1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "llvm/Transforms/Utils/Cloning.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Transforms/Utils/SSAUpdater.h" 43 #include <algorithm> 44 #include <memory> 45 using namespace llvm; 46 using namespace jumpthreading; 47 48 #define DEBUG_TYPE "jump-threading" 49 50 STATISTIC(NumThreads, "Number of jumps threaded"); 51 STATISTIC(NumFolds, "Number of terminators folded"); 52 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 53 54 static cl::opt<unsigned> 55 BBDuplicateThreshold("jump-threading-threshold", 56 cl::desc("Max block size to duplicate for jump threading"), 57 cl::init(6), cl::Hidden); 58 59 static cl::opt<unsigned> 60 ImplicationSearchThreshold( 61 "jump-threading-implication-search-threshold", 62 cl::desc("The number of predecessors to search for a stronger " 63 "condition to use to thread over a weaker condition"), 64 cl::init(3), cl::Hidden); 65 66 namespace { 67 /// This pass performs 'jump threading', which looks at blocks that have 68 /// multiple predecessors and multiple successors. If one or more of the 69 /// predecessors of the block can be proven to always jump to one of the 70 /// successors, we forward the edge from the predecessor to the successor by 71 /// duplicating the contents of this block. 72 /// 73 /// An example of when this can occur is code like this: 74 /// 75 /// if () { ... 76 /// X = 4; 77 /// } 78 /// if (X < 3) { 79 /// 80 /// In this case, the unconditional branch at the end of the first if can be 81 /// revectored to the false side of the second if. 82 /// 83 class JumpThreading : public FunctionPass { 84 JumpThreadingPass Impl; 85 86 public: 87 static char ID; // Pass identification 88 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 89 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 90 } 91 92 bool runOnFunction(Function &F) override; 93 94 void getAnalysisUsage(AnalysisUsage &AU) const override { 95 AU.addRequired<AAResultsWrapperPass>(); 96 AU.addRequired<LazyValueInfoWrapperPass>(); 97 AU.addPreserved<LazyValueInfoWrapperPass>(); 98 AU.addPreserved<GlobalsAAWrapperPass>(); 99 AU.addRequired<TargetLibraryInfoWrapperPass>(); 100 } 101 102 void releaseMemory() override { Impl.releaseMemory(); } 103 }; 104 } 105 106 char JumpThreading::ID = 0; 107 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 108 "Jump Threading", false, false) 109 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 110 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 111 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 112 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 113 "Jump Threading", false, false) 114 115 // Public interface to the Jump Threading pass 116 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 117 118 JumpThreadingPass::JumpThreadingPass(int T) { 119 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 120 } 121 122 /// runOnFunction - Top level algorithm. 123 /// 124 bool JumpThreading::runOnFunction(Function &F) { 125 if (skipFunction(F)) 126 return false; 127 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 128 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 129 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 130 std::unique_ptr<BlockFrequencyInfo> BFI; 131 std::unique_ptr<BranchProbabilityInfo> BPI; 132 bool HasProfileData = F.getEntryCount().hasValue(); 133 if (HasProfileData) { 134 LoopInfo LI{DominatorTree(F)}; 135 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 136 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 137 } 138 139 return Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI), 140 std::move(BPI)); 141 } 142 143 PreservedAnalyses JumpThreadingPass::run(Function &F, 144 FunctionAnalysisManager &AM) { 145 146 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 147 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 148 auto &AA = AM.getResult<AAManager>(F); 149 150 std::unique_ptr<BlockFrequencyInfo> BFI; 151 std::unique_ptr<BranchProbabilityInfo> BPI; 152 bool HasProfileData = F.getEntryCount().hasValue(); 153 if (HasProfileData) { 154 LoopInfo LI{DominatorTree(F)}; 155 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 156 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 157 } 158 159 bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI), 160 std::move(BPI)); 161 162 if (!Changed) 163 return PreservedAnalyses::all(); 164 PreservedAnalyses PA; 165 PA.preserve<GlobalsAA>(); 166 return PA; 167 } 168 169 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 170 LazyValueInfo *LVI_, AliasAnalysis *AA_, 171 bool HasProfileData_, 172 std::unique_ptr<BlockFrequencyInfo> BFI_, 173 std::unique_ptr<BranchProbabilityInfo> BPI_) { 174 175 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 176 TLI = TLI_; 177 LVI = LVI_; 178 AA = AA_; 179 BFI.reset(); 180 BPI.reset(); 181 // When profile data is available, we need to update edge weights after 182 // successful jump threading, which requires both BPI and BFI being available. 183 HasProfileData = HasProfileData_; 184 auto *GuardDecl = F.getParent()->getFunction( 185 Intrinsic::getName(Intrinsic::experimental_guard)); 186 HasGuards = GuardDecl && !GuardDecl->use_empty(); 187 if (HasProfileData) { 188 BPI = std::move(BPI_); 189 BFI = std::move(BFI_); 190 } 191 192 // Remove unreachable blocks from function as they may result in infinite 193 // loop. We do threading if we found something profitable. Jump threading a 194 // branch can create other opportunities. If these opportunities form a cycle 195 // i.e. if any jump threading is undoing previous threading in the path, then 196 // we will loop forever. We take care of this issue by not jump threading for 197 // back edges. This works for normal cases but not for unreachable blocks as 198 // they may have cycle with no back edge. 199 bool EverChanged = false; 200 EverChanged |= removeUnreachableBlocks(F, LVI); 201 202 FindLoopHeaders(F); 203 204 bool Changed; 205 do { 206 Changed = false; 207 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 208 BasicBlock *BB = &*I; 209 // Thread all of the branches we can over this block. 210 while (ProcessBlock(BB)) 211 Changed = true; 212 213 ++I; 214 215 // If the block is trivially dead, zap it. This eliminates the successor 216 // edges which simplifies the CFG. 217 if (pred_empty(BB) && 218 BB != &BB->getParent()->getEntryBlock()) { 219 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 220 << "' with terminator: " << *BB->getTerminator() << '\n'); 221 LoopHeaders.erase(BB); 222 LVI->eraseBlock(BB); 223 DeleteDeadBlock(BB); 224 Changed = true; 225 continue; 226 } 227 228 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 229 230 // Can't thread an unconditional jump, but if the block is "almost 231 // empty", we can replace uses of it with uses of the successor and make 232 // this dead. 233 // We should not eliminate the loop header either, because eliminating 234 // a loop header might later prevent LoopSimplify from transforming nested 235 // loops into simplified form. 236 if (BI && BI->isUnconditional() && 237 BB != &BB->getParent()->getEntryBlock() && 238 // If the terminator is the only non-phi instruction, try to nuke it. 239 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) { 240 // FIXME: It is always conservatively correct to drop the info 241 // for a block even if it doesn't get erased. This isn't totally 242 // awesome, but it allows us to use AssertingVH to prevent nasty 243 // dangling pointer issues within LazyValueInfo. 244 LVI->eraseBlock(BB); 245 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 246 Changed = true; 247 } 248 } 249 EverChanged |= Changed; 250 } while (Changed); 251 252 LoopHeaders.clear(); 253 return EverChanged; 254 } 255 256 // Replace uses of Cond with ToVal when safe to do so. If all uses are 257 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 258 // because we may incorrectly replace uses when guards/assumes are uses of 259 // of `Cond` and we used the guards/assume to reason about the `Cond` value 260 // at the end of block. RAUW unconditionally replaces all uses 261 // including the guards/assumes themselves and the uses before the 262 // guard/assume. 263 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 264 assert(Cond->getType() == ToVal->getType()); 265 auto *BB = Cond->getParent(); 266 // We can unconditionally replace all uses in non-local blocks (i.e. uses 267 // strictly dominated by BB), since LVI information is true from the 268 // terminator of BB. 269 replaceNonLocalUsesWith(Cond, ToVal); 270 for (Instruction &I : reverse(*BB)) { 271 // Reached the Cond whose uses we are trying to replace, so there are no 272 // more uses. 273 if (&I == Cond) 274 break; 275 // We only replace uses in instructions that are guaranteed to reach the end 276 // of BB, where we know Cond is ToVal. 277 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 278 break; 279 I.replaceUsesOfWith(Cond, ToVal); 280 } 281 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 282 Cond->eraseFromParent(); 283 } 284 285 /// Return the cost of duplicating a piece of this block from first non-phi 286 /// and before StopAt instruction to thread across it. Stop scanning the block 287 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 288 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 289 Instruction *StopAt, 290 unsigned Threshold) { 291 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 292 /// Ignore PHI nodes, these will be flattened when duplication happens. 293 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 294 295 // FIXME: THREADING will delete values that are just used to compute the 296 // branch, so they shouldn't count against the duplication cost. 297 298 unsigned Bonus = 0; 299 if (BB->getTerminator() == StopAt) { 300 // Threading through a switch statement is particularly profitable. If this 301 // block ends in a switch, decrease its cost to make it more likely to 302 // happen. 303 if (isa<SwitchInst>(StopAt)) 304 Bonus = 6; 305 306 // The same holds for indirect branches, but slightly more so. 307 if (isa<IndirectBrInst>(StopAt)) 308 Bonus = 8; 309 } 310 311 // Bump the threshold up so the early exit from the loop doesn't skip the 312 // terminator-based Size adjustment at the end. 313 Threshold += Bonus; 314 315 // Sum up the cost of each instruction until we get to the terminator. Don't 316 // include the terminator because the copy won't include it. 317 unsigned Size = 0; 318 for (; &*I != StopAt; ++I) { 319 320 // Stop scanning the block if we've reached the threshold. 321 if (Size > Threshold) 322 return Size; 323 324 // Debugger intrinsics don't incur code size. 325 if (isa<DbgInfoIntrinsic>(I)) continue; 326 327 // If this is a pointer->pointer bitcast, it is free. 328 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 329 continue; 330 331 // Bail out if this instruction gives back a token type, it is not possible 332 // to duplicate it if it is used outside this BB. 333 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 334 return ~0U; 335 336 // All other instructions count for at least one unit. 337 ++Size; 338 339 // Calls are more expensive. If they are non-intrinsic calls, we model them 340 // as having cost of 4. If they are a non-vector intrinsic, we model them 341 // as having cost of 2 total, and if they are a vector intrinsic, we model 342 // them as having cost 1. 343 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 344 if (CI->cannotDuplicate() || CI->isConvergent()) 345 // Blocks with NoDuplicate are modelled as having infinite cost, so they 346 // are never duplicated. 347 return ~0U; 348 else if (!isa<IntrinsicInst>(CI)) 349 Size += 3; 350 else if (!CI->getType()->isVectorTy()) 351 Size += 1; 352 } 353 } 354 355 return Size > Bonus ? Size - Bonus : 0; 356 } 357 358 /// FindLoopHeaders - We do not want jump threading to turn proper loop 359 /// structures into irreducible loops. Doing this breaks up the loop nesting 360 /// hierarchy and pessimizes later transformations. To prevent this from 361 /// happening, we first have to find the loop headers. Here we approximate this 362 /// by finding targets of backedges in the CFG. 363 /// 364 /// Note that there definitely are cases when we want to allow threading of 365 /// edges across a loop header. For example, threading a jump from outside the 366 /// loop (the preheader) to an exit block of the loop is definitely profitable. 367 /// It is also almost always profitable to thread backedges from within the loop 368 /// to exit blocks, and is often profitable to thread backedges to other blocks 369 /// within the loop (forming a nested loop). This simple analysis is not rich 370 /// enough to track all of these properties and keep it up-to-date as the CFG 371 /// mutates, so we don't allow any of these transformations. 372 /// 373 void JumpThreadingPass::FindLoopHeaders(Function &F) { 374 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 375 FindFunctionBackedges(F, Edges); 376 377 for (const auto &Edge : Edges) 378 LoopHeaders.insert(Edge.second); 379 } 380 381 /// getKnownConstant - Helper method to determine if we can thread over a 382 /// terminator with the given value as its condition, and if so what value to 383 /// use for that. What kind of value this is depends on whether we want an 384 /// integer or a block address, but an undef is always accepted. 385 /// Returns null if Val is null or not an appropriate constant. 386 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 387 if (!Val) 388 return nullptr; 389 390 // Undef is "known" enough. 391 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 392 return U; 393 394 if (Preference == WantBlockAddress) 395 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 396 397 return dyn_cast<ConstantInt>(Val); 398 } 399 400 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 401 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 402 /// in any of our predecessors. If so, return the known list of value and pred 403 /// BB in the result vector. 404 /// 405 /// This returns true if there were any known values. 406 /// 407 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 408 Value *V, BasicBlock *BB, PredValueInfo &Result, 409 ConstantPreference Preference, Instruction *CxtI) { 410 // This method walks up use-def chains recursively. Because of this, we could 411 // get into an infinite loop going around loops in the use-def chain. To 412 // prevent this, keep track of what (value, block) pairs we've already visited 413 // and terminate the search if we loop back to them 414 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 415 return false; 416 417 // An RAII help to remove this pair from the recursion set once the recursion 418 // stack pops back out again. 419 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 420 421 // If V is a constant, then it is known in all predecessors. 422 if (Constant *KC = getKnownConstant(V, Preference)) { 423 for (BasicBlock *Pred : predecessors(BB)) 424 Result.push_back(std::make_pair(KC, Pred)); 425 426 return !Result.empty(); 427 } 428 429 // If V is a non-instruction value, or an instruction in a different block, 430 // then it can't be derived from a PHI. 431 Instruction *I = dyn_cast<Instruction>(V); 432 if (!I || I->getParent() != BB) { 433 434 // Okay, if this is a live-in value, see if it has a known value at the end 435 // of any of our predecessors. 436 // 437 // FIXME: This should be an edge property, not a block end property. 438 /// TODO: Per PR2563, we could infer value range information about a 439 /// predecessor based on its terminator. 440 // 441 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 442 // "I" is a non-local compare-with-a-constant instruction. This would be 443 // able to handle value inequalities better, for example if the compare is 444 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 445 // Perhaps getConstantOnEdge should be smart enough to do this? 446 447 for (BasicBlock *P : predecessors(BB)) { 448 // If the value is known by LazyValueInfo to be a constant in a 449 // predecessor, use that information to try to thread this block. 450 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 451 if (Constant *KC = getKnownConstant(PredCst, Preference)) 452 Result.push_back(std::make_pair(KC, P)); 453 } 454 455 return !Result.empty(); 456 } 457 458 /// If I is a PHI node, then we know the incoming values for any constants. 459 if (PHINode *PN = dyn_cast<PHINode>(I)) { 460 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 461 Value *InVal = PN->getIncomingValue(i); 462 if (Constant *KC = getKnownConstant(InVal, Preference)) { 463 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 464 } else { 465 Constant *CI = LVI->getConstantOnEdge(InVal, 466 PN->getIncomingBlock(i), 467 BB, CxtI); 468 if (Constant *KC = getKnownConstant(CI, Preference)) 469 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 470 } 471 } 472 473 return !Result.empty(); 474 } 475 476 // Handle Cast instructions. Only see through Cast when the source operand is 477 // PHI or Cmp and the source type is i1 to save the compilation time. 478 if (CastInst *CI = dyn_cast<CastInst>(I)) { 479 Value *Source = CI->getOperand(0); 480 if (!Source->getType()->isIntegerTy(1)) 481 return false; 482 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 483 return false; 484 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 485 if (Result.empty()) 486 return false; 487 488 // Convert the known values. 489 for (auto &R : Result) 490 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 491 492 return true; 493 } 494 495 PredValueInfoTy LHSVals, RHSVals; 496 497 // Handle some boolean conditions. 498 if (I->getType()->getPrimitiveSizeInBits() == 1) { 499 assert(Preference == WantInteger && "One-bit non-integer type?"); 500 // X | true -> true 501 // X & false -> false 502 if (I->getOpcode() == Instruction::Or || 503 I->getOpcode() == Instruction::And) { 504 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 505 WantInteger, CxtI); 506 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 507 WantInteger, CxtI); 508 509 if (LHSVals.empty() && RHSVals.empty()) 510 return false; 511 512 ConstantInt *InterestingVal; 513 if (I->getOpcode() == Instruction::Or) 514 InterestingVal = ConstantInt::getTrue(I->getContext()); 515 else 516 InterestingVal = ConstantInt::getFalse(I->getContext()); 517 518 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 519 520 // Scan for the sentinel. If we find an undef, force it to the 521 // interesting value: x|undef -> true and x&undef -> false. 522 for (const auto &LHSVal : LHSVals) 523 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 524 Result.emplace_back(InterestingVal, LHSVal.second); 525 LHSKnownBBs.insert(LHSVal.second); 526 } 527 for (const auto &RHSVal : RHSVals) 528 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 529 // If we already inferred a value for this block on the LHS, don't 530 // re-add it. 531 if (!LHSKnownBBs.count(RHSVal.second)) 532 Result.emplace_back(InterestingVal, RHSVal.second); 533 } 534 535 return !Result.empty(); 536 } 537 538 // Handle the NOT form of XOR. 539 if (I->getOpcode() == Instruction::Xor && 540 isa<ConstantInt>(I->getOperand(1)) && 541 cast<ConstantInt>(I->getOperand(1))->isOne()) { 542 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 543 WantInteger, CxtI); 544 if (Result.empty()) 545 return false; 546 547 // Invert the known values. 548 for (auto &R : Result) 549 R.first = ConstantExpr::getNot(R.first); 550 551 return true; 552 } 553 554 // Try to simplify some other binary operator values. 555 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 556 assert(Preference != WantBlockAddress 557 && "A binary operator creating a block address?"); 558 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 559 PredValueInfoTy LHSVals; 560 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 561 WantInteger, CxtI); 562 563 // Try to use constant folding to simplify the binary operator. 564 for (const auto &LHSVal : LHSVals) { 565 Constant *V = LHSVal.first; 566 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 567 568 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 569 Result.push_back(std::make_pair(KC, LHSVal.second)); 570 } 571 } 572 573 return !Result.empty(); 574 } 575 576 // Handle compare with phi operand, where the PHI is defined in this block. 577 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 578 assert(Preference == WantInteger && "Compares only produce integers"); 579 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 580 if (PN && PN->getParent() == BB) { 581 const DataLayout &DL = PN->getModule()->getDataLayout(); 582 // We can do this simplification if any comparisons fold to true or false. 583 // See if any do. 584 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 585 BasicBlock *PredBB = PN->getIncomingBlock(i); 586 Value *LHS = PN->getIncomingValue(i); 587 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 588 589 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, {DL}); 590 if (!Res) { 591 if (!isa<Constant>(RHS)) 592 continue; 593 594 LazyValueInfo::Tristate 595 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 596 cast<Constant>(RHS), PredBB, BB, 597 CxtI ? CxtI : Cmp); 598 if (ResT == LazyValueInfo::Unknown) 599 continue; 600 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 601 } 602 603 if (Constant *KC = getKnownConstant(Res, WantInteger)) 604 Result.push_back(std::make_pair(KC, PredBB)); 605 } 606 607 return !Result.empty(); 608 } 609 610 // If comparing a live-in value against a constant, see if we know the 611 // live-in value on any predecessors. 612 if (isa<Constant>(Cmp->getOperand(1)) && !Cmp->getType()->isVectorTy()) { 613 Constant *CmpConst = cast<Constant>(Cmp->getOperand(1)); 614 615 if (!isa<Instruction>(Cmp->getOperand(0)) || 616 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 617 for (BasicBlock *P : predecessors(BB)) { 618 // If the value is known by LazyValueInfo to be a constant in a 619 // predecessor, use that information to try to thread this block. 620 LazyValueInfo::Tristate Res = 621 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 622 CmpConst, P, BB, CxtI ? CxtI : Cmp); 623 if (Res == LazyValueInfo::Unknown) 624 continue; 625 626 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 627 Result.push_back(std::make_pair(ResC, P)); 628 } 629 630 return !Result.empty(); 631 } 632 633 // Try to find a constant value for the LHS of a comparison, 634 // and evaluate it statically if we can. 635 PredValueInfoTy LHSVals; 636 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 637 WantInteger, CxtI); 638 639 for (const auto &LHSVal : LHSVals) { 640 Constant *V = LHSVal.first; 641 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 642 V, CmpConst); 643 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 644 Result.push_back(std::make_pair(KC, LHSVal.second)); 645 } 646 647 return !Result.empty(); 648 } 649 } 650 651 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 652 // Handle select instructions where at least one operand is a known constant 653 // and we can figure out the condition value for any predecessor block. 654 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 655 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 656 PredValueInfoTy Conds; 657 if ((TrueVal || FalseVal) && 658 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 659 WantInteger, CxtI)) { 660 for (auto &C : Conds) { 661 Constant *Cond = C.first; 662 663 // Figure out what value to use for the condition. 664 bool KnownCond; 665 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 666 // A known boolean. 667 KnownCond = CI->isOne(); 668 } else { 669 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 670 // Either operand will do, so be sure to pick the one that's a known 671 // constant. 672 // FIXME: Do this more cleverly if both values are known constants? 673 KnownCond = (TrueVal != nullptr); 674 } 675 676 // See if the select has a known constant value for this predecessor. 677 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 678 Result.push_back(std::make_pair(Val, C.second)); 679 } 680 681 return !Result.empty(); 682 } 683 } 684 685 // If all else fails, see if LVI can figure out a constant value for us. 686 Constant *CI = LVI->getConstant(V, BB, CxtI); 687 if (Constant *KC = getKnownConstant(CI, Preference)) { 688 for (BasicBlock *Pred : predecessors(BB)) 689 Result.push_back(std::make_pair(KC, Pred)); 690 } 691 692 return !Result.empty(); 693 } 694 695 696 697 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 698 /// in an undefined jump, decide which block is best to revector to. 699 /// 700 /// Since we can pick an arbitrary destination, we pick the successor with the 701 /// fewest predecessors. This should reduce the in-degree of the others. 702 /// 703 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 704 TerminatorInst *BBTerm = BB->getTerminator(); 705 unsigned MinSucc = 0; 706 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 707 // Compute the successor with the minimum number of predecessors. 708 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 709 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 710 TestBB = BBTerm->getSuccessor(i); 711 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 712 if (NumPreds < MinNumPreds) { 713 MinSucc = i; 714 MinNumPreds = NumPreds; 715 } 716 } 717 718 return MinSucc; 719 } 720 721 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 722 if (!BB->hasAddressTaken()) return false; 723 724 // If the block has its address taken, it may be a tree of dead constants 725 // hanging off of it. These shouldn't keep the block alive. 726 BlockAddress *BA = BlockAddress::get(BB); 727 BA->removeDeadConstantUsers(); 728 return !BA->use_empty(); 729 } 730 731 /// ProcessBlock - If there are any predecessors whose control can be threaded 732 /// through to a successor, transform them now. 733 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 734 // If the block is trivially dead, just return and let the caller nuke it. 735 // This simplifies other transformations. 736 if (pred_empty(BB) && 737 BB != &BB->getParent()->getEntryBlock()) 738 return false; 739 740 // If this block has a single predecessor, and if that pred has a single 741 // successor, merge the blocks. This encourages recursive jump threading 742 // because now the condition in this block can be threaded through 743 // predecessors of our predecessor block. 744 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 745 const TerminatorInst *TI = SinglePred->getTerminator(); 746 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 747 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 748 // If SinglePred was a loop header, BB becomes one. 749 if (LoopHeaders.erase(SinglePred)) 750 LoopHeaders.insert(BB); 751 752 LVI->eraseBlock(SinglePred); 753 MergeBasicBlockIntoOnlyPred(BB); 754 755 return true; 756 } 757 } 758 759 if (TryToUnfoldSelectInCurrBB(BB)) 760 return true; 761 762 // Look if we can propagate guards to predecessors. 763 if (HasGuards && ProcessGuards(BB)) 764 return true; 765 766 // What kind of constant we're looking for. 767 ConstantPreference Preference = WantInteger; 768 769 // Look to see if the terminator is a conditional branch, switch or indirect 770 // branch, if not we can't thread it. 771 Value *Condition; 772 Instruction *Terminator = BB->getTerminator(); 773 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 774 // Can't thread an unconditional jump. 775 if (BI->isUnconditional()) return false; 776 Condition = BI->getCondition(); 777 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 778 Condition = SI->getCondition(); 779 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 780 // Can't thread indirect branch with no successors. 781 if (IB->getNumSuccessors() == 0) return false; 782 Condition = IB->getAddress()->stripPointerCasts(); 783 Preference = WantBlockAddress; 784 } else { 785 return false; // Must be an invoke. 786 } 787 788 // Run constant folding to see if we can reduce the condition to a simple 789 // constant. 790 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 791 Value *SimpleVal = 792 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 793 if (SimpleVal) { 794 I->replaceAllUsesWith(SimpleVal); 795 if (isInstructionTriviallyDead(I, TLI)) 796 I->eraseFromParent(); 797 Condition = SimpleVal; 798 } 799 } 800 801 // If the terminator is branching on an undef, we can pick any of the 802 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 803 if (isa<UndefValue>(Condition)) { 804 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 805 806 // Fold the branch/switch. 807 TerminatorInst *BBTerm = BB->getTerminator(); 808 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 809 if (i == BestSucc) continue; 810 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 811 } 812 813 DEBUG(dbgs() << " In block '" << BB->getName() 814 << "' folding undef terminator: " << *BBTerm << '\n'); 815 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 816 BBTerm->eraseFromParent(); 817 return true; 818 } 819 820 // If the terminator of this block is branching on a constant, simplify the 821 // terminator to an unconditional branch. This can occur due to threading in 822 // other blocks. 823 if (getKnownConstant(Condition, Preference)) { 824 DEBUG(dbgs() << " In block '" << BB->getName() 825 << "' folding terminator: " << *BB->getTerminator() << '\n'); 826 ++NumFolds; 827 ConstantFoldTerminator(BB, true); 828 return true; 829 } 830 831 Instruction *CondInst = dyn_cast<Instruction>(Condition); 832 833 // All the rest of our checks depend on the condition being an instruction. 834 if (!CondInst) { 835 // FIXME: Unify this with code below. 836 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 837 return true; 838 return false; 839 } 840 841 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 842 // If we're branching on a conditional, LVI might be able to determine 843 // it's value at the branch instruction. We only handle comparisons 844 // against a constant at this time. 845 // TODO: This should be extended to handle switches as well. 846 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 847 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 848 if (CondBr && CondConst) { 849 // We should have returned as soon as we turn a conditional branch to 850 // unconditional. Because its no longer interesting as far as jump 851 // threading is concerned. 852 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 853 854 LazyValueInfo::Tristate Ret = 855 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 856 CondConst, CondBr); 857 if (Ret != LazyValueInfo::Unknown) { 858 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 859 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 860 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 861 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 862 CondBr->eraseFromParent(); 863 if (CondCmp->use_empty()) 864 CondCmp->eraseFromParent(); 865 // We can safely replace *some* uses of the CondInst if it has 866 // exactly one value as returned by LVI. RAUW is incorrect in the 867 // presence of guards and assumes, that have the `Cond` as the use. This 868 // is because we use the guards/assume to reason about the `Cond` value 869 // at the end of block, but RAUW unconditionally replaces all uses 870 // including the guards/assumes themselves and the uses before the 871 // guard/assume. 872 else if (CondCmp->getParent() == BB) { 873 auto *CI = Ret == LazyValueInfo::True ? 874 ConstantInt::getTrue(CondCmp->getType()) : 875 ConstantInt::getFalse(CondCmp->getType()); 876 ReplaceFoldableUses(CondCmp, CI); 877 } 878 return true; 879 } 880 881 // We did not manage to simplify this branch, try to see whether 882 // CondCmp depends on a known phi-select pattern. 883 if (TryToUnfoldSelect(CondCmp, BB)) 884 return true; 885 } 886 } 887 888 // Check for some cases that are worth simplifying. Right now we want to look 889 // for loads that are used by a switch or by the condition for the branch. If 890 // we see one, check to see if it's partially redundant. If so, insert a PHI 891 // which can then be used to thread the values. 892 // 893 Value *SimplifyValue = CondInst; 894 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 895 if (isa<Constant>(CondCmp->getOperand(1))) 896 SimplifyValue = CondCmp->getOperand(0); 897 898 // TODO: There are other places where load PRE would be profitable, such as 899 // more complex comparisons. 900 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 901 if (SimplifyPartiallyRedundantLoad(LI)) 902 return true; 903 904 // Handle a variety of cases where we are branching on something derived from 905 // a PHI node in the current block. If we can prove that any predecessors 906 // compute a predictable value based on a PHI node, thread those predecessors. 907 // 908 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 909 return true; 910 911 // If this is an otherwise-unfoldable branch on a phi node in the current 912 // block, see if we can simplify. 913 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 914 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 915 return ProcessBranchOnPHI(PN); 916 917 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 918 if (CondInst->getOpcode() == Instruction::Xor && 919 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 920 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 921 922 // Search for a stronger dominating condition that can be used to simplify a 923 // conditional branch leaving BB. 924 if (ProcessImpliedCondition(BB)) 925 return true; 926 927 return false; 928 } 929 930 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 931 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 932 if (!BI || !BI->isConditional()) 933 return false; 934 935 Value *Cond = BI->getCondition(); 936 BasicBlock *CurrentBB = BB; 937 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 938 unsigned Iter = 0; 939 940 auto &DL = BB->getModule()->getDataLayout(); 941 942 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 943 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 944 if (!PBI || !PBI->isConditional()) 945 return false; 946 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 947 return false; 948 949 bool FalseDest = PBI->getSuccessor(1) == CurrentBB; 950 Optional<bool> Implication = 951 isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest); 952 if (Implication) { 953 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 954 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 955 BI->eraseFromParent(); 956 return true; 957 } 958 CurrentBB = CurrentPred; 959 CurrentPred = CurrentBB->getSinglePredecessor(); 960 } 961 962 return false; 963 } 964 965 /// Return true if Op is an instruction defined in the given block. 966 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 967 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 968 if (OpInst->getParent() == BB) 969 return true; 970 return false; 971 } 972 973 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 974 /// load instruction, eliminate it by replacing it with a PHI node. This is an 975 /// important optimization that encourages jump threading, and needs to be run 976 /// interlaced with other jump threading tasks. 977 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 978 // Don't hack volatile and ordered loads. 979 if (!LI->isUnordered()) return false; 980 981 // If the load is defined in a block with exactly one predecessor, it can't be 982 // partially redundant. 983 BasicBlock *LoadBB = LI->getParent(); 984 if (LoadBB->getSinglePredecessor()) 985 return false; 986 987 // If the load is defined in an EH pad, it can't be partially redundant, 988 // because the edges between the invoke and the EH pad cannot have other 989 // instructions between them. 990 if (LoadBB->isEHPad()) 991 return false; 992 993 Value *LoadedPtr = LI->getOperand(0); 994 995 // If the loaded operand is defined in the LoadBB and its not a phi, 996 // it can't be available in predecessors. 997 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 998 return false; 999 1000 // Scan a few instructions up from the load, to see if it is obviously live at 1001 // the entry to its block. 1002 BasicBlock::iterator BBIt(LI); 1003 bool IsLoadCSE; 1004 if (Value *AvailableVal = FindAvailableLoadedValue( 1005 LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1006 // If the value of the load is locally available within the block, just use 1007 // it. This frequently occurs for reg2mem'd allocas. 1008 1009 if (IsLoadCSE) { 1010 LoadInst *NLI = cast<LoadInst>(AvailableVal); 1011 combineMetadataForCSE(NLI, LI); 1012 }; 1013 1014 // If the returned value is the load itself, replace with an undef. This can 1015 // only happen in dead loops. 1016 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 1017 if (AvailableVal->getType() != LI->getType()) 1018 AvailableVal = 1019 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 1020 LI->replaceAllUsesWith(AvailableVal); 1021 LI->eraseFromParent(); 1022 return true; 1023 } 1024 1025 // Otherwise, if we scanned the whole block and got to the top of the block, 1026 // we know the block is locally transparent to the load. If not, something 1027 // might clobber its value. 1028 if (BBIt != LoadBB->begin()) 1029 return false; 1030 1031 // If all of the loads and stores that feed the value have the same AA tags, 1032 // then we can propagate them onto any newly inserted loads. 1033 AAMDNodes AATags; 1034 LI->getAAMetadata(AATags); 1035 1036 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1037 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 1038 AvailablePredsTy AvailablePreds; 1039 BasicBlock *OneUnavailablePred = nullptr; 1040 SmallVector<LoadInst*, 8> CSELoads; 1041 1042 // If we got here, the loaded value is transparent through to the start of the 1043 // block. Check to see if it is available in any of the predecessor blocks. 1044 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1045 // If we already scanned this predecessor, skip it. 1046 if (!PredsScanned.insert(PredBB).second) 1047 continue; 1048 1049 BBIt = PredBB->end(); 1050 unsigned NumScanedInst = 0; 1051 Value *PredAvailable = nullptr; 1052 // NOTE: We don't CSE load that is volatile or anything stronger than 1053 // unordered, that should have been checked when we entered the function. 1054 assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads"); 1055 // If this is a load on a phi pointer, phi-translate it and search 1056 // for available load/store to the pointer in predecessors. 1057 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1058 PredAvailable = FindAvailablePtrLoadStore( 1059 Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1060 AA, &IsLoadCSE, &NumScanedInst); 1061 1062 // If PredBB has a single predecessor, continue scanning through the 1063 // single precessor. 1064 BasicBlock *SinglePredBB = PredBB; 1065 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1066 NumScanedInst < DefMaxInstsToScan) { 1067 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1068 if (SinglePredBB) { 1069 BBIt = SinglePredBB->end(); 1070 PredAvailable = FindAvailablePtrLoadStore( 1071 Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt, 1072 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1073 &NumScanedInst); 1074 } 1075 } 1076 1077 if (!PredAvailable) { 1078 OneUnavailablePred = PredBB; 1079 continue; 1080 } 1081 1082 if (IsLoadCSE) 1083 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1084 1085 // If so, this load is partially redundant. Remember this info so that we 1086 // can create a PHI node. 1087 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1088 } 1089 1090 // If the loaded value isn't available in any predecessor, it isn't partially 1091 // redundant. 1092 if (AvailablePreds.empty()) return false; 1093 1094 // Okay, the loaded value is available in at least one (and maybe all!) 1095 // predecessors. If the value is unavailable in more than one unique 1096 // predecessor, we want to insert a merge block for those common predecessors. 1097 // This ensures that we only have to insert one reload, thus not increasing 1098 // code size. 1099 BasicBlock *UnavailablePred = nullptr; 1100 1101 // If there is exactly one predecessor where the value is unavailable, the 1102 // already computed 'OneUnavailablePred' block is it. If it ends in an 1103 // unconditional branch, we know that it isn't a critical edge. 1104 if (PredsScanned.size() == AvailablePreds.size()+1 && 1105 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1106 UnavailablePred = OneUnavailablePred; 1107 } else if (PredsScanned.size() != AvailablePreds.size()) { 1108 // Otherwise, we had multiple unavailable predecessors or we had a critical 1109 // edge from the one. 1110 SmallVector<BasicBlock*, 8> PredsToSplit; 1111 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1112 1113 for (const auto &AvailablePred : AvailablePreds) 1114 AvailablePredSet.insert(AvailablePred.first); 1115 1116 // Add all the unavailable predecessors to the PredsToSplit list. 1117 for (BasicBlock *P : predecessors(LoadBB)) { 1118 // If the predecessor is an indirect goto, we can't split the edge. 1119 if (isa<IndirectBrInst>(P->getTerminator())) 1120 return false; 1121 1122 if (!AvailablePredSet.count(P)) 1123 PredsToSplit.push_back(P); 1124 } 1125 1126 // Split them out to their own block. 1127 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1128 } 1129 1130 // If the value isn't available in all predecessors, then there will be 1131 // exactly one where it isn't available. Insert a load on that edge and add 1132 // it to the AvailablePreds list. 1133 if (UnavailablePred) { 1134 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1135 "Can't handle critical edge here!"); 1136 LoadInst *NewVal = new LoadInst( 1137 LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1138 LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(), 1139 LI->getSynchScope(), UnavailablePred->getTerminator()); 1140 NewVal->setDebugLoc(LI->getDebugLoc()); 1141 if (AATags) 1142 NewVal->setAAMetadata(AATags); 1143 1144 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1145 } 1146 1147 // Now we know that each predecessor of this block has a value in 1148 // AvailablePreds, sort them for efficient access as we're walking the preds. 1149 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1150 1151 // Create a PHI node at the start of the block for the PRE'd load value. 1152 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1153 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1154 &LoadBB->front()); 1155 PN->takeName(LI); 1156 PN->setDebugLoc(LI->getDebugLoc()); 1157 1158 // Insert new entries into the PHI for each predecessor. A single block may 1159 // have multiple entries here. 1160 for (pred_iterator PI = PB; PI != PE; ++PI) { 1161 BasicBlock *P = *PI; 1162 AvailablePredsTy::iterator I = 1163 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1164 std::make_pair(P, (Value*)nullptr)); 1165 1166 assert(I != AvailablePreds.end() && I->first == P && 1167 "Didn't find entry for predecessor!"); 1168 1169 // If we have an available predecessor but it requires casting, insert the 1170 // cast in the predecessor and use the cast. Note that we have to update the 1171 // AvailablePreds vector as we go so that all of the PHI entries for this 1172 // predecessor use the same bitcast. 1173 Value *&PredV = I->second; 1174 if (PredV->getType() != LI->getType()) 1175 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1176 P->getTerminator()); 1177 1178 PN->addIncoming(PredV, I->first); 1179 } 1180 1181 for (LoadInst *PredLI : CSELoads) { 1182 combineMetadataForCSE(PredLI, LI); 1183 } 1184 1185 LI->replaceAllUsesWith(PN); 1186 LI->eraseFromParent(); 1187 1188 return true; 1189 } 1190 1191 /// FindMostPopularDest - The specified list contains multiple possible 1192 /// threadable destinations. Pick the one that occurs the most frequently in 1193 /// the list. 1194 static BasicBlock * 1195 FindMostPopularDest(BasicBlock *BB, 1196 const SmallVectorImpl<std::pair<BasicBlock*, 1197 BasicBlock*> > &PredToDestList) { 1198 assert(!PredToDestList.empty()); 1199 1200 // Determine popularity. If there are multiple possible destinations, we 1201 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1202 // blocks with known and real destinations to threading undef. We'll handle 1203 // them later if interesting. 1204 DenseMap<BasicBlock*, unsigned> DestPopularity; 1205 for (const auto &PredToDest : PredToDestList) 1206 if (PredToDest.second) 1207 DestPopularity[PredToDest.second]++; 1208 1209 // Find the most popular dest. 1210 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1211 BasicBlock *MostPopularDest = DPI->first; 1212 unsigned Popularity = DPI->second; 1213 SmallVector<BasicBlock*, 4> SamePopularity; 1214 1215 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1216 // If the popularity of this entry isn't higher than the popularity we've 1217 // seen so far, ignore it. 1218 if (DPI->second < Popularity) 1219 ; // ignore. 1220 else if (DPI->second == Popularity) { 1221 // If it is the same as what we've seen so far, keep track of it. 1222 SamePopularity.push_back(DPI->first); 1223 } else { 1224 // If it is more popular, remember it. 1225 SamePopularity.clear(); 1226 MostPopularDest = DPI->first; 1227 Popularity = DPI->second; 1228 } 1229 } 1230 1231 // Okay, now we know the most popular destination. If there is more than one 1232 // destination, we need to determine one. This is arbitrary, but we need 1233 // to make a deterministic decision. Pick the first one that appears in the 1234 // successor list. 1235 if (!SamePopularity.empty()) { 1236 SamePopularity.push_back(MostPopularDest); 1237 TerminatorInst *TI = BB->getTerminator(); 1238 for (unsigned i = 0; ; ++i) { 1239 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1240 1241 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1242 continue; 1243 1244 MostPopularDest = TI->getSuccessor(i); 1245 break; 1246 } 1247 } 1248 1249 // Okay, we have finally picked the most popular destination. 1250 return MostPopularDest; 1251 } 1252 1253 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1254 ConstantPreference Preference, 1255 Instruction *CxtI) { 1256 // If threading this would thread across a loop header, don't even try to 1257 // thread the edge. 1258 if (LoopHeaders.count(BB)) 1259 return false; 1260 1261 PredValueInfoTy PredValues; 1262 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1263 return false; 1264 1265 assert(!PredValues.empty() && 1266 "ComputeValueKnownInPredecessors returned true with no values"); 1267 1268 DEBUG(dbgs() << "IN BB: " << *BB; 1269 for (const auto &PredValue : PredValues) { 1270 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1271 << *PredValue.first 1272 << " for pred '" << PredValue.second->getName() << "'.\n"; 1273 }); 1274 1275 // Decide what we want to thread through. Convert our list of known values to 1276 // a list of known destinations for each pred. This also discards duplicate 1277 // predecessors and keeps track of the undefined inputs (which are represented 1278 // as a null dest in the PredToDestList). 1279 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1280 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1281 1282 BasicBlock *OnlyDest = nullptr; 1283 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1284 Constant *OnlyVal = nullptr; 1285 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1286 1287 unsigned PredWithKnownDest = 0; 1288 for (const auto &PredValue : PredValues) { 1289 BasicBlock *Pred = PredValue.second; 1290 if (!SeenPreds.insert(Pred).second) 1291 continue; // Duplicate predecessor entry. 1292 1293 Constant *Val = PredValue.first; 1294 1295 BasicBlock *DestBB; 1296 if (isa<UndefValue>(Val)) 1297 DestBB = nullptr; 1298 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1299 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1300 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1301 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1302 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1303 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1304 } else { 1305 assert(isa<IndirectBrInst>(BB->getTerminator()) 1306 && "Unexpected terminator"); 1307 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1308 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1309 } 1310 1311 // If we have exactly one destination, remember it for efficiency below. 1312 if (PredToDestList.empty()) { 1313 OnlyDest = DestBB; 1314 OnlyVal = Val; 1315 } else { 1316 if (OnlyDest != DestBB) 1317 OnlyDest = MultipleDestSentinel; 1318 // It possible we have same destination, but different value, e.g. default 1319 // case in switchinst. 1320 if (Val != OnlyVal) 1321 OnlyVal = MultipleVal; 1322 } 1323 1324 // We know where this predecessor is going. 1325 ++PredWithKnownDest; 1326 1327 // If the predecessor ends with an indirect goto, we can't change its 1328 // destination. 1329 if (isa<IndirectBrInst>(Pred->getTerminator())) 1330 continue; 1331 1332 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1333 } 1334 1335 // If all edges were unthreadable, we fail. 1336 if (PredToDestList.empty()) 1337 return false; 1338 1339 // If all the predecessors go to a single known successor, we want to fold, 1340 // not thread. By doing so, we do not need to duplicate the current block and 1341 // also miss potential opportunities in case we dont/cant duplicate. 1342 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1343 if (PredWithKnownDest == 1344 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1345 bool SeenFirstBranchToOnlyDest = false; 1346 for (BasicBlock *SuccBB : successors(BB)) { 1347 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) 1348 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1349 else 1350 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1351 } 1352 1353 // Finally update the terminator. 1354 TerminatorInst *Term = BB->getTerminator(); 1355 BranchInst::Create(OnlyDest, Term); 1356 Term->eraseFromParent(); 1357 1358 // If the condition is now dead due to the removal of the old terminator, 1359 // erase it. 1360 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1361 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1362 CondInst->eraseFromParent(); 1363 // We can safely replace *some* uses of the CondInst if it has 1364 // exactly one value as returned by LVI. RAUW is incorrect in the 1365 // presence of guards and assumes, that have the `Cond` as the use. This 1366 // is because we use the guards/assume to reason about the `Cond` value 1367 // at the end of block, but RAUW unconditionally replaces all uses 1368 // including the guards/assumes themselves and the uses before the 1369 // guard/assume. 1370 else if (OnlyVal && OnlyVal != MultipleVal && 1371 CondInst->getParent() == BB) 1372 ReplaceFoldableUses(CondInst, OnlyVal); 1373 } 1374 return true; 1375 } 1376 } 1377 1378 // Determine which is the most common successor. If we have many inputs and 1379 // this block is a switch, we want to start by threading the batch that goes 1380 // to the most popular destination first. If we only know about one 1381 // threadable destination (the common case) we can avoid this. 1382 BasicBlock *MostPopularDest = OnlyDest; 1383 1384 if (MostPopularDest == MultipleDestSentinel) 1385 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1386 1387 // Now that we know what the most popular destination is, factor all 1388 // predecessors that will jump to it into a single predecessor. 1389 SmallVector<BasicBlock*, 16> PredsToFactor; 1390 for (const auto &PredToDest : PredToDestList) 1391 if (PredToDest.second == MostPopularDest) { 1392 BasicBlock *Pred = PredToDest.first; 1393 1394 // This predecessor may be a switch or something else that has multiple 1395 // edges to the block. Factor each of these edges by listing them 1396 // according to # occurrences in PredsToFactor. 1397 for (BasicBlock *Succ : successors(Pred)) 1398 if (Succ == BB) 1399 PredsToFactor.push_back(Pred); 1400 } 1401 1402 // If the threadable edges are branching on an undefined value, we get to pick 1403 // the destination that these predecessors should get to. 1404 if (!MostPopularDest) 1405 MostPopularDest = BB->getTerminator()-> 1406 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1407 1408 // Ok, try to thread it! 1409 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1410 } 1411 1412 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1413 /// a PHI node in the current block. See if there are any simplifications we 1414 /// can do based on inputs to the phi node. 1415 /// 1416 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1417 BasicBlock *BB = PN->getParent(); 1418 1419 // TODO: We could make use of this to do it once for blocks with common PHI 1420 // values. 1421 SmallVector<BasicBlock*, 1> PredBBs; 1422 PredBBs.resize(1); 1423 1424 // If any of the predecessor blocks end in an unconditional branch, we can 1425 // *duplicate* the conditional branch into that block in order to further 1426 // encourage jump threading and to eliminate cases where we have branch on a 1427 // phi of an icmp (branch on icmp is much better). 1428 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1429 BasicBlock *PredBB = PN->getIncomingBlock(i); 1430 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1431 if (PredBr->isUnconditional()) { 1432 PredBBs[0] = PredBB; 1433 // Try to duplicate BB into PredBB. 1434 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1435 return true; 1436 } 1437 } 1438 1439 return false; 1440 } 1441 1442 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1443 /// a xor instruction in the current block. See if there are any 1444 /// simplifications we can do based on inputs to the xor. 1445 /// 1446 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1447 BasicBlock *BB = BO->getParent(); 1448 1449 // If either the LHS or RHS of the xor is a constant, don't do this 1450 // optimization. 1451 if (isa<ConstantInt>(BO->getOperand(0)) || 1452 isa<ConstantInt>(BO->getOperand(1))) 1453 return false; 1454 1455 // If the first instruction in BB isn't a phi, we won't be able to infer 1456 // anything special about any particular predecessor. 1457 if (!isa<PHINode>(BB->front())) 1458 return false; 1459 1460 // If this BB is a landing pad, we won't be able to split the edge into it. 1461 if (BB->isEHPad()) 1462 return false; 1463 1464 // If we have a xor as the branch input to this block, and we know that the 1465 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1466 // the condition into the predecessor and fix that value to true, saving some 1467 // logical ops on that path and encouraging other paths to simplify. 1468 // 1469 // This copies something like this: 1470 // 1471 // BB: 1472 // %X = phi i1 [1], [%X'] 1473 // %Y = icmp eq i32 %A, %B 1474 // %Z = xor i1 %X, %Y 1475 // br i1 %Z, ... 1476 // 1477 // Into: 1478 // BB': 1479 // %Y = icmp ne i32 %A, %B 1480 // br i1 %Y, ... 1481 1482 PredValueInfoTy XorOpValues; 1483 bool isLHS = true; 1484 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1485 WantInteger, BO)) { 1486 assert(XorOpValues.empty()); 1487 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1488 WantInteger, BO)) 1489 return false; 1490 isLHS = false; 1491 } 1492 1493 assert(!XorOpValues.empty() && 1494 "ComputeValueKnownInPredecessors returned true with no values"); 1495 1496 // Scan the information to see which is most popular: true or false. The 1497 // predecessors can be of the set true, false, or undef. 1498 unsigned NumTrue = 0, NumFalse = 0; 1499 for (const auto &XorOpValue : XorOpValues) { 1500 if (isa<UndefValue>(XorOpValue.first)) 1501 // Ignore undefs for the count. 1502 continue; 1503 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1504 ++NumFalse; 1505 else 1506 ++NumTrue; 1507 } 1508 1509 // Determine which value to split on, true, false, or undef if neither. 1510 ConstantInt *SplitVal = nullptr; 1511 if (NumTrue > NumFalse) 1512 SplitVal = ConstantInt::getTrue(BB->getContext()); 1513 else if (NumTrue != 0 || NumFalse != 0) 1514 SplitVal = ConstantInt::getFalse(BB->getContext()); 1515 1516 // Collect all of the blocks that this can be folded into so that we can 1517 // factor this once and clone it once. 1518 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1519 for (const auto &XorOpValue : XorOpValues) { 1520 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1521 continue; 1522 1523 BlocksToFoldInto.push_back(XorOpValue.second); 1524 } 1525 1526 // If we inferred a value for all of the predecessors, then duplication won't 1527 // help us. However, we can just replace the LHS or RHS with the constant. 1528 if (BlocksToFoldInto.size() == 1529 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1530 if (!SplitVal) { 1531 // If all preds provide undef, just nuke the xor, because it is undef too. 1532 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1533 BO->eraseFromParent(); 1534 } else if (SplitVal->isZero()) { 1535 // If all preds provide 0, replace the xor with the other input. 1536 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1537 BO->eraseFromParent(); 1538 } else { 1539 // If all preds provide 1, set the computed value to 1. 1540 BO->setOperand(!isLHS, SplitVal); 1541 } 1542 1543 return true; 1544 } 1545 1546 // Try to duplicate BB into PredBB. 1547 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1548 } 1549 1550 1551 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1552 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1553 /// NewPred using the entries from OldPred (suitably mapped). 1554 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1555 BasicBlock *OldPred, 1556 BasicBlock *NewPred, 1557 DenseMap<Instruction*, Value*> &ValueMap) { 1558 for (BasicBlock::iterator PNI = PHIBB->begin(); 1559 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1560 // Ok, we have a PHI node. Figure out what the incoming value was for the 1561 // DestBlock. 1562 Value *IV = PN->getIncomingValueForBlock(OldPred); 1563 1564 // Remap the value if necessary. 1565 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1566 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1567 if (I != ValueMap.end()) 1568 IV = I->second; 1569 } 1570 1571 PN->addIncoming(IV, NewPred); 1572 } 1573 } 1574 1575 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1576 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1577 /// across BB. Transform the IR to reflect this change. 1578 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1579 const SmallVectorImpl<BasicBlock *> &PredBBs, 1580 BasicBlock *SuccBB) { 1581 // If threading to the same block as we come from, we would infinite loop. 1582 if (SuccBB == BB) { 1583 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1584 << "' - would thread to self!\n"); 1585 return false; 1586 } 1587 1588 // If threading this would thread across a loop header, don't thread the edge. 1589 // See the comments above FindLoopHeaders for justifications and caveats. 1590 if (LoopHeaders.count(BB)) { 1591 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1592 << "' to dest BB '" << SuccBB->getName() 1593 << "' - it might create an irreducible loop!\n"); 1594 return false; 1595 } 1596 1597 unsigned JumpThreadCost = 1598 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1599 if (JumpThreadCost > BBDupThreshold) { 1600 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1601 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1602 return false; 1603 } 1604 1605 // And finally, do it! Start by factoring the predecessors if needed. 1606 BasicBlock *PredBB; 1607 if (PredBBs.size() == 1) 1608 PredBB = PredBBs[0]; 1609 else { 1610 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1611 << " common predecessors.\n"); 1612 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1613 } 1614 1615 // And finally, do it! 1616 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1617 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1618 << ", across block:\n " 1619 << *BB << "\n"); 1620 1621 LVI->threadEdge(PredBB, BB, SuccBB); 1622 1623 // We are going to have to map operands from the original BB block to the new 1624 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1625 // account for entry from PredBB. 1626 DenseMap<Instruction*, Value*> ValueMapping; 1627 1628 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1629 BB->getName()+".thread", 1630 BB->getParent(), BB); 1631 NewBB->moveAfter(PredBB); 1632 1633 // Set the block frequency of NewBB. 1634 if (HasProfileData) { 1635 auto NewBBFreq = 1636 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1637 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1638 } 1639 1640 BasicBlock::iterator BI = BB->begin(); 1641 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1642 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1643 1644 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1645 // mapping and using it to remap operands in the cloned instructions. 1646 for (; !isa<TerminatorInst>(BI); ++BI) { 1647 Instruction *New = BI->clone(); 1648 New->setName(BI->getName()); 1649 NewBB->getInstList().push_back(New); 1650 ValueMapping[&*BI] = New; 1651 1652 // Remap operands to patch up intra-block references. 1653 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1654 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1655 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1656 if (I != ValueMapping.end()) 1657 New->setOperand(i, I->second); 1658 } 1659 } 1660 1661 // We didn't copy the terminator from BB over to NewBB, because there is now 1662 // an unconditional jump to SuccBB. Insert the unconditional jump. 1663 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1664 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1665 1666 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1667 // PHI nodes for NewBB now. 1668 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1669 1670 // If there were values defined in BB that are used outside the block, then we 1671 // now have to update all uses of the value to use either the original value, 1672 // the cloned value, or some PHI derived value. This can require arbitrary 1673 // PHI insertion, of which we are prepared to do, clean these up now. 1674 SSAUpdater SSAUpdate; 1675 SmallVector<Use*, 16> UsesToRename; 1676 for (Instruction &I : *BB) { 1677 // Scan all uses of this instruction to see if it is used outside of its 1678 // block, and if so, record them in UsesToRename. 1679 for (Use &U : I.uses()) { 1680 Instruction *User = cast<Instruction>(U.getUser()); 1681 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1682 if (UserPN->getIncomingBlock(U) == BB) 1683 continue; 1684 } else if (User->getParent() == BB) 1685 continue; 1686 1687 UsesToRename.push_back(&U); 1688 } 1689 1690 // If there are no uses outside the block, we're done with this instruction. 1691 if (UsesToRename.empty()) 1692 continue; 1693 1694 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1695 1696 // We found a use of I outside of BB. Rename all uses of I that are outside 1697 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1698 // with the two values we know. 1699 SSAUpdate.Initialize(I.getType(), I.getName()); 1700 SSAUpdate.AddAvailableValue(BB, &I); 1701 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1702 1703 while (!UsesToRename.empty()) 1704 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1705 DEBUG(dbgs() << "\n"); 1706 } 1707 1708 1709 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1710 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1711 // us to simplify any PHI nodes in BB. 1712 TerminatorInst *PredTerm = PredBB->getTerminator(); 1713 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1714 if (PredTerm->getSuccessor(i) == BB) { 1715 BB->removePredecessor(PredBB, true); 1716 PredTerm->setSuccessor(i, NewBB); 1717 } 1718 1719 // At this point, the IR is fully up to date and consistent. Do a quick scan 1720 // over the new instructions and zap any that are constants or dead. This 1721 // frequently happens because of phi translation. 1722 SimplifyInstructionsInBlock(NewBB, TLI); 1723 1724 // Update the edge weight from BB to SuccBB, which should be less than before. 1725 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1726 1727 // Threaded an edge! 1728 ++NumThreads; 1729 return true; 1730 } 1731 1732 /// Create a new basic block that will be the predecessor of BB and successor of 1733 /// all blocks in Preds. When profile data is available, update the frequency of 1734 /// this new block. 1735 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1736 ArrayRef<BasicBlock *> Preds, 1737 const char *Suffix) { 1738 // Collect the frequencies of all predecessors of BB, which will be used to 1739 // update the edge weight on BB->SuccBB. 1740 BlockFrequency PredBBFreq(0); 1741 if (HasProfileData) 1742 for (auto Pred : Preds) 1743 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1744 1745 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1746 1747 // Set the block frequency of the newly created PredBB, which is the sum of 1748 // frequencies of Preds. 1749 if (HasProfileData) 1750 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1751 return PredBB; 1752 } 1753 1754 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 1755 const TerminatorInst *TI = BB->getTerminator(); 1756 assert(TI->getNumSuccessors() > 1 && "not a split"); 1757 1758 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 1759 if (!WeightsNode) 1760 return false; 1761 1762 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 1763 if (MDName->getString() != "branch_weights") 1764 return false; 1765 1766 // Ensure there are weights for all of the successors. Note that the first 1767 // operand to the metadata node is a name, not a weight. 1768 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 1769 } 1770 1771 /// Update the block frequency of BB and branch weight and the metadata on the 1772 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1773 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1774 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1775 BasicBlock *BB, 1776 BasicBlock *NewBB, 1777 BasicBlock *SuccBB) { 1778 if (!HasProfileData) 1779 return; 1780 1781 assert(BFI && BPI && "BFI & BPI should have been created here"); 1782 1783 // As the edge from PredBB to BB is deleted, we have to update the block 1784 // frequency of BB. 1785 auto BBOrigFreq = BFI->getBlockFreq(BB); 1786 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1787 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1788 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1789 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1790 1791 // Collect updated outgoing edges' frequencies from BB and use them to update 1792 // edge probabilities. 1793 SmallVector<uint64_t, 4> BBSuccFreq; 1794 for (BasicBlock *Succ : successors(BB)) { 1795 auto SuccFreq = (Succ == SuccBB) 1796 ? BB2SuccBBFreq - NewBBFreq 1797 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1798 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1799 } 1800 1801 uint64_t MaxBBSuccFreq = 1802 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1803 1804 SmallVector<BranchProbability, 4> BBSuccProbs; 1805 if (MaxBBSuccFreq == 0) 1806 BBSuccProbs.assign(BBSuccFreq.size(), 1807 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1808 else { 1809 for (uint64_t Freq : BBSuccFreq) 1810 BBSuccProbs.push_back( 1811 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1812 // Normalize edge probabilities so that they sum up to one. 1813 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1814 BBSuccProbs.end()); 1815 } 1816 1817 // Update edge probabilities in BPI. 1818 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1819 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1820 1821 // Update the profile metadata as well. 1822 // 1823 // Don't do this if the profile of the transformed blocks was statically 1824 // estimated. (This could occur despite the function having an entry 1825 // frequency in completely cold parts of the CFG.) 1826 // 1827 // In this case we don't want to suggest to subsequent passes that the 1828 // calculated weights are fully consistent. Consider this graph: 1829 // 1830 // check_1 1831 // 50% / | 1832 // eq_1 | 50% 1833 // \ | 1834 // check_2 1835 // 50% / | 1836 // eq_2 | 50% 1837 // \ | 1838 // check_3 1839 // 50% / | 1840 // eq_3 | 50% 1841 // \ | 1842 // 1843 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 1844 // the overall probabilities are inconsistent; the total probability that the 1845 // value is either 1, 2 or 3 is 150%. 1846 // 1847 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 1848 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 1849 // the loop exit edge. Then based solely on static estimation we would assume 1850 // the loop was extremely hot. 1851 // 1852 // FIXME this locally as well so that BPI and BFI are consistent as well. We 1853 // shouldn't make edges extremely likely or unlikely based solely on static 1854 // estimation. 1855 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 1856 SmallVector<uint32_t, 4> Weights; 1857 for (auto Prob : BBSuccProbs) 1858 Weights.push_back(Prob.getNumerator()); 1859 1860 auto TI = BB->getTerminator(); 1861 TI->setMetadata( 1862 LLVMContext::MD_prof, 1863 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1864 } 1865 } 1866 1867 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1868 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1869 /// If we can duplicate the contents of BB up into PredBB do so now, this 1870 /// improves the odds that the branch will be on an analyzable instruction like 1871 /// a compare. 1872 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 1873 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 1874 assert(!PredBBs.empty() && "Can't handle an empty set"); 1875 1876 // If BB is a loop header, then duplicating this block outside the loop would 1877 // cause us to transform this into an irreducible loop, don't do this. 1878 // See the comments above FindLoopHeaders for justifications and caveats. 1879 if (LoopHeaders.count(BB)) { 1880 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1881 << "' into predecessor block '" << PredBBs[0]->getName() 1882 << "' - it might create an irreducible loop!\n"); 1883 return false; 1884 } 1885 1886 unsigned DuplicationCost = 1887 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1888 if (DuplicationCost > BBDupThreshold) { 1889 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1890 << "' - Cost is too high: " << DuplicationCost << "\n"); 1891 return false; 1892 } 1893 1894 // And finally, do it! Start by factoring the predecessors if needed. 1895 BasicBlock *PredBB; 1896 if (PredBBs.size() == 1) 1897 PredBB = PredBBs[0]; 1898 else { 1899 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1900 << " common predecessors.\n"); 1901 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1902 } 1903 1904 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1905 // of PredBB. 1906 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1907 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1908 << DuplicationCost << " block is:" << *BB << "\n"); 1909 1910 // Unless PredBB ends with an unconditional branch, split the edge so that we 1911 // can just clone the bits from BB into the end of the new PredBB. 1912 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1913 1914 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1915 PredBB = SplitEdge(PredBB, BB); 1916 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1917 } 1918 1919 // We are going to have to map operands from the original BB block into the 1920 // PredBB block. Evaluate PHI nodes in BB. 1921 DenseMap<Instruction*, Value*> ValueMapping; 1922 1923 BasicBlock::iterator BI = BB->begin(); 1924 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1925 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1926 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1927 // mapping and using it to remap operands in the cloned instructions. 1928 for (; BI != BB->end(); ++BI) { 1929 Instruction *New = BI->clone(); 1930 1931 // Remap operands to patch up intra-block references. 1932 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1933 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1934 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1935 if (I != ValueMapping.end()) 1936 New->setOperand(i, I->second); 1937 } 1938 1939 // If this instruction can be simplified after the operands are updated, 1940 // just use the simplified value instead. This frequently happens due to 1941 // phi translation. 1942 if (Value *IV = SimplifyInstruction( 1943 New, 1944 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 1945 ValueMapping[&*BI] = IV; 1946 if (!New->mayHaveSideEffects()) { 1947 New->deleteValue(); 1948 New = nullptr; 1949 } 1950 } else { 1951 ValueMapping[&*BI] = New; 1952 } 1953 if (New) { 1954 // Otherwise, insert the new instruction into the block. 1955 New->setName(BI->getName()); 1956 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1957 } 1958 } 1959 1960 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1961 // add entries to the PHI nodes for branch from PredBB now. 1962 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1963 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1964 ValueMapping); 1965 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1966 ValueMapping); 1967 1968 // If there were values defined in BB that are used outside the block, then we 1969 // now have to update all uses of the value to use either the original value, 1970 // the cloned value, or some PHI derived value. This can require arbitrary 1971 // PHI insertion, of which we are prepared to do, clean these up now. 1972 SSAUpdater SSAUpdate; 1973 SmallVector<Use*, 16> UsesToRename; 1974 for (Instruction &I : *BB) { 1975 // Scan all uses of this instruction to see if it is used outside of its 1976 // block, and if so, record them in UsesToRename. 1977 for (Use &U : I.uses()) { 1978 Instruction *User = cast<Instruction>(U.getUser()); 1979 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1980 if (UserPN->getIncomingBlock(U) == BB) 1981 continue; 1982 } else if (User->getParent() == BB) 1983 continue; 1984 1985 UsesToRename.push_back(&U); 1986 } 1987 1988 // If there are no uses outside the block, we're done with this instruction. 1989 if (UsesToRename.empty()) 1990 continue; 1991 1992 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1993 1994 // We found a use of I outside of BB. Rename all uses of I that are outside 1995 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1996 // with the two values we know. 1997 SSAUpdate.Initialize(I.getType(), I.getName()); 1998 SSAUpdate.AddAvailableValue(BB, &I); 1999 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2000 2001 while (!UsesToRename.empty()) 2002 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2003 DEBUG(dbgs() << "\n"); 2004 } 2005 2006 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2007 // that we nuked. 2008 BB->removePredecessor(PredBB, true); 2009 2010 // Remove the unconditional branch at the end of the PredBB block. 2011 OldPredBranch->eraseFromParent(); 2012 2013 ++NumDupes; 2014 return true; 2015 } 2016 2017 /// TryToUnfoldSelect - Look for blocks of the form 2018 /// bb1: 2019 /// %a = select 2020 /// br bb2 2021 /// 2022 /// bb2: 2023 /// %p = phi [%a, %bb1] ... 2024 /// %c = icmp %p 2025 /// br i1 %c 2026 /// 2027 /// And expand the select into a branch structure if one of its arms allows %c 2028 /// to be folded. This later enables threading from bb1 over bb2. 2029 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2030 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2031 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2032 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2033 2034 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2035 CondLHS->getParent() != BB) 2036 return false; 2037 2038 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2039 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2040 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2041 2042 // Look if one of the incoming values is a select in the corresponding 2043 // predecessor. 2044 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2045 continue; 2046 2047 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2048 if (!PredTerm || !PredTerm->isUnconditional()) 2049 continue; 2050 2051 // Now check if one of the select values would allow us to constant fold the 2052 // terminator in BB. We don't do the transform if both sides fold, those 2053 // cases will be threaded in any case. 2054 LazyValueInfo::Tristate LHSFolds = 2055 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2056 CondRHS, Pred, BB, CondCmp); 2057 LazyValueInfo::Tristate RHSFolds = 2058 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2059 CondRHS, Pred, BB, CondCmp); 2060 if ((LHSFolds != LazyValueInfo::Unknown || 2061 RHSFolds != LazyValueInfo::Unknown) && 2062 LHSFolds != RHSFolds) { 2063 // Expand the select. 2064 // 2065 // Pred -- 2066 // | v 2067 // | NewBB 2068 // | | 2069 // |----- 2070 // v 2071 // BB 2072 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2073 BB->getParent(), BB); 2074 // Move the unconditional branch to NewBB. 2075 PredTerm->removeFromParent(); 2076 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2077 // Create a conditional branch and update PHI nodes. 2078 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2079 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2080 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2081 // The select is now dead. 2082 SI->eraseFromParent(); 2083 2084 // Update any other PHI nodes in BB. 2085 for (BasicBlock::iterator BI = BB->begin(); 2086 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2087 if (Phi != CondLHS) 2088 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2089 return true; 2090 } 2091 } 2092 return false; 2093 } 2094 2095 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 2096 /// bb: 2097 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2098 /// %s = select p, trueval, falseval 2099 /// 2100 /// And expand the select into a branch structure. This later enables 2101 /// jump-threading over bb in this pass. 2102 /// 2103 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2104 /// select if the associated PHI has at least one constant. If the unfolded 2105 /// select is not jump-threaded, it will be folded again in the later 2106 /// optimizations. 2107 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2108 // If threading this would thread across a loop header, don't thread the edge. 2109 // See the comments above FindLoopHeaders for justifications and caveats. 2110 if (LoopHeaders.count(BB)) 2111 return false; 2112 2113 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 2114 // condition of the Select and at least one of the incoming values is a 2115 // constant. 2116 for (BasicBlock::iterator BI = BB->begin(); 2117 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2118 unsigned NumPHIValues = PN->getNumIncomingValues(); 2119 if (NumPHIValues == 0 || !PN->hasOneUse()) 2120 continue; 2121 2122 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 2123 if (!SI || SI->getParent() != BB) 2124 continue; 2125 2126 Value *Cond = SI->getCondition(); 2127 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 2128 continue; 2129 2130 bool HasConst = false; 2131 for (unsigned i = 0; i != NumPHIValues; ++i) { 2132 if (PN->getIncomingBlock(i) == BB) 2133 return false; 2134 if (isa<ConstantInt>(PN->getIncomingValue(i))) 2135 HasConst = true; 2136 } 2137 2138 if (HasConst) { 2139 // Expand the select. 2140 TerminatorInst *Term = 2141 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2142 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2143 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2144 NewPN->addIncoming(SI->getFalseValue(), BB); 2145 SI->replaceAllUsesWith(NewPN); 2146 SI->eraseFromParent(); 2147 return true; 2148 } 2149 } 2150 2151 return false; 2152 } 2153 2154 /// Try to propagate a guard from the current BB into one of its predecessors 2155 /// in case if another branch of execution implies that the condition of this 2156 /// guard is always true. Currently we only process the simplest case that 2157 /// looks like: 2158 /// 2159 /// Start: 2160 /// %cond = ... 2161 /// br i1 %cond, label %T1, label %F1 2162 /// T1: 2163 /// br label %Merge 2164 /// F1: 2165 /// br label %Merge 2166 /// Merge: 2167 /// %condGuard = ... 2168 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2169 /// 2170 /// And cond either implies condGuard or !condGuard. In this case all the 2171 /// instructions before the guard can be duplicated in both branches, and the 2172 /// guard is then threaded to one of them. 2173 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2174 using namespace PatternMatch; 2175 // We only want to deal with two predecessors. 2176 BasicBlock *Pred1, *Pred2; 2177 auto PI = pred_begin(BB), PE = pred_end(BB); 2178 if (PI == PE) 2179 return false; 2180 Pred1 = *PI++; 2181 if (PI == PE) 2182 return false; 2183 Pred2 = *PI++; 2184 if (PI != PE) 2185 return false; 2186 if (Pred1 == Pred2) 2187 return false; 2188 2189 // Try to thread one of the guards of the block. 2190 // TODO: Look up deeper than to immediate predecessor? 2191 auto *Parent = Pred1->getSinglePredecessor(); 2192 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2193 return false; 2194 2195 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2196 for (auto &I : *BB) 2197 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2198 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2199 return true; 2200 2201 return false; 2202 } 2203 2204 /// Try to propagate the guard from BB which is the lower block of a diamond 2205 /// to one of its branches, in case if diamond's condition implies guard's 2206 /// condition. 2207 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2208 BranchInst *BI) { 2209 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2210 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2211 Value *GuardCond = Guard->getArgOperand(0); 2212 Value *BranchCond = BI->getCondition(); 2213 BasicBlock *TrueDest = BI->getSuccessor(0); 2214 BasicBlock *FalseDest = BI->getSuccessor(1); 2215 2216 auto &DL = BB->getModule()->getDataLayout(); 2217 bool TrueDestIsSafe = false; 2218 bool FalseDestIsSafe = false; 2219 2220 // True dest is safe if BranchCond => GuardCond. 2221 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2222 if (Impl && *Impl) 2223 TrueDestIsSafe = true; 2224 else { 2225 // False dest is safe if !BranchCond => GuardCond. 2226 Impl = 2227 isImpliedCondition(BranchCond, GuardCond, DL, /* InvertAPred */ true); 2228 if (Impl && *Impl) 2229 FalseDestIsSafe = true; 2230 } 2231 2232 if (!TrueDestIsSafe && !FalseDestIsSafe) 2233 return false; 2234 2235 BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2236 BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2237 2238 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2239 Instruction *AfterGuard = Guard->getNextNode(); 2240 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2241 if (Cost > BBDupThreshold) 2242 return false; 2243 // Duplicate all instructions before the guard and the guard itself to the 2244 // branch where implication is not proved. 2245 GuardedBlock = DuplicateInstructionsInSplitBetween( 2246 BB, GuardedBlock, AfterGuard, GuardedMapping); 2247 assert(GuardedBlock && "Could not create the guarded block?"); 2248 // Duplicate all instructions before the guard in the unguarded branch. 2249 // Since we have successfully duplicated the guarded block and this block 2250 // has fewer instructions, we expect it to succeed. 2251 UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock, 2252 Guard, UnguardedMapping); 2253 assert(UnguardedBlock && "Could not create the unguarded block?"); 2254 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2255 << GuardedBlock->getName() << "\n"); 2256 2257 // Some instructions before the guard may still have uses. For them, we need 2258 // to create Phi nodes merging their copies in both guarded and unguarded 2259 // branches. Those instructions that have no uses can be just removed. 2260 SmallVector<Instruction *, 4> ToRemove; 2261 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2262 if (!isa<PHINode>(&*BI)) 2263 ToRemove.push_back(&*BI); 2264 2265 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2266 assert(InsertionPoint && "Empty block?"); 2267 // Substitute with Phis & remove. 2268 for (auto *Inst : reverse(ToRemove)) { 2269 if (!Inst->use_empty()) { 2270 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2271 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2272 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2273 NewPN->insertBefore(InsertionPoint); 2274 Inst->replaceAllUsesWith(NewPN); 2275 } 2276 Inst->eraseFromParent(); 2277 } 2278 return true; 2279 } 2280