1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/SSAUpdater.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<bool> PrintLVIAfterJumpThreading(
101     "print-lvi-after-jump-threading",
102     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
103     cl::Hidden);
104 
105 namespace {
106 
107   /// This pass performs 'jump threading', which looks at blocks that have
108   /// multiple predecessors and multiple successors.  If one or more of the
109   /// predecessors of the block can be proven to always jump to one of the
110   /// successors, we forward the edge from the predecessor to the successor by
111   /// duplicating the contents of this block.
112   ///
113   /// An example of when this can occur is code like this:
114   ///
115   ///   if () { ...
116   ///     X = 4;
117   ///   }
118   ///   if (X < 3) {
119   ///
120   /// In this case, the unconditional branch at the end of the first if can be
121   /// revectored to the false side of the second if.
122   class JumpThreading : public FunctionPass {
123     JumpThreadingPass Impl;
124 
125   public:
126     static char ID; // Pass identification
127 
128     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
129       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
130     }
131 
132     bool runOnFunction(Function &F) override;
133 
134     void getAnalysisUsage(AnalysisUsage &AU) const override {
135       AU.addRequired<DominatorTreeWrapperPass>();
136       AU.addPreserved<DominatorTreeWrapperPass>();
137       AU.addRequired<AAResultsWrapperPass>();
138       AU.addRequired<LazyValueInfoWrapperPass>();
139       AU.addPreserved<LazyValueInfoWrapperPass>();
140       AU.addPreserved<GlobalsAAWrapperPass>();
141       AU.addRequired<TargetLibraryInfoWrapperPass>();
142     }
143 
144     void releaseMemory() override { Impl.releaseMemory(); }
145   };
146 
147 } // end anonymous namespace
148 
149 char JumpThreading::ID = 0;
150 
151 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
152                 "Jump Threading", false, false)
153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
157 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
158                 "Jump Threading", false, false)
159 
160 // Public interface to the Jump Threading pass
161 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
162   return new JumpThreading(Threshold);
163 }
164 
165 JumpThreadingPass::JumpThreadingPass(int T) {
166   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
167 }
168 
169 // Update branch probability information according to conditional
170 // branch probability. This is usually made possible for cloned branches
171 // in inline instances by the context specific profile in the caller.
172 // For instance,
173 //
174 //  [Block PredBB]
175 //  [Branch PredBr]
176 //  if (t) {
177 //     Block A;
178 //  } else {
179 //     Block B;
180 //  }
181 //
182 //  [Block BB]
183 //  cond = PN([true, %A], [..., %B]); // PHI node
184 //  [Branch CondBr]
185 //  if (cond) {
186 //    ...  // P(cond == true) = 1%
187 //  }
188 //
189 //  Here we know that when block A is taken, cond must be true, which means
190 //      P(cond == true | A) = 1
191 //
192 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
193 //                               P(cond == true | B) * P(B)
194 //  we get:
195 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
196 //
197 //  which gives us:
198 //     P(A) is less than P(cond == true), i.e.
199 //     P(t == true) <= P(cond == true)
200 //
201 //  In other words, if we know P(cond == true) is unlikely, we know
202 //  that P(t == true) is also unlikely.
203 //
204 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
205   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
206   if (!CondBr)
207     return;
208 
209   BranchProbability BP;
210   uint64_t TrueWeight, FalseWeight;
211   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
212     return;
213 
214   // Returns the outgoing edge of the dominating predecessor block
215   // that leads to the PhiNode's incoming block:
216   auto GetPredOutEdge =
217       [](BasicBlock *IncomingBB,
218          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
219     auto *PredBB = IncomingBB;
220     auto *SuccBB = PhiBB;
221     while (true) {
222       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
223       if (PredBr && PredBr->isConditional())
224         return {PredBB, SuccBB};
225       auto *SinglePredBB = PredBB->getSinglePredecessor();
226       if (!SinglePredBB)
227         return {nullptr, nullptr};
228       SuccBB = PredBB;
229       PredBB = SinglePredBB;
230     }
231   };
232 
233   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
234     Value *PhiOpnd = PN->getIncomingValue(i);
235     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
236 
237     if (!CI || !CI->getType()->isIntegerTy(1))
238       continue;
239 
240     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
241                             TrueWeight, TrueWeight + FalseWeight)
242                       : BranchProbability::getBranchProbability(
243                             FalseWeight, TrueWeight + FalseWeight));
244 
245     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
246     if (!PredOutEdge.first)
247       return;
248 
249     BasicBlock *PredBB = PredOutEdge.first;
250     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
251 
252     uint64_t PredTrueWeight, PredFalseWeight;
253     // FIXME: We currently only set the profile data when it is missing.
254     // With PGO, this can be used to refine even existing profile data with
255     // context information. This needs to be done after more performance
256     // testing.
257     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
258       continue;
259 
260     // We can not infer anything useful when BP >= 50%, because BP is the
261     // upper bound probability value.
262     if (BP >= BranchProbability(50, 100))
263       continue;
264 
265     SmallVector<uint32_t, 2> Weights;
266     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
267       Weights.push_back(BP.getNumerator());
268       Weights.push_back(BP.getCompl().getNumerator());
269     } else {
270       Weights.push_back(BP.getCompl().getNumerator());
271       Weights.push_back(BP.getNumerator());
272     }
273     PredBr->setMetadata(LLVMContext::MD_prof,
274                         MDBuilder(PredBr->getParent()->getContext())
275                             .createBranchWeights(Weights));
276   }
277 }
278 
279 /// runOnFunction - Toplevel algorithm.
280 bool JumpThreading::runOnFunction(Function &F) {
281   if (skipFunction(F))
282     return false;
283   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
284   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
285   // DT if it's available.
286   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
287   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
288   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
289   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
290   std::unique_ptr<BlockFrequencyInfo> BFI;
291   std::unique_ptr<BranchProbabilityInfo> BPI;
292   bool HasProfileData = F.hasProfileData();
293   if (HasProfileData) {
294     LoopInfo LI{DominatorTree(F)};
295     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
296     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
297   }
298 
299   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData,
300                               std::move(BFI), std::move(BPI));
301   if (PrintLVIAfterJumpThreading) {
302     dbgs() << "LVI for function '" << F.getName() << "':\n";
303     LVI->printLVI(F, *DT, dbgs());
304   }
305   return Changed;
306 }
307 
308 PreservedAnalyses JumpThreadingPass::run(Function &F,
309                                          FunctionAnalysisManager &AM) {
310   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
311   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
312   // DT if it's available.
313   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
314   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
315   auto &AA = AM.getResult<AAManager>(F);
316   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
317 
318   std::unique_ptr<BlockFrequencyInfo> BFI;
319   std::unique_ptr<BranchProbabilityInfo> BPI;
320   if (F.hasProfileData()) {
321     LoopInfo LI{DominatorTree(F)};
322     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
323     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
324   }
325 
326   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData,
327                          std::move(BFI), std::move(BPI));
328 
329   if (!Changed)
330     return PreservedAnalyses::all();
331   PreservedAnalyses PA;
332   PA.preserve<GlobalsAA>();
333   PA.preserve<DominatorTreeAnalysis>();
334   PA.preserve<LazyValueAnalysis>();
335   return PA;
336 }
337 
338 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
339                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
340                                 DomTreeUpdater *DTU_, bool HasProfileData_,
341                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
342                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
343   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
344   TLI = TLI_;
345   LVI = LVI_;
346   AA = AA_;
347   DTU = DTU_;
348   BFI.reset();
349   BPI.reset();
350   // When profile data is available, we need to update edge weights after
351   // successful jump threading, which requires both BPI and BFI being available.
352   HasProfileData = HasProfileData_;
353   auto *GuardDecl = F.getParent()->getFunction(
354       Intrinsic::getName(Intrinsic::experimental_guard));
355   HasGuards = GuardDecl && !GuardDecl->use_empty();
356   if (HasProfileData) {
357     BPI = std::move(BPI_);
358     BFI = std::move(BFI_);
359   }
360 
361   // JumpThreading must not processes blocks unreachable from entry. It's a
362   // waste of compute time and can potentially lead to hangs.
363   SmallPtrSet<BasicBlock *, 16> Unreachable;
364   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
365   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
366   DominatorTree &DT = DTU->getDomTree();
367   for (auto &BB : F)
368     if (!DT.isReachableFromEntry(&BB))
369       Unreachable.insert(&BB);
370 
371   FindLoopHeaders(F);
372 
373   bool EverChanged = false;
374   bool Changed;
375   do {
376     Changed = false;
377     for (auto &BB : F) {
378       if (Unreachable.count(&BB))
379         continue;
380       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
381         Changed = true;
382       // Stop processing BB if it's the entry or is now deleted. The following
383       // routines attempt to eliminate BB and locating a suitable replacement
384       // for the entry is non-trivial.
385       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
386         continue;
387 
388       if (pred_empty(&BB)) {
389         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
390         // the instructions in it. We must remove BB to prevent invalid IR.
391         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
392                           << "' with terminator: " << *BB.getTerminator()
393                           << '\n');
394         LoopHeaders.erase(&BB);
395         LVI->eraseBlock(&BB);
396         DeleteDeadBlock(&BB, DTU);
397         Changed = true;
398         continue;
399       }
400 
401       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
402       // is "almost empty", we attempt to merge BB with its sole successor.
403       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
404       if (BI && BI->isUnconditional() &&
405           // The terminator must be the only non-phi instruction in BB.
406           BB.getFirstNonPHIOrDbg()->isTerminator() &&
407           // Don't alter Loop headers and latches to ensure another pass can
408           // detect and transform nested loops later.
409           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
410           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
411         // BB is valid for cleanup here because we passed in DTU. F remains
412         // BB's parent until a DTU->getDomTree() event.
413         LVI->eraseBlock(&BB);
414         Changed = true;
415       }
416     }
417     EverChanged |= Changed;
418   } while (Changed);
419 
420   LoopHeaders.clear();
421   // Flush only the Dominator Tree.
422   DTU->getDomTree();
423   LVI->enableDT();
424   return EverChanged;
425 }
426 
427 // Replace uses of Cond with ToVal when safe to do so. If all uses are
428 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
429 // because we may incorrectly replace uses when guards/assumes are uses of
430 // of `Cond` and we used the guards/assume to reason about the `Cond` value
431 // at the end of block. RAUW unconditionally replaces all uses
432 // including the guards/assumes themselves and the uses before the
433 // guard/assume.
434 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
435   assert(Cond->getType() == ToVal->getType());
436   auto *BB = Cond->getParent();
437   // We can unconditionally replace all uses in non-local blocks (i.e. uses
438   // strictly dominated by BB), since LVI information is true from the
439   // terminator of BB.
440   replaceNonLocalUsesWith(Cond, ToVal);
441   for (Instruction &I : reverse(*BB)) {
442     // Reached the Cond whose uses we are trying to replace, so there are no
443     // more uses.
444     if (&I == Cond)
445       break;
446     // We only replace uses in instructions that are guaranteed to reach the end
447     // of BB, where we know Cond is ToVal.
448     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
449       break;
450     I.replaceUsesOfWith(Cond, ToVal);
451   }
452   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
453     Cond->eraseFromParent();
454 }
455 
456 /// Return the cost of duplicating a piece of this block from first non-phi
457 /// and before StopAt instruction to thread across it. Stop scanning the block
458 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
459 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
460                                              Instruction *StopAt,
461                                              unsigned Threshold) {
462   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
463   /// Ignore PHI nodes, these will be flattened when duplication happens.
464   BasicBlock::const_iterator I(BB->getFirstNonPHI());
465 
466   // FIXME: THREADING will delete values that are just used to compute the
467   // branch, so they shouldn't count against the duplication cost.
468 
469   unsigned Bonus = 0;
470   if (BB->getTerminator() == StopAt) {
471     // Threading through a switch statement is particularly profitable.  If this
472     // block ends in a switch, decrease its cost to make it more likely to
473     // happen.
474     if (isa<SwitchInst>(StopAt))
475       Bonus = 6;
476 
477     // The same holds for indirect branches, but slightly more so.
478     if (isa<IndirectBrInst>(StopAt))
479       Bonus = 8;
480   }
481 
482   // Bump the threshold up so the early exit from the loop doesn't skip the
483   // terminator-based Size adjustment at the end.
484   Threshold += Bonus;
485 
486   // Sum up the cost of each instruction until we get to the terminator.  Don't
487   // include the terminator because the copy won't include it.
488   unsigned Size = 0;
489   for (; &*I != StopAt; ++I) {
490 
491     // Stop scanning the block if we've reached the threshold.
492     if (Size > Threshold)
493       return Size;
494 
495     // Debugger intrinsics don't incur code size.
496     if (isa<DbgInfoIntrinsic>(I)) continue;
497 
498     // If this is a pointer->pointer bitcast, it is free.
499     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
500       continue;
501 
502     // Bail out if this instruction gives back a token type, it is not possible
503     // to duplicate it if it is used outside this BB.
504     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
505       return ~0U;
506 
507     // All other instructions count for at least one unit.
508     ++Size;
509 
510     // Calls are more expensive.  If they are non-intrinsic calls, we model them
511     // as having cost of 4.  If they are a non-vector intrinsic, we model them
512     // as having cost of 2 total, and if they are a vector intrinsic, we model
513     // them as having cost 1.
514     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
515       if (CI->cannotDuplicate() || CI->isConvergent())
516         // Blocks with NoDuplicate are modelled as having infinite cost, so they
517         // are never duplicated.
518         return ~0U;
519       else if (!isa<IntrinsicInst>(CI))
520         Size += 3;
521       else if (!CI->getType()->isVectorTy())
522         Size += 1;
523     }
524   }
525 
526   return Size > Bonus ? Size - Bonus : 0;
527 }
528 
529 /// FindLoopHeaders - We do not want jump threading to turn proper loop
530 /// structures into irreducible loops.  Doing this breaks up the loop nesting
531 /// hierarchy and pessimizes later transformations.  To prevent this from
532 /// happening, we first have to find the loop headers.  Here we approximate this
533 /// by finding targets of backedges in the CFG.
534 ///
535 /// Note that there definitely are cases when we want to allow threading of
536 /// edges across a loop header.  For example, threading a jump from outside the
537 /// loop (the preheader) to an exit block of the loop is definitely profitable.
538 /// It is also almost always profitable to thread backedges from within the loop
539 /// to exit blocks, and is often profitable to thread backedges to other blocks
540 /// within the loop (forming a nested loop).  This simple analysis is not rich
541 /// enough to track all of these properties and keep it up-to-date as the CFG
542 /// mutates, so we don't allow any of these transformations.
543 void JumpThreadingPass::FindLoopHeaders(Function &F) {
544   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
545   FindFunctionBackedges(F, Edges);
546 
547   for (const auto &Edge : Edges)
548     LoopHeaders.insert(Edge.second);
549 }
550 
551 /// getKnownConstant - Helper method to determine if we can thread over a
552 /// terminator with the given value as its condition, and if so what value to
553 /// use for that. What kind of value this is depends on whether we want an
554 /// integer or a block address, but an undef is always accepted.
555 /// Returns null if Val is null or not an appropriate constant.
556 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
557   if (!Val)
558     return nullptr;
559 
560   // Undef is "known" enough.
561   if (UndefValue *U = dyn_cast<UndefValue>(Val))
562     return U;
563 
564   if (Preference == WantBlockAddress)
565     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
566 
567   return dyn_cast<ConstantInt>(Val);
568 }
569 
570 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
571 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
572 /// in any of our predecessors.  If so, return the known list of value and pred
573 /// BB in the result vector.
574 ///
575 /// This returns true if there were any known values.
576 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
577     Value *V, BasicBlock *BB, PredValueInfo &Result,
578     ConstantPreference Preference,
579     DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet,
580     Instruction *CxtI) {
581   // This method walks up use-def chains recursively.  Because of this, we could
582   // get into an infinite loop going around loops in the use-def chain.  To
583   // prevent this, keep track of what (value, block) pairs we've already visited
584   // and terminate the search if we loop back to them
585   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
586     return false;
587 
588   // If V is a constant, then it is known in all predecessors.
589   if (Constant *KC = getKnownConstant(V, Preference)) {
590     for (BasicBlock *Pred : predecessors(BB))
591       Result.push_back(std::make_pair(KC, Pred));
592 
593     return !Result.empty();
594   }
595 
596   // If V is a non-instruction value, or an instruction in a different block,
597   // then it can't be derived from a PHI.
598   Instruction *I = dyn_cast<Instruction>(V);
599   if (!I || I->getParent() != BB) {
600 
601     // Okay, if this is a live-in value, see if it has a known value at the end
602     // of any of our predecessors.
603     //
604     // FIXME: This should be an edge property, not a block end property.
605     /// TODO: Per PR2563, we could infer value range information about a
606     /// predecessor based on its terminator.
607     //
608     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
609     // "I" is a non-local compare-with-a-constant instruction.  This would be
610     // able to handle value inequalities better, for example if the compare is
611     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
612     // Perhaps getConstantOnEdge should be smart enough to do this?
613 
614     if (DTU->hasPendingDomTreeUpdates())
615       LVI->disableDT();
616     else
617       LVI->enableDT();
618     for (BasicBlock *P : predecessors(BB)) {
619       // If the value is known by LazyValueInfo to be a constant in a
620       // predecessor, use that information to try to thread this block.
621       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
622       if (Constant *KC = getKnownConstant(PredCst, Preference))
623         Result.push_back(std::make_pair(KC, P));
624     }
625 
626     return !Result.empty();
627   }
628 
629   /// If I is a PHI node, then we know the incoming values for any constants.
630   if (PHINode *PN = dyn_cast<PHINode>(I)) {
631     if (DTU->hasPendingDomTreeUpdates())
632       LVI->disableDT();
633     else
634       LVI->enableDT();
635     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
636       Value *InVal = PN->getIncomingValue(i);
637       if (Constant *KC = getKnownConstant(InVal, Preference)) {
638         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
639       } else {
640         Constant *CI = LVI->getConstantOnEdge(InVal,
641                                               PN->getIncomingBlock(i),
642                                               BB, CxtI);
643         if (Constant *KC = getKnownConstant(CI, Preference))
644           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
645       }
646     }
647 
648     return !Result.empty();
649   }
650 
651   // Handle Cast instructions.  Only see through Cast when the source operand is
652   // PHI or Cmp to save the compilation time.
653   if (CastInst *CI = dyn_cast<CastInst>(I)) {
654     Value *Source = CI->getOperand(0);
655     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
656       return false;
657     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
658                                         RecursionSet, CxtI);
659     if (Result.empty())
660       return false;
661 
662     // Convert the known values.
663     for (auto &R : Result)
664       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
665 
666     return true;
667   }
668 
669   // Handle some boolean conditions.
670   if (I->getType()->getPrimitiveSizeInBits() == 1) {
671     assert(Preference == WantInteger && "One-bit non-integer type?");
672     // X | true -> true
673     // X & false -> false
674     if (I->getOpcode() == Instruction::Or ||
675         I->getOpcode() == Instruction::And) {
676       PredValueInfoTy LHSVals, RHSVals;
677 
678       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
679                                       WantInteger, RecursionSet, CxtI);
680       ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
681                                           WantInteger, RecursionSet, CxtI);
682 
683       if (LHSVals.empty() && RHSVals.empty())
684         return false;
685 
686       ConstantInt *InterestingVal;
687       if (I->getOpcode() == Instruction::Or)
688         InterestingVal = ConstantInt::getTrue(I->getContext());
689       else
690         InterestingVal = ConstantInt::getFalse(I->getContext());
691 
692       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
693 
694       // Scan for the sentinel.  If we find an undef, force it to the
695       // interesting value: x|undef -> true and x&undef -> false.
696       for (const auto &LHSVal : LHSVals)
697         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
698           Result.emplace_back(InterestingVal, LHSVal.second);
699           LHSKnownBBs.insert(LHSVal.second);
700         }
701       for (const auto &RHSVal : RHSVals)
702         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
703           // If we already inferred a value for this block on the LHS, don't
704           // re-add it.
705           if (!LHSKnownBBs.count(RHSVal.second))
706             Result.emplace_back(InterestingVal, RHSVal.second);
707         }
708 
709       return !Result.empty();
710     }
711 
712     // Handle the NOT form of XOR.
713     if (I->getOpcode() == Instruction::Xor &&
714         isa<ConstantInt>(I->getOperand(1)) &&
715         cast<ConstantInt>(I->getOperand(1))->isOne()) {
716       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
717                                           WantInteger, RecursionSet, CxtI);
718       if (Result.empty())
719         return false;
720 
721       // Invert the known values.
722       for (auto &R : Result)
723         R.first = ConstantExpr::getNot(R.first);
724 
725       return true;
726     }
727 
728   // Try to simplify some other binary operator values.
729   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
730     assert(Preference != WantBlockAddress
731             && "A binary operator creating a block address?");
732     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
733       PredValueInfoTy LHSVals;
734       ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
735                                           WantInteger, RecursionSet, CxtI);
736 
737       // Try to use constant folding to simplify the binary operator.
738       for (const auto &LHSVal : LHSVals) {
739         Constant *V = LHSVal.first;
740         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
741 
742         if (Constant *KC = getKnownConstant(Folded, WantInteger))
743           Result.push_back(std::make_pair(KC, LHSVal.second));
744       }
745     }
746 
747     return !Result.empty();
748   }
749 
750   // Handle compare with phi operand, where the PHI is defined in this block.
751   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
752     assert(Preference == WantInteger && "Compares only produce integers");
753     Type *CmpType = Cmp->getType();
754     Value *CmpLHS = Cmp->getOperand(0);
755     Value *CmpRHS = Cmp->getOperand(1);
756     CmpInst::Predicate Pred = Cmp->getPredicate();
757 
758     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
759     if (!PN)
760       PN = dyn_cast<PHINode>(CmpRHS);
761     if (PN && PN->getParent() == BB) {
762       const DataLayout &DL = PN->getModule()->getDataLayout();
763       // We can do this simplification if any comparisons fold to true or false.
764       // See if any do.
765       if (DTU->hasPendingDomTreeUpdates())
766         LVI->disableDT();
767       else
768         LVI->enableDT();
769       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
770         BasicBlock *PredBB = PN->getIncomingBlock(i);
771         Value *LHS, *RHS;
772         if (PN == CmpLHS) {
773           LHS = PN->getIncomingValue(i);
774           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
775         } else {
776           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
777           RHS = PN->getIncomingValue(i);
778         }
779         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
780         if (!Res) {
781           if (!isa<Constant>(RHS))
782             continue;
783 
784           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
785           auto LHSInst = dyn_cast<Instruction>(LHS);
786           if (LHSInst && LHSInst->getParent() == BB)
787             continue;
788 
789           LazyValueInfo::Tristate
790             ResT = LVI->getPredicateOnEdge(Pred, LHS,
791                                            cast<Constant>(RHS), PredBB, BB,
792                                            CxtI ? CxtI : Cmp);
793           if (ResT == LazyValueInfo::Unknown)
794             continue;
795           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
796         }
797 
798         if (Constant *KC = getKnownConstant(Res, WantInteger))
799           Result.push_back(std::make_pair(KC, PredBB));
800       }
801 
802       return !Result.empty();
803     }
804 
805     // If comparing a live-in value against a constant, see if we know the
806     // live-in value on any predecessors.
807     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
808       Constant *CmpConst = cast<Constant>(CmpRHS);
809 
810       if (!isa<Instruction>(CmpLHS) ||
811           cast<Instruction>(CmpLHS)->getParent() != BB) {
812         if (DTU->hasPendingDomTreeUpdates())
813           LVI->disableDT();
814         else
815           LVI->enableDT();
816         for (BasicBlock *P : predecessors(BB)) {
817           // If the value is known by LazyValueInfo to be a constant in a
818           // predecessor, use that information to try to thread this block.
819           LazyValueInfo::Tristate Res =
820             LVI->getPredicateOnEdge(Pred, CmpLHS,
821                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
822           if (Res == LazyValueInfo::Unknown)
823             continue;
824 
825           Constant *ResC = ConstantInt::get(CmpType, Res);
826           Result.push_back(std::make_pair(ResC, P));
827         }
828 
829         return !Result.empty();
830       }
831 
832       // InstCombine can fold some forms of constant range checks into
833       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
834       // x as a live-in.
835       {
836         using namespace PatternMatch;
837 
838         Value *AddLHS;
839         ConstantInt *AddConst;
840         if (isa<ConstantInt>(CmpConst) &&
841             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
842           if (!isa<Instruction>(AddLHS) ||
843               cast<Instruction>(AddLHS)->getParent() != BB) {
844             if (DTU->hasPendingDomTreeUpdates())
845               LVI->disableDT();
846             else
847               LVI->enableDT();
848             for (BasicBlock *P : predecessors(BB)) {
849               // If the value is known by LazyValueInfo to be a ConstantRange in
850               // a predecessor, use that information to try to thread this
851               // block.
852               ConstantRange CR = LVI->getConstantRangeOnEdge(
853                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
854               // Propagate the range through the addition.
855               CR = CR.add(AddConst->getValue());
856 
857               // Get the range where the compare returns true.
858               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
859                   Pred, cast<ConstantInt>(CmpConst)->getValue());
860 
861               Constant *ResC;
862               if (CmpRange.contains(CR))
863                 ResC = ConstantInt::getTrue(CmpType);
864               else if (CmpRange.inverse().contains(CR))
865                 ResC = ConstantInt::getFalse(CmpType);
866               else
867                 continue;
868 
869               Result.push_back(std::make_pair(ResC, P));
870             }
871 
872             return !Result.empty();
873           }
874         }
875       }
876 
877       // Try to find a constant value for the LHS of a comparison,
878       // and evaluate it statically if we can.
879       PredValueInfoTy LHSVals;
880       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
881                                           WantInteger, RecursionSet, CxtI);
882 
883       for (const auto &LHSVal : LHSVals) {
884         Constant *V = LHSVal.first;
885         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
886         if (Constant *KC = getKnownConstant(Folded, WantInteger))
887           Result.push_back(std::make_pair(KC, LHSVal.second));
888       }
889 
890       return !Result.empty();
891     }
892   }
893 
894   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
895     // Handle select instructions where at least one operand is a known constant
896     // and we can figure out the condition value for any predecessor block.
897     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
898     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
899     PredValueInfoTy Conds;
900     if ((TrueVal || FalseVal) &&
901         ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
902                                             WantInteger, RecursionSet, CxtI)) {
903       for (auto &C : Conds) {
904         Constant *Cond = C.first;
905 
906         // Figure out what value to use for the condition.
907         bool KnownCond;
908         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
909           // A known boolean.
910           KnownCond = CI->isOne();
911         } else {
912           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
913           // Either operand will do, so be sure to pick the one that's a known
914           // constant.
915           // FIXME: Do this more cleverly if both values are known constants?
916           KnownCond = (TrueVal != nullptr);
917         }
918 
919         // See if the select has a known constant value for this predecessor.
920         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
921           Result.push_back(std::make_pair(Val, C.second));
922       }
923 
924       return !Result.empty();
925     }
926   }
927 
928   // If all else fails, see if LVI can figure out a constant value for us.
929   if (DTU->hasPendingDomTreeUpdates())
930     LVI->disableDT();
931   else
932     LVI->enableDT();
933   Constant *CI = LVI->getConstant(V, BB, CxtI);
934   if (Constant *KC = getKnownConstant(CI, Preference)) {
935     for (BasicBlock *Pred : predecessors(BB))
936       Result.push_back(std::make_pair(KC, Pred));
937   }
938 
939   return !Result.empty();
940 }
941 
942 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
943 /// in an undefined jump, decide which block is best to revector to.
944 ///
945 /// Since we can pick an arbitrary destination, we pick the successor with the
946 /// fewest predecessors.  This should reduce the in-degree of the others.
947 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
948   Instruction *BBTerm = BB->getTerminator();
949   unsigned MinSucc = 0;
950   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
951   // Compute the successor with the minimum number of predecessors.
952   unsigned MinNumPreds = pred_size(TestBB);
953   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
954     TestBB = BBTerm->getSuccessor(i);
955     unsigned NumPreds = pred_size(TestBB);
956     if (NumPreds < MinNumPreds) {
957       MinSucc = i;
958       MinNumPreds = NumPreds;
959     }
960   }
961 
962   return MinSucc;
963 }
964 
965 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
966   if (!BB->hasAddressTaken()) return false;
967 
968   // If the block has its address taken, it may be a tree of dead constants
969   // hanging off of it.  These shouldn't keep the block alive.
970   BlockAddress *BA = BlockAddress::get(BB);
971   BA->removeDeadConstantUsers();
972   return !BA->use_empty();
973 }
974 
975 /// ProcessBlock - If there are any predecessors whose control can be threaded
976 /// through to a successor, transform them now.
977 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
978   // If the block is trivially dead, just return and let the caller nuke it.
979   // This simplifies other transformations.
980   if (DTU->isBBPendingDeletion(BB) ||
981       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
982     return false;
983 
984   // If this block has a single predecessor, and if that pred has a single
985   // successor, merge the blocks.  This encourages recursive jump threading
986   // because now the condition in this block can be threaded through
987   // predecessors of our predecessor block.
988   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
989     const Instruction *TI = SinglePred->getTerminator();
990     if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 &&
991         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
992       // If SinglePred was a loop header, BB becomes one.
993       if (LoopHeaders.erase(SinglePred))
994         LoopHeaders.insert(BB);
995 
996       LVI->eraseBlock(SinglePred);
997       MergeBasicBlockIntoOnlyPred(BB, DTU);
998 
999       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
1000       // BB code within one basic block `BB`), we need to invalidate the LVI
1001       // information associated with BB, because the LVI information need not be
1002       // true for all of BB after the merge. For example,
1003       // Before the merge, LVI info and code is as follows:
1004       // SinglePred: <LVI info1 for %p val>
1005       // %y = use of %p
1006       // call @exit() // need not transfer execution to successor.
1007       // assume(%p) // from this point on %p is true
1008       // br label %BB
1009       // BB: <LVI info2 for %p val, i.e. %p is true>
1010       // %x = use of %p
1011       // br label exit
1012       //
1013       // Note that this LVI info for blocks BB and SinglPred is correct for %p
1014       // (info2 and info1 respectively). After the merge and the deletion of the
1015       // LVI info1 for SinglePred. We have the following code:
1016       // BB: <LVI info2 for %p val>
1017       // %y = use of %p
1018       // call @exit()
1019       // assume(%p)
1020       // %x = use of %p <-- LVI info2 is correct from here onwards.
1021       // br label exit
1022       // LVI info2 for BB is incorrect at the beginning of BB.
1023 
1024       // Invalidate LVI information for BB if the LVI is not provably true for
1025       // all of BB.
1026       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1027         LVI->eraseBlock(BB);
1028       return true;
1029     }
1030   }
1031 
1032   if (TryToUnfoldSelectInCurrBB(BB))
1033     return true;
1034 
1035   // Look if we can propagate guards to predecessors.
1036   if (HasGuards && ProcessGuards(BB))
1037     return true;
1038 
1039   // What kind of constant we're looking for.
1040   ConstantPreference Preference = WantInteger;
1041 
1042   // Look to see if the terminator is a conditional branch, switch or indirect
1043   // branch, if not we can't thread it.
1044   Value *Condition;
1045   Instruction *Terminator = BB->getTerminator();
1046   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1047     // Can't thread an unconditional jump.
1048     if (BI->isUnconditional()) return false;
1049     Condition = BI->getCondition();
1050   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1051     Condition = SI->getCondition();
1052   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1053     // Can't thread indirect branch with no successors.
1054     if (IB->getNumSuccessors() == 0) return false;
1055     Condition = IB->getAddress()->stripPointerCasts();
1056     Preference = WantBlockAddress;
1057   } else {
1058     return false; // Must be an invoke or callbr.
1059   }
1060 
1061   // Run constant folding to see if we can reduce the condition to a simple
1062   // constant.
1063   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1064     Value *SimpleVal =
1065         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1066     if (SimpleVal) {
1067       I->replaceAllUsesWith(SimpleVal);
1068       if (isInstructionTriviallyDead(I, TLI))
1069         I->eraseFromParent();
1070       Condition = SimpleVal;
1071     }
1072   }
1073 
1074   // If the terminator is branching on an undef, we can pick any of the
1075   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1076   if (isa<UndefValue>(Condition)) {
1077     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1078     std::vector<DominatorTree::UpdateType> Updates;
1079 
1080     // Fold the branch/switch.
1081     Instruction *BBTerm = BB->getTerminator();
1082     Updates.reserve(BBTerm->getNumSuccessors());
1083     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1084       if (i == BestSucc) continue;
1085       BasicBlock *Succ = BBTerm->getSuccessor(i);
1086       Succ->removePredecessor(BB, true);
1087       Updates.push_back({DominatorTree::Delete, BB, Succ});
1088     }
1089 
1090     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1091                       << "' folding undef terminator: " << *BBTerm << '\n');
1092     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1093     BBTerm->eraseFromParent();
1094     DTU->applyUpdatesPermissive(Updates);
1095     return true;
1096   }
1097 
1098   // If the terminator of this block is branching on a constant, simplify the
1099   // terminator to an unconditional branch.  This can occur due to threading in
1100   // other blocks.
1101   if (getKnownConstant(Condition, Preference)) {
1102     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1103                       << "' folding terminator: " << *BB->getTerminator()
1104                       << '\n');
1105     ++NumFolds;
1106     ConstantFoldTerminator(BB, true, nullptr, DTU);
1107     return true;
1108   }
1109 
1110   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1111 
1112   // All the rest of our checks depend on the condition being an instruction.
1113   if (!CondInst) {
1114     // FIXME: Unify this with code below.
1115     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1116       return true;
1117     return false;
1118   }
1119 
1120   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1121     // If we're branching on a conditional, LVI might be able to determine
1122     // it's value at the branch instruction.  We only handle comparisons
1123     // against a constant at this time.
1124     // TODO: This should be extended to handle switches as well.
1125     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1126     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1127     if (CondBr && CondConst) {
1128       // We should have returned as soon as we turn a conditional branch to
1129       // unconditional. Because its no longer interesting as far as jump
1130       // threading is concerned.
1131       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1132 
1133       if (DTU->hasPendingDomTreeUpdates())
1134         LVI->disableDT();
1135       else
1136         LVI->enableDT();
1137       LazyValueInfo::Tristate Ret =
1138         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1139                             CondConst, CondBr);
1140       if (Ret != LazyValueInfo::Unknown) {
1141         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1142         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1143         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1144         ToRemoveSucc->removePredecessor(BB, true);
1145         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1146         CondBr->eraseFromParent();
1147         if (CondCmp->use_empty())
1148           CondCmp->eraseFromParent();
1149         // We can safely replace *some* uses of the CondInst if it has
1150         // exactly one value as returned by LVI. RAUW is incorrect in the
1151         // presence of guards and assumes, that have the `Cond` as the use. This
1152         // is because we use the guards/assume to reason about the `Cond` value
1153         // at the end of block, but RAUW unconditionally replaces all uses
1154         // including the guards/assumes themselves and the uses before the
1155         // guard/assume.
1156         else if (CondCmp->getParent() == BB) {
1157           auto *CI = Ret == LazyValueInfo::True ?
1158             ConstantInt::getTrue(CondCmp->getType()) :
1159             ConstantInt::getFalse(CondCmp->getType());
1160           ReplaceFoldableUses(CondCmp, CI);
1161         }
1162         DTU->applyUpdatesPermissive(
1163             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1164         return true;
1165       }
1166 
1167       // We did not manage to simplify this branch, try to see whether
1168       // CondCmp depends on a known phi-select pattern.
1169       if (TryToUnfoldSelect(CondCmp, BB))
1170         return true;
1171     }
1172   }
1173 
1174   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1175     TryToUnfoldSelect(SI, BB);
1176 
1177   // Check for some cases that are worth simplifying.  Right now we want to look
1178   // for loads that are used by a switch or by the condition for the branch.  If
1179   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1180   // which can then be used to thread the values.
1181   Value *SimplifyValue = CondInst;
1182   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1183     if (isa<Constant>(CondCmp->getOperand(1)))
1184       SimplifyValue = CondCmp->getOperand(0);
1185 
1186   // TODO: There are other places where load PRE would be profitable, such as
1187   // more complex comparisons.
1188   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1189     if (SimplifyPartiallyRedundantLoad(LoadI))
1190       return true;
1191 
1192   // Before threading, try to propagate profile data backwards:
1193   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1194     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1195       updatePredecessorProfileMetadata(PN, BB);
1196 
1197   // Handle a variety of cases where we are branching on something derived from
1198   // a PHI node in the current block.  If we can prove that any predecessors
1199   // compute a predictable value based on a PHI node, thread those predecessors.
1200   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1201     return true;
1202 
1203   // If this is an otherwise-unfoldable branch on a phi node in the current
1204   // block, see if we can simplify.
1205   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1206     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1207       return ProcessBranchOnPHI(PN);
1208 
1209   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1210   if (CondInst->getOpcode() == Instruction::Xor &&
1211       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1212     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1213 
1214   // Search for a stronger dominating condition that can be used to simplify a
1215   // conditional branch leaving BB.
1216   if (ProcessImpliedCondition(BB))
1217     return true;
1218 
1219   return false;
1220 }
1221 
1222 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1223   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1224   if (!BI || !BI->isConditional())
1225     return false;
1226 
1227   Value *Cond = BI->getCondition();
1228   BasicBlock *CurrentBB = BB;
1229   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1230   unsigned Iter = 0;
1231 
1232   auto &DL = BB->getModule()->getDataLayout();
1233 
1234   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1235     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1236     if (!PBI || !PBI->isConditional())
1237       return false;
1238     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1239       return false;
1240 
1241     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1242     Optional<bool> Implication =
1243         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1244     if (Implication) {
1245       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1246       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1247       RemoveSucc->removePredecessor(BB);
1248       BranchInst::Create(KeepSucc, BI);
1249       BI->eraseFromParent();
1250       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1251       return true;
1252     }
1253     CurrentBB = CurrentPred;
1254     CurrentPred = CurrentBB->getSinglePredecessor();
1255   }
1256 
1257   return false;
1258 }
1259 
1260 /// Return true if Op is an instruction defined in the given block.
1261 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1262   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1263     if (OpInst->getParent() == BB)
1264       return true;
1265   return false;
1266 }
1267 
1268 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1269 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1270 /// This is an important optimization that encourages jump threading, and needs
1271 /// to be run interlaced with other jump threading tasks.
1272 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1273   // Don't hack volatile and ordered loads.
1274   if (!LoadI->isUnordered()) return false;
1275 
1276   // If the load is defined in a block with exactly one predecessor, it can't be
1277   // partially redundant.
1278   BasicBlock *LoadBB = LoadI->getParent();
1279   if (LoadBB->getSinglePredecessor())
1280     return false;
1281 
1282   // If the load is defined in an EH pad, it can't be partially redundant,
1283   // because the edges between the invoke and the EH pad cannot have other
1284   // instructions between them.
1285   if (LoadBB->isEHPad())
1286     return false;
1287 
1288   Value *LoadedPtr = LoadI->getOperand(0);
1289 
1290   // If the loaded operand is defined in the LoadBB and its not a phi,
1291   // it can't be available in predecessors.
1292   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1293     return false;
1294 
1295   // Scan a few instructions up from the load, to see if it is obviously live at
1296   // the entry to its block.
1297   BasicBlock::iterator BBIt(LoadI);
1298   bool IsLoadCSE;
1299   if (Value *AvailableVal = FindAvailableLoadedValue(
1300           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1301     // If the value of the load is locally available within the block, just use
1302     // it.  This frequently occurs for reg2mem'd allocas.
1303 
1304     if (IsLoadCSE) {
1305       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1306       combineMetadataForCSE(NLoadI, LoadI, false);
1307     };
1308 
1309     // If the returned value is the load itself, replace with an undef. This can
1310     // only happen in dead loops.
1311     if (AvailableVal == LoadI)
1312       AvailableVal = UndefValue::get(LoadI->getType());
1313     if (AvailableVal->getType() != LoadI->getType())
1314       AvailableVal = CastInst::CreateBitOrPointerCast(
1315           AvailableVal, LoadI->getType(), "", LoadI);
1316     LoadI->replaceAllUsesWith(AvailableVal);
1317     LoadI->eraseFromParent();
1318     return true;
1319   }
1320 
1321   // Otherwise, if we scanned the whole block and got to the top of the block,
1322   // we know the block is locally transparent to the load.  If not, something
1323   // might clobber its value.
1324   if (BBIt != LoadBB->begin())
1325     return false;
1326 
1327   // If all of the loads and stores that feed the value have the same AA tags,
1328   // then we can propagate them onto any newly inserted loads.
1329   AAMDNodes AATags;
1330   LoadI->getAAMetadata(AATags);
1331 
1332   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1333 
1334   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1335 
1336   AvailablePredsTy AvailablePreds;
1337   BasicBlock *OneUnavailablePred = nullptr;
1338   SmallVector<LoadInst*, 8> CSELoads;
1339 
1340   // If we got here, the loaded value is transparent through to the start of the
1341   // block.  Check to see if it is available in any of the predecessor blocks.
1342   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1343     // If we already scanned this predecessor, skip it.
1344     if (!PredsScanned.insert(PredBB).second)
1345       continue;
1346 
1347     BBIt = PredBB->end();
1348     unsigned NumScanedInst = 0;
1349     Value *PredAvailable = nullptr;
1350     // NOTE: We don't CSE load that is volatile or anything stronger than
1351     // unordered, that should have been checked when we entered the function.
1352     assert(LoadI->isUnordered() &&
1353            "Attempting to CSE volatile or atomic loads");
1354     // If this is a load on a phi pointer, phi-translate it and search
1355     // for available load/store to the pointer in predecessors.
1356     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1357     PredAvailable = FindAvailablePtrLoadStore(
1358         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1359         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1360 
1361     // If PredBB has a single predecessor, continue scanning through the
1362     // single predecessor.
1363     BasicBlock *SinglePredBB = PredBB;
1364     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1365            NumScanedInst < DefMaxInstsToScan) {
1366       SinglePredBB = SinglePredBB->getSinglePredecessor();
1367       if (SinglePredBB) {
1368         BBIt = SinglePredBB->end();
1369         PredAvailable = FindAvailablePtrLoadStore(
1370             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1371             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1372             &NumScanedInst);
1373       }
1374     }
1375 
1376     if (!PredAvailable) {
1377       OneUnavailablePred = PredBB;
1378       continue;
1379     }
1380 
1381     if (IsLoadCSE)
1382       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1383 
1384     // If so, this load is partially redundant.  Remember this info so that we
1385     // can create a PHI node.
1386     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1387   }
1388 
1389   // If the loaded value isn't available in any predecessor, it isn't partially
1390   // redundant.
1391   if (AvailablePreds.empty()) return false;
1392 
1393   // Okay, the loaded value is available in at least one (and maybe all!)
1394   // predecessors.  If the value is unavailable in more than one unique
1395   // predecessor, we want to insert a merge block for those common predecessors.
1396   // This ensures that we only have to insert one reload, thus not increasing
1397   // code size.
1398   BasicBlock *UnavailablePred = nullptr;
1399 
1400   // If the value is unavailable in one of predecessors, we will end up
1401   // inserting a new instruction into them. It is only valid if all the
1402   // instructions before LoadI are guaranteed to pass execution to its
1403   // successor, or if LoadI is safe to speculate.
1404   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1405   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1406   // It requires domination tree analysis, so for this simple case it is an
1407   // overkill.
1408   if (PredsScanned.size() != AvailablePreds.size() &&
1409       !isSafeToSpeculativelyExecute(LoadI))
1410     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1411       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1412         return false;
1413 
1414   // If there is exactly one predecessor where the value is unavailable, the
1415   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1416   // unconditional branch, we know that it isn't a critical edge.
1417   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1418       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1419     UnavailablePred = OneUnavailablePred;
1420   } else if (PredsScanned.size() != AvailablePreds.size()) {
1421     // Otherwise, we had multiple unavailable predecessors or we had a critical
1422     // edge from the one.
1423     SmallVector<BasicBlock*, 8> PredsToSplit;
1424     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1425 
1426     for (const auto &AvailablePred : AvailablePreds)
1427       AvailablePredSet.insert(AvailablePred.first);
1428 
1429     // Add all the unavailable predecessors to the PredsToSplit list.
1430     for (BasicBlock *P : predecessors(LoadBB)) {
1431       // If the predecessor is an indirect goto, we can't split the edge.
1432       // Same for CallBr.
1433       if (isa<IndirectBrInst>(P->getTerminator()) ||
1434           isa<CallBrInst>(P->getTerminator()))
1435         return false;
1436 
1437       if (!AvailablePredSet.count(P))
1438         PredsToSplit.push_back(P);
1439     }
1440 
1441     // Split them out to their own block.
1442     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1443   }
1444 
1445   // If the value isn't available in all predecessors, then there will be
1446   // exactly one where it isn't available.  Insert a load on that edge and add
1447   // it to the AvailablePreds list.
1448   if (UnavailablePred) {
1449     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1450            "Can't handle critical edge here!");
1451     LoadInst *NewVal = new LoadInst(
1452         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1453         LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1454         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1455         UnavailablePred->getTerminator());
1456     NewVal->setDebugLoc(LoadI->getDebugLoc());
1457     if (AATags)
1458       NewVal->setAAMetadata(AATags);
1459 
1460     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1461   }
1462 
1463   // Now we know that each predecessor of this block has a value in
1464   // AvailablePreds, sort them for efficient access as we're walking the preds.
1465   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1466 
1467   // Create a PHI node at the start of the block for the PRE'd load value.
1468   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1469   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1470                                 &LoadBB->front());
1471   PN->takeName(LoadI);
1472   PN->setDebugLoc(LoadI->getDebugLoc());
1473 
1474   // Insert new entries into the PHI for each predecessor.  A single block may
1475   // have multiple entries here.
1476   for (pred_iterator PI = PB; PI != PE; ++PI) {
1477     BasicBlock *P = *PI;
1478     AvailablePredsTy::iterator I =
1479       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1480                        std::make_pair(P, (Value*)nullptr));
1481 
1482     assert(I != AvailablePreds.end() && I->first == P &&
1483            "Didn't find entry for predecessor!");
1484 
1485     // If we have an available predecessor but it requires casting, insert the
1486     // cast in the predecessor and use the cast. Note that we have to update the
1487     // AvailablePreds vector as we go so that all of the PHI entries for this
1488     // predecessor use the same bitcast.
1489     Value *&PredV = I->second;
1490     if (PredV->getType() != LoadI->getType())
1491       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1492                                                P->getTerminator());
1493 
1494     PN->addIncoming(PredV, I->first);
1495   }
1496 
1497   for (LoadInst *PredLoadI : CSELoads) {
1498     combineMetadataForCSE(PredLoadI, LoadI, true);
1499   }
1500 
1501   LoadI->replaceAllUsesWith(PN);
1502   LoadI->eraseFromParent();
1503 
1504   return true;
1505 }
1506 
1507 /// FindMostPopularDest - The specified list contains multiple possible
1508 /// threadable destinations.  Pick the one that occurs the most frequently in
1509 /// the list.
1510 static BasicBlock *
1511 FindMostPopularDest(BasicBlock *BB,
1512                     const SmallVectorImpl<std::pair<BasicBlock *,
1513                                           BasicBlock *>> &PredToDestList) {
1514   assert(!PredToDestList.empty());
1515 
1516   // Determine popularity.  If there are multiple possible destinations, we
1517   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1518   // blocks with known and real destinations to threading undef.  We'll handle
1519   // them later if interesting.
1520   DenseMap<BasicBlock*, unsigned> DestPopularity;
1521   for (const auto &PredToDest : PredToDestList)
1522     if (PredToDest.second)
1523       DestPopularity[PredToDest.second]++;
1524 
1525   if (DestPopularity.empty())
1526     return nullptr;
1527 
1528   // Find the most popular dest.
1529   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1530   BasicBlock *MostPopularDest = DPI->first;
1531   unsigned Popularity = DPI->second;
1532   SmallVector<BasicBlock*, 4> SamePopularity;
1533 
1534   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1535     // If the popularity of this entry isn't higher than the popularity we've
1536     // seen so far, ignore it.
1537     if (DPI->second < Popularity)
1538       ; // ignore.
1539     else if (DPI->second == Popularity) {
1540       // If it is the same as what we've seen so far, keep track of it.
1541       SamePopularity.push_back(DPI->first);
1542     } else {
1543       // If it is more popular, remember it.
1544       SamePopularity.clear();
1545       MostPopularDest = DPI->first;
1546       Popularity = DPI->second;
1547     }
1548   }
1549 
1550   // Okay, now we know the most popular destination.  If there is more than one
1551   // destination, we need to determine one.  This is arbitrary, but we need
1552   // to make a deterministic decision.  Pick the first one that appears in the
1553   // successor list.
1554   if (!SamePopularity.empty()) {
1555     SamePopularity.push_back(MostPopularDest);
1556     Instruction *TI = BB->getTerminator();
1557     for (unsigned i = 0; ; ++i) {
1558       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1559 
1560       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1561         continue;
1562 
1563       MostPopularDest = TI->getSuccessor(i);
1564       break;
1565     }
1566   }
1567 
1568   // Okay, we have finally picked the most popular destination.
1569   return MostPopularDest;
1570 }
1571 
1572 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1573                                                ConstantPreference Preference,
1574                                                Instruction *CxtI) {
1575   // If threading this would thread across a loop header, don't even try to
1576   // thread the edge.
1577   if (LoopHeaders.count(BB))
1578     return false;
1579 
1580   PredValueInfoTy PredValues;
1581   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1582     return false;
1583 
1584   assert(!PredValues.empty() &&
1585          "ComputeValueKnownInPredecessors returned true with no values");
1586 
1587   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1588              for (const auto &PredValue : PredValues) {
1589                dbgs() << "  BB '" << BB->getName()
1590                       << "': FOUND condition = " << *PredValue.first
1591                       << " for pred '" << PredValue.second->getName() << "'.\n";
1592   });
1593 
1594   // Decide what we want to thread through.  Convert our list of known values to
1595   // a list of known destinations for each pred.  This also discards duplicate
1596   // predecessors and keeps track of the undefined inputs (which are represented
1597   // as a null dest in the PredToDestList).
1598   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1599   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1600 
1601   BasicBlock *OnlyDest = nullptr;
1602   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1603   Constant *OnlyVal = nullptr;
1604   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1605 
1606   unsigned PredWithKnownDest = 0;
1607   for (const auto &PredValue : PredValues) {
1608     BasicBlock *Pred = PredValue.second;
1609     if (!SeenPreds.insert(Pred).second)
1610       continue;  // Duplicate predecessor entry.
1611 
1612     Constant *Val = PredValue.first;
1613 
1614     BasicBlock *DestBB;
1615     if (isa<UndefValue>(Val))
1616       DestBB = nullptr;
1617     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1618       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1619       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1620     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1621       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1622       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1623     } else {
1624       assert(isa<IndirectBrInst>(BB->getTerminator())
1625               && "Unexpected terminator");
1626       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1627       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1628     }
1629 
1630     // If we have exactly one destination, remember it for efficiency below.
1631     if (PredToDestList.empty()) {
1632       OnlyDest = DestBB;
1633       OnlyVal = Val;
1634     } else {
1635       if (OnlyDest != DestBB)
1636         OnlyDest = MultipleDestSentinel;
1637       // It possible we have same destination, but different value, e.g. default
1638       // case in switchinst.
1639       if (Val != OnlyVal)
1640         OnlyVal = MultipleVal;
1641     }
1642 
1643     // We know where this predecessor is going.
1644     ++PredWithKnownDest;
1645 
1646     // If the predecessor ends with an indirect goto, we can't change its
1647     // destination. Same for CallBr.
1648     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1649         isa<CallBrInst>(Pred->getTerminator()))
1650       continue;
1651 
1652     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1653   }
1654 
1655   // If all edges were unthreadable, we fail.
1656   if (PredToDestList.empty())
1657     return false;
1658 
1659   // If all the predecessors go to a single known successor, we want to fold,
1660   // not thread. By doing so, we do not need to duplicate the current block and
1661   // also miss potential opportunities in case we dont/cant duplicate.
1662   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1663     if (PredWithKnownDest == (size_t)pred_size(BB)) {
1664       bool SeenFirstBranchToOnlyDest = false;
1665       std::vector <DominatorTree::UpdateType> Updates;
1666       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1667       for (BasicBlock *SuccBB : successors(BB)) {
1668         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1669           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1670         } else {
1671           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1672           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1673         }
1674       }
1675 
1676       // Finally update the terminator.
1677       Instruction *Term = BB->getTerminator();
1678       BranchInst::Create(OnlyDest, Term);
1679       Term->eraseFromParent();
1680       DTU->applyUpdatesPermissive(Updates);
1681 
1682       // If the condition is now dead due to the removal of the old terminator,
1683       // erase it.
1684       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1685         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1686           CondInst->eraseFromParent();
1687         // We can safely replace *some* uses of the CondInst if it has
1688         // exactly one value as returned by LVI. RAUW is incorrect in the
1689         // presence of guards and assumes, that have the `Cond` as the use. This
1690         // is because we use the guards/assume to reason about the `Cond` value
1691         // at the end of block, but RAUW unconditionally replaces all uses
1692         // including the guards/assumes themselves and the uses before the
1693         // guard/assume.
1694         else if (OnlyVal && OnlyVal != MultipleVal &&
1695                  CondInst->getParent() == BB)
1696           ReplaceFoldableUses(CondInst, OnlyVal);
1697       }
1698       return true;
1699     }
1700   }
1701 
1702   // Determine which is the most common successor.  If we have many inputs and
1703   // this block is a switch, we want to start by threading the batch that goes
1704   // to the most popular destination first.  If we only know about one
1705   // threadable destination (the common case) we can avoid this.
1706   BasicBlock *MostPopularDest = OnlyDest;
1707 
1708   if (MostPopularDest == MultipleDestSentinel) {
1709     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1710     // won't process them, but we might have other destination that are eligible
1711     // and we still want to process.
1712     erase_if(PredToDestList,
1713              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1714                return LoopHeaders.count(PredToDest.second) != 0;
1715              });
1716 
1717     if (PredToDestList.empty())
1718       return false;
1719 
1720     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1721   }
1722 
1723   // Now that we know what the most popular destination is, factor all
1724   // predecessors that will jump to it into a single predecessor.
1725   SmallVector<BasicBlock*, 16> PredsToFactor;
1726   for (const auto &PredToDest : PredToDestList)
1727     if (PredToDest.second == MostPopularDest) {
1728       BasicBlock *Pred = PredToDest.first;
1729 
1730       // This predecessor may be a switch or something else that has multiple
1731       // edges to the block.  Factor each of these edges by listing them
1732       // according to # occurrences in PredsToFactor.
1733       for (BasicBlock *Succ : successors(Pred))
1734         if (Succ == BB)
1735           PredsToFactor.push_back(Pred);
1736     }
1737 
1738   // If the threadable edges are branching on an undefined value, we get to pick
1739   // the destination that these predecessors should get to.
1740   if (!MostPopularDest)
1741     MostPopularDest = BB->getTerminator()->
1742                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1743 
1744   // Ok, try to thread it!
1745   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1746 }
1747 
1748 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1749 /// a PHI node in the current block.  See if there are any simplifications we
1750 /// can do based on inputs to the phi node.
1751 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1752   BasicBlock *BB = PN->getParent();
1753 
1754   // TODO: We could make use of this to do it once for blocks with common PHI
1755   // values.
1756   SmallVector<BasicBlock*, 1> PredBBs;
1757   PredBBs.resize(1);
1758 
1759   // If any of the predecessor blocks end in an unconditional branch, we can
1760   // *duplicate* the conditional branch into that block in order to further
1761   // encourage jump threading and to eliminate cases where we have branch on a
1762   // phi of an icmp (branch on icmp is much better).
1763   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1764     BasicBlock *PredBB = PN->getIncomingBlock(i);
1765     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1766       if (PredBr->isUnconditional()) {
1767         PredBBs[0] = PredBB;
1768         // Try to duplicate BB into PredBB.
1769         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1770           return true;
1771       }
1772   }
1773 
1774   return false;
1775 }
1776 
1777 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1778 /// a xor instruction in the current block.  See if there are any
1779 /// simplifications we can do based on inputs to the xor.
1780 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1781   BasicBlock *BB = BO->getParent();
1782 
1783   // If either the LHS or RHS of the xor is a constant, don't do this
1784   // optimization.
1785   if (isa<ConstantInt>(BO->getOperand(0)) ||
1786       isa<ConstantInt>(BO->getOperand(1)))
1787     return false;
1788 
1789   // If the first instruction in BB isn't a phi, we won't be able to infer
1790   // anything special about any particular predecessor.
1791   if (!isa<PHINode>(BB->front()))
1792     return false;
1793 
1794   // If this BB is a landing pad, we won't be able to split the edge into it.
1795   if (BB->isEHPad())
1796     return false;
1797 
1798   // If we have a xor as the branch input to this block, and we know that the
1799   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1800   // the condition into the predecessor and fix that value to true, saving some
1801   // logical ops on that path and encouraging other paths to simplify.
1802   //
1803   // This copies something like this:
1804   //
1805   //  BB:
1806   //    %X = phi i1 [1],  [%X']
1807   //    %Y = icmp eq i32 %A, %B
1808   //    %Z = xor i1 %X, %Y
1809   //    br i1 %Z, ...
1810   //
1811   // Into:
1812   //  BB':
1813   //    %Y = icmp ne i32 %A, %B
1814   //    br i1 %Y, ...
1815 
1816   PredValueInfoTy XorOpValues;
1817   bool isLHS = true;
1818   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1819                                        WantInteger, BO)) {
1820     assert(XorOpValues.empty());
1821     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1822                                          WantInteger, BO))
1823       return false;
1824     isLHS = false;
1825   }
1826 
1827   assert(!XorOpValues.empty() &&
1828          "ComputeValueKnownInPredecessors returned true with no values");
1829 
1830   // Scan the information to see which is most popular: true or false.  The
1831   // predecessors can be of the set true, false, or undef.
1832   unsigned NumTrue = 0, NumFalse = 0;
1833   for (const auto &XorOpValue : XorOpValues) {
1834     if (isa<UndefValue>(XorOpValue.first))
1835       // Ignore undefs for the count.
1836       continue;
1837     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1838       ++NumFalse;
1839     else
1840       ++NumTrue;
1841   }
1842 
1843   // Determine which value to split on, true, false, or undef if neither.
1844   ConstantInt *SplitVal = nullptr;
1845   if (NumTrue > NumFalse)
1846     SplitVal = ConstantInt::getTrue(BB->getContext());
1847   else if (NumTrue != 0 || NumFalse != 0)
1848     SplitVal = ConstantInt::getFalse(BB->getContext());
1849 
1850   // Collect all of the blocks that this can be folded into so that we can
1851   // factor this once and clone it once.
1852   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1853   for (const auto &XorOpValue : XorOpValues) {
1854     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1855       continue;
1856 
1857     BlocksToFoldInto.push_back(XorOpValue.second);
1858   }
1859 
1860   // If we inferred a value for all of the predecessors, then duplication won't
1861   // help us.  However, we can just replace the LHS or RHS with the constant.
1862   if (BlocksToFoldInto.size() ==
1863       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1864     if (!SplitVal) {
1865       // If all preds provide undef, just nuke the xor, because it is undef too.
1866       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1867       BO->eraseFromParent();
1868     } else if (SplitVal->isZero()) {
1869       // If all preds provide 0, replace the xor with the other input.
1870       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1871       BO->eraseFromParent();
1872     } else {
1873       // If all preds provide 1, set the computed value to 1.
1874       BO->setOperand(!isLHS, SplitVal);
1875     }
1876 
1877     return true;
1878   }
1879 
1880   // Try to duplicate BB into PredBB.
1881   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1882 }
1883 
1884 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1885 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1886 /// NewPred using the entries from OldPred (suitably mapped).
1887 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1888                                             BasicBlock *OldPred,
1889                                             BasicBlock *NewPred,
1890                                      DenseMap<Instruction*, Value*> &ValueMap) {
1891   for (PHINode &PN : PHIBB->phis()) {
1892     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1893     // DestBlock.
1894     Value *IV = PN.getIncomingValueForBlock(OldPred);
1895 
1896     // Remap the value if necessary.
1897     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1898       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1899       if (I != ValueMap.end())
1900         IV = I->second;
1901     }
1902 
1903     PN.addIncoming(IV, NewPred);
1904   }
1905 }
1906 
1907 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1908 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1909 /// across BB.  Transform the IR to reflect this change.
1910 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1911                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1912                                    BasicBlock *SuccBB) {
1913   // If threading to the same block as we come from, we would infinite loop.
1914   if (SuccBB == BB) {
1915     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1916                       << "' - would thread to self!\n");
1917     return false;
1918   }
1919 
1920   // If threading this would thread across a loop header, don't thread the edge.
1921   // See the comments above FindLoopHeaders for justifications and caveats.
1922   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1923     LLVM_DEBUG({
1924       bool BBIsHeader = LoopHeaders.count(BB);
1925       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1926       dbgs() << "  Not threading across "
1927           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1928           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1929           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1930     });
1931     return false;
1932   }
1933 
1934   unsigned JumpThreadCost =
1935       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1936   if (JumpThreadCost > BBDupThreshold) {
1937     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1938                       << "' - Cost is too high: " << JumpThreadCost << "\n");
1939     return false;
1940   }
1941 
1942   // And finally, do it!  Start by factoring the predecessors if needed.
1943   BasicBlock *PredBB;
1944   if (PredBBs.size() == 1)
1945     PredBB = PredBBs[0];
1946   else {
1947     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1948                       << " common predecessors.\n");
1949     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1950   }
1951 
1952   // And finally, do it!
1953   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
1954                     << "' to '" << SuccBB->getName()
1955                     << "' with cost: " << JumpThreadCost
1956                     << ", across block:\n    " << *BB << "\n");
1957 
1958   if (DTU->hasPendingDomTreeUpdates())
1959     LVI->disableDT();
1960   else
1961     LVI->enableDT();
1962   LVI->threadEdge(PredBB, BB, SuccBB);
1963 
1964   // We are going to have to map operands from the original BB block to the new
1965   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1966   // account for entry from PredBB.
1967   DenseMap<Instruction*, Value*> ValueMapping;
1968 
1969   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1970                                          BB->getName()+".thread",
1971                                          BB->getParent(), BB);
1972   NewBB->moveAfter(PredBB);
1973 
1974   // Set the block frequency of NewBB.
1975   if (HasProfileData) {
1976     auto NewBBFreq =
1977         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1978     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1979   }
1980 
1981   BasicBlock::iterator BI = BB->begin();
1982   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1983     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1984 
1985   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1986   // mapping and using it to remap operands in the cloned instructions.
1987   for (; !BI->isTerminator(); ++BI) {
1988     Instruction *New = BI->clone();
1989     New->setName(BI->getName());
1990     NewBB->getInstList().push_back(New);
1991     ValueMapping[&*BI] = New;
1992 
1993     // Remap operands to patch up intra-block references.
1994     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1995       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1996         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1997         if (I != ValueMapping.end())
1998           New->setOperand(i, I->second);
1999       }
2000   }
2001 
2002   // We didn't copy the terminator from BB over to NewBB, because there is now
2003   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2004   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2005   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2006 
2007   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2008   // PHI nodes for NewBB now.
2009   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2010 
2011   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2012   // eliminates predecessors from BB, which requires us to simplify any PHI
2013   // nodes in BB.
2014   Instruction *PredTerm = PredBB->getTerminator();
2015   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2016     if (PredTerm->getSuccessor(i) == BB) {
2017       BB->removePredecessor(PredBB, true);
2018       PredTerm->setSuccessor(i, NewBB);
2019     }
2020 
2021   // Enqueue required DT updates.
2022   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2023                                {DominatorTree::Insert, PredBB, NewBB},
2024                                {DominatorTree::Delete, PredBB, BB}});
2025 
2026   // If there were values defined in BB that are used outside the block, then we
2027   // now have to update all uses of the value to use either the original value,
2028   // the cloned value, or some PHI derived value.  This can require arbitrary
2029   // PHI insertion, of which we are prepared to do, clean these up now.
2030   SSAUpdater SSAUpdate;
2031   SmallVector<Use*, 16> UsesToRename;
2032 
2033   for (Instruction &I : *BB) {
2034     // Scan all uses of this instruction to see if their uses are no longer
2035     // dominated by the previous def and if so, record them in UsesToRename.
2036     // Also, skip phi operands from PredBB - we'll remove them anyway.
2037     for (Use &U : I.uses()) {
2038       Instruction *User = cast<Instruction>(U.getUser());
2039       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2040         if (UserPN->getIncomingBlock(U) == BB)
2041           continue;
2042       } else if (User->getParent() == BB)
2043         continue;
2044 
2045       UsesToRename.push_back(&U);
2046     }
2047 
2048     // If there are no uses outside the block, we're done with this instruction.
2049     if (UsesToRename.empty())
2050       continue;
2051     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2052 
2053     // We found a use of I outside of BB.  Rename all uses of I that are outside
2054     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2055     // with the two values we know.
2056     SSAUpdate.Initialize(I.getType(), I.getName());
2057     SSAUpdate.AddAvailableValue(BB, &I);
2058     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2059 
2060     while (!UsesToRename.empty())
2061       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2062     LLVM_DEBUG(dbgs() << "\n");
2063   }
2064 
2065   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2066   // over the new instructions and zap any that are constants or dead.  This
2067   // frequently happens because of phi translation.
2068   SimplifyInstructionsInBlock(NewBB, TLI);
2069 
2070   // Update the edge weight from BB to SuccBB, which should be less than before.
2071   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2072 
2073   // Threaded an edge!
2074   ++NumThreads;
2075   return true;
2076 }
2077 
2078 /// Create a new basic block that will be the predecessor of BB and successor of
2079 /// all blocks in Preds. When profile data is available, update the frequency of
2080 /// this new block.
2081 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2082                                                ArrayRef<BasicBlock *> Preds,
2083                                                const char *Suffix) {
2084   SmallVector<BasicBlock *, 2> NewBBs;
2085 
2086   // Collect the frequencies of all predecessors of BB, which will be used to
2087   // update the edge weight of the result of splitting predecessors.
2088   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2089   if (HasProfileData)
2090     for (auto Pred : Preds)
2091       FreqMap.insert(std::make_pair(
2092           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2093 
2094   // In the case when BB is a LandingPad block we create 2 new predecessors
2095   // instead of just one.
2096   if (BB->isLandingPad()) {
2097     std::string NewName = std::string(Suffix) + ".split-lp";
2098     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2099   } else {
2100     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2101   }
2102 
2103   std::vector<DominatorTree::UpdateType> Updates;
2104   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2105   for (auto NewBB : NewBBs) {
2106     BlockFrequency NewBBFreq(0);
2107     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2108     for (auto Pred : predecessors(NewBB)) {
2109       Updates.push_back({DominatorTree::Delete, Pred, BB});
2110       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2111       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2112         NewBBFreq += FreqMap.lookup(Pred);
2113     }
2114     if (HasProfileData) // Apply the summed frequency to NewBB.
2115       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2116   }
2117 
2118   DTU->applyUpdatesPermissive(Updates);
2119   return NewBBs[0];
2120 }
2121 
2122 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2123   const Instruction *TI = BB->getTerminator();
2124   assert(TI->getNumSuccessors() > 1 && "not a split");
2125 
2126   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2127   if (!WeightsNode)
2128     return false;
2129 
2130   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2131   if (MDName->getString() != "branch_weights")
2132     return false;
2133 
2134   // Ensure there are weights for all of the successors. Note that the first
2135   // operand to the metadata node is a name, not a weight.
2136   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2137 }
2138 
2139 /// Update the block frequency of BB and branch weight and the metadata on the
2140 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2141 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2142 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2143                                                      BasicBlock *BB,
2144                                                      BasicBlock *NewBB,
2145                                                      BasicBlock *SuccBB) {
2146   if (!HasProfileData)
2147     return;
2148 
2149   assert(BFI && BPI && "BFI & BPI should have been created here");
2150 
2151   // As the edge from PredBB to BB is deleted, we have to update the block
2152   // frequency of BB.
2153   auto BBOrigFreq = BFI->getBlockFreq(BB);
2154   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2155   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2156   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2157   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2158 
2159   // Collect updated outgoing edges' frequencies from BB and use them to update
2160   // edge probabilities.
2161   SmallVector<uint64_t, 4> BBSuccFreq;
2162   for (BasicBlock *Succ : successors(BB)) {
2163     auto SuccFreq = (Succ == SuccBB)
2164                         ? BB2SuccBBFreq - NewBBFreq
2165                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2166     BBSuccFreq.push_back(SuccFreq.getFrequency());
2167   }
2168 
2169   uint64_t MaxBBSuccFreq =
2170       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2171 
2172   SmallVector<BranchProbability, 4> BBSuccProbs;
2173   if (MaxBBSuccFreq == 0)
2174     BBSuccProbs.assign(BBSuccFreq.size(),
2175                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2176   else {
2177     for (uint64_t Freq : BBSuccFreq)
2178       BBSuccProbs.push_back(
2179           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2180     // Normalize edge probabilities so that they sum up to one.
2181     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2182                                               BBSuccProbs.end());
2183   }
2184 
2185   // Update edge probabilities in BPI.
2186   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2187     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2188 
2189   // Update the profile metadata as well.
2190   //
2191   // Don't do this if the profile of the transformed blocks was statically
2192   // estimated.  (This could occur despite the function having an entry
2193   // frequency in completely cold parts of the CFG.)
2194   //
2195   // In this case we don't want to suggest to subsequent passes that the
2196   // calculated weights are fully consistent.  Consider this graph:
2197   //
2198   //                 check_1
2199   //             50% /  |
2200   //             eq_1   | 50%
2201   //                 \  |
2202   //                 check_2
2203   //             50% /  |
2204   //             eq_2   | 50%
2205   //                 \  |
2206   //                 check_3
2207   //             50% /  |
2208   //             eq_3   | 50%
2209   //                 \  |
2210   //
2211   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2212   // the overall probabilities are inconsistent; the total probability that the
2213   // value is either 1, 2 or 3 is 150%.
2214   //
2215   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2216   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2217   // the loop exit edge.  Then based solely on static estimation we would assume
2218   // the loop was extremely hot.
2219   //
2220   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2221   // shouldn't make edges extremely likely or unlikely based solely on static
2222   // estimation.
2223   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2224     SmallVector<uint32_t, 4> Weights;
2225     for (auto Prob : BBSuccProbs)
2226       Weights.push_back(Prob.getNumerator());
2227 
2228     auto TI = BB->getTerminator();
2229     TI->setMetadata(
2230         LLVMContext::MD_prof,
2231         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2232   }
2233 }
2234 
2235 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2236 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2237 /// If we can duplicate the contents of BB up into PredBB do so now, this
2238 /// improves the odds that the branch will be on an analyzable instruction like
2239 /// a compare.
2240 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2241     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2242   assert(!PredBBs.empty() && "Can't handle an empty set");
2243 
2244   // If BB is a loop header, then duplicating this block outside the loop would
2245   // cause us to transform this into an irreducible loop, don't do this.
2246   // See the comments above FindLoopHeaders for justifications and caveats.
2247   if (LoopHeaders.count(BB)) {
2248     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2249                       << "' into predecessor block '" << PredBBs[0]->getName()
2250                       << "' - it might create an irreducible loop!\n");
2251     return false;
2252   }
2253 
2254   unsigned DuplicationCost =
2255       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2256   if (DuplicationCost > BBDupThreshold) {
2257     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2258                       << "' - Cost is too high: " << DuplicationCost << "\n");
2259     return false;
2260   }
2261 
2262   // And finally, do it!  Start by factoring the predecessors if needed.
2263   std::vector<DominatorTree::UpdateType> Updates;
2264   BasicBlock *PredBB;
2265   if (PredBBs.size() == 1)
2266     PredBB = PredBBs[0];
2267   else {
2268     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2269                       << " common predecessors.\n");
2270     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2271   }
2272   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2273 
2274   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2275   // of PredBB.
2276   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2277                     << "' into end of '" << PredBB->getName()
2278                     << "' to eliminate branch on phi.  Cost: "
2279                     << DuplicationCost << " block is:" << *BB << "\n");
2280 
2281   // Unless PredBB ends with an unconditional branch, split the edge so that we
2282   // can just clone the bits from BB into the end of the new PredBB.
2283   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2284 
2285   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2286     BasicBlock *OldPredBB = PredBB;
2287     PredBB = SplitEdge(OldPredBB, BB);
2288     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2289     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2290     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2291     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2292   }
2293 
2294   // We are going to have to map operands from the original BB block into the
2295   // PredBB block.  Evaluate PHI nodes in BB.
2296   DenseMap<Instruction*, Value*> ValueMapping;
2297 
2298   BasicBlock::iterator BI = BB->begin();
2299   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2300     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2301   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2302   // mapping and using it to remap operands in the cloned instructions.
2303   for (; BI != BB->end(); ++BI) {
2304     Instruction *New = BI->clone();
2305 
2306     // Remap operands to patch up intra-block references.
2307     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2308       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2309         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2310         if (I != ValueMapping.end())
2311           New->setOperand(i, I->second);
2312       }
2313 
2314     // If this instruction can be simplified after the operands are updated,
2315     // just use the simplified value instead.  This frequently happens due to
2316     // phi translation.
2317     if (Value *IV = SimplifyInstruction(
2318             New,
2319             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2320       ValueMapping[&*BI] = IV;
2321       if (!New->mayHaveSideEffects()) {
2322         New->deleteValue();
2323         New = nullptr;
2324       }
2325     } else {
2326       ValueMapping[&*BI] = New;
2327     }
2328     if (New) {
2329       // Otherwise, insert the new instruction into the block.
2330       New->setName(BI->getName());
2331       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2332       // Update Dominance from simplified New instruction operands.
2333       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2334         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2335           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2336     }
2337   }
2338 
2339   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2340   // add entries to the PHI nodes for branch from PredBB now.
2341   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2342   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2343                                   ValueMapping);
2344   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2345                                   ValueMapping);
2346 
2347   // If there were values defined in BB that are used outside the block, then we
2348   // now have to update all uses of the value to use either the original value,
2349   // the cloned value, or some PHI derived value.  This can require arbitrary
2350   // PHI insertion, of which we are prepared to do, clean these up now.
2351   SSAUpdater SSAUpdate;
2352   SmallVector<Use*, 16> UsesToRename;
2353   for (Instruction &I : *BB) {
2354     // Scan all uses of this instruction to see if it is used outside of its
2355     // block, and if so, record them in UsesToRename.
2356     for (Use &U : I.uses()) {
2357       Instruction *User = cast<Instruction>(U.getUser());
2358       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2359         if (UserPN->getIncomingBlock(U) == BB)
2360           continue;
2361       } else if (User->getParent() == BB)
2362         continue;
2363 
2364       UsesToRename.push_back(&U);
2365     }
2366 
2367     // If there are no uses outside the block, we're done with this instruction.
2368     if (UsesToRename.empty())
2369       continue;
2370 
2371     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2372 
2373     // We found a use of I outside of BB.  Rename all uses of I that are outside
2374     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2375     // with the two values we know.
2376     SSAUpdate.Initialize(I.getType(), I.getName());
2377     SSAUpdate.AddAvailableValue(BB, &I);
2378     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2379 
2380     while (!UsesToRename.empty())
2381       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2382     LLVM_DEBUG(dbgs() << "\n");
2383   }
2384 
2385   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2386   // that we nuked.
2387   BB->removePredecessor(PredBB, true);
2388 
2389   // Remove the unconditional branch at the end of the PredBB block.
2390   OldPredBranch->eraseFromParent();
2391   DTU->applyUpdatesPermissive(Updates);
2392 
2393   ++NumDupes;
2394   return true;
2395 }
2396 
2397 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2398 // a Select instruction in Pred. BB has other predecessors and SI is used in
2399 // a PHI node in BB. SI has no other use.
2400 // A new basic block, NewBB, is created and SI is converted to compare and
2401 // conditional branch. SI is erased from parent.
2402 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2403                                           SelectInst *SI, PHINode *SIUse,
2404                                           unsigned Idx) {
2405   // Expand the select.
2406   //
2407   // Pred --
2408   //  |    v
2409   //  |  NewBB
2410   //  |    |
2411   //  |-----
2412   //  v
2413   // BB
2414   BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2415   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2416                                          BB->getParent(), BB);
2417   // Move the unconditional branch to NewBB.
2418   PredTerm->removeFromParent();
2419   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2420   // Create a conditional branch and update PHI nodes.
2421   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2422   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2423   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2424 
2425   // The select is now dead.
2426   SI->eraseFromParent();
2427   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2428                                {DominatorTree::Insert, Pred, NewBB}});
2429 
2430   // Update any other PHI nodes in BB.
2431   for (BasicBlock::iterator BI = BB->begin();
2432        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2433     if (Phi != SIUse)
2434       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2435 }
2436 
2437 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2438   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2439 
2440   if (!CondPHI || CondPHI->getParent() != BB)
2441     return false;
2442 
2443   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2444     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2445     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2446 
2447     // The second and third condition can be potentially relaxed. Currently
2448     // the conditions help to simplify the code and allow us to reuse existing
2449     // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2450     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2451       continue;
2452 
2453     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2454     if (!PredTerm || !PredTerm->isUnconditional())
2455       continue;
2456 
2457     UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2458     return true;
2459   }
2460   return false;
2461 }
2462 
2463 /// TryToUnfoldSelect - Look for blocks of the form
2464 /// bb1:
2465 ///   %a = select
2466 ///   br bb2
2467 ///
2468 /// bb2:
2469 ///   %p = phi [%a, %bb1] ...
2470 ///   %c = icmp %p
2471 ///   br i1 %c
2472 ///
2473 /// And expand the select into a branch structure if one of its arms allows %c
2474 /// to be folded. This later enables threading from bb1 over bb2.
2475 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2476   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2477   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2478   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2479 
2480   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2481       CondLHS->getParent() != BB)
2482     return false;
2483 
2484   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2485     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2486     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2487 
2488     // Look if one of the incoming values is a select in the corresponding
2489     // predecessor.
2490     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2491       continue;
2492 
2493     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2494     if (!PredTerm || !PredTerm->isUnconditional())
2495       continue;
2496 
2497     // Now check if one of the select values would allow us to constant fold the
2498     // terminator in BB. We don't do the transform if both sides fold, those
2499     // cases will be threaded in any case.
2500     if (DTU->hasPendingDomTreeUpdates())
2501       LVI->disableDT();
2502     else
2503       LVI->enableDT();
2504     LazyValueInfo::Tristate LHSFolds =
2505         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2506                                 CondRHS, Pred, BB, CondCmp);
2507     LazyValueInfo::Tristate RHSFolds =
2508         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2509                                 CondRHS, Pred, BB, CondCmp);
2510     if ((LHSFolds != LazyValueInfo::Unknown ||
2511          RHSFolds != LazyValueInfo::Unknown) &&
2512         LHSFolds != RHSFolds) {
2513       UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2514       return true;
2515     }
2516   }
2517   return false;
2518 }
2519 
2520 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2521 /// same BB in the form
2522 /// bb:
2523 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2524 ///   %s = select %p, trueval, falseval
2525 ///
2526 /// or
2527 ///
2528 /// bb:
2529 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2530 ///   %c = cmp %p, 0
2531 ///   %s = select %c, trueval, falseval
2532 ///
2533 /// And expand the select into a branch structure. This later enables
2534 /// jump-threading over bb in this pass.
2535 ///
2536 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2537 /// select if the associated PHI has at least one constant.  If the unfolded
2538 /// select is not jump-threaded, it will be folded again in the later
2539 /// optimizations.
2540 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2541   // If threading this would thread across a loop header, don't thread the edge.
2542   // See the comments above FindLoopHeaders for justifications and caveats.
2543   if (LoopHeaders.count(BB))
2544     return false;
2545 
2546   for (BasicBlock::iterator BI = BB->begin();
2547        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2548     // Look for a Phi having at least one constant incoming value.
2549     if (llvm::all_of(PN->incoming_values(),
2550                      [](Value *V) { return !isa<ConstantInt>(V); }))
2551       continue;
2552 
2553     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2554       // Check if SI is in BB and use V as condition.
2555       if (SI->getParent() != BB)
2556         return false;
2557       Value *Cond = SI->getCondition();
2558       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2559     };
2560 
2561     SelectInst *SI = nullptr;
2562     for (Use &U : PN->uses()) {
2563       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2564         // Look for a ICmp in BB that compares PN with a constant and is the
2565         // condition of a Select.
2566         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2567             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2568           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2569             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2570               SI = SelectI;
2571               break;
2572             }
2573       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2574         // Look for a Select in BB that uses PN as condition.
2575         if (isUnfoldCandidate(SelectI, U.get())) {
2576           SI = SelectI;
2577           break;
2578         }
2579       }
2580     }
2581 
2582     if (!SI)
2583       continue;
2584     // Expand the select.
2585     Instruction *Term =
2586         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2587     BasicBlock *SplitBB = SI->getParent();
2588     BasicBlock *NewBB = Term->getParent();
2589     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2590     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2591     NewPN->addIncoming(SI->getFalseValue(), BB);
2592     SI->replaceAllUsesWith(NewPN);
2593     SI->eraseFromParent();
2594     // NewBB and SplitBB are newly created blocks which require insertion.
2595     std::vector<DominatorTree::UpdateType> Updates;
2596     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2597     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2598     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2599     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2600     // BB's successors were moved to SplitBB, update DTU accordingly.
2601     for (auto *Succ : successors(SplitBB)) {
2602       Updates.push_back({DominatorTree::Delete, BB, Succ});
2603       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2604     }
2605     DTU->applyUpdatesPermissive(Updates);
2606     return true;
2607   }
2608   return false;
2609 }
2610 
2611 /// Try to propagate a guard from the current BB into one of its predecessors
2612 /// in case if another branch of execution implies that the condition of this
2613 /// guard is always true. Currently we only process the simplest case that
2614 /// looks like:
2615 ///
2616 /// Start:
2617 ///   %cond = ...
2618 ///   br i1 %cond, label %T1, label %F1
2619 /// T1:
2620 ///   br label %Merge
2621 /// F1:
2622 ///   br label %Merge
2623 /// Merge:
2624 ///   %condGuard = ...
2625 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2626 ///
2627 /// And cond either implies condGuard or !condGuard. In this case all the
2628 /// instructions before the guard can be duplicated in both branches, and the
2629 /// guard is then threaded to one of them.
2630 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2631   using namespace PatternMatch;
2632 
2633   // We only want to deal with two predecessors.
2634   BasicBlock *Pred1, *Pred2;
2635   auto PI = pred_begin(BB), PE = pred_end(BB);
2636   if (PI == PE)
2637     return false;
2638   Pred1 = *PI++;
2639   if (PI == PE)
2640     return false;
2641   Pred2 = *PI++;
2642   if (PI != PE)
2643     return false;
2644   if (Pred1 == Pred2)
2645     return false;
2646 
2647   // Try to thread one of the guards of the block.
2648   // TODO: Look up deeper than to immediate predecessor?
2649   auto *Parent = Pred1->getSinglePredecessor();
2650   if (!Parent || Parent != Pred2->getSinglePredecessor())
2651     return false;
2652 
2653   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2654     for (auto &I : *BB)
2655       if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2656         return true;
2657 
2658   return false;
2659 }
2660 
2661 /// Try to propagate the guard from BB which is the lower block of a diamond
2662 /// to one of its branches, in case if diamond's condition implies guard's
2663 /// condition.
2664 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2665                                     BranchInst *BI) {
2666   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2667   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2668   Value *GuardCond = Guard->getArgOperand(0);
2669   Value *BranchCond = BI->getCondition();
2670   BasicBlock *TrueDest = BI->getSuccessor(0);
2671   BasicBlock *FalseDest = BI->getSuccessor(1);
2672 
2673   auto &DL = BB->getModule()->getDataLayout();
2674   bool TrueDestIsSafe = false;
2675   bool FalseDestIsSafe = false;
2676 
2677   // True dest is safe if BranchCond => GuardCond.
2678   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2679   if (Impl && *Impl)
2680     TrueDestIsSafe = true;
2681   else {
2682     // False dest is safe if !BranchCond => GuardCond.
2683     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2684     if (Impl && *Impl)
2685       FalseDestIsSafe = true;
2686   }
2687 
2688   if (!TrueDestIsSafe && !FalseDestIsSafe)
2689     return false;
2690 
2691   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2692   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2693 
2694   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2695   Instruction *AfterGuard = Guard->getNextNode();
2696   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2697   if (Cost > BBDupThreshold)
2698     return false;
2699   // Duplicate all instructions before the guard and the guard itself to the
2700   // branch where implication is not proved.
2701   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2702       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2703   assert(GuardedBlock && "Could not create the guarded block?");
2704   // Duplicate all instructions before the guard in the unguarded branch.
2705   // Since we have successfully duplicated the guarded block and this block
2706   // has fewer instructions, we expect it to succeed.
2707   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2708       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2709   assert(UnguardedBlock && "Could not create the unguarded block?");
2710   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2711                     << GuardedBlock->getName() << "\n");
2712   // Some instructions before the guard may still have uses. For them, we need
2713   // to create Phi nodes merging their copies in both guarded and unguarded
2714   // branches. Those instructions that have no uses can be just removed.
2715   SmallVector<Instruction *, 4> ToRemove;
2716   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2717     if (!isa<PHINode>(&*BI))
2718       ToRemove.push_back(&*BI);
2719 
2720   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2721   assert(InsertionPoint && "Empty block?");
2722   // Substitute with Phis & remove.
2723   for (auto *Inst : reverse(ToRemove)) {
2724     if (!Inst->use_empty()) {
2725       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2726       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2727       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2728       NewPN->insertBefore(InsertionPoint);
2729       Inst->replaceAllUsesWith(NewPN);
2730     }
2731     Inst->eraseFromParent();
2732   }
2733   return true;
2734 }
2735