch statement is particularly profitable. If this 520 // block ends in a switch, decrease its cost to make it more likely to 521 // happen. 522 if (isa<SwitchInst>(StopAt)) 523 Bonus = 6; 524 525 // The same holds for indirect branches, but slightly more so. 526 if (isa<IndirectBrInst>(StopAt)) 527 Bonus = 8; 528 } 529 530 // Bump the threshold up so the early exit from the loop doesn't skip the 531 // terminator-based Size adjustment at the end. 532 Threshold += Bonus; 533 534 // Sum up the cost of each instruction until we get to the terminator. Don't 535 // include the terminator because the copy won't include it. 536 unsigned Size = 0; 537 for (; &*I != StopAt; ++I) { 538 539 // Stop scanning the block if we've reached the threshold. 540 if (Size > Threshold) 541 return Size; 542 543 // Debugger intrinsics don't incur code size. 544 if (isa<DbgInfoIntrinsic>(I)) continue; 545 546 // If this is a pointer->pointer bitcast, it is free. 547 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 548 continue; 549 550 // Freeze instruction is free, too. 551 if (isa<FreezeInst>(I)) 552 continue; 553 554 // Bail out if this instruction gives back a token type, it is not possible 555 // to duplicate it if it is used outside this BB. 556 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 557 return ~0U; 558 559 // All other instructions count for at least one unit. 560 ++Size; 561 562 // Calls are more expensive. If they are non-intrinsic calls, we model them 563 // as having cost of 4. If they are a non-vector intrinsic, we model them 564 // as having cost of 2 total, and if they are a vector intrinsic, we model 565 // them as having cost 1. 566 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 567 if (CI->cannotDuplicate() || CI->isConvergent()) 568 // Blocks with NoDuplicate are modelled as having infinite cost, so they 569 // are never duplicated. 570 return ~0U; 571 else if (!isa<IntrinsicInst>(CI)) 572 Size += 3; 573 else if (!CI->getType()->isVectorTy()) 574 Size += 1; 575 } 576 } 577 578 return Size > Bonus ? Size - Bonus : 0; 579 } 580 581 /// findLoopHeaders - We do not want jump threading to turn proper loop 582 /// structures into irreducible loops. Doing this breaks up the loop nesting 583 /// hierarchy and pessimizes later transformations. To prevent this from 584 /// happening, we first have to find the loop headers. Here we approximate this 585 /// by finding targets of backedges in the CFG. 586 /// 587 /// Note that there definitely are cases when we want to allow threading of 588 /// edges across a loop header. For example, threading a jump from outside the 589 /// loop (the preheader) to an exit block of the loop is definitely profitable. 590 /// It is also almost always profitable to thread backedges from within the loop 591 /// to exit blocks, and is often profitable to thread backedges to other blocks 592 /// within the loop (forming a nested loop). This simple analysis is not rich 593 /// enough to track all of these properties and keep it up-to-date as the CFG 594 /// mutates, so we don't allow any of these transformations. 595 void JumpThreadingPass::findLoopHeaders(Function &F) { 596 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 597 FindFunctionBackedges(F, Edges); 598 599 for (const auto &Edge : Edges) 600 LoopHeaders.insert(Edge.second); 601 } 602 603 /// getKnownConstant - Helper method to determine if we can thread over a 604 /// terminator with the given value as its condition, and if so what value to 605 /// use for that. What kind of value this is depends on whether we want an 606 /// integer or a block address, but an undef is always accepted. 607 /// Returns null if Val is null or not an appropriate constant. 608 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 609 if (!Val) 610 return nullptr; 611 612 // Undef is "known" enough. 613 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 614 return U; 615 616 if (Preference == WantBlockAddress) 617 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 618 619 return dyn_cast<ConstantInt>(Val); 620 } 621 622 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 623 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 624 /// in any of our predecessors. If so, return the known list of value and pred 625 /// BB in the result vector. 626 /// 627 /// This returns true if there were any known values. 628 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 629 Value *V, BasicBlock *BB, PredValueInfo &Result, 630 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 631 Instruction *CxtI) { 632 // This method walks up use-def chains recursively. Because of this, we could 633 // get into an infinite loop going around loops in the use-def chain. To 634 // prevent this, keep track of what (value, block) pairs we've already visited 635 // and terminate the search if we loop back to them 636 if (!RecursionSet.insert(V).second) 637 return false; 638 639 // If V is a constant, then it is known in all predecessors. 640 if (Constant *KC = getKnownConstant(V, Preference)) { 641 for (BasicBlock *Pred : predecessors(BB)) 642 Result.emplace_back(KC, Pred); 643 644 return !Result.empty(); 645 } 646 647 // If V is a non-instruction value, or an instruction in a different block, 648 // then it can't be derived from a PHI. 649 Instruction *I = dyn_cast<Instruction>(V); 650 if (!I || I->getParent() != BB) { 651 652 // Okay, if this is a live-in value, see if it has a known value at the end 653 // of any of our predecessors. 654 // 655 // FIXME: This should be an edge property, not a block end property. 656 /// TODO: Per PR2563, we could infer value range information about a 657 /// predecessor based on its terminator. 658 // 659 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 660 // "I" is a non-local compare-with-a-constant instruction. This would be 661 // able to handle value inequalities better, for example if the compare is 662 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 663 // Perhaps getConstantOnEdge should be smart enough to do this? 664 for (BasicBlock *P : predecessors(BB)) { 665 // If the value is known by LazyValueInfo to be a constant in a 666 // predecessor, use that information to try to thread this block. 667 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 668 if (Constant *KC = getKnownConstant(PredCst, Preference)) 669 Result.emplace_back(KC, P); 670 } 671 672 return !Result.empty(); 673 } 674 675 /// If I is a PHI node, then we know the incoming values for any constants. 676 if (PHINode *PN = dyn_cast<PHINode>(I)) { 677 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 678 Value *InVal = PN->getIncomingValue(i); 679 if (Constant *KC = getKnownConstant(InVal, Preference)) { 680 Result.emplace_back(KC, PN->getIncomingBlock(i)); 681 } else { 682 Constant *CI = LVI->getConstantOnEdge(InVal, 683 PN->getIncomingBlock(i), 684 BB, CxtI); 685 if (Constant *KC = getKnownConstant(CI, Preference)) 686 Result.emplace_back(KC, PN->getIncomingBlock(i)); 687 } 688 } 689 690 return !Result.empty(); 691 } 692 693 // Handle Cast instructions. 694 if (CastInst *CI = dyn_cast<CastInst>(I)) { 695 Value *Source = CI->getOperand(0); 696 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 697 RecursionSet, CxtI); 698 if (Result.empty()) 699 return false; 700 701 // Convert the known values. 702 for (auto &R : Result) 703 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 704 705 return true; 706 } 707 708 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 709 Value *Source = FI->getOperand(0); 710 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 711 RecursionSet, CxtI); 712 713 erase_if(Result, [](auto &Pair) { 714 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 715 }); 716 717 return !Result.empty(); 718 } 719 720 // Handle some boolean conditions. 721 if (I->getType()->getPrimitiveSizeInBits() == 1) { 722 assert(Preference == WantInteger && "One-bit non-integer type?"); 723 // X | true -> true 724 // X & false -> false 725 if (I->getOpcode() == Instruction::Or || 726 I->getOpcode() == Instruction::And) { 727 PredValueInfoTy LHSVals, RHSVals; 728 729 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 730 WantInteger, RecursionSet, CxtI); 731 computeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 732 WantInteger, RecursionSet, CxtI); 733 734 if (LHSVals.empty() && RHSVals.empty()) 735 return false; 736 737 ConstantInt *InterestingVal; 738 if (I->getOpcode() == Instruction::Or) 739 InterestingVal = ConstantInt::getTrue(I->getContext()); 740 else 741 InterestingVal = ConstantInt::getFalse(I->getContext()); 742 743 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 744 745 // Scan for the sentinel. If we find an undef, force it to the 746 // interesting value: x|undef -> true and x&undef -> false. 747 for (const auto &LHSVal : LHSVals) 748 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 749 Result.emplace_back(InterestingVal, LHSVal.second); 750 LHSKnownBBs.insert(LHSVal.second); 751 } 752 for (const auto &RHSVal : RHSVals) 753 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 754 // If we already inferred a value for this block on the LHS, don't 755 // re-add it. 756 if (!LHSKnownBBs.count(RHSVal.second)) 757 Result.emplace_back(InterestingVal, RHSVal.second); 758 } 759 760 return !Result.empty(); 761 } 762 763 // Handle the NOT form of XOR. 764 if (I->getOpcode() == Instruction::Xor && 765 isa<ConstantInt>(I->getOperand(1)) && 766 cast<ConstantInt>(I->getOperand(1))->isOne()) { 767 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 768 WantInteger, RecursionSet, CxtI); 769 if (Result.empty()) 770 return false; 771 772 // Invert the known values. 773 for (auto &R : Result) 774 R.first = ConstantExpr::getNot(R.first); 775 776 return true; 777 } 778 779 // Try to simplify some other binary operator values. 780 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 781 assert(Preference != WantBlockAddress 782 && "A binary operator creating a block address?"); 783 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 784 PredValueInfoTy LHSVals; 785 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 786 WantInteger, RecursionSet, CxtI); 787 788 // Try to use constant folding to simplify the binary operator. 789 for (const auto &LHSVal : LHSVals) { 790 Constant *V = LHSVal.first; 791 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 792 793 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 794 Result.emplace_back(KC, LHSVal.second); 795 } 796 } 797 798 return !Result.empty(); 799 } 800 801 // Handle compare with phi operand, where the PHI is defined in this block. 802 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 803 assert(Preference == WantInteger && "Compares only produce integers"); 804 Type *CmpType = Cmp->getType(); 805 Value *CmpLHS = Cmp->getOperand(0); 806 Value *CmpRHS = Cmp->getOperand(1); 807 CmpInst::Predicate Pred = Cmp->getPredicate(); 808 809 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 810 if (!PN) 811 PN = dyn_cast<PHINode>(CmpRHS); 812 if (PN && PN->getParent() == BB) { 813 const DataLayout &DL = PN->getModule()->getDataLayout(); 814 // We can do this simplification if any comparisons fold to true or false. 815 // See if any do. 816 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 817 BasicBlock *PredBB = PN->getIncomingBlock(i); 818 Value *LHS, *RHS; 819 if (PN == CmpLHS) { 820 LHS = PN->getIncomingValue(i); 821 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 822 } else { 823 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 824 RHS = PN->getIncomingValue(i); 825 } 826 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 827 if (!Res) { 828 if (!isa<Constant>(RHS)) 829 continue; 830 831 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 832 auto LHSInst = dyn_cast<Instruction>(LHS); 833 if (LHSInst && LHSInst->getParent() == BB) 834 continue; 835 836 LazyValueInfo::Tristate 837 ResT = LVI->getPredicateOnEdge(Pred, LHS, 838 cast<Constant>(RHS), PredBB, BB, 839 CxtI ? CxtI : Cmp); 840 if (ResT == LazyValueInfo::Unknown) 841 continue; 842 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 843 } 844 845 if (Constant *KC = getKnownConstant(Res, WantInteger)) 846 Result.emplace_back(KC, PredBB); 847 } 848 849 return !Result.empty(); 850 } 851 852 // If comparing a live-in value against a constant, see if we know the 853 // live-in value on any predecessors. 854 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 855 Constant *CmpConst = cast<Constant>(CmpRHS); 856 857 if (!isa<Instruction>(CmpLHS) || 858 cast<Instruction>(CmpLHS)->getParent() != BB) { 859 for (BasicBlock *P : predecessors(BB)) { 860 // If the value is known by LazyValueInfo to be a constant in a 861 // predecessor, use that information to try to thread this block. 862 LazyValueInfo::Tristate Res = 863 LVI->getPredicateOnEdge(Pred, CmpLHS, 864 CmpConst, P, BB, CxtI ? CxtI : Cmp); 865 if (Res == LazyValueInfo::Unknown) 866 continue; 867 868 Constant *ResC = ConstantInt::get(CmpType, Res); 869 Result.emplace_back(ResC, P); 870 } 871 872 return !Result.empty(); 873 } 874 875 // InstCombine can fold some forms of constant range checks into 876 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 877 // x as a live-in. 878 { 879 using namespace PatternMatch; 880 881 Value *AddLHS; 882 ConstantInt *AddConst; 883 if (isa<ConstantInt>(CmpConst) && 884 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 885 if (!isa<Instruction>(AddLHS) || 886 cast<Instruction>(AddLHS)->getParent() != BB) { 887 for (BasicBlock *P : predecessors(BB)) { 888 // If the value is known by LazyValueInfo to be a ConstantRange in 889 // a predecessor, use that information to try to thread this 890 // block. 891 ConstantRange CR = LVI->getConstantRangeOnEdge( 892 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 893 // Propagate the range through the addition. 894 CR = CR.add(AddConst->getValue()); 895 896 // Get the range where the compare returns true. 897 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 898 Pred, cast<ConstantInt>(CmpConst)->getValue()); 899 900 Constant *ResC; 901 if (CmpRange.contains(CR)) 902 ResC = ConstantInt::getTrue(CmpType); 903 else if (CmpRange.inverse().contains(CR)) 904 ResC = ConstantInt::getFalse(CmpType); 905 else 906 continue; 907 908 Result.emplace_back(ResC, P); 909 } 910 911 return !Result.empty(); 912 } 913 } 914 } 915 916 // Try to find a constant value for the LHS of a comparison, 917 // and evaluate it statically if we can. 918 PredValueInfoTy LHSVals; 919 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 920 WantInteger, RecursionSet, CxtI); 921 922 for (const auto &LHSVal : LHSVals) { 923 Constant *V = LHSVal.first; 924 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 925 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 926 Result.emplace_back(KC, LHSVal.second); 927 } 928 929 return !Result.empty(); 930 } 931 } 932 933 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 934 // Handle select instructions where at least one operand is a known constant 935 // and we can figure out the condition value for any predecessor block. 936 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 937 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 938 PredValueInfoTy Conds; 939 if ((TrueVal || FalseVal) && 940 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 941 WantInteger, RecursionSet, CxtI)) { 942 for (auto &C : Conds) { 943 Constant *Cond = C.first; 944 945 // Figure out what value to use for the condition. 946 bool KnownCond; 947 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 948 // A known boolean. 949 KnownCond = CI->isOne(); 950 } else { 951 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 952 // Either operand will do, so be sure to pick the one that's a known 953 // constant. 954 // FIXME: Do this more cleverly if both values are known constants? 955 KnownCond = (TrueVal != nullptr); 956 } 957 958 // See if the select has a known constant value for this predecessor. 959 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 960 Result.emplace_back(Val, C.second); 961 } 962 963 return !Result.empty(); 964 } 965 } 966 967 // If all else fails, see if LVI can figure out a constant value for us. 968 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 969 Constant *CI = LVI->getConstant(V, CxtI); 970 if (Constant *KC = getKnownConstant(CI, Preference)) { 971 for (BasicBlock *Pred : predecessors(BB)) 972 Result.emplace_back(KC, Pred); 973 } 974 975 return !Result.empty(); 976 } 977 978 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 979 /// in an undefined jump, decide which block is best to revector to. 980 /// 981 /// Since we can pick an arbitrary destination, we pick the successor with the 982 /// fewest predecessors. This should reduce the in-degree of the others. 983 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 984 Instruction *BBTerm = BB->getTerminator(); 985 unsigned MinSucc = 0; 986 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 987 // Compute the successor with the minimum number of predecessors. 988 unsigned MinNumPreds = pred_size(TestBB); 989 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 990 TestBB = BBTerm->getSuccessor(i); 991 unsigned NumPreds = pred_size(TestBB); 992 if (NumPreds < MinNumPreds) { 993 MinSucc = i; 994 MinNumPreds = NumPreds; 995 } 996 } 997 998 return MinSucc; 999 } 1000 1001 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1002 if (!BB->hasAddressTaken()) return false; 1003 1004 // If the block has its address taken, it may be a tree of dead constants 1005 // hanging off of it. These shouldn't keep the block alive. 1006 BlockAddress *BA = BlockAddress::get(BB); 1007 BA->removeDeadConstantUsers(); 1008 return !BA->use_empty(); 1009 } 1010 1011 /// processBlock - If there are any predecessors whose control can be threaded 1012 /// through to a successor, transform them now. 1013 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1014 // If the block is trivially dead, just return and let the caller nuke it. 1015 // This simplifies other transformations. 1016 if (DTU->isBBPendingDeletion(BB) || 1017 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1018 return false; 1019 1020 // If this block has a single predecessor, and if that pred has a single 1021 // successor, merge the blocks. This encourages recursive jump threading 1022 // because now the condition in this block can be threaded through 1023 // predecessors of our predecessor block. 1024 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1025 return true; 1026 1027 if (tryToUnfoldSelectInCurrBB(BB)) 1028 return true; 1029 1030 // Look if we can propagate guards to predecessors. 1031 if (HasGuards && processGuards(BB)) 1032 return true; 1033 1034 // What kind of constant we're looking for. 1035 ConstantPreference Preference = WantInteger; 1036 1037 // Look to see if the terminator is a conditional branch, switch or indirect 1038 // branch, if not we can't thread it. 1039 Value *Condition; 1040 Instruction *Terminator = BB->getTerminator(); 1041 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1042 // Can't thread an unconditional jump. 1043 if (BI->isUnconditional()) return false; 1044 Condition = BI->getCondition(); 1045 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1046 Condition = SI->getCondition(); 1047 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1048 // Can't thread indirect branch with no successors. 1049 if (IB->getNumSuccessors() == 0) return false; 1050 Condition = IB->getAddress()->stripPointerCasts(); 1051 Preference = WantBlockAddress; 1052 } else { 1053 return false; // Must be an invoke or callbr. 1054 } 1055 1056 // Keep track if we constant folded the condition in this invocation. 1057 bool ConstantFolded = false; 1058 1059 // Run constant folding to see if we can reduce the condition to a simple 1060 // constant. 1061 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1062 Value *SimpleVal = 1063 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1064 if (SimpleVal) { 1065 I->replaceAllUsesWith(SimpleVal); 1066 if (isInstructionTriviallyDead(I, TLI)) 1067 I->eraseFromParent(); 1068 Condition = SimpleVal; 1069 ConstantFolded = true; 1070 } 1071 } 1072 1073 // If the terminator is branching on an undef or freeze undef, we can pick any 1074 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1075 auto *FI = dyn_cast<FreezeInst>(Condition); 1076 if (isa<UndefValue>(Condition) || 1077 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1078 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1079 std::vector<DominatorTree::UpdateType> Updates; 1080 1081 // Fold the branch/switch. 1082 Instruction *BBTerm = BB->getTerminator(); 1083 Updates.reserve(BBTerm->getNumSuccessors()); 1084 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1085 if (i == BestSucc) continue; 1086 BasicBlock *Succ = BBTerm->getSuccessor(i); 1087 Succ->removePredecessor(BB, true); 1088 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1089 } 1090 1091 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1092 << "' folding undef terminator: " << *BBTerm << '\n'); 1093 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1094 BBTerm->eraseFromParent(); 1095 DTU->applyUpdatesPermissive(Updates); 1096 if (FI) 1097 FI->eraseFromParent(); 1098 return true; 1099 } 1100 1101 // If the terminator of this block is branching on a constant, simplify the 1102 // terminator to an unconditional branch. This can occur due to threading in 1103 // other blocks. 1104 if (getKnownConstant(Condition, Preference)) { 1105 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1106 << "' folding terminator: " << *BB->getTerminator() 1107 << '\n'); 1108 ++NumFolds; 1109 ConstantFoldTerminator(BB, true, nullptr, DTU); 1110 return true; 1111 } 1112 1113 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1114 1115 // All the rest of our checks depend on the condition being an instruction. 1116 if (!CondInst) { 1117 // FIXME: Unify this with code below. 1118 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1119 return true; 1120 return ConstantFolded; 1121 } 1122 1123 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1124 // If we're branching on a conditional, LVI might be able to determine 1125 // it's value at the branch instruction. We only handle comparisons 1126 // against a constant at this time. 1127 // TODO: This should be extended to handle switches as well. 1128 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1129 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1130 if (CondBr && CondConst) { 1131 // We should have returned as soon as we turn a conditional branch to 1132 // unconditional. Because its no longer interesting as far as jump 1133 // threading is concerned. 1134 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1135 1136 LazyValueInfo::Tristate Ret = 1137 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1138 CondConst, CondBr); 1139 if (Ret != LazyValueInfo::Unknown) { 1140 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1141 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1142 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1143 ToRemoveSucc->removePredecessor(BB, true); 1144 BranchInst *UncondBr = 1145 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1146 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1147 CondBr->eraseFromParent(); 1148 if (CondCmp->use_empty()) 1149 CondCmp->eraseFromParent(); 1150 // We can safely replace *some* uses of the CondInst if it has 1151 // exactly one value as returned by LVI. RAUW is incorrect in the 1152 // presence of guards and assumes, that have the `Cond` as the use. This 1153 // is because we use the guards/assume to reason about the `Cond` value 1154 // at the end of block, but RAUW unconditionally replaces all uses 1155 // including the guards/assumes themselves and the uses before the 1156 // guard/assume. 1157 else if (CondCmp->getParent() == BB) { 1158 auto *CI = Ret == LazyValueInfo::True ? 1159 ConstantInt::getTrue(CondCmp->getType()) : 1160 ConstantInt::getFalse(CondCmp->getType()); 1161 replaceFoldableUses(CondCmp, CI); 1162 } 1163 DTU->applyUpdatesPermissive( 1164 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1165 return true; 1166 } 1167 1168 // We did not manage to simplify this branch, try to see whether 1169 // CondCmp depends on a known phi-select pattern. 1170 if (tryToUnfoldSelect(CondCmp, BB)) 1171 return true; 1172 } 1173 } 1174 1175 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1176 if (tryToUnfoldSelect(SI, BB)) 1177 return true; 1178 1179 // Check for some cases that are worth simplifying. Right now we want to look 1180 // for loads that are used by a switch or by the condition for the branch. If 1181 // we see one, check to see if it's partially redundant. If so, insert a PHI 1182 // which can then be used to thread the values. 1183 Value *SimplifyValue = CondInst; 1184 1185 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue)) 1186 // Look into freeze's operand 1187 SimplifyValue = FI->getOperand(0); 1188 1189 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1190 if (isa<Constant>(CondCmp->getOperand(1))) 1191 SimplifyValue = CondCmp->getOperand(0); 1192 1193 // TODO: There are other places where load PRE would be profitable, such as 1194 // more complex comparisons. 1195 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1196 if (simplifyPartiallyRedundantLoad(LoadI)) 1197 return true; 1198 1199 // Before threading, try to propagate profile data backwards: 1200 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1201 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1202 updatePredecessorProfileMetadata(PN, BB); 1203 1204 // Handle a variety of cases where we are branching on something derived from 1205 // a PHI node in the current block. If we can prove that any predecessors 1206 // compute a predictable value based on a PHI node, thread those predecessors. 1207 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1208 return true; 1209 1210 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1211 // the current block, see if we can simplify. 1212 PHINode *PN = dyn_cast<PHINode>( 1213 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0) 1214 : CondInst); 1215 1216 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1217 return processBranchOnPHI(PN); 1218 1219 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1220 if (CondInst->getOpcode() == Instruction::Xor && 1221 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1222 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1223 1224 // Search for a stronger dominating condition that can be used to simplify a 1225 // conditional branch leaving BB. 1226 if (processImpliedCondition(BB)) 1227 return true; 1228 1229 return false; 1230 } 1231 1232 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1233 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1234 if (!BI || !BI->isConditional()) 1235 return false; 1236 1237 Value *Cond = BI->getCondition(); 1238 BasicBlock *CurrentBB = BB; 1239 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1240 unsigned Iter = 0; 1241 1242 auto &DL = BB->getModule()->getDataLayout(); 1243 1244 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1245 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1246 if (!PBI || !PBI->isConditional()) 1247 return false; 1248 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1249 return false; 1250 1251 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1252 Optional<bool> Implication = 1253 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1254 if (Implication) { 1255 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1256 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1257 RemoveSucc->removePredecessor(BB); 1258 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1259 UncondBI->setDebugLoc(BI->getDebugLoc()); 1260 BI->eraseFromParent(); 1261 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1262 return true; 1263 } 1264 CurrentBB = CurrentPred; 1265 CurrentPred = CurrentBB->getSinglePredecessor(); 1266 } 1267 1268 return false; 1269 } 1270 1271 /// Return true if Op is an instruction defined in the given block. 1272 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1273 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1274 if (OpInst->getParent() == BB) 1275 return true; 1276 return false; 1277 } 1278 1279 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1280 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1281 /// This is an important optimization that encourages jump threading, and needs 1282 /// to be run interlaced with other jump threading tasks. 1283 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1284 // Don't hack volatile and ordered loads. 1285 if (!LoadI->isUnordered()) return false; 1286 1287 // If the load is defined in a block with exactly one predecessor, it can't be 1288 // partially redundant. 1289 BasicBlock *LoadBB = LoadI->getParent(); 1290 if (LoadBB->getSinglePredecessor()) 1291 return false; 1292 1293 // If the load is defined in an EH pad, it can't be partially redundant, 1294 // because the edges between the invoke and the EH pad cannot have other 1295 // instructions between them. 1296 if (LoadBB->isEHPad()) 1297 return false; 1298 1299 Value *LoadedPtr = LoadI->getOperand(0); 1300 1301 // If the loaded operand is defined in the LoadBB and its not a phi, 1302 // it can't be available in predecessors. 1303 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1304 return false; 1305 1306 // Scan a few instructions up from the load, to see if it is obviously live at 1307 // the entry to its block. 1308 BasicBlock::iterator BBIt(LoadI); 1309 bool IsLoadCSE; 1310 if (Value *AvailableVal = FindAvailableLoadedValue( 1311 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1312 // If the value of the load is locally available within the block, just use 1313 // it. This frequently occurs for reg2mem'd allocas. 1314 1315 if (IsLoadCSE) { 1316 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1317 combineMetadataForCSE(NLoadI, LoadI, false); 1318 }; 1319 1320 // If the returned value is the load itself, replace with an undef. This can 1321 // only happen in dead loops. 1322 if (AvailableVal == LoadI) 1323 AvailableVal = UndefValue::get(LoadI->getType()); 1324 if (AvailableVal->getType() != LoadI->getType()) 1325 AvailableVal = CastInst::CreateBitOrPointerCast( 1326 AvailableVal, LoadI->getType(), "", LoadI); 1327 LoadI->replaceAllUsesWith(AvailableVal); 1328 LoadI->eraseFromParent(); 1329 return true; 1330 } 1331 1332 // Otherwise, if we scanned the whole block and got to the top of the block, 1333 // we know the block is locally transparent to the load. If not, something 1334 // might clobber its value. 1335 if (BBIt != LoadBB->begin()) 1336 return false; 1337 1338 // If all of the loads and stores that feed the value have the same AA tags, 1339 // then we can propagate them onto any newly inserted loads. 1340 AAMDNodes AATags; 1341 LoadI->getAAMetadata(AATags); 1342 1343 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1344 1345 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1346 1347 AvailablePredsTy AvailablePreds; 1348 BasicBlock *OneUnavailablePred = nullptr; 1349 SmallVector<LoadInst*, 8> CSELoads; 1350 1351 // If we got here, the loaded value is transparent through to the start of the 1352 // block. Check to see if it is available in any of the predecessor blocks. 1353 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1354 // If we already scanned this predecessor, skip it. 1355 if (!PredsScanned.insert(PredBB).second) 1356 continue; 1357 1358 BBIt = PredBB->end(); 1359 unsigned NumScanedInst = 0; 1360 Value *PredAvailable = nullptr; 1361 // NOTE: We don't CSE load that is volatile or anything stronger than 1362 // unordered, that should have been checked when we entered the function. 1363 assert(LoadI->isUnordered() && 1364 "Attempting to CSE volatile or atomic loads"); 1365 // If this is a load on a phi pointer, phi-translate it and search 1366 // for available load/store to the pointer in predecessors. 1367 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1368 PredAvailable = FindAvailablePtrLoadStore( 1369 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1370 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1371 1372 // If PredBB has a single predecessor, continue scanning through the 1373 // single predecessor. 1374 BasicBlock *SinglePredBB = PredBB; 1375 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1376 NumScanedInst < DefMaxInstsToScan) { 1377 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1378 if (SinglePredBB) { 1379 BBIt = SinglePredBB->end(); 1380 PredAvailable = FindAvailablePtrLoadStore( 1381 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1382 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1383 &NumScanedInst); 1384 } 1385 } 1386 1387 if (!PredAvailable) { 1388 OneUnavailablePred = PredBB; 1389 continue; 1390 } 1391 1392 if (IsLoadCSE) 1393 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1394 1395 // If so, this load is partially redundant. Remember this info so that we 1396 // can create a PHI node. 1397 AvailablePreds.emplace_back(PredBB, PredAvailable); 1398 } 1399 1400 // If the loaded value isn't available in any predecessor, it isn't partially 1401 // redundant. 1402 if (AvailablePreds.empty()) return false; 1403 1404 // Okay, the loaded value is available in at least one (and maybe all!) 1405 // predecessors. If the value is unavailable in more than one unique 1406 // predecessor, we want to insert a merge block for those common predecessors. 1407 // This ensures that we only have to insert one reload, thus not increasing 1408 // code size. 1409 BasicBlock *UnavailablePred = nullptr; 1410 1411 // If the value is unavailable in one of predecessors, we will end up 1412 // inserting a new instruction into them. It is only valid if all the 1413 // instructions before LoadI are guaranteed to pass execution to its 1414 // successor, or if LoadI is safe to speculate. 1415 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1416 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1417 // It requires domination tree analysis, so for this simple case it is an 1418 // overkill. 1419 if (PredsScanned.size() != AvailablePreds.size() && 1420 !isSafeToSpeculativelyExecute(LoadI)) 1421 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1422 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1423 return false; 1424 1425 // If there is exactly one predecessor where the value is unavailable, the 1426 // already computed 'OneUnavailablePred' block is it. If it ends in an 1427 // unconditional branch, we know that it isn't a critical edge. 1428 if (PredsScanned.size() == AvailablePreds.size()+1 && 1429 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1430 UnavailablePred = OneUnavailablePred; 1431 } else if (PredsScanned.size() != AvailablePreds.size()) { 1432 // Otherwise, we had multiple unavailable predecessors or we had a critical 1433 // edge from the one. 1434 SmallVector<BasicBlock*, 8> PredsToSplit; 1435 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1436 1437 for (const auto &AvailablePred : AvailablePreds) 1438 AvailablePredSet.insert(AvailablePred.first); 1439 1440 // Add all the unavailable predecessors to the PredsToSplit list. 1441 for (BasicBlock *P : predecessors(LoadBB)) { 1442 // If the predecessor is an indirect goto, we can't split the edge. 1443 // Same for CallBr. 1444 if (isa<IndirectBrInst>(P->getTerminator()) || 1445 isa<CallBrInst>(P->getTerminator())) 1446 return false; 1447 1448 if (!AvailablePredSet.count(P)) 1449 PredsToSplit.push_back(P); 1450 } 1451 1452 // Split them out to their own block. 1453 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1454 } 1455 1456 // If the value isn't available in all predecessors, then there will be 1457 // exactly one where it isn't available. Insert a load on that edge and add 1458 // it to the AvailablePreds list. 1459 if (UnavailablePred) { 1460 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1461 "Can't handle critical edge here!"); 1462 LoadInst *NewVal = new LoadInst( 1463 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1464 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1465 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1466 UnavailablePred->getTerminator()); 1467 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1468 if (AATags) 1469 NewVal->setAAMetadata(AATags); 1470 1471 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1472 } 1473 1474 // Now we know that each predecessor of this block has a value in 1475 // AvailablePreds, sort them for efficient access as we're walking the preds. 1476 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1477 1478 // Create a PHI node at the start of the block for the PRE'd load value. 1479 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1480 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1481 &LoadBB->front()); 1482 PN->takeName(LoadI); 1483 PN->setDebugLoc(LoadI->getDebugLoc()); 1484 1485 // Insert new entries into the PHI for each predecessor. A single block may 1486 // have multiple entries here. 1487 for (pred_iterator PI = PB; PI != PE; ++PI) { 1488 BasicBlock *P = *PI; 1489 AvailablePredsTy::iterator I = 1490 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1491 1492 assert(I != AvailablePreds.end() && I->first == P && 1493 "Didn't find entry for predecessor!"); 1494 1495 // If we have an available predecessor but it requires casting, insert the 1496 // cast in the predecessor and use the cast. Note that we have to update the 1497 // AvailablePreds vector as we go so that all of the PHI entries for this 1498 // predecessor use the same bitcast. 1499 Value *&PredV = I->second; 1500 if (PredV->getType() != LoadI->getType()) 1501 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1502 P->getTerminator()); 1503 1504 PN->addIncoming(PredV, I->first); 1505 } 1506 1507 for (LoadInst *PredLoadI : CSELoads) { 1508 combineMetadataForCSE(PredLoadI, LoadI, true); 1509 } 1510 1511 LoadI->replaceAllUsesWith(PN); 1512 LoadI->eraseFromParent(); 1513 1514 return true; 1515 } 1516 1517 /// findMostPopularDest - The specified list contains multiple possible 1518 /// threadable destinations. Pick the one that occurs the most frequently in 1519 /// the list. 1520 static BasicBlock * 1521 findMostPopularDest(BasicBlock *BB, 1522 const SmallVectorImpl<std::pair<BasicBlock *, 1523 BasicBlock *>> &PredToDestList) { 1524 assert(!PredToDestList.empty()); 1525 1526 // Determine popularity. If there are multiple possible destinations, we 1527 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1528 // blocks with known and real destinations to threading undef. We'll handle 1529 // them later if interesting. 1530 MapVector<BasicBlock *, unsigned> DestPopularity; 1531 1532 // Populate DestPopularity with the successors in the order they appear in the 1533 // successor list. This way, we ensure determinism by iterating it in the 1534 // same order in std::max_element below. We map nullptr to 0 so that we can 1535 // return nullptr when PredToDestList contains nullptr only. 1536 DestPopularity[nullptr] = 0; 1537 for (auto *SuccBB : successors(BB)) 1538 DestPopularity[SuccBB] = 0; 1539 1540 for (const auto &PredToDest : PredToDestList) 1541 if (PredToDest.second) 1542 DestPopularity[PredToDest.second]++; 1543 1544 // Find the most popular dest. 1545 using VT = decltype(DestPopularity)::value_type; 1546 auto MostPopular = std::max_element( 1547 DestPopularity.begin(), DestPopularity.end(), 1548 [](const VT &L, const VT &R) { return L.second < R.second; }); 1549 1550 // Okay, we have finally picked the most popular destination. 1551 return MostPopular->first; 1552 } 1553 1554 // Try to evaluate the value of V when the control flows from PredPredBB to 1555 // BB->getSinglePredecessor() and then on to BB. 1556 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1557 BasicBlock *PredPredBB, 1558 Value *V) { 1559 BasicBlock *PredBB = BB->getSinglePredecessor(); 1560 assert(PredBB && "Expected a single predecessor"); 1561 1562 if (Constant *Cst = dyn_cast<Constant>(V)) { 1563 return Cst; 1564 } 1565 1566 // Consult LVI if V is not an instruction in BB or PredBB. 1567 Instruction *I = dyn_cast<Instruction>(V); 1568 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1569 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1570 } 1571 1572 // Look into a PHI argument. 1573 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1574 if (PHI->getParent() == PredBB) 1575 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1576 return nullptr; 1577 } 1578 1579 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1580 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1581 if (CondCmp->getParent() == BB) { 1582 Constant *Op0 = 1583 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1584 Constant *Op1 = 1585 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1586 if (Op0 && Op1) { 1587 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1588 } 1589 } 1590 return nullptr; 1591 } 1592 1593 return nullptr; 1594 } 1595 1596 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1597 ConstantPreference Preference, 1598 Instruction *CxtI) { 1599 // If threading this would thread across a loop header, don't even try to 1600 // thread the edge. 1601 if (LoopHeaders.count(BB)) 1602 return false; 1603 1604 PredValueInfoTy PredValues; 1605 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1606 CxtI)) { 1607 // We don't have known values in predecessors. See if we can thread through 1608 // BB and its sole predecessor. 1609 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1610 } 1611 1612 assert(!PredValues.empty() && 1613 "computeValueKnownInPredecessors returned true with no values"); 1614 1615 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1616 for (const auto &PredValue : PredValues) { 1617 dbgs() << " BB '" << BB->getName() 1618 << "': FOUND condition = " << *PredValue.first 1619 << " for pred '" << PredValue.second->getName() << "'.\n"; 1620 }); 1621 1622 // Decide what we want to thread through. Convert our list of known values to 1623 // a list of known destinations for each pred. This also discards duplicate 1624 // predecessors and keeps track of the undefined inputs (which are represented 1625 // as a null dest in the PredToDestList). 1626 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1627 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1628 1629 BasicBlock *OnlyDest = nullptr; 1630 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1631 Constant *OnlyVal = nullptr; 1632 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1633 1634 for (const auto &PredValue : PredValues) { 1635 BasicBlock *Pred = PredValue.second; 1636 if (!SeenPreds.insert(Pred).second) 1637 continue; // Duplicate predecessor entry. 1638 1639 Constant *Val = PredValue.first; 1640 1641 BasicBlock *DestBB; 1642 if (isa<UndefValue>(Val)) 1643 DestBB = nullptr; 1644 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1645 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1646 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1647 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1648 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1649 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1650 } else { 1651 assert(isa<IndirectBrInst>(BB->getTerminator()) 1652 && "Unexpected terminator"); 1653 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1654 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1655 } 1656 1657 // If we have exactly one destination, remember it for efficiency below. 1658 if (PredToDestList.empty()) { 1659 OnlyDest = DestBB; 1660 OnlyVal = Val; 1661 } else { 1662 if (OnlyDest != DestBB) 1663 OnlyDest = MultipleDestSentinel; 1664 // It possible we have same destination, but different value, e.g. default 1665 // case in switchinst. 1666 if (Val != OnlyVal) 1667 OnlyVal = MultipleVal; 1668 } 1669 1670 // If the predecessor ends with an indirect goto, we can't change its 1671 // destination. Same for CallBr. 1672 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1673 isa<CallBrInst>(Pred->getTerminator())) 1674 continue; 1675 1676 PredToDestList.emplace_back(Pred, DestBB); 1677 } 1678 1679 // If all edges were unthreadable, we fail. 1680 if (PredToDestList.empty()) 1681 return false; 1682 1683 // If all the predecessors go to a single known successor, we want to fold, 1684 // not thread. By doing so, we do not need to duplicate the current block and 1685 // also miss potential opportunities in case we dont/cant duplicate. 1686 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1687 if (BB->hasNPredecessors(PredToDestList.size())) { 1688 bool SeenFirstBranchToOnlyDest = false; 1689 std::vector <DominatorTree::UpdateType> Updates; 1690 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1691 for (BasicBlock *SuccBB : successors(BB)) { 1692 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1693 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1694 } else { 1695 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1696 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1697 } 1698 } 1699 1700 // Finally update the terminator. 1701 Instruction *Term = BB->getTerminator(); 1702 BranchInst::Create(OnlyDest, Term); 1703 Term->eraseFromParent(); 1704 DTU->applyUpdatesPermissive(Updates); 1705 if (HasProfileData) 1706 BPI->eraseBlock(BB); 1707 1708 // If the condition is now dead due to the removal of the old terminator, 1709 // erase it. 1710 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1711 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1712 CondInst->eraseFromParent(); 1713 // We can safely replace *some* uses of the CondInst if it has 1714 // exactly one value as returned by LVI. RAUW is incorrect in the 1715 // presence of guards and assumes, that have the `Cond` as the use. This 1716 // is because we use the guards/assume to reason about the `Cond` value 1717 // at the end of block, but RAUW unconditionally replaces all uses 1718 // including the guards/assumes themselves and the uses before the 1719 // guard/assume. 1720 else if (OnlyVal && OnlyVal != MultipleVal && 1721 CondInst->getParent() == BB) 1722 replaceFoldableUses(CondInst, OnlyVal); 1723 } 1724 return true; 1725 } 1726 } 1727 1728 // Determine which is the most common successor. If we have many inputs and 1729 // this block is a switch, we want to start by threading the batch that goes 1730 // to the most popular destination first. If we only know about one 1731 // threadable destination (the common case) we can avoid this. 1732 BasicBlock *MostPopularDest = OnlyDest; 1733 1734 if (MostPopularDest == MultipleDestSentinel) { 1735 // Remove any loop headers from the Dest list, threadEdge conservatively 1736 // won't process them, but we might have other destination that are eligible 1737 // and we still want to process. 1738 erase_if(PredToDestList, 1739 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1740 return LoopHeaders.count(PredToDest.second) != 0; 1741 }); 1742 1743 if (PredToDestList.empty()) 1744 return false; 1745 1746 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1747 } 1748 1749 // Now that we know what the most popular destination is, factor all 1750 // predecessors that will jump to it into a single predecessor. 1751 SmallVector<BasicBlock*, 16> PredsToFactor; 1752 for (const auto &PredToDest : PredToDestList) 1753 if (PredToDest.second == MostPopularDest) { 1754 BasicBlock *Pred = PredToDest.first; 1755 1756 // This predecessor may be a switch or something else that has multiple 1757 // edges to the block. Factor each of these edges by listing them 1758 // according to # occurrences in PredsToFactor. 1759 for (BasicBlock *Succ : successors(Pred)) 1760 if (Succ == BB) 1761 PredsToFactor.push_back(Pred); 1762 } 1763 1764 // If the threadable edges are branching on an undefined value, we get to pick 1765 // the destination that these predecessors should get to. 1766 if (!MostPopularDest) 1767 MostPopularDest = BB->getTerminator()-> 1768 getSuccessor(getBestDestForJumpOnUndef(BB)); 1769 1770 // Ok, try to thread it! 1771 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1772 } 1773 1774 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1775 /// a PHI node (or freeze PHI) in the current block. See if there are any 1776 /// simplifications we can do based on inputs to the phi node. 1777 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1778 BasicBlock *BB = PN->getParent(); 1779 1780 // TODO: We could make use of this to do it once for blocks with common PHI 1781 // values. 1782 SmallVector<BasicBlock*, 1> PredBBs; 1783 PredBBs.resize(1); 1784 1785 // If any of the predecessor blocks end in an unconditional branch, we can 1786 // *duplicate* the conditional branch into that block in order to further 1787 // encourage jump threading and to eliminate cases where we have branch on a 1788 // phi of an icmp (branch on icmp is much better). 1789 // This is still beneficial when a frozen phi is used as the branch condition 1790 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1791 // to br(icmp(freeze ...)). 1792 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1793 BasicBlock *PredBB = PN->getIncomingBlock(i); 1794 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1795 if (PredBr->isUnconditional()) { 1796 PredBBs[0] = PredBB; 1797 // Try to duplicate BB into PredBB. 1798 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1799 return true; 1800 } 1801 } 1802 1803 return false; 1804 } 1805 1806 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1807 /// a xor instruction in the current block. See if there are any 1808 /// simplifications we can do based on inputs to the xor. 1809 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1810 BasicBlock *BB = BO->getParent(); 1811 1812 // If either the LHS or RHS of the xor is a constant, don't do this 1813 // optimization. 1814 if (isa<ConstantInt>(BO->getOperand(0)) || 1815 isa<ConstantInt>(BO->getOperand(1))) 1816 return false; 1817 1818 // If the first instruction in BB isn't a phi, we won't be able to infer 1819 // anything special about any particular predecessor. 1820 if (!isa<PHINode>(BB->front())) 1821 return false; 1822 1823 // If this BB is a landing pad, we won't be able to split the edge into it. 1824 if (BB->isEHPad()) 1825 return false; 1826 1827 // If we have a xor as the branch input to this block, and we know that the 1828 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1829 // the condition into the predecessor and fix that value to true, saving some 1830 // logical ops on that path and encouraging other paths to simplify. 1831 // 1832 // This copies something like this: 1833 // 1834 // BB: 1835 // %X = phi i1 [1], [%X'] 1836 // %Y = icmp eq i32 %A, %B 1837 // %Z = xor i1 %X, %Y 1838 // br i1 %Z, ... 1839 // 1840 // Into: 1841 // BB': 1842 // %Y = icmp ne i32 %A, %B 1843 // br i1 %Y, ... 1844 1845 PredValueInfoTy XorOpValues; 1846 bool isLHS = true; 1847 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1848 WantInteger, BO)) { 1849 assert(XorOpValues.empty()); 1850 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1851 WantInteger, BO)) 1852 return false; 1853 isLHS = false; 1854 } 1855 1856 assert(!XorOpValues.empty() && 1857 "computeValueKnownInPredecessors returned true with no values"); 1858 1859 // Scan the information to see which is most popular: true or false. The 1860 // predecessors can be of the set true, false, or undef. 1861 unsigned NumTrue = 0, NumFalse = 0; 1862 for (const auto &XorOpValue : XorOpValues) { 1863 if (isa<UndefValue>(XorOpValue.first)) 1864 // Ignore undefs for the count. 1865 continue; 1866 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1867 ++NumFalse; 1868 else 1869 ++NumTrue; 1870 } 1871 1872 // Determine which value to split on, true, false, or undef if neither. 1873 ConstantInt *SplitVal = nullptr; 1874 if (NumTrue > NumFalse) 1875 SplitVal = ConstantInt::getTrue(BB->getContext()); 1876 else if (NumTrue != 0 || NumFalse != 0) 1877 SplitVal = ConstantInt::getFalse(BB->getContext()); 1878 1879 // Collect all of the blocks that this can be folded into so that we can 1880 // factor this once and clone it once. 1881 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1882 for (const auto &XorOpValue : XorOpValues) { 1883 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1884 continue; 1885 1886 BlocksToFoldInto.push_back(XorOpValue.second); 1887 } 1888 1889 // If we inferred a value for all of the predecessors, then duplication won't 1890 // help us. However, we can just replace the LHS or RHS with the constant. 1891 if (BlocksToFoldInto.size() == 1892 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1893 if (!SplitVal) { 1894 // If all preds provide undef, just nuke the xor, because it is undef too. 1895 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1896 BO->eraseFromParent(); 1897 } else if (SplitVal->isZero()) { 1898 // If all preds provide 0, replace the xor with the other input. 1899 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1900 BO->eraseFromParent(); 1901 } else { 1902 // If all preds provide 1, set the computed value to 1. 1903 BO->setOperand(!isLHS, SplitVal); 1904 } 1905 1906 return true; 1907 } 1908 1909 // If any of predecessors end with an indirect goto, we can't change its 1910 // destination. Same for CallBr. 1911 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1912 return isa<IndirectBrInst>(Pred->getTerminator()) || 1913 isa<CallBrInst>(Pred->getTerminator()); 1914 })) 1915 return false; 1916 1917 // Try to duplicate BB into PredBB. 1918 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1919 } 1920 1921 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1922 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1923 /// NewPred using the entries from OldPred (suitably mapped). 1924 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1925 BasicBlock *OldPred, 1926 BasicBlock *NewPred, 1927 DenseMap<Instruction*, Value*> &ValueMap) { 1928 for (PHINode &PN : PHIBB->phis()) { 1929 // Ok, we have a PHI node. Figure out what the incoming value was for the 1930 // DestBlock. 1931 Value *IV = PN.getIncomingValueForBlock(OldPred); 1932 1933 // Remap the value if necessary. 1934 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1935 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1936 if (I != ValueMap.end()) 1937 IV = I->second; 1938 } 1939 1940 PN.addIncoming(IV, NewPred); 1941 } 1942 } 1943 1944 /// Merge basic block BB into its sole predecessor if possible. 1945 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1946 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1947 if (!SinglePred) 1948 return false; 1949 1950 const Instruction *TI = SinglePred->getTerminator(); 1951 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1952 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1953 return false; 1954 1955 // If SinglePred was a loop header, BB becomes one. 1956 if (LoopHeaders.erase(SinglePred)) 1957 LoopHeaders.insert(BB); 1958 1959 LVI->eraseBlock(SinglePred); 1960 MergeBasicBlockIntoOnlyPred(BB, DTU); 1961 1962 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1963 // BB code within one basic block `BB`), we need to invalidate the LVI 1964 // information associated with BB, because the LVI information need not be 1965 // true for all of BB after the merge. For example, 1966 // Before the merge, LVI info and code is as follows: 1967 // SinglePred: <LVI info1 for %p val> 1968 // %y = use of %p 1969 // call @exit() // need not transfer execution to successor. 1970 // assume(%p) // from this point on %p is true 1971 // br label %BB 1972 // BB: <LVI info2 for %p val, i.e. %p is true> 1973 // %x = use of %p 1974 // br label exit 1975 // 1976 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1977 // (info2 and info1 respectively). After the merge and the deletion of the 1978 // LVI info1 for SinglePred. We have the following code: 1979 // BB: <LVI info2 for %p val> 1980 // %y = use of %p 1981 // call @exit() 1982 // assume(%p) 1983 // %x = use of %p <-- LVI info2 is correct from here onwards. 1984 // br label exit 1985 // LVI info2 for BB is incorrect at the beginning of BB. 1986 1987 // Invalidate LVI information for BB if the LVI is not provably true for 1988 // all of BB. 1989 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1990 LVI->eraseBlock(BB); 1991 return true; 1992 } 1993 1994 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1995 /// ValueMapping maps old values in BB to new ones in NewBB. 1996 void JumpThreadingPass::updateSSA( 1997 BasicBlock *BB, BasicBlock *NewBB, 1998 DenseMap<Instruction *, Value *> &ValueMapping) { 1999 // If there were values defined in BB that are used outside the block, then we 2000 // now have to update all uses of the value to use either the original value, 2001 // the cloned value, or some PHI derived value. This can require arbitrary 2002 // PHI insertion, of which we are prepared to do, clean these up now. 2003 SSAUpdater SSAUpdate; 2004 SmallVector<Use *, 16> UsesToRename; 2005 2006 for (Instruction &I : *BB) { 2007 // Scan all uses of this instruction to see if it is used outside of its 2008 // block, and if so, record them in UsesToRename. 2009 for (Use &U : I.uses()) { 2010 Instruction *User = cast<Instruction>(U.getUser()); 2011 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2012 if (UserPN->getIncomingBlock(U) == BB) 2013 continue; 2014 } else if (User->getParent() == BB) 2015 continue; 2016 2017 UsesToRename.push_back(&U); 2018 } 2019 2020 // If there are no uses outside the block, we're done with this instruction. 2021 if (UsesToRename.empty()) 2022 continue; 2023 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2024 2025 // We found a use of I outside of BB. Rename all uses of I that are outside 2026 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2027 // with the two values we know. 2028 SSAUpdate.Initialize(I.getType(), I.getName()); 2029 SSAUpdate.AddAvailableValue(BB, &I); 2030 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2031 2032 while (!UsesToRename.empty()) 2033 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2034 LLVM_DEBUG(dbgs() << "\n"); 2035 } 2036 } 2037 2038 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2039 /// arguments that come from PredBB. Return the map from the variables in the 2040 /// source basic block to the variables in the newly created basic block. 2041 DenseMap<Instruction *, Value *> 2042 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2043 BasicBlock::iterator BE, BasicBlock *NewBB, 2044 BasicBlock *PredBB) { 2045 // We are going to have to map operands from the source basic block to the new 2046 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2047 // block, evaluate them to account for entry from PredBB. 2048 DenseMap<Instruction *, Value *> ValueMapping; 2049 2050 // Clone the phi nodes of the source basic block into NewBB. The resulting 2051 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2052 // might need to rewrite the operand of the cloned phi. 2053 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2054 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2055 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2056 ValueMapping[PN] = NewPN; 2057 } 2058 2059 // Clone the non-phi instructions of the source basic block into NewBB, 2060 // keeping track of the mapping and using it to remap operands in the cloned 2061 // instructions. 2062 for (; BI != BE; ++BI) { 2063 Instruction *New = BI->clone(); 2064 New->setName(BI->getName()); 2065 NewBB->getInstList().push_back(New); 2066 ValueMapping[&*BI] = New; 2067 2068 // Remap operands to patch up intra-block references. 2069 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2070 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2071 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2072 if (I != ValueMapping.end()) 2073 New->setOperand(i, I->second); 2074 } 2075 } 2076 2077 return ValueMapping; 2078 } 2079 2080 /// Attempt to thread through two successive basic blocks. 2081 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2082 Value *Cond) { 2083 // Consider: 2084 // 2085 // PredBB: 2086 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2087 // %tobool = icmp eq i32 %cond, 0 2088 // br i1 %tobool, label %BB, label ... 2089 // 2090 // BB: 2091 // %cmp = icmp eq i32* %var, null 2092 // br i1 %cmp, label ..., label ... 2093 // 2094 // We don't know the value of %var at BB even if we know which incoming edge 2095 // we take to BB. However, once we duplicate PredBB for each of its incoming 2096 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2097 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2098 2099 // Require that BB end with a Branch for simplicity. 2100 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2101 if (!CondBr) 2102 return false; 2103 2104 // BB must have exactly one predecessor. 2105 BasicBlock *PredBB = BB->getSinglePredecessor(); 2106 if (!PredBB) 2107 return false; 2108 2109 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2110 // unconditional branch, we should be merging PredBB and BB instead. For 2111 // simplicity, we don't deal with a switch. 2112 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2113 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2114 return false; 2115 2116 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2117 // PredBB. 2118 if (PredBB->getSinglePredecessor()) 2119 return false; 2120 2121 // Don't thread through PredBB if it contains a successor edge to itself, in 2122 // which case we would infinite loop. Suppose we are threading an edge from 2123 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2124 // successor edge to itself. If we allowed jump threading in this case, we 2125 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2126 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2127 // with another jump threading opportunity from PredBB.thread through PredBB 2128 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2129 // would keep peeling one iteration from PredBB. 2130 if (llvm::is_contained(successors(PredBB), PredBB)) 2131 return false; 2132 2133 // Don't thread across a loop header. 2134 if (LoopHeaders.count(PredBB)) 2135 return false; 2136 2137 // Avoid complication with duplicating EH pads. 2138 if (PredBB->isEHPad()) 2139 return false; 2140 2141 // Find a predecessor that we can thread. For simplicity, we only consider a 2142 // successor edge out of BB to which we thread exactly one incoming edge into 2143 // PredBB. 2144 unsigned ZeroCount = 0; 2145 unsigned OneCount = 0; 2146 BasicBlock *ZeroPred = nullptr; 2147 BasicBlock *OnePred = nullptr; 2148 for (BasicBlock *P : predecessors(PredBB)) { 2149 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2150 evaluateOnPredecessorEdge(BB, P, Cond))) { 2151 if (CI->isZero()) { 2152 ZeroCount++; 2153 ZeroPred = P; 2154 } else if (CI->isOne()) { 2155 OneCount++; 2156 OnePred = P; 2157 } 2158 } 2159 } 2160 2161 // Disregard complicated cases where we have to thread multiple edges. 2162 BasicBlock *PredPredBB; 2163 if (ZeroCount == 1) { 2164 PredPredBB = ZeroPred; 2165 } else if (OneCount == 1) { 2166 PredPredBB = OnePred; 2167 } else { 2168 return false; 2169 } 2170 2171 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2172 2173 // If threading to the same block as we come from, we would infinite loop. 2174 if (SuccBB == BB) { 2175 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2176 << "' - would thread to self!\n"); 2177 return false; 2178 } 2179 2180 // If threading this would thread across a loop header, don't thread the edge. 2181 // See the comments above findLoopHeaders for justifications and caveats. 2182 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2183 LLVM_DEBUG({ 2184 bool BBIsHeader = LoopHeaders.count(BB); 2185 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2186 dbgs() << " Not threading across " 2187 << (BBIsHeader ? "loop header BB '" : "block BB '") 2188 << BB->getName() << "' to dest " 2189 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2190 << SuccBB->getName() 2191 << "' - it might create an irreducible loop!\n"; 2192 }); 2193 return false; 2194 } 2195 2196 // Compute the cost of duplicating BB and PredBB. 2197 unsigned BBCost = 2198 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2199 unsigned PredBBCost = getJumpThreadDuplicationCost( 2200 PredBB, PredBB->getTerminator(), BBDupThreshold); 2201 2202 // Give up if costs are too high. We need to check BBCost and PredBBCost 2203 // individually before checking their sum because getJumpThreadDuplicationCost 2204 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2205 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2206 BBCost + PredBBCost > BBDupThreshold) { 2207 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2208 << "' - Cost is too high: " << PredBBCost 2209 << " for PredBB, " << BBCost << "for BB\n"); 2210 return false; 2211 } 2212 2213 // Now we are ready to duplicate PredBB. 2214 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2215 return true; 2216 } 2217 2218 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2219 BasicBlock *PredBB, 2220 BasicBlock *BB, 2221 BasicBlock *SuccBB) { 2222 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2223 << BB->getName() << "'\n"); 2224 2225 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2226 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2227 2228 BasicBlock *NewBB = 2229 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2230 PredBB->getParent(), PredBB); 2231 NewBB->moveAfter(PredBB); 2232 2233 // Set the block frequency of NewBB. 2234 if (HasProfileData) { 2235 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2236 BPI->getEdgeProbability(PredPredBB, PredBB); 2237 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2238 } 2239 2240 // We are going to have to map operands from the original BB block to the new 2241 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2242 // to account for entry from PredPredBB. 2243 DenseMap<Instruction *, Value *> ValueMapping = 2244 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2245 2246 // Copy the edge probabilities from PredBB to NewBB. 2247 if (HasProfileData) 2248 BPI->copyEdgeProbabilities(PredBB, NewBB); 2249 2250 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2251 // This eliminates predecessors from PredPredBB, which requires us to simplify 2252 // any PHI nodes in PredBB. 2253 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2254 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2255 if (PredPredTerm->getSuccessor(i) == PredBB) { 2256 PredBB->removePredecessor(PredPredBB, true); 2257 PredPredTerm->setSuccessor(i, NewBB); 2258 } 2259 2260 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2261 ValueMapping); 2262 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2263 ValueMapping); 2264 2265 DTU->applyUpdatesPermissive( 2266 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2267 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2268 {DominatorTree::Insert, PredPredBB, NewBB}, 2269 {DominatorTree::Delete, PredPredBB, PredBB}}); 2270 2271 updateSSA(PredBB, NewBB, ValueMapping); 2272 2273 // Clean up things like PHI nodes with single operands, dead instructions, 2274 // etc. 2275 SimplifyInstructionsInBlock(NewBB, TLI); 2276 SimplifyInstructionsInBlock(PredBB, TLI); 2277 2278 SmallVector<BasicBlock *, 1> PredsToFactor; 2279 PredsToFactor.push_back(NewBB); 2280 threadEdge(BB, PredsToFactor, SuccBB); 2281 } 2282 2283 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2284 bool JumpThreadingPass::tryThreadEdge( 2285 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2286 BasicBlock *SuccBB) { 2287 // If threading to the same block as we come from, we would infinite loop. 2288 if (SuccBB == BB) { 2289 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2290 << "' - would thread to self!\n"); 2291 return false; 2292 } 2293 2294 // If threading this would thread across a loop header, don't thread the edge. 2295 // See the comments above findLoopHeaders for justifications and caveats. 2296 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2297 LLVM_DEBUG({ 2298 bool BBIsHeader = LoopHeaders.count(BB); 2299 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2300 dbgs() << " Not threading across " 2301 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2302 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2303 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2304 }); 2305 return false; 2306 } 2307 2308 unsigned JumpThreadCost = 2309 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2310 if (JumpThreadCost > BBDupThreshold) { 2311 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2312 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2313 return false; 2314 } 2315 2316 threadEdge(BB, PredBBs, SuccBB); 2317 return true; 2318 } 2319 2320 /// threadEdge - We have decided that it is safe and profitable to factor the 2321 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2322 /// across BB. Transform the IR to reflect this change. 2323 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2324 const SmallVectorImpl<BasicBlock *> &PredBBs, 2325 BasicBlock *SuccBB) { 2326 assert(SuccBB != BB && "Don't create an infinite loop"); 2327 2328 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2329 "Don't thread across loop headers"); 2330 2331 // And finally, do it! Start by factoring the predecessors if needed. 2332 BasicBlock *PredBB; 2333 if (PredBBs.size() == 1) 2334 PredBB = PredBBs[0]; 2335 else { 2336 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2337 << " common predecessors.\n"); 2338 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2339 } 2340 2341 // And finally, do it! 2342 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2343 << "' to '" << SuccBB->getName() 2344 << ", across block:\n " << *BB << "\n"); 2345 2346 LVI->threadEdge(PredBB, BB, SuccBB); 2347 2348 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2349 BB->getName()+".thread", 2350 BB->getParent(), BB); 2351 NewBB->moveAfter(PredBB); 2352 2353 // Set the block frequency of NewBB. 2354 if (HasProfileData) { 2355 auto NewBBFreq = 2356 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2357 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2358 } 2359 2360 // Copy all the instructions from BB to NewBB except the terminator. 2361 DenseMap<Instruction *, Value *> ValueMapping = 2362 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2363 2364 // We didn't copy the terminator from BB over to NewBB, because there is now 2365 // an unconditional jump to SuccBB. Insert the unconditional jump. 2366 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2367 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2368 2369 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2370 // PHI nodes for NewBB now. 2371 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2372 2373 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2374 // eliminates predecessors from BB, which requires us to simplify any PHI 2375 // nodes in BB. 2376 Instruction *PredTerm = PredBB->getTerminator(); 2377 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2378 if (PredTerm->getSuccessor(i) == BB) { 2379 BB->removePredecessor(PredBB, true); 2380 PredTerm->setSuccessor(i, NewBB); 2381 } 2382 2383 // Enqueue required DT updates. 2384 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2385 {DominatorTree::Insert, PredBB, NewBB}, 2386 {DominatorTree::Delete, PredBB, BB}}); 2387 2388 updateSSA(BB, NewBB, ValueMapping); 2389 2390 // At this point, the IR is fully up to date and consistent. Do a quick scan 2391 // over the new instructions and zap any that are constants or dead. This 2392 // frequently happens because of phi translation. 2393 SimplifyInstructionsInBlock(NewBB, TLI); 2394 2395 // Update the edge weight from BB to SuccBB, which should be less than before. 2396 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2397 2398 // Threaded an edge! 2399 ++NumThreads; 2400 } 2401 2402 /// Create a new basic block that will be the predecessor of BB and successor of 2403 /// all blocks in Preds. When profile data is available, update the frequency of 2404 /// this new block. 2405 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2406 ArrayRef<BasicBlock *> Preds, 2407 const char *Suffix) { 2408 SmallVector<BasicBlock *, 2> NewBBs; 2409 2410 // Collect the frequencies of all predecessors of BB, which will be used to 2411 // update the edge weight of the result of splitting predecessors. 2412 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2413 if (HasProfileData) 2414 for (auto Pred : Preds) 2415 FreqMap.insert(std::make_pair( 2416 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2417 2418 // In the case when BB is a LandingPad block we create 2 new predecessors 2419 // instead of just one. 2420 if (BB->isLandingPad()) { 2421 std::string NewName = std::string(Suffix) + ".split-lp"; 2422 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2423 } else { 2424 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2425 } 2426 2427 std::vector<DominatorTree::UpdateType> Updates; 2428 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2429 for (auto NewBB : NewBBs) { 2430 BlockFrequency NewBBFreq(0); 2431 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2432 for (auto Pred : predecessors(NewBB)) { 2433 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2434 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2435 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2436 NewBBFreq += FreqMap.lookup(Pred); 2437 } 2438 if (HasProfileData) // Apply the summed frequency to NewBB. 2439 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2440 } 2441 2442 DTU->applyUpdatesPermissive(Updates); 2443 return NewBBs[0]; 2444 } 2445 2446 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2447 const Instruction *TI = BB->getTerminator(); 2448 assert(TI->getNumSuccessors() > 1 && "not a split"); 2449 2450 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2451 if (!WeightsNode) 2452 return false; 2453 2454 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2455 if (MDName->getString() != "branch_weights") 2456 return false; 2457 2458 // Ensure there are weights for all of the successors. Note that the first 2459 // operand to the metadata node is a name, not a weight. 2460 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2461 } 2462 2463 /// Update the block frequency of BB and branch weight and the metadata on the 2464 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2465 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2466 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2467 BasicBlock *BB, 2468 BasicBlock *NewBB, 2469 BasicBlock *SuccBB) { 2470 if (!HasProfileData) 2471 return; 2472 2473 assert(BFI && BPI && "BFI & BPI should have been created here"); 2474 2475 // As the edge from PredBB to BB is deleted, we have to update the block 2476 // frequency of BB. 2477 auto BBOrigFreq = BFI->getBlockFreq(BB); 2478 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2479 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2480 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2481 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2482 2483 // Collect updated outgoing edges' frequencies from BB and use them to update 2484 // edge probabilities. 2485 SmallVector<uint64_t, 4> BBSuccFreq; 2486 for (BasicBlock *Succ : successors(BB)) { 2487 auto SuccFreq = (Succ == SuccBB) 2488 ? BB2SuccBBFreq - NewBBFreq 2489 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2490 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2491 } 2492 2493 uint64_t MaxBBSuccFreq = 2494 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2495 2496 SmallVector<BranchProbability, 4> BBSuccProbs; 2497 if (MaxBBSuccFreq == 0) 2498 BBSuccProbs.assign(BBSuccFreq.size(), 2499 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2500 else { 2501 for (uint64_t Freq : BBSuccFreq) 2502 BBSuccProbs.push_back( 2503 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2504 // Normalize edge probabilities so that they sum up to one. 2505 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2506 BBSuccProbs.end()); 2507 } 2508 2509 // Update edge probabilities in BPI. 2510 BPI->setEdgeProbability(BB, BBSuccProbs); 2511 2512 // Update the profile metadata as well. 2513 // 2514 // Don't do this if the profile of the transformed blocks was statically 2515 // estimated. (This could occur despite the function having an entry 2516 // frequency in completely cold parts of the CFG.) 2517 // 2518 // In this case we don't want to suggest to subsequent passes that the 2519 // calculated weights are fully consistent. Consider this graph: 2520 // 2521 // check_1 2522 // 50% / | 2523 // eq_1 | 50% 2524 // \ | 2525 // check_2 2526 // 50% / | 2527 // eq_2 | 50% 2528 // \ | 2529 // check_3 2530 // 50% / | 2531 // eq_3 | 50% 2532 // \ | 2533 // 2534 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2535 // the overall probabilities are inconsistent; the total probability that the 2536 // value is either 1, 2 or 3 is 150%. 2537 // 2538 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2539 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2540 // the loop exit edge. Then based solely on static estimation we would assume 2541 // the loop was extremely hot. 2542 // 2543 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2544 // shouldn't make edges extremely likely or unlikely based solely on static 2545 // estimation. 2546 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2547 SmallVector<uint32_t, 4> Weights; 2548 for (auto Prob : BBSuccProbs) 2549 Weights.push_back(Prob.getNumerator()); 2550 2551 auto TI = BB->getTerminator(); 2552 TI->setMetadata( 2553 LLVMContext::MD_prof, 2554 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2555 } 2556 } 2557 2558 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2559 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2560 /// If we can duplicate the contents of BB up into PredBB do so now, this 2561 /// improves the odds that the branch will be on an analyzable instruction like 2562 /// a compare. 2563 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2564 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2565 assert(!PredBBs.empty() && "Can't handle an empty set"); 2566 2567 // If BB is a loop header, then duplicating this block outside the loop would 2568 // cause us to transform this into an irreducible loop, don't do this. 2569 // See the comments above findLoopHeaders for justifications and caveats. 2570 if (LoopHeaders.count(BB)) { 2571 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2572 << "' into predecessor block '" << PredBBs[0]->getName() 2573 << "' - it might create an irreducible loop!\n"); 2574 return false; 2575 } 2576 2577 unsigned DuplicationCost = 2578 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2579 if (DuplicationCost > BBDupThreshold) { 2580 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2581 << "' - Cost is too high: " << DuplicationCost << "\n"); 2582 return false; 2583 } 2584 2585 // And finally, do it! Start by factoring the predecessors if needed. 2586 std::vector<DominatorTree::UpdateType> Updates; 2587 BasicBlock *PredBB; 2588 if (PredBBs.size() == 1) 2589 PredBB = PredBBs[0]; 2590 else { 2591 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2592 << " common predecessors.\n"); 2593 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2594 } 2595 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2596 2597 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2598 // of PredBB. 2599 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2600 << "' into end of '" << PredBB->getName() 2601 << "' to eliminate branch on phi. Cost: " 2602 << DuplicationCost << " block is:" << *BB << "\n"); 2603 2604 // Unless PredBB ends with an unconditional branch, split the edge so that we 2605 // can just clone the bits from BB into the end of the new PredBB. 2606 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2607 2608 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2609 BasicBlock *OldPredBB = PredBB; 2610 PredBB = SplitEdge(OldPredBB, BB); 2611 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2612 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2613 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2614 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2615 } 2616 2617 // We are going to have to map operands from the original BB block into the 2618 // PredBB block. Evaluate PHI nodes in BB. 2619 DenseMap<Instruction*, Value*> ValueMapping; 2620 2621 BasicBlock::iterator BI = BB->begin(); 2622 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2623 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2624 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2625 // mapping and using it to remap operands in the cloned instructions. 2626 for (; BI != BB->end(); ++BI) { 2627 Instruction *New = BI->clone(); 2628 2629 // Remap operands to patch up intra-block references. 2630 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2631 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2632 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2633 if (I != ValueMapping.end()) 2634 New->setOperand(i, I->second); 2635 } 2636 2637 // If this instruction can be simplified after the operands are updated, 2638 // just use the simplified value instead. This frequently happens due to 2639 // phi translation. 2640 if (Value *IV = SimplifyInstruction( 2641 New, 2642 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2643 ValueMapping[&*BI] = IV; 2644 if (!New->mayHaveSideEffects()) { 2645 New->deleteValue(); 2646 New = nullptr; 2647 } 2648 } else { 2649 ValueMapping[&*BI] = New; 2650 } 2651 if (New) { 2652 // Otherwise, insert the new instruction into the block. 2653 New->setName(BI->getName()); 2654 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2655 // Update Dominance from simplified New instruction operands. 2656 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2657 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2658 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2659 } 2660 } 2661 2662 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2663 // add entries to the PHI nodes for branch from PredBB now. 2664 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2665 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2666 ValueMapping); 2667 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2668 ValueMapping); 2669 2670 updateSSA(BB, PredBB, ValueMapping); 2671 2672 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2673 // that we nuked. 2674 BB->removePredecessor(PredBB, true); 2675 2676 // Remove the unconditional branch at the end of the PredBB block. 2677 OldPredBranch->eraseFromParent(); 2678 if (HasProfileData) 2679 BPI->copyEdgeProbabilities(BB, PredBB); 2680 DTU->applyUpdatesPermissive(Updates); 2681 2682 ++NumDupes; 2683 return true; 2684 } 2685 2686 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2687 // a Select instruction in Pred. BB has other predecessors and SI is used in 2688 // a PHI node in BB. SI has no other use. 2689 // A new basic block, NewBB, is created and SI is converted to compare and 2690 // conditional branch. SI is erased from parent. 2691 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2692 SelectInst *SI, PHINode *SIUse, 2693 unsigned Idx) { 2694 // Expand the select. 2695 // 2696 // Pred -- 2697 // | v 2698 // | NewBB 2699 // | | 2700 // |----- 2701 // v 2702 // BB 2703 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2704 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2705 BB->getParent(), BB); 2706 // Move the unconditional branch to NewBB. 2707 PredTerm->removeFromParent(); 2708 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2709 // Create a conditional branch and update PHI nodes. 2710 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2711 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2712 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2713 2714 // The select is now dead. 2715 SI->eraseFromParent(); 2716 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2717 {DominatorTree::Insert, Pred, NewBB}}); 2718 2719 // Update any other PHI nodes in BB. 2720 for (BasicBlock::iterator BI = BB->begin(); 2721 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2722 if (Phi != SIUse) 2723 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2724 } 2725 2726 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2727 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2728 2729 if (!CondPHI || CondPHI->getParent() != BB) 2730 return false; 2731 2732 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2733 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2734 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2735 2736 // The second and third condition can be potentially relaxed. Currently 2737 // the conditions help to simplify the code and allow us to reuse existing 2738 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2739 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2740 continue; 2741 2742 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2743 if (!PredTerm || !PredTerm->isUnconditional()) 2744 continue; 2745 2746 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2747 return true; 2748 } 2749 return false; 2750 } 2751 2752 /// tryToUnfoldSelect - Look for blocks of the form 2753 /// bb1: 2754 /// %a = select 2755 /// br bb2 2756 /// 2757 /// bb2: 2758 /// %p = phi [%a, %bb1] ... 2759 /// %c = icmp %p 2760 /// br i1 %c 2761 /// 2762 /// And expand the select into a branch structure if one of its arms allows %c 2763 /// to be folded. This later enables threading from bb1 over bb2. 2764 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2765 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2766 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2767 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2768 2769 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2770 CondLHS->getParent() != BB) 2771 return false; 2772 2773 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2774 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2775 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2776 2777 // Look if one of the incoming values is a select in the corresponding 2778 // predecessor. 2779 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2780 continue; 2781 2782 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2783 if (!PredTerm || !PredTerm->isUnconditional()) 2784 continue; 2785 2786 // Now check if one of the select values would allow us to constant fold the 2787 // terminator in BB. We don't do the transform if both sides fold, those 2788 // cases will be threaded in any case. 2789 LazyValueInfo::Tristate LHSFolds = 2790 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2791 CondRHS, Pred, BB, CondCmp); 2792 LazyValueInfo::Tristate RHSFolds = 2793 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2794 CondRHS, Pred, BB, CondCmp); 2795 if ((LHSFolds != LazyValueInfo::Unknown || 2796 RHSFolds != LazyValueInfo::Unknown) && 2797 LHSFolds != RHSFolds) { 2798 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2799 return true; 2800 } 2801 } 2802 return false; 2803 } 2804 2805 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2806 /// same BB in the form 2807 /// bb: 2808 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2809 /// %s = select %p, trueval, falseval 2810 /// 2811 /// or 2812 /// 2813 /// bb: 2814 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2815 /// %c = cmp %p, 0 2816 /// %s = select %c, trueval, falseval 2817 /// 2818 /// And expand the select into a branch structure. This later enables 2819 /// jump-threading over bb in this pass. 2820 /// 2821 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2822 /// select if the associated PHI has at least one constant. If the unfolded 2823 /// select is not jump-threaded, it will be folded again in the later 2824 /// optimizations. 2825 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2826 // This transform would reduce the quality of msan diagnostics. 2827 // Disable this transform under MemorySanitizer. 2828 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2829 return false; 2830 2831 // If threading this would thread across a loop header, don't thread the edge. 2832 // See the comments above findLoopHeaders for justifications and caveats. 2833 if (LoopHeaders.count(BB)) 2834 return false; 2835 2836 for (BasicBlock::iterator BI = BB->begin(); 2837 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2838 // Look for a Phi having at least one constant incoming value. 2839 if (llvm::all_of(PN->incoming_values(), 2840 [](Value *V) { return !isa<ConstantInt>(V); })) 2841 continue; 2842 2843 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2844 // Check if SI is in BB and use V as condition. 2845 if (SI->getParent() != BB) 2846 return false; 2847 Value *Cond = SI->getCondition(); 2848 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2849 }; 2850 2851 SelectInst *SI = nullptr; 2852 for (Use &U : PN->uses()) { 2853 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2854 // Look for a ICmp in BB that compares PN with a constant and is the 2855 // condition of a Select. 2856 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2857 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2858 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2859 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2860 SI = SelectI; 2861 break; 2862 } 2863 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2864 // Look for a Select in BB that uses PN as condition. 2865 if (isUnfoldCandidate(SelectI, U.get())) { 2866 SI = SelectI; 2867 break; 2868 } 2869 } 2870 } 2871 2872 if (!SI) 2873 continue; 2874 // Expand the select. 2875 Value *Cond = SI->getCondition(); 2876 if (InsertFreezeWhenUnfoldingSelect && 2877 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI, 2878 &DTU->getDomTree())) 2879 Cond = new FreezeInst(Cond, "cond.fr", SI); 2880 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2881 BasicBlock *SplitBB = SI->getParent(); 2882 BasicBlock *NewBB = Term->getParent(); 2883 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2884 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2885 NewPN->addIncoming(SI->getFalseValue(), BB); 2886 SI->replaceAllUsesWith(NewPN); 2887 SI->eraseFromParent(); 2888 // NewBB and SplitBB are newly created blocks which require insertion. 2889 std::vector<DominatorTree::UpdateType> Updates; 2890 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2891 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2892 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2893 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2894 // BB's successors were moved to SplitBB, update DTU accordingly. 2895 for (auto *Succ : successors(SplitBB)) { 2896 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2897 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2898 } 2899 DTU->applyUpdatesPermissive(Updates); 2900 return true; 2901 } 2902 return false; 2903 } 2904 2905 /// Try to propagate a guard from the current BB into one of its predecessors 2906 /// in case if another branch of execution implies that the condition of this 2907 /// guard is always true. Currently we only process the simplest case that 2908 /// looks like: 2909 /// 2910 /// Start: 2911 /// %cond = ... 2912 /// br i1 %cond, label %T1, label %F1 2913 /// T1: 2914 /// br label %Merge 2915 /// F1: 2916 /// br label %Merge 2917 /// Merge: 2918 /// %condGuard = ... 2919 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2920 /// 2921 /// And cond either implies condGuard or !condGuard. In this case all the 2922 /// instructions before the guard can be duplicated in both branches, and the 2923 /// guard is then threaded to one of them. 2924 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 2925 using namespace PatternMatch; 2926 2927 // We only want to deal with two predecessors. 2928 BasicBlock *Pred1, *Pred2; 2929 auto PI = pred_begin(BB), PE = pred_end(BB); 2930 if (PI == PE) 2931 return false; 2932 Pred1 = *PI++; 2933 if (PI == PE) 2934 return false; 2935 Pred2 = *PI++; 2936 if (PI != PE) 2937 return false; 2938 if (Pred1 == Pred2) 2939 return false; 2940 2941 // Try to thread one of the guards of the block. 2942 // TODO: Look up deeper than to immediate predecessor? 2943 auto *Parent = Pred1->getSinglePredecessor(); 2944 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2945 return false; 2946 2947 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2948 for (auto &I : *BB) 2949 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2950 return true; 2951 2952 return false; 2953 } 2954 2955 /// Try to propagate the guard from BB which is the lower block of a diamond 2956 /// to one of its branches, in case if diamond's condition implies guard's 2957 /// condition. 2958 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2959 BranchInst *BI) { 2960 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2961 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2962 Value *GuardCond = Guard->getArgOperand(0); 2963 Value *BranchCond = BI->getCondition(); 2964 BasicBlock *TrueDest = BI->getSuccessor(0); 2965 BasicBlock *FalseDest = BI->getSuccessor(1); 2966 2967 auto &DL = BB->getModule()->getDataLayout(); 2968 bool TrueDestIsSafe = false; 2969 bool FalseDestIsSafe = false; 2970 2971 // True dest is safe if BranchCond => GuardCond. 2972 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2973 if (Impl && *Impl) 2974 TrueDestIsSafe = true; 2975 else { 2976 // False dest is safe if !BranchCond => GuardCond. 2977 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2978 if (Impl && *Impl) 2979 FalseDestIsSafe = true; 2980 } 2981 2982 if (!TrueDestIsSafe && !FalseDestIsSafe) 2983 return false; 2984 2985 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2986 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2987 2988 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2989 Instruction *AfterGuard = Guard->getNextNode(); 2990 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2991 if (Cost > BBDupThreshold) 2992 return false; 2993 // Duplicate all instructions before the guard and the guard itself to the 2994 // branch where implication is not proved. 2995 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2996 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2997 assert(GuardedBlock && "Could not create the guarded block?"); 2998 // Duplicate all instructions before the guard in the unguarded branch. 2999 // Since we have successfully duplicated the guarded block and this block 3000 // has fewer instructions, we expect it to succeed. 3001 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3002 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3003 assert(UnguardedBlock && "Could not create the unguarded block?"); 3004 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3005 << GuardedBlock->getName() << "\n"); 3006 // Some instructions before the guard may still have uses. For them, we need 3007 // to create Phi nodes merging their copies in both guarded and unguarded 3008 // branches. Those instructions that have no uses can be just removed. 3009 SmallVector<Instruction *, 4> ToRemove; 3010 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3011 if (!isa<PHINode>(&*BI)) 3012 ToRemove.push_back(&*BI); 3013 3014 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3015 assert(InsertionPoint && "Empty block?"); 3016 // Substitute with Phis & remove. 3017 for (auto *Inst : reverse(ToRemove)) { 3018 if (!Inst->use_empty()) { 3019 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3020 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3021 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3022 NewPN->insertBefore(InsertionPoint); 3023 Inst->replaceAllUsesWith(NewPN); 3024 } 3025 Inst->eraseFromParent(); 3026 } 3027 return true; 3028 } 3029