1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106 
107 static cl::opt<bool> JumpThreadingFreezeSelectCond(
108     "jump-threading-freeze-select-cond",
109     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
110     cl::Hidden);
111 
112 static cl::opt<bool> ThreadAcrossLoopHeaders(
113     "jump-threading-across-loop-headers",
114     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
115     cl::init(false), cl::Hidden);
116 
117 
118 namespace {
119 
120   /// This pass performs 'jump threading', which looks at blocks that have
121   /// multiple predecessors and multiple successors.  If one or more of the
122   /// predecessors of the block can be proven to always jump to one of the
123   /// successors, we forward the edge from the predecessor to the successor by
124   /// duplicating the contents of this block.
125   ///
126   /// An example of when this can occur is code like this:
127   ///
128   ///   if () { ...
129   ///     X = 4;
130   ///   }
131   ///   if (X < 3) {
132   ///
133   /// In this case, the unconditional branch at the end of the first if can be
134   /// revectored to the false side of the second if.
135   class JumpThreading : public FunctionPass {
136     JumpThreadingPass Impl;
137 
138   public:
139     static char ID; // Pass identification
140 
141     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
142         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
143       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
144     }
145 
146     bool runOnFunction(Function &F) override;
147 
148     void getAnalysisUsage(AnalysisUsage &AU) const override {
149       AU.addRequired<DominatorTreeWrapperPass>();
150       AU.addPreserved<DominatorTreeWrapperPass>();
151       AU.addRequired<AAResultsWrapperPass>();
152       AU.addRequired<LazyValueInfoWrapperPass>();
153       AU.addPreserved<LazyValueInfoWrapperPass>();
154       AU.addPreserved<GlobalsAAWrapperPass>();
155       AU.addRequired<TargetLibraryInfoWrapperPass>();
156       AU.addRequired<TargetTransformInfoWrapperPass>();
157     }
158 
159     void releaseMemory() override { Impl.releaseMemory(); }
160   };
161 
162 } // end anonymous namespace
163 
164 char JumpThreading::ID = 0;
165 
166 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
167                 "Jump Threading", false, false)
168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
172 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
173                 "Jump Threading", false, false)
174 
175 // Public interface to the Jump Threading pass
176 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
177   return new JumpThreading(InsertFr, Threshold);
178 }
179 
180 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
181   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
182   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
183 }
184 
185 // Update branch probability information according to conditional
186 // branch probability. This is usually made possible for cloned branches
187 // in inline instances by the context specific profile in the caller.
188 // For instance,
189 //
190 //  [Block PredBB]
191 //  [Branch PredBr]
192 //  if (t) {
193 //     Block A;
194 //  } else {
195 //     Block B;
196 //  }
197 //
198 //  [Block BB]
199 //  cond = PN([true, %A], [..., %B]); // PHI node
200 //  [Branch CondBr]
201 //  if (cond) {
202 //    ...  // P(cond == true) = 1%
203 //  }
204 //
205 //  Here we know that when block A is taken, cond must be true, which means
206 //      P(cond == true | A) = 1
207 //
208 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
209 //                               P(cond == true | B) * P(B)
210 //  we get:
211 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
212 //
213 //  which gives us:
214 //     P(A) is less than P(cond == true), i.e.
215 //     P(t == true) <= P(cond == true)
216 //
217 //  In other words, if we know P(cond == true) is unlikely, we know
218 //  that P(t == true) is also unlikely.
219 //
220 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
221   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
222   if (!CondBr)
223     return;
224 
225   uint64_t TrueWeight, FalseWeight;
226   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
227     return;
228 
229   if (TrueWeight + FalseWeight == 0)
230     // Zero branch_weights do not give a hint for getting branch probabilities.
231     // Technically it would result in division by zero denominator, which is
232     // TrueWeight + FalseWeight.
233     return;
234 
235   // Returns the outgoing edge of the dominating predecessor block
236   // that leads to the PhiNode's incoming block:
237   auto GetPredOutEdge =
238       [](BasicBlock *IncomingBB,
239          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
240     auto *PredBB = IncomingBB;
241     auto *SuccBB = PhiBB;
242     SmallPtrSet<BasicBlock *, 16> Visited;
243     while (true) {
244       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
245       if (PredBr && PredBr->isConditional())
246         return {PredBB, SuccBB};
247       Visited.insert(PredBB);
248       auto *SinglePredBB = PredBB->getSinglePredecessor();
249       if (!SinglePredBB)
250         return {nullptr, nullptr};
251 
252       // Stop searching when SinglePredBB has been visited. It means we see
253       // an unreachable loop.
254       if (Visited.count(SinglePredBB))
255         return {nullptr, nullptr};
256 
257       SuccBB = PredBB;
258       PredBB = SinglePredBB;
259     }
260   };
261 
262   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263     Value *PhiOpnd = PN->getIncomingValue(i);
264     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
265 
266     if (!CI || !CI->getType()->isIntegerTy(1))
267       continue;
268 
269     BranchProbability BP =
270         (CI->isOne() ? BranchProbability::getBranchProbability(
271                            TrueWeight, TrueWeight + FalseWeight)
272                      : BranchProbability::getBranchProbability(
273                            FalseWeight, TrueWeight + FalseWeight));
274 
275     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
276     if (!PredOutEdge.first)
277       return;
278 
279     BasicBlock *PredBB = PredOutEdge.first;
280     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
281     if (!PredBr)
282       return;
283 
284     uint64_t PredTrueWeight, PredFalseWeight;
285     // FIXME: We currently only set the profile data when it is missing.
286     // With PGO, this can be used to refine even existing profile data with
287     // context information. This needs to be done after more performance
288     // testing.
289     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
290       continue;
291 
292     // We can not infer anything useful when BP >= 50%, because BP is the
293     // upper bound probability value.
294     if (BP >= BranchProbability(50, 100))
295       continue;
296 
297     SmallVector<uint32_t, 2> Weights;
298     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
299       Weights.push_back(BP.getNumerator());
300       Weights.push_back(BP.getCompl().getNumerator());
301     } else {
302       Weights.push_back(BP.getCompl().getNumerator());
303       Weights.push_back(BP.getNumerator());
304     }
305     PredBr->setMetadata(LLVMContext::MD_prof,
306                         MDBuilder(PredBr->getParent()->getContext())
307                             .createBranchWeights(Weights));
308   }
309 }
310 
311 /// runOnFunction - Toplevel algorithm.
312 bool JumpThreading::runOnFunction(Function &F) {
313   if (skipFunction(F))
314     return false;
315   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
316   // Jump Threading has no sense for the targets with divergent CF
317   if (TTI->hasBranchDivergence())
318     return false;
319   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
320   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
321   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
322   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
323   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
324   std::unique_ptr<BlockFrequencyInfo> BFI;
325   std::unique_ptr<BranchProbabilityInfo> BPI;
326   if (F.hasProfileData()) {
327     LoopInfo LI{DominatorTree(F)};
328     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
329     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
330   }
331 
332   bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
333                               std::move(BFI), std::move(BPI));
334   if (PrintLVIAfterJumpThreading) {
335     dbgs() << "LVI for function '" << F.getName() << "':\n";
336     LVI->printLVI(F, DTU.getDomTree(), dbgs());
337   }
338   return Changed;
339 }
340 
341 PreservedAnalyses JumpThreadingPass::run(Function &F,
342                                          FunctionAnalysisManager &AM) {
343   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
344   // Jump Threading has no sense for the targets with divergent CF
345   if (TTI.hasBranchDivergence())
346     return PreservedAnalyses::all();
347   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
348   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
349   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
350   auto &AA = AM.getResult<AAManager>(F);
351   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
352 
353   std::unique_ptr<BlockFrequencyInfo> BFI;
354   std::unique_ptr<BranchProbabilityInfo> BPI;
355   if (F.hasProfileData()) {
356     LoopInfo LI{DominatorTree(F)};
357     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
358     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
359   }
360 
361   bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
362                          std::move(BFI), std::move(BPI));
363 
364   if (PrintLVIAfterJumpThreading) {
365     dbgs() << "LVI for function '" << F.getName() << "':\n";
366     LVI.printLVI(F, DTU.getDomTree(), dbgs());
367   }
368 
369   if (!Changed)
370     return PreservedAnalyses::all();
371   PreservedAnalyses PA;
372   PA.preserve<DominatorTreeAnalysis>();
373   PA.preserve<LazyValueAnalysis>();
374   return PA;
375 }
376 
377 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
378                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
379                                 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
380                                 bool HasProfileData_,
381                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
382                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
383   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
384   TLI = TLI_;
385   TTI = TTI_;
386   LVI = LVI_;
387   AA = AA_;
388   DTU = DTU_;
389   BFI.reset();
390   BPI.reset();
391   // When profile data is available, we need to update edge weights after
392   // successful jump threading, which requires both BPI and BFI being available.
393   HasProfileData = HasProfileData_;
394   auto *GuardDecl = F.getParent()->getFunction(
395       Intrinsic::getName(Intrinsic::experimental_guard));
396   HasGuards = GuardDecl && !GuardDecl->use_empty();
397   if (HasProfileData) {
398     BPI = std::move(BPI_);
399     BFI = std::move(BFI_);
400   }
401 
402   // Reduce the number of instructions duplicated when optimizing strictly for
403   // size.
404   if (BBDuplicateThreshold.getNumOccurrences())
405     BBDupThreshold = BBDuplicateThreshold;
406   else if (F.hasFnAttribute(Attribute::MinSize))
407     BBDupThreshold = 3;
408   else
409     BBDupThreshold = DefaultBBDupThreshold;
410 
411   // JumpThreading must not processes blocks unreachable from entry. It's a
412   // waste of compute time and can potentially lead to hangs.
413   SmallPtrSet<BasicBlock *, 16> Unreachable;
414   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
415   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
416   DominatorTree &DT = DTU->getDomTree();
417   for (auto &BB : F)
418     if (!DT.isReachableFromEntry(&BB))
419       Unreachable.insert(&BB);
420 
421   if (!ThreadAcrossLoopHeaders)
422     findLoopHeaders(F);
423 
424   bool EverChanged = false;
425   bool Changed;
426   do {
427     Changed = false;
428     for (auto &BB : F) {
429       if (Unreachable.count(&BB))
430         continue;
431       while (processBlock(&BB)) // Thread all of the branches we can over BB.
432         Changed = true;
433 
434       // Jump threading may have introduced redundant debug values into BB
435       // which should be removed.
436       if (Changed)
437         RemoveRedundantDbgInstrs(&BB);
438 
439       // Stop processing BB if it's the entry or is now deleted. The following
440       // routines attempt to eliminate BB and locating a suitable replacement
441       // for the entry is non-trivial.
442       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
443         continue;
444 
445       if (pred_empty(&BB)) {
446         // When processBlock makes BB unreachable it doesn't bother to fix up
447         // the instructions in it. We must remove BB to prevent invalid IR.
448         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
449                           << "' with terminator: " << *BB.getTerminator()
450                           << '\n');
451         LoopHeaders.erase(&BB);
452         LVI->eraseBlock(&BB);
453         DeleteDeadBlock(&BB, DTU);
454         Changed = true;
455         continue;
456       }
457 
458       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
459       // is "almost empty", we attempt to merge BB with its sole successor.
460       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
461       if (BI && BI->isUnconditional()) {
462         BasicBlock *Succ = BI->getSuccessor(0);
463         if (
464             // The terminator must be the only non-phi instruction in BB.
465             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
466             // Don't alter Loop headers and latches to ensure another pass can
467             // detect and transform nested loops later.
468             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
469             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
470           RemoveRedundantDbgInstrs(Succ);
471           // BB is valid for cleanup here because we passed in DTU. F remains
472           // BB's parent until a DTU->getDomTree() event.
473           LVI->eraseBlock(&BB);
474           Changed = true;
475         }
476       }
477     }
478     EverChanged |= Changed;
479   } while (Changed);
480 
481   LoopHeaders.clear();
482   return EverChanged;
483 }
484 
485 // Replace uses of Cond with ToVal when safe to do so. If all uses are
486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
487 // because we may incorrectly replace uses when guards/assumes are uses of
488 // of `Cond` and we used the guards/assume to reason about the `Cond` value
489 // at the end of block. RAUW unconditionally replaces all uses
490 // including the guards/assumes themselves and the uses before the
491 // guard/assume.
492 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
493                                 BasicBlock *KnownAtEndOfBB) {
494   bool Changed = false;
495   assert(Cond->getType() == ToVal->getType());
496   // We can unconditionally replace all uses in non-local blocks (i.e. uses
497   // strictly dominated by BB), since LVI information is true from the
498   // terminator of BB.
499   if (Cond->getParent() == KnownAtEndOfBB)
500     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
501   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
502     // Reached the Cond whose uses we are trying to replace, so there are no
503     // more uses.
504     if (&I == Cond)
505       break;
506     // We only replace uses in instructions that are guaranteed to reach the end
507     // of BB, where we know Cond is ToVal.
508     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
509       break;
510     Changed |= I.replaceUsesOfWith(Cond, ToVal);
511   }
512   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
513     Cond->eraseFromParent();
514     Changed = true;
515   }
516   return Changed;
517 }
518 
519 /// Return the cost of duplicating a piece of this block from first non-phi
520 /// and before StopAt instruction to thread across it. Stop scanning the block
521 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
522 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
523                                              BasicBlock *BB,
524                                              Instruction *StopAt,
525                                              unsigned Threshold) {
526   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
527   /// Ignore PHI nodes, these will be flattened when duplication happens.
528   BasicBlock::const_iterator I(BB->getFirstNonPHI());
529 
530   // FIXME: THREADING will delete values that are just used to compute the
531   // branch, so they shouldn't count against the duplication cost.
532 
533   unsigned Bonus = 0;
534   if (BB->getTerminator() == StopAt) {
535     // Threading through a switch statement is particularly profitable.  If this
536     // block ends in a switch, decrease its cost to make it more likely to
537     // happen.
538     if (isa<SwitchInst>(StopAt))
539       Bonus = 6;
540 
541     // The same holds for indirect branches, but slightly more so.
542     if (isa<IndirectBrInst>(StopAt))
543       Bonus = 8;
544   }
545 
546   // Bump the threshold up so the early exit from the loop doesn't skip the
547   // terminator-based Size adjustment at the end.
548   Threshold += Bonus;
549 
550   // Sum up the cost of each instruction until we get to the terminator.  Don't
551   // include the terminator because the copy won't include it.
552   unsigned Size = 0;
553   for (; &*I != StopAt; ++I) {
554 
555     // Stop scanning the block if we've reached the threshold.
556     if (Size > Threshold)
557       return Size;
558 
559     // Bail out if this instruction gives back a token type, it is not possible
560     // to duplicate it if it is used outside this BB.
561     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
562       return ~0U;
563 
564     // Blocks with NoDuplicate are modelled as having infinite cost, so they
565     // are never duplicated.
566     if (const CallInst *CI = dyn_cast<CallInst>(I))
567       if (CI->cannotDuplicate() || CI->isConvergent())
568         return ~0U;
569 
570     if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
571             == TargetTransformInfo::TCC_Free)
572       continue;
573 
574     // All other instructions count for at least one unit.
575     ++Size;
576 
577     // Calls are more expensive.  If they are non-intrinsic calls, we model them
578     // as having cost of 4.  If they are a non-vector intrinsic, we model them
579     // as having cost of 2 total, and if they are a vector intrinsic, we model
580     // them as having cost 1.
581     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
582       if (!isa<IntrinsicInst>(CI))
583         Size += 3;
584       else if (!CI->getType()->isVectorTy())
585         Size += 1;
586     }
587   }
588 
589   return Size > Bonus ? Size - Bonus : 0;
590 }
591 
592 /// findLoopHeaders - We do not want jump threading to turn proper loop
593 /// structures into irreducible loops.  Doing this breaks up the loop nesting
594 /// hierarchy and pessimizes later transformations.  To prevent this from
595 /// happening, we first have to find the loop headers.  Here we approximate this
596 /// by finding targets of backedges in the CFG.
597 ///
598 /// Note that there definitely are cases when we want to allow threading of
599 /// edges across a loop header.  For example, threading a jump from outside the
600 /// loop (the preheader) to an exit block of the loop is definitely profitable.
601 /// It is also almost always profitable to thread backedges from within the loop
602 /// to exit blocks, and is often profitable to thread backedges to other blocks
603 /// within the loop (forming a nested loop).  This simple analysis is not rich
604 /// enough to track all of these properties and keep it up-to-date as the CFG
605 /// mutates, so we don't allow any of these transformations.
606 void JumpThreadingPass::findLoopHeaders(Function &F) {
607   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
608   FindFunctionBackedges(F, Edges);
609 
610   for (const auto &Edge : Edges)
611     LoopHeaders.insert(Edge.second);
612 }
613 
614 /// getKnownConstant - Helper method to determine if we can thread over a
615 /// terminator with the given value as its condition, and if so what value to
616 /// use for that. What kind of value this is depends on whether we want an
617 /// integer or a block address, but an undef is always accepted.
618 /// Returns null if Val is null or not an appropriate constant.
619 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
620   if (!Val)
621     return nullptr;
622 
623   // Undef is "known" enough.
624   if (UndefValue *U = dyn_cast<UndefValue>(Val))
625     return U;
626 
627   if (Preference == WantBlockAddress)
628     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
629 
630   return dyn_cast<ConstantInt>(Val);
631 }
632 
633 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
634 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
635 /// in any of our predecessors.  If so, return the known list of value and pred
636 /// BB in the result vector.
637 ///
638 /// This returns true if there were any known values.
639 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
640     Value *V, BasicBlock *BB, PredValueInfo &Result,
641     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
642     Instruction *CxtI) {
643   // This method walks up use-def chains recursively.  Because of this, we could
644   // get into an infinite loop going around loops in the use-def chain.  To
645   // prevent this, keep track of what (value, block) pairs we've already visited
646   // and terminate the search if we loop back to them
647   if (!RecursionSet.insert(V).second)
648     return false;
649 
650   // If V is a constant, then it is known in all predecessors.
651   if (Constant *KC = getKnownConstant(V, Preference)) {
652     for (BasicBlock *Pred : predecessors(BB))
653       Result.emplace_back(KC, Pred);
654 
655     return !Result.empty();
656   }
657 
658   // If V is a non-instruction value, or an instruction in a different block,
659   // then it can't be derived from a PHI.
660   Instruction *I = dyn_cast<Instruction>(V);
661   if (!I || I->getParent() != BB) {
662 
663     // Okay, if this is a live-in value, see if it has a known value at the end
664     // of any of our predecessors.
665     //
666     // FIXME: This should be an edge property, not a block end property.
667     /// TODO: Per PR2563, we could infer value range information about a
668     /// predecessor based on its terminator.
669     //
670     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
671     // "I" is a non-local compare-with-a-constant instruction.  This would be
672     // able to handle value inequalities better, for example if the compare is
673     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
674     // Perhaps getConstantOnEdge should be smart enough to do this?
675     for (BasicBlock *P : predecessors(BB)) {
676       // If the value is known by LazyValueInfo to be a constant in a
677       // predecessor, use that information to try to thread this block.
678       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
679       if (Constant *KC = getKnownConstant(PredCst, Preference))
680         Result.emplace_back(KC, P);
681     }
682 
683     return !Result.empty();
684   }
685 
686   /// If I is a PHI node, then we know the incoming values for any constants.
687   if (PHINode *PN = dyn_cast<PHINode>(I)) {
688     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
689       Value *InVal = PN->getIncomingValue(i);
690       if (Constant *KC = getKnownConstant(InVal, Preference)) {
691         Result.emplace_back(KC, PN->getIncomingBlock(i));
692       } else {
693         Constant *CI = LVI->getConstantOnEdge(InVal,
694                                               PN->getIncomingBlock(i),
695                                               BB, CxtI);
696         if (Constant *KC = getKnownConstant(CI, Preference))
697           Result.emplace_back(KC, PN->getIncomingBlock(i));
698       }
699     }
700 
701     return !Result.empty();
702   }
703 
704   // Handle Cast instructions.
705   if (CastInst *CI = dyn_cast<CastInst>(I)) {
706     Value *Source = CI->getOperand(0);
707     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
708                                         RecursionSet, CxtI);
709     if (Result.empty())
710       return false;
711 
712     // Convert the known values.
713     for (auto &R : Result)
714       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
715 
716     return true;
717   }
718 
719   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
720     Value *Source = FI->getOperand(0);
721     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
722                                         RecursionSet, CxtI);
723 
724     erase_if(Result, [](auto &Pair) {
725       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
726     });
727 
728     return !Result.empty();
729   }
730 
731   // Handle some boolean conditions.
732   if (I->getType()->getPrimitiveSizeInBits() == 1) {
733     using namespace PatternMatch;
734     if (Preference != WantInteger)
735       return false;
736     // X | true -> true
737     // X & false -> false
738     Value *Op0, *Op1;
739     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
740         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
741       PredValueInfoTy LHSVals, RHSVals;
742 
743       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
744                                           RecursionSet, CxtI);
745       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
746                                           RecursionSet, CxtI);
747 
748       if (LHSVals.empty() && RHSVals.empty())
749         return false;
750 
751       ConstantInt *InterestingVal;
752       if (match(I, m_LogicalOr()))
753         InterestingVal = ConstantInt::getTrue(I->getContext());
754       else
755         InterestingVal = ConstantInt::getFalse(I->getContext());
756 
757       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
758 
759       // Scan for the sentinel.  If we find an undef, force it to the
760       // interesting value: x|undef -> true and x&undef -> false.
761       for (const auto &LHSVal : LHSVals)
762         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
763           Result.emplace_back(InterestingVal, LHSVal.second);
764           LHSKnownBBs.insert(LHSVal.second);
765         }
766       for (const auto &RHSVal : RHSVals)
767         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
768           // If we already inferred a value for this block on the LHS, don't
769           // re-add it.
770           if (!LHSKnownBBs.count(RHSVal.second))
771             Result.emplace_back(InterestingVal, RHSVal.second);
772         }
773 
774       return !Result.empty();
775     }
776 
777     // Handle the NOT form of XOR.
778     if (I->getOpcode() == Instruction::Xor &&
779         isa<ConstantInt>(I->getOperand(1)) &&
780         cast<ConstantInt>(I->getOperand(1))->isOne()) {
781       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
782                                           WantInteger, RecursionSet, CxtI);
783       if (Result.empty())
784         return false;
785 
786       // Invert the known values.
787       for (auto &R : Result)
788         R.first = ConstantExpr::getNot(R.first);
789 
790       return true;
791     }
792 
793   // Try to simplify some other binary operator values.
794   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
795     if (Preference != WantInteger)
796       return false;
797     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
798       PredValueInfoTy LHSVals;
799       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
800                                           WantInteger, RecursionSet, CxtI);
801 
802       // Try to use constant folding to simplify the binary operator.
803       for (const auto &LHSVal : LHSVals) {
804         Constant *V = LHSVal.first;
805         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
806 
807         if (Constant *KC = getKnownConstant(Folded, WantInteger))
808           Result.emplace_back(KC, LHSVal.second);
809       }
810     }
811 
812     return !Result.empty();
813   }
814 
815   // Handle compare with phi operand, where the PHI is defined in this block.
816   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
817     if (Preference != WantInteger)
818       return false;
819     Type *CmpType = Cmp->getType();
820     Value *CmpLHS = Cmp->getOperand(0);
821     Value *CmpRHS = Cmp->getOperand(1);
822     CmpInst::Predicate Pred = Cmp->getPredicate();
823 
824     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
825     if (!PN)
826       PN = dyn_cast<PHINode>(CmpRHS);
827     if (PN && PN->getParent() == BB) {
828       const DataLayout &DL = PN->getModule()->getDataLayout();
829       // We can do this simplification if any comparisons fold to true or false.
830       // See if any do.
831       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
832         BasicBlock *PredBB = PN->getIncomingBlock(i);
833         Value *LHS, *RHS;
834         if (PN == CmpLHS) {
835           LHS = PN->getIncomingValue(i);
836           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
837         } else {
838           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
839           RHS = PN->getIncomingValue(i);
840         }
841         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
842         if (!Res) {
843           if (!isa<Constant>(RHS))
844             continue;
845 
846           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
847           auto LHSInst = dyn_cast<Instruction>(LHS);
848           if (LHSInst && LHSInst->getParent() == BB)
849             continue;
850 
851           LazyValueInfo::Tristate
852             ResT = LVI->getPredicateOnEdge(Pred, LHS,
853                                            cast<Constant>(RHS), PredBB, BB,
854                                            CxtI ? CxtI : Cmp);
855           if (ResT == LazyValueInfo::Unknown)
856             continue;
857           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
858         }
859 
860         if (Constant *KC = getKnownConstant(Res, WantInteger))
861           Result.emplace_back(KC, PredBB);
862       }
863 
864       return !Result.empty();
865     }
866 
867     // If comparing a live-in value against a constant, see if we know the
868     // live-in value on any predecessors.
869     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
870       Constant *CmpConst = cast<Constant>(CmpRHS);
871 
872       if (!isa<Instruction>(CmpLHS) ||
873           cast<Instruction>(CmpLHS)->getParent() != BB) {
874         for (BasicBlock *P : predecessors(BB)) {
875           // If the value is known by LazyValueInfo to be a constant in a
876           // predecessor, use that information to try to thread this block.
877           LazyValueInfo::Tristate Res =
878             LVI->getPredicateOnEdge(Pred, CmpLHS,
879                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
880           if (Res == LazyValueInfo::Unknown)
881             continue;
882 
883           Constant *ResC = ConstantInt::get(CmpType, Res);
884           Result.emplace_back(ResC, P);
885         }
886 
887         return !Result.empty();
888       }
889 
890       // InstCombine can fold some forms of constant range checks into
891       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
892       // x as a live-in.
893       {
894         using namespace PatternMatch;
895 
896         Value *AddLHS;
897         ConstantInt *AddConst;
898         if (isa<ConstantInt>(CmpConst) &&
899             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
900           if (!isa<Instruction>(AddLHS) ||
901               cast<Instruction>(AddLHS)->getParent() != BB) {
902             for (BasicBlock *P : predecessors(BB)) {
903               // If the value is known by LazyValueInfo to be a ConstantRange in
904               // a predecessor, use that information to try to thread this
905               // block.
906               ConstantRange CR = LVI->getConstantRangeOnEdge(
907                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
908               // Propagate the range through the addition.
909               CR = CR.add(AddConst->getValue());
910 
911               // Get the range where the compare returns true.
912               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
913                   Pred, cast<ConstantInt>(CmpConst)->getValue());
914 
915               Constant *ResC;
916               if (CmpRange.contains(CR))
917                 ResC = ConstantInt::getTrue(CmpType);
918               else if (CmpRange.inverse().contains(CR))
919                 ResC = ConstantInt::getFalse(CmpType);
920               else
921                 continue;
922 
923               Result.emplace_back(ResC, P);
924             }
925 
926             return !Result.empty();
927           }
928         }
929       }
930 
931       // Try to find a constant value for the LHS of a comparison,
932       // and evaluate it statically if we can.
933       PredValueInfoTy LHSVals;
934       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
935                                           WantInteger, RecursionSet, CxtI);
936 
937       for (const auto &LHSVal : LHSVals) {
938         Constant *V = LHSVal.first;
939         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
940         if (Constant *KC = getKnownConstant(Folded, WantInteger))
941           Result.emplace_back(KC, LHSVal.second);
942       }
943 
944       return !Result.empty();
945     }
946   }
947 
948   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
949     // Handle select instructions where at least one operand is a known constant
950     // and we can figure out the condition value for any predecessor block.
951     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
952     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
953     PredValueInfoTy Conds;
954     if ((TrueVal || FalseVal) &&
955         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
956                                             WantInteger, RecursionSet, CxtI)) {
957       for (auto &C : Conds) {
958         Constant *Cond = C.first;
959 
960         // Figure out what value to use for the condition.
961         bool KnownCond;
962         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
963           // A known boolean.
964           KnownCond = CI->isOne();
965         } else {
966           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
967           // Either operand will do, so be sure to pick the one that's a known
968           // constant.
969           // FIXME: Do this more cleverly if both values are known constants?
970           KnownCond = (TrueVal != nullptr);
971         }
972 
973         // See if the select has a known constant value for this predecessor.
974         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
975           Result.emplace_back(Val, C.second);
976       }
977 
978       return !Result.empty();
979     }
980   }
981 
982   // If all else fails, see if LVI can figure out a constant value for us.
983   assert(CxtI->getParent() == BB && "CxtI should be in BB");
984   Constant *CI = LVI->getConstant(V, CxtI);
985   if (Constant *KC = getKnownConstant(CI, Preference)) {
986     for (BasicBlock *Pred : predecessors(BB))
987       Result.emplace_back(KC, Pred);
988   }
989 
990   return !Result.empty();
991 }
992 
993 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
994 /// in an undefined jump, decide which block is best to revector to.
995 ///
996 /// Since we can pick an arbitrary destination, we pick the successor with the
997 /// fewest predecessors.  This should reduce the in-degree of the others.
998 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
999   Instruction *BBTerm = BB->getTerminator();
1000   unsigned MinSucc = 0;
1001   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
1002   // Compute the successor with the minimum number of predecessors.
1003   unsigned MinNumPreds = pred_size(TestBB);
1004   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1005     TestBB = BBTerm->getSuccessor(i);
1006     unsigned NumPreds = pred_size(TestBB);
1007     if (NumPreds < MinNumPreds) {
1008       MinSucc = i;
1009       MinNumPreds = NumPreds;
1010     }
1011   }
1012 
1013   return MinSucc;
1014 }
1015 
1016 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1017   if (!BB->hasAddressTaken()) return false;
1018 
1019   // If the block has its address taken, it may be a tree of dead constants
1020   // hanging off of it.  These shouldn't keep the block alive.
1021   BlockAddress *BA = BlockAddress::get(BB);
1022   BA->removeDeadConstantUsers();
1023   return !BA->use_empty();
1024 }
1025 
1026 /// processBlock - If there are any predecessors whose control can be threaded
1027 /// through to a successor, transform them now.
1028 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1029   // If the block is trivially dead, just return and let the caller nuke it.
1030   // This simplifies other transformations.
1031   if (DTU->isBBPendingDeletion(BB) ||
1032       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1033     return false;
1034 
1035   // If this block has a single predecessor, and if that pred has a single
1036   // successor, merge the blocks.  This encourages recursive jump threading
1037   // because now the condition in this block can be threaded through
1038   // predecessors of our predecessor block.
1039   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1040     return true;
1041 
1042   if (tryToUnfoldSelectInCurrBB(BB))
1043     return true;
1044 
1045   // Look if we can propagate guards to predecessors.
1046   if (HasGuards && processGuards(BB))
1047     return true;
1048 
1049   // What kind of constant we're looking for.
1050   ConstantPreference Preference = WantInteger;
1051 
1052   // Look to see if the terminator is a conditional branch, switch or indirect
1053   // branch, if not we can't thread it.
1054   Value *Condition;
1055   Instruction *Terminator = BB->getTerminator();
1056   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1057     // Can't thread an unconditional jump.
1058     if (BI->isUnconditional()) return false;
1059     Condition = BI->getCondition();
1060   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1061     Condition = SI->getCondition();
1062   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1063     // Can't thread indirect branch with no successors.
1064     if (IB->getNumSuccessors() == 0) return false;
1065     Condition = IB->getAddress()->stripPointerCasts();
1066     Preference = WantBlockAddress;
1067   } else {
1068     return false; // Must be an invoke or callbr.
1069   }
1070 
1071   // Keep track if we constant folded the condition in this invocation.
1072   bool ConstantFolded = false;
1073 
1074   // Run constant folding to see if we can reduce the condition to a simple
1075   // constant.
1076   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1077     Value *SimpleVal =
1078         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1079     if (SimpleVal) {
1080       I->replaceAllUsesWith(SimpleVal);
1081       if (isInstructionTriviallyDead(I, TLI))
1082         I->eraseFromParent();
1083       Condition = SimpleVal;
1084       ConstantFolded = true;
1085     }
1086   }
1087 
1088   // If the terminator is branching on an undef or freeze undef, we can pick any
1089   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1090   auto *FI = dyn_cast<FreezeInst>(Condition);
1091   if (isa<UndefValue>(Condition) ||
1092       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1093     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1094     std::vector<DominatorTree::UpdateType> Updates;
1095 
1096     // Fold the branch/switch.
1097     Instruction *BBTerm = BB->getTerminator();
1098     Updates.reserve(BBTerm->getNumSuccessors());
1099     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1100       if (i == BestSucc) continue;
1101       BasicBlock *Succ = BBTerm->getSuccessor(i);
1102       Succ->removePredecessor(BB, true);
1103       Updates.push_back({DominatorTree::Delete, BB, Succ});
1104     }
1105 
1106     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1107                       << "' folding undef terminator: " << *BBTerm << '\n');
1108     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1109     ++NumFolds;
1110     BBTerm->eraseFromParent();
1111     DTU->applyUpdatesPermissive(Updates);
1112     if (FI)
1113       FI->eraseFromParent();
1114     return true;
1115   }
1116 
1117   // If the terminator of this block is branching on a constant, simplify the
1118   // terminator to an unconditional branch.  This can occur due to threading in
1119   // other blocks.
1120   if (getKnownConstant(Condition, Preference)) {
1121     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1122                       << "' folding terminator: " << *BB->getTerminator()
1123                       << '\n');
1124     ++NumFolds;
1125     ConstantFoldTerminator(BB, true, nullptr, DTU);
1126     if (HasProfileData)
1127       BPI->eraseBlock(BB);
1128     return true;
1129   }
1130 
1131   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1132 
1133   // All the rest of our checks depend on the condition being an instruction.
1134   if (!CondInst) {
1135     // FIXME: Unify this with code below.
1136     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1137       return true;
1138     return ConstantFolded;
1139   }
1140 
1141   // Some of the following optimization can safely work on the unfrozen cond.
1142   Value *CondWithoutFreeze = CondInst;
1143   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1144     CondWithoutFreeze = FI->getOperand(0);
1145 
1146   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1147     // If we're branching on a conditional, LVI might be able to determine
1148     // it's value at the branch instruction.  We only handle comparisons
1149     // against a constant at this time.
1150     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1151       LazyValueInfo::Tristate Ret =
1152           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1153                               CondConst, BB->getTerminator(),
1154                               /*UseBlockValue=*/false);
1155       if (Ret != LazyValueInfo::Unknown) {
1156         // We can safely replace *some* uses of the CondInst if it has
1157         // exactly one value as returned by LVI. RAUW is incorrect in the
1158         // presence of guards and assumes, that have the `Cond` as the use. This
1159         // is because we use the guards/assume to reason about the `Cond` value
1160         // at the end of block, but RAUW unconditionally replaces all uses
1161         // including the guards/assumes themselves and the uses before the
1162         // guard/assume.
1163         auto *CI = Ret == LazyValueInfo::True ?
1164           ConstantInt::getTrue(CondCmp->getType()) :
1165           ConstantInt::getFalse(CondCmp->getType());
1166         if (replaceFoldableUses(CondCmp, CI, BB))
1167           return true;
1168       }
1169 
1170       // We did not manage to simplify this branch, try to see whether
1171       // CondCmp depends on a known phi-select pattern.
1172       if (tryToUnfoldSelect(CondCmp, BB))
1173         return true;
1174     }
1175   }
1176 
1177   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1178     if (tryToUnfoldSelect(SI, BB))
1179       return true;
1180 
1181   // Check for some cases that are worth simplifying.  Right now we want to look
1182   // for loads that are used by a switch or by the condition for the branch.  If
1183   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1184   // which can then be used to thread the values.
1185   Value *SimplifyValue = CondWithoutFreeze;
1186 
1187   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1188     if (isa<Constant>(CondCmp->getOperand(1)))
1189       SimplifyValue = CondCmp->getOperand(0);
1190 
1191   // TODO: There are other places where load PRE would be profitable, such as
1192   // more complex comparisons.
1193   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1194     if (simplifyPartiallyRedundantLoad(LoadI))
1195       return true;
1196 
1197   // Before threading, try to propagate profile data backwards:
1198   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1199     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1200       updatePredecessorProfileMetadata(PN, BB);
1201 
1202   // Handle a variety of cases where we are branching on something derived from
1203   // a PHI node in the current block.  If we can prove that any predecessors
1204   // compute a predictable value based on a PHI node, thread those predecessors.
1205   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1206     return true;
1207 
1208   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1209   // the current block, see if we can simplify.
1210   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1211   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1212     return processBranchOnPHI(PN);
1213 
1214   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1215   if (CondInst->getOpcode() == Instruction::Xor &&
1216       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1217     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1218 
1219   // Search for a stronger dominating condition that can be used to simplify a
1220   // conditional branch leaving BB.
1221   if (processImpliedCondition(BB))
1222     return true;
1223 
1224   return false;
1225 }
1226 
1227 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1228   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1229   if (!BI || !BI->isConditional())
1230     return false;
1231 
1232   Value *Cond = BI->getCondition();
1233   // Assuming that predecessor's branch was taken, if pred's branch condition
1234   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1235   // freeze(Cond) is either true or a nondeterministic value.
1236   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1237   // without affecting other instructions.
1238   auto *FICond = dyn_cast<FreezeInst>(Cond);
1239   if (FICond && FICond->hasOneUse())
1240     Cond = FICond->getOperand(0);
1241   else
1242     FICond = nullptr;
1243 
1244   BasicBlock *CurrentBB = BB;
1245   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1246   unsigned Iter = 0;
1247 
1248   auto &DL = BB->getModule()->getDataLayout();
1249 
1250   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1251     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1252     if (!PBI || !PBI->isConditional())
1253       return false;
1254     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1255       return false;
1256 
1257     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1258     Optional<bool> Implication =
1259         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1260 
1261     // If the branch condition of BB (which is Cond) and CurrentPred are
1262     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1263     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1264       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1265           FICond->getOperand(0))
1266         Implication = CondIsTrue;
1267     }
1268 
1269     if (Implication) {
1270       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1271       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1272       RemoveSucc->removePredecessor(BB);
1273       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1274       UncondBI->setDebugLoc(BI->getDebugLoc());
1275       ++NumFolds;
1276       BI->eraseFromParent();
1277       if (FICond)
1278         FICond->eraseFromParent();
1279 
1280       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1281       if (HasProfileData)
1282         BPI->eraseBlock(BB);
1283       return true;
1284     }
1285     CurrentBB = CurrentPred;
1286     CurrentPred = CurrentBB->getSinglePredecessor();
1287   }
1288 
1289   return false;
1290 }
1291 
1292 /// Return true if Op is an instruction defined in the given block.
1293 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1294   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1295     if (OpInst->getParent() == BB)
1296       return true;
1297   return false;
1298 }
1299 
1300 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1301 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1302 /// This is an important optimization that encourages jump threading, and needs
1303 /// to be run interlaced with other jump threading tasks.
1304 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1305   // Don't hack volatile and ordered loads.
1306   if (!LoadI->isUnordered()) return false;
1307 
1308   // If the load is defined in a block with exactly one predecessor, it can't be
1309   // partially redundant.
1310   BasicBlock *LoadBB = LoadI->getParent();
1311   if (LoadBB->getSinglePredecessor())
1312     return false;
1313 
1314   // If the load is defined in an EH pad, it can't be partially redundant,
1315   // because the edges between the invoke and the EH pad cannot have other
1316   // instructions between them.
1317   if (LoadBB->isEHPad())
1318     return false;
1319 
1320   Value *LoadedPtr = LoadI->getOperand(0);
1321 
1322   // If the loaded operand is defined in the LoadBB and its not a phi,
1323   // it can't be available in predecessors.
1324   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1325     return false;
1326 
1327   // Scan a few instructions up from the load, to see if it is obviously live at
1328   // the entry to its block.
1329   BasicBlock::iterator BBIt(LoadI);
1330   bool IsLoadCSE;
1331   if (Value *AvailableVal = FindAvailableLoadedValue(
1332           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1333     // If the value of the load is locally available within the block, just use
1334     // it.  This frequently occurs for reg2mem'd allocas.
1335 
1336     if (IsLoadCSE) {
1337       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1338       combineMetadataForCSE(NLoadI, LoadI, false);
1339     };
1340 
1341     // If the returned value is the load itself, replace with an undef. This can
1342     // only happen in dead loops.
1343     if (AvailableVal == LoadI)
1344       AvailableVal = UndefValue::get(LoadI->getType());
1345     if (AvailableVal->getType() != LoadI->getType())
1346       AvailableVal = CastInst::CreateBitOrPointerCast(
1347           AvailableVal, LoadI->getType(), "", LoadI);
1348     LoadI->replaceAllUsesWith(AvailableVal);
1349     LoadI->eraseFromParent();
1350     return true;
1351   }
1352 
1353   // Otherwise, if we scanned the whole block and got to the top of the block,
1354   // we know the block is locally transparent to the load.  If not, something
1355   // might clobber its value.
1356   if (BBIt != LoadBB->begin())
1357     return false;
1358 
1359   // If all of the loads and stores that feed the value have the same AA tags,
1360   // then we can propagate them onto any newly inserted loads.
1361   AAMDNodes AATags = LoadI->getAAMetadata();
1362 
1363   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1364 
1365   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1366 
1367   AvailablePredsTy AvailablePreds;
1368   BasicBlock *OneUnavailablePred = nullptr;
1369   SmallVector<LoadInst*, 8> CSELoads;
1370 
1371   // If we got here, the loaded value is transparent through to the start of the
1372   // block.  Check to see if it is available in any of the predecessor blocks.
1373   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1374     // If we already scanned this predecessor, skip it.
1375     if (!PredsScanned.insert(PredBB).second)
1376       continue;
1377 
1378     BBIt = PredBB->end();
1379     unsigned NumScanedInst = 0;
1380     Value *PredAvailable = nullptr;
1381     // NOTE: We don't CSE load that is volatile or anything stronger than
1382     // unordered, that should have been checked when we entered the function.
1383     assert(LoadI->isUnordered() &&
1384            "Attempting to CSE volatile or atomic loads");
1385     // If this is a load on a phi pointer, phi-translate it and search
1386     // for available load/store to the pointer in predecessors.
1387     Type *AccessTy = LoadI->getType();
1388     const auto &DL = LoadI->getModule()->getDataLayout();
1389     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1390                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1391                        AATags);
1392     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1393                                               PredBB, BBIt, DefMaxInstsToScan,
1394                                               AA, &IsLoadCSE, &NumScanedInst);
1395 
1396     // If PredBB has a single predecessor, continue scanning through the
1397     // single predecessor.
1398     BasicBlock *SinglePredBB = PredBB;
1399     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1400            NumScanedInst < DefMaxInstsToScan) {
1401       SinglePredBB = SinglePredBB->getSinglePredecessor();
1402       if (SinglePredBB) {
1403         BBIt = SinglePredBB->end();
1404         PredAvailable = findAvailablePtrLoadStore(
1405             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1406             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1407             &NumScanedInst);
1408       }
1409     }
1410 
1411     if (!PredAvailable) {
1412       OneUnavailablePred = PredBB;
1413       continue;
1414     }
1415 
1416     if (IsLoadCSE)
1417       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1418 
1419     // If so, this load is partially redundant.  Remember this info so that we
1420     // can create a PHI node.
1421     AvailablePreds.emplace_back(PredBB, PredAvailable);
1422   }
1423 
1424   // If the loaded value isn't available in any predecessor, it isn't partially
1425   // redundant.
1426   if (AvailablePreds.empty()) return false;
1427 
1428   // Okay, the loaded value is available in at least one (and maybe all!)
1429   // predecessors.  If the value is unavailable in more than one unique
1430   // predecessor, we want to insert a merge block for those common predecessors.
1431   // This ensures that we only have to insert one reload, thus not increasing
1432   // code size.
1433   BasicBlock *UnavailablePred = nullptr;
1434 
1435   // If the value is unavailable in one of predecessors, we will end up
1436   // inserting a new instruction into them. It is only valid if all the
1437   // instructions before LoadI are guaranteed to pass execution to its
1438   // successor, or if LoadI is safe to speculate.
1439   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1440   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1441   // It requires domination tree analysis, so for this simple case it is an
1442   // overkill.
1443   if (PredsScanned.size() != AvailablePreds.size() &&
1444       !isSafeToSpeculativelyExecute(LoadI))
1445     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1446       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1447         return false;
1448 
1449   // If there is exactly one predecessor where the value is unavailable, the
1450   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1451   // unconditional branch, we know that it isn't a critical edge.
1452   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1453       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1454     UnavailablePred = OneUnavailablePred;
1455   } else if (PredsScanned.size() != AvailablePreds.size()) {
1456     // Otherwise, we had multiple unavailable predecessors or we had a critical
1457     // edge from the one.
1458     SmallVector<BasicBlock*, 8> PredsToSplit;
1459     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1460 
1461     for (const auto &AvailablePred : AvailablePreds)
1462       AvailablePredSet.insert(AvailablePred.first);
1463 
1464     // Add all the unavailable predecessors to the PredsToSplit list.
1465     for (BasicBlock *P : predecessors(LoadBB)) {
1466       // If the predecessor is an indirect goto, we can't split the edge.
1467       // Same for CallBr.
1468       if (isa<IndirectBrInst>(P->getTerminator()) ||
1469           isa<CallBrInst>(P->getTerminator()))
1470         return false;
1471 
1472       if (!AvailablePredSet.count(P))
1473         PredsToSplit.push_back(P);
1474     }
1475 
1476     // Split them out to their own block.
1477     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1478   }
1479 
1480   // If the value isn't available in all predecessors, then there will be
1481   // exactly one where it isn't available.  Insert a load on that edge and add
1482   // it to the AvailablePreds list.
1483   if (UnavailablePred) {
1484     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1485            "Can't handle critical edge here!");
1486     LoadInst *NewVal = new LoadInst(
1487         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1488         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1489         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1490         UnavailablePred->getTerminator());
1491     NewVal->setDebugLoc(LoadI->getDebugLoc());
1492     if (AATags)
1493       NewVal->setAAMetadata(AATags);
1494 
1495     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1496   }
1497 
1498   // Now we know that each predecessor of this block has a value in
1499   // AvailablePreds, sort them for efficient access as we're walking the preds.
1500   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1501 
1502   // Create a PHI node at the start of the block for the PRE'd load value.
1503   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1504   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1505                                 &LoadBB->front());
1506   PN->takeName(LoadI);
1507   PN->setDebugLoc(LoadI->getDebugLoc());
1508 
1509   // Insert new entries into the PHI for each predecessor.  A single block may
1510   // have multiple entries here.
1511   for (pred_iterator PI = PB; PI != PE; ++PI) {
1512     BasicBlock *P = *PI;
1513     AvailablePredsTy::iterator I =
1514         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1515 
1516     assert(I != AvailablePreds.end() && I->first == P &&
1517            "Didn't find entry for predecessor!");
1518 
1519     // If we have an available predecessor but it requires casting, insert the
1520     // cast in the predecessor and use the cast. Note that we have to update the
1521     // AvailablePreds vector as we go so that all of the PHI entries for this
1522     // predecessor use the same bitcast.
1523     Value *&PredV = I->second;
1524     if (PredV->getType() != LoadI->getType())
1525       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1526                                                P->getTerminator());
1527 
1528     PN->addIncoming(PredV, I->first);
1529   }
1530 
1531   for (LoadInst *PredLoadI : CSELoads) {
1532     combineMetadataForCSE(PredLoadI, LoadI, true);
1533   }
1534 
1535   LoadI->replaceAllUsesWith(PN);
1536   LoadI->eraseFromParent();
1537 
1538   return true;
1539 }
1540 
1541 /// findMostPopularDest - The specified list contains multiple possible
1542 /// threadable destinations.  Pick the one that occurs the most frequently in
1543 /// the list.
1544 static BasicBlock *
1545 findMostPopularDest(BasicBlock *BB,
1546                     const SmallVectorImpl<std::pair<BasicBlock *,
1547                                           BasicBlock *>> &PredToDestList) {
1548   assert(!PredToDestList.empty());
1549 
1550   // Determine popularity.  If there are multiple possible destinations, we
1551   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1552   // blocks with known and real destinations to threading undef.  We'll handle
1553   // them later if interesting.
1554   MapVector<BasicBlock *, unsigned> DestPopularity;
1555 
1556   // Populate DestPopularity with the successors in the order they appear in the
1557   // successor list.  This way, we ensure determinism by iterating it in the
1558   // same order in std::max_element below.  We map nullptr to 0 so that we can
1559   // return nullptr when PredToDestList contains nullptr only.
1560   DestPopularity[nullptr] = 0;
1561   for (auto *SuccBB : successors(BB))
1562     DestPopularity[SuccBB] = 0;
1563 
1564   for (const auto &PredToDest : PredToDestList)
1565     if (PredToDest.second)
1566       DestPopularity[PredToDest.second]++;
1567 
1568   // Find the most popular dest.
1569   using VT = decltype(DestPopularity)::value_type;
1570   auto MostPopular = std::max_element(
1571       DestPopularity.begin(), DestPopularity.end(),
1572       [](const VT &L, const VT &R) { return L.second < R.second; });
1573 
1574   // Okay, we have finally picked the most popular destination.
1575   return MostPopular->first;
1576 }
1577 
1578 // Try to evaluate the value of V when the control flows from PredPredBB to
1579 // BB->getSinglePredecessor() and then on to BB.
1580 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1581                                                        BasicBlock *PredPredBB,
1582                                                        Value *V) {
1583   BasicBlock *PredBB = BB->getSinglePredecessor();
1584   assert(PredBB && "Expected a single predecessor");
1585 
1586   if (Constant *Cst = dyn_cast<Constant>(V)) {
1587     return Cst;
1588   }
1589 
1590   // Consult LVI if V is not an instruction in BB or PredBB.
1591   Instruction *I = dyn_cast<Instruction>(V);
1592   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1593     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1594   }
1595 
1596   // Look into a PHI argument.
1597   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1598     if (PHI->getParent() == PredBB)
1599       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1600     return nullptr;
1601   }
1602 
1603   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1604   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1605     if (CondCmp->getParent() == BB) {
1606       Constant *Op0 =
1607           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1608       Constant *Op1 =
1609           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1610       if (Op0 && Op1) {
1611         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1612       }
1613     }
1614     return nullptr;
1615   }
1616 
1617   return nullptr;
1618 }
1619 
1620 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1621                                                ConstantPreference Preference,
1622                                                Instruction *CxtI) {
1623   // If threading this would thread across a loop header, don't even try to
1624   // thread the edge.
1625   if (LoopHeaders.count(BB))
1626     return false;
1627 
1628   PredValueInfoTy PredValues;
1629   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1630                                        CxtI)) {
1631     // We don't have known values in predecessors.  See if we can thread through
1632     // BB and its sole predecessor.
1633     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1634   }
1635 
1636   assert(!PredValues.empty() &&
1637          "computeValueKnownInPredecessors returned true with no values");
1638 
1639   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1640              for (const auto &PredValue : PredValues) {
1641                dbgs() << "  BB '" << BB->getName()
1642                       << "': FOUND condition = " << *PredValue.first
1643                       << " for pred '" << PredValue.second->getName() << "'.\n";
1644   });
1645 
1646   // Decide what we want to thread through.  Convert our list of known values to
1647   // a list of known destinations for each pred.  This also discards duplicate
1648   // predecessors and keeps track of the undefined inputs (which are represented
1649   // as a null dest in the PredToDestList).
1650   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1651   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1652 
1653   BasicBlock *OnlyDest = nullptr;
1654   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1655   Constant *OnlyVal = nullptr;
1656   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1657 
1658   for (const auto &PredValue : PredValues) {
1659     BasicBlock *Pred = PredValue.second;
1660     if (!SeenPreds.insert(Pred).second)
1661       continue;  // Duplicate predecessor entry.
1662 
1663     Constant *Val = PredValue.first;
1664 
1665     BasicBlock *DestBB;
1666     if (isa<UndefValue>(Val))
1667       DestBB = nullptr;
1668     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1669       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1670       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1671     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1672       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1673       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1674     } else {
1675       assert(isa<IndirectBrInst>(BB->getTerminator())
1676               && "Unexpected terminator");
1677       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1678       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1679     }
1680 
1681     // If we have exactly one destination, remember it for efficiency below.
1682     if (PredToDestList.empty()) {
1683       OnlyDest = DestBB;
1684       OnlyVal = Val;
1685     } else {
1686       if (OnlyDest != DestBB)
1687         OnlyDest = MultipleDestSentinel;
1688       // It possible we have same destination, but different value, e.g. default
1689       // case in switchinst.
1690       if (Val != OnlyVal)
1691         OnlyVal = MultipleVal;
1692     }
1693 
1694     // If the predecessor ends with an indirect goto, we can't change its
1695     // destination. Same for CallBr.
1696     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1697         isa<CallBrInst>(Pred->getTerminator()))
1698       continue;
1699 
1700     PredToDestList.emplace_back(Pred, DestBB);
1701   }
1702 
1703   // If all edges were unthreadable, we fail.
1704   if (PredToDestList.empty())
1705     return false;
1706 
1707   // If all the predecessors go to a single known successor, we want to fold,
1708   // not thread. By doing so, we do not need to duplicate the current block and
1709   // also miss potential opportunities in case we dont/cant duplicate.
1710   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1711     if (BB->hasNPredecessors(PredToDestList.size())) {
1712       bool SeenFirstBranchToOnlyDest = false;
1713       std::vector <DominatorTree::UpdateType> Updates;
1714       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1715       for (BasicBlock *SuccBB : successors(BB)) {
1716         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1717           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1718         } else {
1719           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1720           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1721         }
1722       }
1723 
1724       // Finally update the terminator.
1725       Instruction *Term = BB->getTerminator();
1726       BranchInst::Create(OnlyDest, Term);
1727       ++NumFolds;
1728       Term->eraseFromParent();
1729       DTU->applyUpdatesPermissive(Updates);
1730       if (HasProfileData)
1731         BPI->eraseBlock(BB);
1732 
1733       // If the condition is now dead due to the removal of the old terminator,
1734       // erase it.
1735       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1736         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1737           CondInst->eraseFromParent();
1738         // We can safely replace *some* uses of the CondInst if it has
1739         // exactly one value as returned by LVI. RAUW is incorrect in the
1740         // presence of guards and assumes, that have the `Cond` as the use. This
1741         // is because we use the guards/assume to reason about the `Cond` value
1742         // at the end of block, but RAUW unconditionally replaces all uses
1743         // including the guards/assumes themselves and the uses before the
1744         // guard/assume.
1745         else if (OnlyVal && OnlyVal != MultipleVal)
1746           replaceFoldableUses(CondInst, OnlyVal, BB);
1747       }
1748       return true;
1749     }
1750   }
1751 
1752   // Determine which is the most common successor.  If we have many inputs and
1753   // this block is a switch, we want to start by threading the batch that goes
1754   // to the most popular destination first.  If we only know about one
1755   // threadable destination (the common case) we can avoid this.
1756   BasicBlock *MostPopularDest = OnlyDest;
1757 
1758   if (MostPopularDest == MultipleDestSentinel) {
1759     // Remove any loop headers from the Dest list, threadEdge conservatively
1760     // won't process them, but we might have other destination that are eligible
1761     // and we still want to process.
1762     erase_if(PredToDestList,
1763              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1764                return LoopHeaders.contains(PredToDest.second);
1765              });
1766 
1767     if (PredToDestList.empty())
1768       return false;
1769 
1770     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1771   }
1772 
1773   // Now that we know what the most popular destination is, factor all
1774   // predecessors that will jump to it into a single predecessor.
1775   SmallVector<BasicBlock*, 16> PredsToFactor;
1776   for (const auto &PredToDest : PredToDestList)
1777     if (PredToDest.second == MostPopularDest) {
1778       BasicBlock *Pred = PredToDest.first;
1779 
1780       // This predecessor may be a switch or something else that has multiple
1781       // edges to the block.  Factor each of these edges by listing them
1782       // according to # occurrences in PredsToFactor.
1783       for (BasicBlock *Succ : successors(Pred))
1784         if (Succ == BB)
1785           PredsToFactor.push_back(Pred);
1786     }
1787 
1788   // If the threadable edges are branching on an undefined value, we get to pick
1789   // the destination that these predecessors should get to.
1790   if (!MostPopularDest)
1791     MostPopularDest = BB->getTerminator()->
1792                             getSuccessor(getBestDestForJumpOnUndef(BB));
1793 
1794   // Ok, try to thread it!
1795   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1796 }
1797 
1798 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1799 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1800 /// simplifications we can do based on inputs to the phi node.
1801 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1802   BasicBlock *BB = PN->getParent();
1803 
1804   // TODO: We could make use of this to do it once for blocks with common PHI
1805   // values.
1806   SmallVector<BasicBlock*, 1> PredBBs;
1807   PredBBs.resize(1);
1808 
1809   // If any of the predecessor blocks end in an unconditional branch, we can
1810   // *duplicate* the conditional branch into that block in order to further
1811   // encourage jump threading and to eliminate cases where we have branch on a
1812   // phi of an icmp (branch on icmp is much better).
1813   // This is still beneficial when a frozen phi is used as the branch condition
1814   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1815   // to br(icmp(freeze ...)).
1816   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1817     BasicBlock *PredBB = PN->getIncomingBlock(i);
1818     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1819       if (PredBr->isUnconditional()) {
1820         PredBBs[0] = PredBB;
1821         // Try to duplicate BB into PredBB.
1822         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1823           return true;
1824       }
1825   }
1826 
1827   return false;
1828 }
1829 
1830 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1831 /// a xor instruction in the current block.  See if there are any
1832 /// simplifications we can do based on inputs to the xor.
1833 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1834   BasicBlock *BB = BO->getParent();
1835 
1836   // If either the LHS or RHS of the xor is a constant, don't do this
1837   // optimization.
1838   if (isa<ConstantInt>(BO->getOperand(0)) ||
1839       isa<ConstantInt>(BO->getOperand(1)))
1840     return false;
1841 
1842   // If the first instruction in BB isn't a phi, we won't be able to infer
1843   // anything special about any particular predecessor.
1844   if (!isa<PHINode>(BB->front()))
1845     return false;
1846 
1847   // If this BB is a landing pad, we won't be able to split the edge into it.
1848   if (BB->isEHPad())
1849     return false;
1850 
1851   // If we have a xor as the branch input to this block, and we know that the
1852   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1853   // the condition into the predecessor and fix that value to true, saving some
1854   // logical ops on that path and encouraging other paths to simplify.
1855   //
1856   // This copies something like this:
1857   //
1858   //  BB:
1859   //    %X = phi i1 [1],  [%X']
1860   //    %Y = icmp eq i32 %A, %B
1861   //    %Z = xor i1 %X, %Y
1862   //    br i1 %Z, ...
1863   //
1864   // Into:
1865   //  BB':
1866   //    %Y = icmp ne i32 %A, %B
1867   //    br i1 %Y, ...
1868 
1869   PredValueInfoTy XorOpValues;
1870   bool isLHS = true;
1871   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1872                                        WantInteger, BO)) {
1873     assert(XorOpValues.empty());
1874     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1875                                          WantInteger, BO))
1876       return false;
1877     isLHS = false;
1878   }
1879 
1880   assert(!XorOpValues.empty() &&
1881          "computeValueKnownInPredecessors returned true with no values");
1882 
1883   // Scan the information to see which is most popular: true or false.  The
1884   // predecessors can be of the set true, false, or undef.
1885   unsigned NumTrue = 0, NumFalse = 0;
1886   for (const auto &XorOpValue : XorOpValues) {
1887     if (isa<UndefValue>(XorOpValue.first))
1888       // Ignore undefs for the count.
1889       continue;
1890     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1891       ++NumFalse;
1892     else
1893       ++NumTrue;
1894   }
1895 
1896   // Determine which value to split on, true, false, or undef if neither.
1897   ConstantInt *SplitVal = nullptr;
1898   if (NumTrue > NumFalse)
1899     SplitVal = ConstantInt::getTrue(BB->getContext());
1900   else if (NumTrue != 0 || NumFalse != 0)
1901     SplitVal = ConstantInt::getFalse(BB->getContext());
1902 
1903   // Collect all of the blocks that this can be folded into so that we can
1904   // factor this once and clone it once.
1905   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1906   for (const auto &XorOpValue : XorOpValues) {
1907     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1908       continue;
1909 
1910     BlocksToFoldInto.push_back(XorOpValue.second);
1911   }
1912 
1913   // If we inferred a value for all of the predecessors, then duplication won't
1914   // help us.  However, we can just replace the LHS or RHS with the constant.
1915   if (BlocksToFoldInto.size() ==
1916       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1917     if (!SplitVal) {
1918       // If all preds provide undef, just nuke the xor, because it is undef too.
1919       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1920       BO->eraseFromParent();
1921     } else if (SplitVal->isZero()) {
1922       // If all preds provide 0, replace the xor with the other input.
1923       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1924       BO->eraseFromParent();
1925     } else {
1926       // If all preds provide 1, set the computed value to 1.
1927       BO->setOperand(!isLHS, SplitVal);
1928     }
1929 
1930     return true;
1931   }
1932 
1933   // If any of predecessors end with an indirect goto, we can't change its
1934   // destination. Same for CallBr.
1935   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1936         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1937                isa<CallBrInst>(Pred->getTerminator());
1938       }))
1939     return false;
1940 
1941   // Try to duplicate BB into PredBB.
1942   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1943 }
1944 
1945 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1946 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1947 /// NewPred using the entries from OldPred (suitably mapped).
1948 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1949                                             BasicBlock *OldPred,
1950                                             BasicBlock *NewPred,
1951                                      DenseMap<Instruction*, Value*> &ValueMap) {
1952   for (PHINode &PN : PHIBB->phis()) {
1953     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1954     // DestBlock.
1955     Value *IV = PN.getIncomingValueForBlock(OldPred);
1956 
1957     // Remap the value if necessary.
1958     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1959       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1960       if (I != ValueMap.end())
1961         IV = I->second;
1962     }
1963 
1964     PN.addIncoming(IV, NewPred);
1965   }
1966 }
1967 
1968 /// Merge basic block BB into its sole predecessor if possible.
1969 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1970   BasicBlock *SinglePred = BB->getSinglePredecessor();
1971   if (!SinglePred)
1972     return false;
1973 
1974   const Instruction *TI = SinglePred->getTerminator();
1975   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1976       SinglePred == BB || hasAddressTakenAndUsed(BB))
1977     return false;
1978 
1979   // If SinglePred was a loop header, BB becomes one.
1980   if (LoopHeaders.erase(SinglePred))
1981     LoopHeaders.insert(BB);
1982 
1983   LVI->eraseBlock(SinglePred);
1984   MergeBasicBlockIntoOnlyPred(BB, DTU);
1985 
1986   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1987   // BB code within one basic block `BB`), we need to invalidate the LVI
1988   // information associated with BB, because the LVI information need not be
1989   // true for all of BB after the merge. For example,
1990   // Before the merge, LVI info and code is as follows:
1991   // SinglePred: <LVI info1 for %p val>
1992   // %y = use of %p
1993   // call @exit() // need not transfer execution to successor.
1994   // assume(%p) // from this point on %p is true
1995   // br label %BB
1996   // BB: <LVI info2 for %p val, i.e. %p is true>
1997   // %x = use of %p
1998   // br label exit
1999   //
2000   // Note that this LVI info for blocks BB and SinglPred is correct for %p
2001   // (info2 and info1 respectively). After the merge and the deletion of the
2002   // LVI info1 for SinglePred. We have the following code:
2003   // BB: <LVI info2 for %p val>
2004   // %y = use of %p
2005   // call @exit()
2006   // assume(%p)
2007   // %x = use of %p <-- LVI info2 is correct from here onwards.
2008   // br label exit
2009   // LVI info2 for BB is incorrect at the beginning of BB.
2010 
2011   // Invalidate LVI information for BB if the LVI is not provably true for
2012   // all of BB.
2013   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2014     LVI->eraseBlock(BB);
2015   return true;
2016 }
2017 
2018 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2019 /// ValueMapping maps old values in BB to new ones in NewBB.
2020 void JumpThreadingPass::updateSSA(
2021     BasicBlock *BB, BasicBlock *NewBB,
2022     DenseMap<Instruction *, Value *> &ValueMapping) {
2023   // If there were values defined in BB that are used outside the block, then we
2024   // now have to update all uses of the value to use either the original value,
2025   // the cloned value, or some PHI derived value.  This can require arbitrary
2026   // PHI insertion, of which we are prepared to do, clean these up now.
2027   SSAUpdater SSAUpdate;
2028   SmallVector<Use *, 16> UsesToRename;
2029 
2030   for (Instruction &I : *BB) {
2031     // Scan all uses of this instruction to see if it is used outside of its
2032     // block, and if so, record them in UsesToRename.
2033     for (Use &U : I.uses()) {
2034       Instruction *User = cast<Instruction>(U.getUser());
2035       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2036         if (UserPN->getIncomingBlock(U) == BB)
2037           continue;
2038       } else if (User->getParent() == BB)
2039         continue;
2040 
2041       UsesToRename.push_back(&U);
2042     }
2043 
2044     // If there are no uses outside the block, we're done with this instruction.
2045     if (UsesToRename.empty())
2046       continue;
2047     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2048 
2049     // We found a use of I outside of BB.  Rename all uses of I that are outside
2050     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2051     // with the two values we know.
2052     SSAUpdate.Initialize(I.getType(), I.getName());
2053     SSAUpdate.AddAvailableValue(BB, &I);
2054     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2055 
2056     while (!UsesToRename.empty())
2057       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2058     LLVM_DEBUG(dbgs() << "\n");
2059   }
2060 }
2061 
2062 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2063 /// arguments that come from PredBB.  Return the map from the variables in the
2064 /// source basic block to the variables in the newly created basic block.
2065 DenseMap<Instruction *, Value *>
2066 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2067                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2068                                      BasicBlock *PredBB) {
2069   // We are going to have to map operands from the source basic block to the new
2070   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2071   // block, evaluate them to account for entry from PredBB.
2072   DenseMap<Instruction *, Value *> ValueMapping;
2073 
2074   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2075   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2076   // might need to rewrite the operand of the cloned phi.
2077   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2078     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2079     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2080     ValueMapping[PN] = NewPN;
2081   }
2082 
2083   // Clone noalias scope declarations in the threaded block. When threading a
2084   // loop exit, we would otherwise end up with two idential scope declarations
2085   // visible at the same time.
2086   SmallVector<MDNode *> NoAliasScopes;
2087   DenseMap<MDNode *, MDNode *> ClonedScopes;
2088   LLVMContext &Context = PredBB->getContext();
2089   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2090   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2091 
2092   // Clone the non-phi instructions of the source basic block into NewBB,
2093   // keeping track of the mapping and using it to remap operands in the cloned
2094   // instructions.
2095   for (; BI != BE; ++BI) {
2096     Instruction *New = BI->clone();
2097     New->setName(BI->getName());
2098     NewBB->getInstList().push_back(New);
2099     ValueMapping[&*BI] = New;
2100     adaptNoAliasScopes(New, ClonedScopes, Context);
2101 
2102     // Remap operands to patch up intra-block references.
2103     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2104       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2105         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2106         if (I != ValueMapping.end())
2107           New->setOperand(i, I->second);
2108       }
2109   }
2110 
2111   return ValueMapping;
2112 }
2113 
2114 /// Attempt to thread through two successive basic blocks.
2115 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2116                                                          Value *Cond) {
2117   // Consider:
2118   //
2119   // PredBB:
2120   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2121   //   %tobool = icmp eq i32 %cond, 0
2122   //   br i1 %tobool, label %BB, label ...
2123   //
2124   // BB:
2125   //   %cmp = icmp eq i32* %var, null
2126   //   br i1 %cmp, label ..., label ...
2127   //
2128   // We don't know the value of %var at BB even if we know which incoming edge
2129   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2130   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2131   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2132 
2133   // Require that BB end with a Branch for simplicity.
2134   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2135   if (!CondBr)
2136     return false;
2137 
2138   // BB must have exactly one predecessor.
2139   BasicBlock *PredBB = BB->getSinglePredecessor();
2140   if (!PredBB)
2141     return false;
2142 
2143   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2144   // unconditional branch, we should be merging PredBB and BB instead. For
2145   // simplicity, we don't deal with a switch.
2146   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2147   if (!PredBBBranch || PredBBBranch->isUnconditional())
2148     return false;
2149 
2150   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2151   // PredBB.
2152   if (PredBB->getSinglePredecessor())
2153     return false;
2154 
2155   // Don't thread through PredBB if it contains a successor edge to itself, in
2156   // which case we would infinite loop.  Suppose we are threading an edge from
2157   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2158   // successor edge to itself.  If we allowed jump threading in this case, we
2159   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2160   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2161   // with another jump threading opportunity from PredBB.thread through PredBB
2162   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2163   // would keep peeling one iteration from PredBB.
2164   if (llvm::is_contained(successors(PredBB), PredBB))
2165     return false;
2166 
2167   // Don't thread across a loop header.
2168   if (LoopHeaders.count(PredBB))
2169     return false;
2170 
2171   // Avoid complication with duplicating EH pads.
2172   if (PredBB->isEHPad())
2173     return false;
2174 
2175   // Find a predecessor that we can thread.  For simplicity, we only consider a
2176   // successor edge out of BB to which we thread exactly one incoming edge into
2177   // PredBB.
2178   unsigned ZeroCount = 0;
2179   unsigned OneCount = 0;
2180   BasicBlock *ZeroPred = nullptr;
2181   BasicBlock *OnePred = nullptr;
2182   for (BasicBlock *P : predecessors(PredBB)) {
2183     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2184             evaluateOnPredecessorEdge(BB, P, Cond))) {
2185       if (CI->isZero()) {
2186         ZeroCount++;
2187         ZeroPred = P;
2188       } else if (CI->isOne()) {
2189         OneCount++;
2190         OnePred = P;
2191       }
2192     }
2193   }
2194 
2195   // Disregard complicated cases where we have to thread multiple edges.
2196   BasicBlock *PredPredBB;
2197   if (ZeroCount == 1) {
2198     PredPredBB = ZeroPred;
2199   } else if (OneCount == 1) {
2200     PredPredBB = OnePred;
2201   } else {
2202     return false;
2203   }
2204 
2205   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2206 
2207   // If threading to the same block as we come from, we would infinite loop.
2208   if (SuccBB == BB) {
2209     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2210                       << "' - would thread to self!\n");
2211     return false;
2212   }
2213 
2214   // If threading this would thread across a loop header, don't thread the edge.
2215   // See the comments above findLoopHeaders for justifications and caveats.
2216   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2217     LLVM_DEBUG({
2218       bool BBIsHeader = LoopHeaders.count(BB);
2219       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2220       dbgs() << "  Not threading across "
2221              << (BBIsHeader ? "loop header BB '" : "block BB '")
2222              << BB->getName() << "' to dest "
2223              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2224              << SuccBB->getName()
2225              << "' - it might create an irreducible loop!\n";
2226     });
2227     return false;
2228   }
2229 
2230   // Compute the cost of duplicating BB and PredBB.
2231   unsigned BBCost = getJumpThreadDuplicationCost(
2232       TTI, BB, BB->getTerminator(), BBDupThreshold);
2233   unsigned PredBBCost = getJumpThreadDuplicationCost(
2234       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2235 
2236   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2237   // individually before checking their sum because getJumpThreadDuplicationCost
2238   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2239   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2240       BBCost + PredBBCost > BBDupThreshold) {
2241     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2242                       << "' - Cost is too high: " << PredBBCost
2243                       << " for PredBB, " << BBCost << "for BB\n");
2244     return false;
2245   }
2246 
2247   // Now we are ready to duplicate PredBB.
2248   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2249   return true;
2250 }
2251 
2252 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2253                                                     BasicBlock *PredBB,
2254                                                     BasicBlock *BB,
2255                                                     BasicBlock *SuccBB) {
2256   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2257                     << BB->getName() << "'\n");
2258 
2259   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2260   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2261 
2262   BasicBlock *NewBB =
2263       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2264                          PredBB->getParent(), PredBB);
2265   NewBB->moveAfter(PredBB);
2266 
2267   // Set the block frequency of NewBB.
2268   if (HasProfileData) {
2269     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2270                      BPI->getEdgeProbability(PredPredBB, PredBB);
2271     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2272   }
2273 
2274   // We are going to have to map operands from the original BB block to the new
2275   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2276   // to account for entry from PredPredBB.
2277   DenseMap<Instruction *, Value *> ValueMapping =
2278       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2279 
2280   // Copy the edge probabilities from PredBB to NewBB.
2281   if (HasProfileData)
2282     BPI->copyEdgeProbabilities(PredBB, NewBB);
2283 
2284   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2285   // This eliminates predecessors from PredPredBB, which requires us to simplify
2286   // any PHI nodes in PredBB.
2287   Instruction *PredPredTerm = PredPredBB->getTerminator();
2288   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2289     if (PredPredTerm->getSuccessor(i) == PredBB) {
2290       PredBB->removePredecessor(PredPredBB, true);
2291       PredPredTerm->setSuccessor(i, NewBB);
2292     }
2293 
2294   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2295                                   ValueMapping);
2296   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2297                                   ValueMapping);
2298 
2299   DTU->applyUpdatesPermissive(
2300       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2301        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2302        {DominatorTree::Insert, PredPredBB, NewBB},
2303        {DominatorTree::Delete, PredPredBB, PredBB}});
2304 
2305   updateSSA(PredBB, NewBB, ValueMapping);
2306 
2307   // Clean up things like PHI nodes with single operands, dead instructions,
2308   // etc.
2309   SimplifyInstructionsInBlock(NewBB, TLI);
2310   SimplifyInstructionsInBlock(PredBB, TLI);
2311 
2312   SmallVector<BasicBlock *, 1> PredsToFactor;
2313   PredsToFactor.push_back(NewBB);
2314   threadEdge(BB, PredsToFactor, SuccBB);
2315 }
2316 
2317 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2318 bool JumpThreadingPass::tryThreadEdge(
2319     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2320     BasicBlock *SuccBB) {
2321   // If threading to the same block as we come from, we would infinite loop.
2322   if (SuccBB == BB) {
2323     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2324                       << "' - would thread to self!\n");
2325     return false;
2326   }
2327 
2328   // If threading this would thread across a loop header, don't thread the edge.
2329   // See the comments above findLoopHeaders for justifications and caveats.
2330   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2331     LLVM_DEBUG({
2332       bool BBIsHeader = LoopHeaders.count(BB);
2333       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2334       dbgs() << "  Not threading across "
2335           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2336           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2337           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2338     });
2339     return false;
2340   }
2341 
2342   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2343       TTI, BB, BB->getTerminator(), BBDupThreshold);
2344   if (JumpThreadCost > BBDupThreshold) {
2345     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2346                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2347     return false;
2348   }
2349 
2350   threadEdge(BB, PredBBs, SuccBB);
2351   return true;
2352 }
2353 
2354 /// threadEdge - We have decided that it is safe and profitable to factor the
2355 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2356 /// across BB.  Transform the IR to reflect this change.
2357 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2358                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2359                                    BasicBlock *SuccBB) {
2360   assert(SuccBB != BB && "Don't create an infinite loop");
2361 
2362   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2363          "Don't thread across loop headers");
2364 
2365   // And finally, do it!  Start by factoring the predecessors if needed.
2366   BasicBlock *PredBB;
2367   if (PredBBs.size() == 1)
2368     PredBB = PredBBs[0];
2369   else {
2370     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2371                       << " common predecessors.\n");
2372     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2373   }
2374 
2375   // And finally, do it!
2376   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2377                     << "' to '" << SuccBB->getName()
2378                     << ", across block:\n    " << *BB << "\n");
2379 
2380   LVI->threadEdge(PredBB, BB, SuccBB);
2381 
2382   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2383                                          BB->getName()+".thread",
2384                                          BB->getParent(), BB);
2385   NewBB->moveAfter(PredBB);
2386 
2387   // Set the block frequency of NewBB.
2388   if (HasProfileData) {
2389     auto NewBBFreq =
2390         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2391     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2392   }
2393 
2394   // Copy all the instructions from BB to NewBB except the terminator.
2395   DenseMap<Instruction *, Value *> ValueMapping =
2396       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2397 
2398   // We didn't copy the terminator from BB over to NewBB, because there is now
2399   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2400   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2401   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2402 
2403   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2404   // PHI nodes for NewBB now.
2405   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2406 
2407   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2408   // eliminates predecessors from BB, which requires us to simplify any PHI
2409   // nodes in BB.
2410   Instruction *PredTerm = PredBB->getTerminator();
2411   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2412     if (PredTerm->getSuccessor(i) == BB) {
2413       BB->removePredecessor(PredBB, true);
2414       PredTerm->setSuccessor(i, NewBB);
2415     }
2416 
2417   // Enqueue required DT updates.
2418   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2419                                {DominatorTree::Insert, PredBB, NewBB},
2420                                {DominatorTree::Delete, PredBB, BB}});
2421 
2422   updateSSA(BB, NewBB, ValueMapping);
2423 
2424   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2425   // over the new instructions and zap any that are constants or dead.  This
2426   // frequently happens because of phi translation.
2427   SimplifyInstructionsInBlock(NewBB, TLI);
2428 
2429   // Update the edge weight from BB to SuccBB, which should be less than before.
2430   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2431 
2432   // Threaded an edge!
2433   ++NumThreads;
2434 }
2435 
2436 /// Create a new basic block that will be the predecessor of BB and successor of
2437 /// all blocks in Preds. When profile data is available, update the frequency of
2438 /// this new block.
2439 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2440                                                ArrayRef<BasicBlock *> Preds,
2441                                                const char *Suffix) {
2442   SmallVector<BasicBlock *, 2> NewBBs;
2443 
2444   // Collect the frequencies of all predecessors of BB, which will be used to
2445   // update the edge weight of the result of splitting predecessors.
2446   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2447   if (HasProfileData)
2448     for (auto Pred : Preds)
2449       FreqMap.insert(std::make_pair(
2450           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2451 
2452   // In the case when BB is a LandingPad block we create 2 new predecessors
2453   // instead of just one.
2454   if (BB->isLandingPad()) {
2455     std::string NewName = std::string(Suffix) + ".split-lp";
2456     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2457   } else {
2458     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2459   }
2460 
2461   std::vector<DominatorTree::UpdateType> Updates;
2462   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2463   for (auto NewBB : NewBBs) {
2464     BlockFrequency NewBBFreq(0);
2465     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2466     for (auto Pred : predecessors(NewBB)) {
2467       Updates.push_back({DominatorTree::Delete, Pred, BB});
2468       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2469       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2470         NewBBFreq += FreqMap.lookup(Pred);
2471     }
2472     if (HasProfileData) // Apply the summed frequency to NewBB.
2473       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2474   }
2475 
2476   DTU->applyUpdatesPermissive(Updates);
2477   return NewBBs[0];
2478 }
2479 
2480 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2481   const Instruction *TI = BB->getTerminator();
2482   assert(TI->getNumSuccessors() > 1 && "not a split");
2483 
2484   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2485   if (!WeightsNode)
2486     return false;
2487 
2488   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2489   if (MDName->getString() != "branch_weights")
2490     return false;
2491 
2492   // Ensure there are weights for all of the successors. Note that the first
2493   // operand to the metadata node is a name, not a weight.
2494   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2495 }
2496 
2497 /// Update the block frequency of BB and branch weight and the metadata on the
2498 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2499 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2500 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2501                                                      BasicBlock *BB,
2502                                                      BasicBlock *NewBB,
2503                                                      BasicBlock *SuccBB) {
2504   if (!HasProfileData)
2505     return;
2506 
2507   assert(BFI && BPI && "BFI & BPI should have been created here");
2508 
2509   // As the edge from PredBB to BB is deleted, we have to update the block
2510   // frequency of BB.
2511   auto BBOrigFreq = BFI->getBlockFreq(BB);
2512   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2513   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2514   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2515   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2516 
2517   // Collect updated outgoing edges' frequencies from BB and use them to update
2518   // edge probabilities.
2519   SmallVector<uint64_t, 4> BBSuccFreq;
2520   for (BasicBlock *Succ : successors(BB)) {
2521     auto SuccFreq = (Succ == SuccBB)
2522                         ? BB2SuccBBFreq - NewBBFreq
2523                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2524     BBSuccFreq.push_back(SuccFreq.getFrequency());
2525   }
2526 
2527   uint64_t MaxBBSuccFreq =
2528       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2529 
2530   SmallVector<BranchProbability, 4> BBSuccProbs;
2531   if (MaxBBSuccFreq == 0)
2532     BBSuccProbs.assign(BBSuccFreq.size(),
2533                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2534   else {
2535     for (uint64_t Freq : BBSuccFreq)
2536       BBSuccProbs.push_back(
2537           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2538     // Normalize edge probabilities so that they sum up to one.
2539     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2540                                               BBSuccProbs.end());
2541   }
2542 
2543   // Update edge probabilities in BPI.
2544   BPI->setEdgeProbability(BB, BBSuccProbs);
2545 
2546   // Update the profile metadata as well.
2547   //
2548   // Don't do this if the profile of the transformed blocks was statically
2549   // estimated.  (This could occur despite the function having an entry
2550   // frequency in completely cold parts of the CFG.)
2551   //
2552   // In this case we don't want to suggest to subsequent passes that the
2553   // calculated weights are fully consistent.  Consider this graph:
2554   //
2555   //                 check_1
2556   //             50% /  |
2557   //             eq_1   | 50%
2558   //                 \  |
2559   //                 check_2
2560   //             50% /  |
2561   //             eq_2   | 50%
2562   //                 \  |
2563   //                 check_3
2564   //             50% /  |
2565   //             eq_3   | 50%
2566   //                 \  |
2567   //
2568   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2569   // the overall probabilities are inconsistent; the total probability that the
2570   // value is either 1, 2 or 3 is 150%.
2571   //
2572   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2573   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2574   // the loop exit edge.  Then based solely on static estimation we would assume
2575   // the loop was extremely hot.
2576   //
2577   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2578   // shouldn't make edges extremely likely or unlikely based solely on static
2579   // estimation.
2580   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2581     SmallVector<uint32_t, 4> Weights;
2582     for (auto Prob : BBSuccProbs)
2583       Weights.push_back(Prob.getNumerator());
2584 
2585     auto TI = BB->getTerminator();
2586     TI->setMetadata(
2587         LLVMContext::MD_prof,
2588         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2589   }
2590 }
2591 
2592 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2593 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2594 /// If we can duplicate the contents of BB up into PredBB do so now, this
2595 /// improves the odds that the branch will be on an analyzable instruction like
2596 /// a compare.
2597 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2598     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2599   assert(!PredBBs.empty() && "Can't handle an empty set");
2600 
2601   // If BB is a loop header, then duplicating this block outside the loop would
2602   // cause us to transform this into an irreducible loop, don't do this.
2603   // See the comments above findLoopHeaders for justifications and caveats.
2604   if (LoopHeaders.count(BB)) {
2605     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2606                       << "' into predecessor block '" << PredBBs[0]->getName()
2607                       << "' - it might create an irreducible loop!\n");
2608     return false;
2609   }
2610 
2611   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2612       TTI, BB, BB->getTerminator(), BBDupThreshold);
2613   if (DuplicationCost > BBDupThreshold) {
2614     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2615                       << "' - Cost is too high: " << DuplicationCost << "\n");
2616     return false;
2617   }
2618 
2619   // And finally, do it!  Start by factoring the predecessors if needed.
2620   std::vector<DominatorTree::UpdateType> Updates;
2621   BasicBlock *PredBB;
2622   if (PredBBs.size() == 1)
2623     PredBB = PredBBs[0];
2624   else {
2625     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2626                       << " common predecessors.\n");
2627     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2628   }
2629   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2630 
2631   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2632   // of PredBB.
2633   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2634                     << "' into end of '" << PredBB->getName()
2635                     << "' to eliminate branch on phi.  Cost: "
2636                     << DuplicationCost << " block is:" << *BB << "\n");
2637 
2638   // Unless PredBB ends with an unconditional branch, split the edge so that we
2639   // can just clone the bits from BB into the end of the new PredBB.
2640   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2641 
2642   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2643     BasicBlock *OldPredBB = PredBB;
2644     PredBB = SplitEdge(OldPredBB, BB);
2645     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2646     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2647     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2648     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2649   }
2650 
2651   // We are going to have to map operands from the original BB block into the
2652   // PredBB block.  Evaluate PHI nodes in BB.
2653   DenseMap<Instruction*, Value*> ValueMapping;
2654 
2655   BasicBlock::iterator BI = BB->begin();
2656   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2657     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2658   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2659   // mapping and using it to remap operands in the cloned instructions.
2660   for (; BI != BB->end(); ++BI) {
2661     Instruction *New = BI->clone();
2662 
2663     // Remap operands to patch up intra-block references.
2664     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2665       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2666         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2667         if (I != ValueMapping.end())
2668           New->setOperand(i, I->second);
2669       }
2670 
2671     // If this instruction can be simplified after the operands are updated,
2672     // just use the simplified value instead.  This frequently happens due to
2673     // phi translation.
2674     if (Value *IV = SimplifyInstruction(
2675             New,
2676             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2677       ValueMapping[&*BI] = IV;
2678       if (!New->mayHaveSideEffects()) {
2679         New->deleteValue();
2680         New = nullptr;
2681       }
2682     } else {
2683       ValueMapping[&*BI] = New;
2684     }
2685     if (New) {
2686       // Otherwise, insert the new instruction into the block.
2687       New->setName(BI->getName());
2688       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2689       // Update Dominance from simplified New instruction operands.
2690       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2691         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2692           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2693     }
2694   }
2695 
2696   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2697   // add entries to the PHI nodes for branch from PredBB now.
2698   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2699   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2700                                   ValueMapping);
2701   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2702                                   ValueMapping);
2703 
2704   updateSSA(BB, PredBB, ValueMapping);
2705 
2706   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2707   // that we nuked.
2708   BB->removePredecessor(PredBB, true);
2709 
2710   // Remove the unconditional branch at the end of the PredBB block.
2711   OldPredBranch->eraseFromParent();
2712   if (HasProfileData)
2713     BPI->copyEdgeProbabilities(BB, PredBB);
2714   DTU->applyUpdatesPermissive(Updates);
2715 
2716   ++NumDupes;
2717   return true;
2718 }
2719 
2720 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2721 // a Select instruction in Pred. BB has other predecessors and SI is used in
2722 // a PHI node in BB. SI has no other use.
2723 // A new basic block, NewBB, is created and SI is converted to compare and
2724 // conditional branch. SI is erased from parent.
2725 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2726                                           SelectInst *SI, PHINode *SIUse,
2727                                           unsigned Idx) {
2728   // Expand the select.
2729   //
2730   // Pred --
2731   //  |    v
2732   //  |  NewBB
2733   //  |    |
2734   //  |-----
2735   //  v
2736   // BB
2737   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2738   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2739                                          BB->getParent(), BB);
2740   // Move the unconditional branch to NewBB.
2741   PredTerm->removeFromParent();
2742   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2743   // Create a conditional branch and update PHI nodes.
2744   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2745   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2746   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2747   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2748 
2749   // The select is now dead.
2750   SI->eraseFromParent();
2751   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2752                                {DominatorTree::Insert, Pred, NewBB}});
2753 
2754   // Update any other PHI nodes in BB.
2755   for (BasicBlock::iterator BI = BB->begin();
2756        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2757     if (Phi != SIUse)
2758       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2759 }
2760 
2761 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2762   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2763 
2764   if (!CondPHI || CondPHI->getParent() != BB)
2765     return false;
2766 
2767   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2768     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2769     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2770 
2771     // The second and third condition can be potentially relaxed. Currently
2772     // the conditions help to simplify the code and allow us to reuse existing
2773     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2774     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2775       continue;
2776 
2777     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2778     if (!PredTerm || !PredTerm->isUnconditional())
2779       continue;
2780 
2781     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2782     return true;
2783   }
2784   return false;
2785 }
2786 
2787 /// tryToUnfoldSelect - Look for blocks of the form
2788 /// bb1:
2789 ///   %a = select
2790 ///   br bb2
2791 ///
2792 /// bb2:
2793 ///   %p = phi [%a, %bb1] ...
2794 ///   %c = icmp %p
2795 ///   br i1 %c
2796 ///
2797 /// And expand the select into a branch structure if one of its arms allows %c
2798 /// to be folded. This later enables threading from bb1 over bb2.
2799 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2800   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2801   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2802   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2803 
2804   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2805       CondLHS->getParent() != BB)
2806     return false;
2807 
2808   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2809     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2810     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2811 
2812     // Look if one of the incoming values is a select in the corresponding
2813     // predecessor.
2814     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2815       continue;
2816 
2817     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2818     if (!PredTerm || !PredTerm->isUnconditional())
2819       continue;
2820 
2821     // Now check if one of the select values would allow us to constant fold the
2822     // terminator in BB. We don't do the transform if both sides fold, those
2823     // cases will be threaded in any case.
2824     LazyValueInfo::Tristate LHSFolds =
2825         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2826                                 CondRHS, Pred, BB, CondCmp);
2827     LazyValueInfo::Tristate RHSFolds =
2828         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2829                                 CondRHS, Pred, BB, CondCmp);
2830     if ((LHSFolds != LazyValueInfo::Unknown ||
2831          RHSFolds != LazyValueInfo::Unknown) &&
2832         LHSFolds != RHSFolds) {
2833       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2834       return true;
2835     }
2836   }
2837   return false;
2838 }
2839 
2840 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2841 /// same BB in the form
2842 /// bb:
2843 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2844 ///   %s = select %p, trueval, falseval
2845 ///
2846 /// or
2847 ///
2848 /// bb:
2849 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2850 ///   %c = cmp %p, 0
2851 ///   %s = select %c, trueval, falseval
2852 ///
2853 /// And expand the select into a branch structure. This later enables
2854 /// jump-threading over bb in this pass.
2855 ///
2856 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2857 /// select if the associated PHI has at least one constant.  If the unfolded
2858 /// select is not jump-threaded, it will be folded again in the later
2859 /// optimizations.
2860 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2861   // This transform would reduce the quality of msan diagnostics.
2862   // Disable this transform under MemorySanitizer.
2863   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2864     return false;
2865 
2866   // If threading this would thread across a loop header, don't thread the edge.
2867   // See the comments above findLoopHeaders for justifications and caveats.
2868   if (LoopHeaders.count(BB))
2869     return false;
2870 
2871   for (BasicBlock::iterator BI = BB->begin();
2872        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2873     // Look for a Phi having at least one constant incoming value.
2874     if (llvm::all_of(PN->incoming_values(),
2875                      [](Value *V) { return !isa<ConstantInt>(V); }))
2876       continue;
2877 
2878     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2879       using namespace PatternMatch;
2880 
2881       // Check if SI is in BB and use V as condition.
2882       if (SI->getParent() != BB)
2883         return false;
2884       Value *Cond = SI->getCondition();
2885       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2886       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2887     };
2888 
2889     SelectInst *SI = nullptr;
2890     for (Use &U : PN->uses()) {
2891       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2892         // Look for a ICmp in BB that compares PN with a constant and is the
2893         // condition of a Select.
2894         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2895             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2896           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2897             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2898               SI = SelectI;
2899               break;
2900             }
2901       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2902         // Look for a Select in BB that uses PN as condition.
2903         if (isUnfoldCandidate(SelectI, U.get())) {
2904           SI = SelectI;
2905           break;
2906         }
2907       }
2908     }
2909 
2910     if (!SI)
2911       continue;
2912     // Expand the select.
2913     Value *Cond = SI->getCondition();
2914     if (InsertFreezeWhenUnfoldingSelect &&
2915         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2916       Cond = new FreezeInst(Cond, "cond.fr", SI);
2917     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2918     BasicBlock *SplitBB = SI->getParent();
2919     BasicBlock *NewBB = Term->getParent();
2920     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2921     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2922     NewPN->addIncoming(SI->getFalseValue(), BB);
2923     SI->replaceAllUsesWith(NewPN);
2924     SI->eraseFromParent();
2925     // NewBB and SplitBB are newly created blocks which require insertion.
2926     std::vector<DominatorTree::UpdateType> Updates;
2927     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2928     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2929     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2930     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2931     // BB's successors were moved to SplitBB, update DTU accordingly.
2932     for (auto *Succ : successors(SplitBB)) {
2933       Updates.push_back({DominatorTree::Delete, BB, Succ});
2934       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2935     }
2936     DTU->applyUpdatesPermissive(Updates);
2937     return true;
2938   }
2939   return false;
2940 }
2941 
2942 /// Try to propagate a guard from the current BB into one of its predecessors
2943 /// in case if another branch of execution implies that the condition of this
2944 /// guard is always true. Currently we only process the simplest case that
2945 /// looks like:
2946 ///
2947 /// Start:
2948 ///   %cond = ...
2949 ///   br i1 %cond, label %T1, label %F1
2950 /// T1:
2951 ///   br label %Merge
2952 /// F1:
2953 ///   br label %Merge
2954 /// Merge:
2955 ///   %condGuard = ...
2956 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2957 ///
2958 /// And cond either implies condGuard or !condGuard. In this case all the
2959 /// instructions before the guard can be duplicated in both branches, and the
2960 /// guard is then threaded to one of them.
2961 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2962   using namespace PatternMatch;
2963 
2964   // We only want to deal with two predecessors.
2965   BasicBlock *Pred1, *Pred2;
2966   auto PI = pred_begin(BB), PE = pred_end(BB);
2967   if (PI == PE)
2968     return false;
2969   Pred1 = *PI++;
2970   if (PI == PE)
2971     return false;
2972   Pred2 = *PI++;
2973   if (PI != PE)
2974     return false;
2975   if (Pred1 == Pred2)
2976     return false;
2977 
2978   // Try to thread one of the guards of the block.
2979   // TODO: Look up deeper than to immediate predecessor?
2980   auto *Parent = Pred1->getSinglePredecessor();
2981   if (!Parent || Parent != Pred2->getSinglePredecessor())
2982     return false;
2983 
2984   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2985     for (auto &I : *BB)
2986       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2987         return true;
2988 
2989   return false;
2990 }
2991 
2992 /// Try to propagate the guard from BB which is the lower block of a diamond
2993 /// to one of its branches, in case if diamond's condition implies guard's
2994 /// condition.
2995 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2996                                     BranchInst *BI) {
2997   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2998   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2999   Value *GuardCond = Guard->getArgOperand(0);
3000   Value *BranchCond = BI->getCondition();
3001   BasicBlock *TrueDest = BI->getSuccessor(0);
3002   BasicBlock *FalseDest = BI->getSuccessor(1);
3003 
3004   auto &DL = BB->getModule()->getDataLayout();
3005   bool TrueDestIsSafe = false;
3006   bool FalseDestIsSafe = false;
3007 
3008   // True dest is safe if BranchCond => GuardCond.
3009   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3010   if (Impl && *Impl)
3011     TrueDestIsSafe = true;
3012   else {
3013     // False dest is safe if !BranchCond => GuardCond.
3014     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3015     if (Impl && *Impl)
3016       FalseDestIsSafe = true;
3017   }
3018 
3019   if (!TrueDestIsSafe && !FalseDestIsSafe)
3020     return false;
3021 
3022   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3023   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3024 
3025   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3026   Instruction *AfterGuard = Guard->getNextNode();
3027   unsigned Cost =
3028       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3029   if (Cost > BBDupThreshold)
3030     return false;
3031   // Duplicate all instructions before the guard and the guard itself to the
3032   // branch where implication is not proved.
3033   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3034       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3035   assert(GuardedBlock && "Could not create the guarded block?");
3036   // Duplicate all instructions before the guard in the unguarded branch.
3037   // Since we have successfully duplicated the guarded block and this block
3038   // has fewer instructions, we expect it to succeed.
3039   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3040       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3041   assert(UnguardedBlock && "Could not create the unguarded block?");
3042   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3043                     << GuardedBlock->getName() << "\n");
3044   // Some instructions before the guard may still have uses. For them, we need
3045   // to create Phi nodes merging their copies in both guarded and unguarded
3046   // branches. Those instructions that have no uses can be just removed.
3047   SmallVector<Instruction *, 4> ToRemove;
3048   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3049     if (!isa<PHINode>(&*BI))
3050       ToRemove.push_back(&*BI);
3051 
3052   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3053   assert(InsertionPoint && "Empty block?");
3054   // Substitute with Phis & remove.
3055   for (auto *Inst : reverse(ToRemove)) {
3056     if (!Inst->use_empty()) {
3057       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3058       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3059       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3060       NewPN->insertBefore(InsertionPoint);
3061       Inst->replaceAllUsesWith(NewPN);
3062     }
3063     Inst->eraseFromParent();
3064   }
3065   return true;
3066 }
3067