1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/GuardUtils.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DomTreeUpdater.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/BlockFrequency.h" 60 #include "llvm/Support/BranchProbability.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/SSAUpdater.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <memory> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace jumpthreading; 81 82 #define DEBUG_TYPE "jump-threading" 83 84 STATISTIC(NumThreads, "Number of jumps threaded"); 85 STATISTIC(NumFolds, "Number of terminators folded"); 86 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 87 88 static cl::opt<unsigned> 89 BBDuplicateThreshold("jump-threading-threshold", 90 cl::desc("Max block size to duplicate for jump threading"), 91 cl::init(6), cl::Hidden); 92 93 static cl::opt<unsigned> 94 ImplicationSearchThreshold( 95 "jump-threading-implication-search-threshold", 96 cl::desc("The number of predecessors to search for a stronger " 97 "condition to use to thread over a weaker condition"), 98 cl::init(3), cl::Hidden); 99 100 static cl::opt<bool> PrintLVIAfterJumpThreading( 101 "print-lvi-after-jump-threading", 102 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 103 cl::Hidden); 104 105 namespace { 106 107 /// This pass performs 'jump threading', which looks at blocks that have 108 /// multiple predecessors and multiple successors. If one or more of the 109 /// predecessors of the block can be proven to always jump to one of the 110 /// successors, we forward the edge from the predecessor to the successor by 111 /// duplicating the contents of this block. 112 /// 113 /// An example of when this can occur is code like this: 114 /// 115 /// if () { ... 116 /// X = 4; 117 /// } 118 /// if (X < 3) { 119 /// 120 /// In this case, the unconditional branch at the end of the first if can be 121 /// revectored to the false side of the second if. 122 class JumpThreading : public FunctionPass { 123 JumpThreadingPass Impl; 124 125 public: 126 static char ID; // Pass identification 127 128 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 129 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 130 } 131 132 bool runOnFunction(Function &F) override; 133 134 void getAnalysisUsage(AnalysisUsage &AU) const override { 135 AU.addRequired<DominatorTreeWrapperPass>(); 136 AU.addPreserved<DominatorTreeWrapperPass>(); 137 AU.addRequired<AAResultsWrapperPass>(); 138 AU.addRequired<LazyValueInfoWrapperPass>(); 139 AU.addPreserved<LazyValueInfoWrapperPass>(); 140 AU.addPreserved<GlobalsAAWrapperPass>(); 141 AU.addRequired<TargetLibraryInfoWrapperPass>(); 142 } 143 144 void releaseMemory() override { Impl.releaseMemory(); } 145 }; 146 147 } // end anonymous namespace 148 149 char JumpThreading::ID = 0; 150 151 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 152 "Jump Threading", false, false) 153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 157 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 158 "Jump Threading", false, false) 159 160 // Public interface to the Jump Threading pass 161 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 162 return new JumpThreading(Threshold); 163 } 164 165 JumpThreadingPass::JumpThreadingPass(int T) { 166 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 167 } 168 169 // Update branch probability information according to conditional 170 // branch probability. This is usually made possible for cloned branches 171 // in inline instances by the context specific profile in the caller. 172 // For instance, 173 // 174 // [Block PredBB] 175 // [Branch PredBr] 176 // if (t) { 177 // Block A; 178 // } else { 179 // Block B; 180 // } 181 // 182 // [Block BB] 183 // cond = PN([true, %A], [..., %B]); // PHI node 184 // [Branch CondBr] 185 // if (cond) { 186 // ... // P(cond == true) = 1% 187 // } 188 // 189 // Here we know that when block A is taken, cond must be true, which means 190 // P(cond == true | A) = 1 191 // 192 // Given that P(cond == true) = P(cond == true | A) * P(A) + 193 // P(cond == true | B) * P(B) 194 // we get: 195 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 196 // 197 // which gives us: 198 // P(A) is less than P(cond == true), i.e. 199 // P(t == true) <= P(cond == true) 200 // 201 // In other words, if we know P(cond == true) is unlikely, we know 202 // that P(t == true) is also unlikely. 203 // 204 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 205 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 206 if (!CondBr) 207 return; 208 209 BranchProbability BP; 210 uint64_t TrueWeight, FalseWeight; 211 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 212 return; 213 214 // Returns the outgoing edge of the dominating predecessor block 215 // that leads to the PhiNode's incoming block: 216 auto GetPredOutEdge = 217 [](BasicBlock *IncomingBB, 218 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 219 auto *PredBB = IncomingBB; 220 auto *SuccBB = PhiBB; 221 while (true) { 222 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 223 if (PredBr && PredBr->isConditional()) 224 return {PredBB, SuccBB}; 225 auto *SinglePredBB = PredBB->getSinglePredecessor(); 226 if (!SinglePredBB) 227 return {nullptr, nullptr}; 228 SuccBB = PredBB; 229 PredBB = SinglePredBB; 230 } 231 }; 232 233 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 234 Value *PhiOpnd = PN->getIncomingValue(i); 235 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 236 237 if (!CI || !CI->getType()->isIntegerTy(1)) 238 continue; 239 240 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 241 TrueWeight, TrueWeight + FalseWeight) 242 : BranchProbability::getBranchProbability( 243 FalseWeight, TrueWeight + FalseWeight)); 244 245 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 246 if (!PredOutEdge.first) 247 return; 248 249 BasicBlock *PredBB = PredOutEdge.first; 250 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 251 252 uint64_t PredTrueWeight, PredFalseWeight; 253 // FIXME: We currently only set the profile data when it is missing. 254 // With PGO, this can be used to refine even existing profile data with 255 // context information. This needs to be done after more performance 256 // testing. 257 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 258 continue; 259 260 // We can not infer anything useful when BP >= 50%, because BP is the 261 // upper bound probability value. 262 if (BP >= BranchProbability(50, 100)) 263 continue; 264 265 SmallVector<uint32_t, 2> Weights; 266 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 267 Weights.push_back(BP.getNumerator()); 268 Weights.push_back(BP.getCompl().getNumerator()); 269 } else { 270 Weights.push_back(BP.getCompl().getNumerator()); 271 Weights.push_back(BP.getNumerator()); 272 } 273 PredBr->setMetadata(LLVMContext::MD_prof, 274 MDBuilder(PredBr->getParent()->getContext()) 275 .createBranchWeights(Weights)); 276 } 277 } 278 279 /// runOnFunction - Toplevel algorithm. 280 bool JumpThreading::runOnFunction(Function &F) { 281 if (skipFunction(F)) 282 return false; 283 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 284 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 285 // DT if it's available. 286 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 287 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 288 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 289 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 290 std::unique_ptr<BlockFrequencyInfo> BFI; 291 std::unique_ptr<BranchProbabilityInfo> BPI; 292 bool HasProfileData = F.hasProfileData(); 293 if (HasProfileData) { 294 LoopInfo LI{DominatorTree(F)}; 295 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 296 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 297 } 298 299 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData, 300 std::move(BFI), std::move(BPI)); 301 if (PrintLVIAfterJumpThreading) { 302 dbgs() << "LVI for function '" << F.getName() << "':\n"; 303 LVI->printLVI(F, *DT, dbgs()); 304 } 305 return Changed; 306 } 307 308 PreservedAnalyses JumpThreadingPass::run(Function &F, 309 FunctionAnalysisManager &AM) { 310 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 311 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 312 // DT if it's available. 313 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 314 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 315 auto &AA = AM.getResult<AAManager>(F); 316 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 317 318 std::unique_ptr<BlockFrequencyInfo> BFI; 319 std::unique_ptr<BranchProbabilityInfo> BPI; 320 if (F.hasProfileData()) { 321 LoopInfo LI{DominatorTree(F)}; 322 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 323 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 324 } 325 326 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData, 327 std::move(BFI), std::move(BPI)); 328 329 if (!Changed) 330 return PreservedAnalyses::all(); 331 PreservedAnalyses PA; 332 PA.preserve<GlobalsAA>(); 333 PA.preserve<DominatorTreeAnalysis>(); 334 PA.preserve<LazyValueAnalysis>(); 335 return PA; 336 } 337 338 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 339 LazyValueInfo *LVI_, AliasAnalysis *AA_, 340 DomTreeUpdater *DTU_, bool HasProfileData_, 341 std::unique_ptr<BlockFrequencyInfo> BFI_, 342 std::unique_ptr<BranchProbabilityInfo> BPI_) { 343 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 344 TLI = TLI_; 345 LVI = LVI_; 346 AA = AA_; 347 DTU = DTU_; 348 BFI.reset(); 349 BPI.reset(); 350 // When profile data is available, we need to update edge weights after 351 // successful jump threading, which requires both BPI and BFI being available. 352 HasProfileData = HasProfileData_; 353 auto *GuardDecl = F.getParent()->getFunction( 354 Intrinsic::getName(Intrinsic::experimental_guard)); 355 HasGuards = GuardDecl && !GuardDecl->use_empty(); 356 if (HasProfileData) { 357 BPI = std::move(BPI_); 358 BFI = std::move(BFI_); 359 } 360 361 // JumpThreading must not processes blocks unreachable from entry. It's a 362 // waste of compute time and can potentially lead to hangs. 363 SmallPtrSet<BasicBlock *, 16> Unreachable; 364 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 365 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 366 DominatorTree &DT = DTU->getDomTree(); 367 for (auto &BB : F) 368 if (!DT.isReachableFromEntry(&BB)) 369 Unreachable.insert(&BB); 370 371 FindLoopHeaders(F); 372 373 bool EverChanged = false; 374 bool Changed; 375 do { 376 Changed = false; 377 for (auto &BB : F) { 378 if (Unreachable.count(&BB)) 379 continue; 380 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 381 Changed = true; 382 // Stop processing BB if it's the entry or is now deleted. The following 383 // routines attempt to eliminate BB and locating a suitable replacement 384 // for the entry is non-trivial. 385 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 386 continue; 387 388 if (pred_empty(&BB)) { 389 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 390 // the instructions in it. We must remove BB to prevent invalid IR. 391 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 392 << "' with terminator: " << *BB.getTerminator() 393 << '\n'); 394 LoopHeaders.erase(&BB); 395 LVI->eraseBlock(&BB); 396 DeleteDeadBlock(&BB, DTU); 397 Changed = true; 398 continue; 399 } 400 401 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 402 // is "almost empty", we attempt to merge BB with its sole successor. 403 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 404 if (BI && BI->isUnconditional() && 405 // The terminator must be the only non-phi instruction in BB. 406 BB.getFirstNonPHIOrDbg()->isTerminator() && 407 // Don't alter Loop headers and latches to ensure another pass can 408 // detect and transform nested loops later. 409 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 410 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 411 // BB is valid for cleanup here because we passed in DTU. F remains 412 // BB's parent until a DTU->getDomTree() event. 413 LVI->eraseBlock(&BB); 414 Changed = true; 415 } 416 } 417 EverChanged |= Changed; 418 } while (Changed); 419 420 LoopHeaders.clear(); 421 // Flush only the Dominator Tree. 422 DTU->getDomTree(); 423 LVI->enableDT(); 424 return EverChanged; 425 } 426 427 // Replace uses of Cond with ToVal when safe to do so. If all uses are 428 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 429 // because we may incorrectly replace uses when guards/assumes are uses of 430 // of `Cond` and we used the guards/assume to reason about the `Cond` value 431 // at the end of block. RAUW unconditionally replaces all uses 432 // including the guards/assumes themselves and the uses before the 433 // guard/assume. 434 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 435 assert(Cond->getType() == ToVal->getType()); 436 auto *BB = Cond->getParent(); 437 // We can unconditionally replace all uses in non-local blocks (i.e. uses 438 // strictly dominated by BB), since LVI information is true from the 439 // terminator of BB. 440 replaceNonLocalUsesWith(Cond, ToVal); 441 for (Instruction &I : reverse(*BB)) { 442 // Reached the Cond whose uses we are trying to replace, so there are no 443 // more uses. 444 if (&I == Cond) 445 break; 446 // We only replace uses in instructions that are guaranteed to reach the end 447 // of BB, where we know Cond is ToVal. 448 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 449 break; 450 I.replaceUsesOfWith(Cond, ToVal); 451 } 452 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 453 Cond->eraseFromParent(); 454 } 455 456 /// Return the cost of duplicating a piece of this block from first non-phi 457 /// and before StopAt instruction to thread across it. Stop scanning the block 458 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 459 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 460 Instruction *StopAt, 461 unsigned Threshold) { 462 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 463 /// Ignore PHI nodes, these will be flattened when duplication happens. 464 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 465 466 // FIXME: THREADING will delete values that are just used to compute the 467 // branch, so they shouldn't count against the duplication cost. 468 469 unsigned Bonus = 0; 470 if (BB->getTerminator() == StopAt) { 471 // Threading through a switch statement is particularly profitable. If this 472 // block ends in a switch, decrease its cost to make it more likely to 473 // happen. 474 if (isa<SwitchInst>(StopAt)) 475 Bonus = 6; 476 477 // The same holds for indirect branches, but slightly more so. 478 if (isa<IndirectBrInst>(StopAt)) 479 Bonus = 8; 480 } 481 482 // Bump the threshold up so the early exit from the loop doesn't skip the 483 // terminator-based Size adjustment at the end. 484 Threshold += Bonus; 485 486 // Sum up the cost of each instruction until we get to the terminator. Don't 487 // include the terminator because the copy won't include it. 488 unsigned Size = 0; 489 for (; &*I != StopAt; ++I) { 490 491 // Stop scanning the block if we've reached the threshold. 492 if (Size > Threshold) 493 return Size; 494 495 // Debugger intrinsics don't incur code size. 496 if (isa<DbgInfoIntrinsic>(I)) continue; 497 498 // If this is a pointer->pointer bitcast, it is free. 499 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 500 continue; 501 502 // Bail out if this instruction gives back a token type, it is not possible 503 // to duplicate it if it is used outside this BB. 504 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 505 return ~0U; 506 507 // All other instructions count for at least one unit. 508 ++Size; 509 510 // Calls are more expensive. If they are non-intrinsic calls, we model them 511 // as having cost of 4. If they are a non-vector intrinsic, we model them 512 // as having cost of 2 total, and if they are a vector intrinsic, we model 513 // them as having cost 1. 514 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 515 if (CI->cannotDuplicate() || CI->isConvergent()) 516 // Blocks with NoDuplicate are modelled as having infinite cost, so they 517 // are never duplicated. 518 return ~0U; 519 else if (!isa<IntrinsicInst>(CI)) 520 Size += 3; 521 else if (!CI->getType()->isVectorTy()) 522 Size += 1; 523 } 524 } 525 526 return Size > Bonus ? Size - Bonus : 0; 527 } 528 529 /// FindLoopHeaders - We do not want jump threading to turn proper loop 530 /// structures into irreducible loops. Doing this breaks up the loop nesting 531 /// hierarchy and pessimizes later transformations. To prevent this from 532 /// happening, we first have to find the loop headers. Here we approximate this 533 /// by finding targets of backedges in the CFG. 534 /// 535 /// Note that there definitely are cases when we want to allow threading of 536 /// edges across a loop header. For example, threading a jump from outside the 537 /// loop (the preheader) to an exit block of the loop is definitely profitable. 538 /// It is also almost always profitable to thread backedges from within the loop 539 /// to exit blocks, and is often profitable to thread backedges to other blocks 540 /// within the loop (forming a nested loop). This simple analysis is not rich 541 /// enough to track all of these properties and keep it up-to-date as the CFG 542 /// mutates, so we don't allow any of these transformations. 543 void JumpThreadingPass::FindLoopHeaders(Function &F) { 544 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 545 FindFunctionBackedges(F, Edges); 546 547 for (const auto &Edge : Edges) 548 LoopHeaders.insert(Edge.second); 549 } 550 551 /// getKnownConstant - Helper method to determine if we can thread over a 552 /// terminator with the given value as its condition, and if so what value to 553 /// use for that. What kind of value this is depends on whether we want an 554 /// integer or a block address, but an undef is always accepted. 555 /// Returns null if Val is null or not an appropriate constant. 556 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 557 if (!Val) 558 return nullptr; 559 560 // Undef is "known" enough. 561 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 562 return U; 563 564 if (Preference == WantBlockAddress) 565 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 566 567 return dyn_cast<ConstantInt>(Val); 568 } 569 570 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 571 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 572 /// in any of our predecessors. If so, return the known list of value and pred 573 /// BB in the result vector. 574 /// 575 /// This returns true if there were any known values. 576 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 577 Value *V, BasicBlock *BB, PredValueInfo &Result, 578 ConstantPreference Preference, 579 DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet, 580 Instruction *CxtI) { 581 // This method walks up use-def chains recursively. Because of this, we could 582 // get into an infinite loop going around loops in the use-def chain. To 583 // prevent this, keep track of what (value, block) pairs we've already visited 584 // and terminate the search if we loop back to them 585 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 586 return false; 587 588 // If V is a constant, then it is known in all predecessors. 589 if (Constant *KC = getKnownConstant(V, Preference)) { 590 for (BasicBlock *Pred : predecessors(BB)) 591 Result.push_back(std::make_pair(KC, Pred)); 592 593 return !Result.empty(); 594 } 595 596 // If V is a non-instruction value, or an instruction in a different block, 597 // then it can't be derived from a PHI. 598 Instruction *I = dyn_cast<Instruction>(V); 599 if (!I || I->getParent() != BB) { 600 601 // Okay, if this is a live-in value, see if it has a known value at the end 602 // of any of our predecessors. 603 // 604 // FIXME: This should be an edge property, not a block end property. 605 /// TODO: Per PR2563, we could infer value range information about a 606 /// predecessor based on its terminator. 607 // 608 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 609 // "I" is a non-local compare-with-a-constant instruction. This would be 610 // able to handle value inequalities better, for example if the compare is 611 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 612 // Perhaps getConstantOnEdge should be smart enough to do this? 613 614 if (DTU->hasPendingDomTreeUpdates()) 615 LVI->disableDT(); 616 else 617 LVI->enableDT(); 618 for (BasicBlock *P : predecessors(BB)) { 619 // If the value is known by LazyValueInfo to be a constant in a 620 // predecessor, use that information to try to thread this block. 621 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 622 if (Constant *KC = getKnownConstant(PredCst, Preference)) 623 Result.push_back(std::make_pair(KC, P)); 624 } 625 626 return !Result.empty(); 627 } 628 629 /// If I is a PHI node, then we know the incoming values for any constants. 630 if (PHINode *PN = dyn_cast<PHINode>(I)) { 631 if (DTU->hasPendingDomTreeUpdates()) 632 LVI->disableDT(); 633 else 634 LVI->enableDT(); 635 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 636 Value *InVal = PN->getIncomingValue(i); 637 if (Constant *KC = getKnownConstant(InVal, Preference)) { 638 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 639 } else { 640 Constant *CI = LVI->getConstantOnEdge(InVal, 641 PN->getIncomingBlock(i), 642 BB, CxtI); 643 if (Constant *KC = getKnownConstant(CI, Preference)) 644 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 645 } 646 } 647 648 return !Result.empty(); 649 } 650 651 // Handle Cast instructions. Only see through Cast when the source operand is 652 // PHI or Cmp to save the compilation time. 653 if (CastInst *CI = dyn_cast<CastInst>(I)) { 654 Value *Source = CI->getOperand(0); 655 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 656 return false; 657 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 658 RecursionSet, CxtI); 659 if (Result.empty()) 660 return false; 661 662 // Convert the known values. 663 for (auto &R : Result) 664 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 665 666 return true; 667 } 668 669 // Handle some boolean conditions. 670 if (I->getType()->getPrimitiveSizeInBits() == 1) { 671 assert(Preference == WantInteger && "One-bit non-integer type?"); 672 // X | true -> true 673 // X & false -> false 674 if (I->getOpcode() == Instruction::Or || 675 I->getOpcode() == Instruction::And) { 676 PredValueInfoTy LHSVals, RHSVals; 677 678 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 679 WantInteger, RecursionSet, CxtI); 680 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 681 WantInteger, RecursionSet, CxtI); 682 683 if (LHSVals.empty() && RHSVals.empty()) 684 return false; 685 686 ConstantInt *InterestingVal; 687 if (I->getOpcode() == Instruction::Or) 688 InterestingVal = ConstantInt::getTrue(I->getContext()); 689 else 690 InterestingVal = ConstantInt::getFalse(I->getContext()); 691 692 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 693 694 // Scan for the sentinel. If we find an undef, force it to the 695 // interesting value: x|undef -> true and x&undef -> false. 696 for (const auto &LHSVal : LHSVals) 697 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 698 Result.emplace_back(InterestingVal, LHSVal.second); 699 LHSKnownBBs.insert(LHSVal.second); 700 } 701 for (const auto &RHSVal : RHSVals) 702 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 703 // If we already inferred a value for this block on the LHS, don't 704 // re-add it. 705 if (!LHSKnownBBs.count(RHSVal.second)) 706 Result.emplace_back(InterestingVal, RHSVal.second); 707 } 708 709 return !Result.empty(); 710 } 711 712 // Handle the NOT form of XOR. 713 if (I->getOpcode() == Instruction::Xor && 714 isa<ConstantInt>(I->getOperand(1)) && 715 cast<ConstantInt>(I->getOperand(1))->isOne()) { 716 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 717 WantInteger, RecursionSet, CxtI); 718 if (Result.empty()) 719 return false; 720 721 // Invert the known values. 722 for (auto &R : Result) 723 R.first = ConstantExpr::getNot(R.first); 724 725 return true; 726 } 727 728 // Try to simplify some other binary operator values. 729 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 730 assert(Preference != WantBlockAddress 731 && "A binary operator creating a block address?"); 732 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 733 PredValueInfoTy LHSVals; 734 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 735 WantInteger, RecursionSet, CxtI); 736 737 // Try to use constant folding to simplify the binary operator. 738 for (const auto &LHSVal : LHSVals) { 739 Constant *V = LHSVal.first; 740 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 741 742 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 743 Result.push_back(std::make_pair(KC, LHSVal.second)); 744 } 745 } 746 747 return !Result.empty(); 748 } 749 750 // Handle compare with phi operand, where the PHI is defined in this block. 751 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 752 assert(Preference == WantInteger && "Compares only produce integers"); 753 Type *CmpType = Cmp->getType(); 754 Value *CmpLHS = Cmp->getOperand(0); 755 Value *CmpRHS = Cmp->getOperand(1); 756 CmpInst::Predicate Pred = Cmp->getPredicate(); 757 758 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 759 if (!PN) 760 PN = dyn_cast<PHINode>(CmpRHS); 761 if (PN && PN->getParent() == BB) { 762 const DataLayout &DL = PN->getModule()->getDataLayout(); 763 // We can do this simplification if any comparisons fold to true or false. 764 // See if any do. 765 if (DTU->hasPendingDomTreeUpdates()) 766 LVI->disableDT(); 767 else 768 LVI->enableDT(); 769 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 770 BasicBlock *PredBB = PN->getIncomingBlock(i); 771 Value *LHS, *RHS; 772 if (PN == CmpLHS) { 773 LHS = PN->getIncomingValue(i); 774 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 775 } else { 776 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 777 RHS = PN->getIncomingValue(i); 778 } 779 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 780 if (!Res) { 781 if (!isa<Constant>(RHS)) 782 continue; 783 784 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 785 auto LHSInst = dyn_cast<Instruction>(LHS); 786 if (LHSInst && LHSInst->getParent() == BB) 787 continue; 788 789 LazyValueInfo::Tristate 790 ResT = LVI->getPredicateOnEdge(Pred, LHS, 791 cast<Constant>(RHS), PredBB, BB, 792 CxtI ? CxtI : Cmp); 793 if (ResT == LazyValueInfo::Unknown) 794 continue; 795 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 796 } 797 798 if (Constant *KC = getKnownConstant(Res, WantInteger)) 799 Result.push_back(std::make_pair(KC, PredBB)); 800 } 801 802 return !Result.empty(); 803 } 804 805 // If comparing a live-in value against a constant, see if we know the 806 // live-in value on any predecessors. 807 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 808 Constant *CmpConst = cast<Constant>(CmpRHS); 809 810 if (!isa<Instruction>(CmpLHS) || 811 cast<Instruction>(CmpLHS)->getParent() != BB) { 812 if (DTU->hasPendingDomTreeUpdates()) 813 LVI->disableDT(); 814 else 815 LVI->enableDT(); 816 for (BasicBlock *P : predecessors(BB)) { 817 // If the value is known by LazyValueInfo to be a constant in a 818 // predecessor, use that information to try to thread this block. 819 LazyValueInfo::Tristate Res = 820 LVI->getPredicateOnEdge(Pred, CmpLHS, 821 CmpConst, P, BB, CxtI ? CxtI : Cmp); 822 if (Res == LazyValueInfo::Unknown) 823 continue; 824 825 Constant *ResC = ConstantInt::get(CmpType, Res); 826 Result.push_back(std::make_pair(ResC, P)); 827 } 828 829 return !Result.empty(); 830 } 831 832 // InstCombine can fold some forms of constant range checks into 833 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 834 // x as a live-in. 835 { 836 using namespace PatternMatch; 837 838 Value *AddLHS; 839 ConstantInt *AddConst; 840 if (isa<ConstantInt>(CmpConst) && 841 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 842 if (!isa<Instruction>(AddLHS) || 843 cast<Instruction>(AddLHS)->getParent() != BB) { 844 if (DTU->hasPendingDomTreeUpdates()) 845 LVI->disableDT(); 846 else 847 LVI->enableDT(); 848 for (BasicBlock *P : predecessors(BB)) { 849 // If the value is known by LazyValueInfo to be a ConstantRange in 850 // a predecessor, use that information to try to thread this 851 // block. 852 ConstantRange CR = LVI->getConstantRangeOnEdge( 853 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 854 // Propagate the range through the addition. 855 CR = CR.add(AddConst->getValue()); 856 857 // Get the range where the compare returns true. 858 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 859 Pred, cast<ConstantInt>(CmpConst)->getValue()); 860 861 Constant *ResC; 862 if (CmpRange.contains(CR)) 863 ResC = ConstantInt::getTrue(CmpType); 864 else if (CmpRange.inverse().contains(CR)) 865 ResC = ConstantInt::getFalse(CmpType); 866 else 867 continue; 868 869 Result.push_back(std::make_pair(ResC, P)); 870 } 871 872 return !Result.empty(); 873 } 874 } 875 } 876 877 // Try to find a constant value for the LHS of a comparison, 878 // and evaluate it statically if we can. 879 PredValueInfoTy LHSVals; 880 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 881 WantInteger, RecursionSet, CxtI); 882 883 for (const auto &LHSVal : LHSVals) { 884 Constant *V = LHSVal.first; 885 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 886 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 887 Result.push_back(std::make_pair(KC, LHSVal.second)); 888 } 889 890 return !Result.empty(); 891 } 892 } 893 894 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 895 // Handle select instructions where at least one operand is a known constant 896 // and we can figure out the condition value for any predecessor block. 897 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 898 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 899 PredValueInfoTy Conds; 900 if ((TrueVal || FalseVal) && 901 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 902 WantInteger, RecursionSet, CxtI)) { 903 for (auto &C : Conds) { 904 Constant *Cond = C.first; 905 906 // Figure out what value to use for the condition. 907 bool KnownCond; 908 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 909 // A known boolean. 910 KnownCond = CI->isOne(); 911 } else { 912 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 913 // Either operand will do, so be sure to pick the one that's a known 914 // constant. 915 // FIXME: Do this more cleverly if both values are known constants? 916 KnownCond = (TrueVal != nullptr); 917 } 918 919 // See if the select has a known constant value for this predecessor. 920 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 921 Result.push_back(std::make_pair(Val, C.second)); 922 } 923 924 return !Result.empty(); 925 } 926 } 927 928 // If all else fails, see if LVI can figure out a constant value for us. 929 if (DTU->hasPendingDomTreeUpdates()) 930 LVI->disableDT(); 931 else 932 LVI->enableDT(); 933 Constant *CI = LVI->getConstant(V, BB, CxtI); 934 if (Constant *KC = getKnownConstant(CI, Preference)) { 935 for (BasicBlock *Pred : predecessors(BB)) 936 Result.push_back(std::make_pair(KC, Pred)); 937 } 938 939 return !Result.empty(); 940 } 941 942 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 943 /// in an undefined jump, decide which block is best to revector to. 944 /// 945 /// Since we can pick an arbitrary destination, we pick the successor with the 946 /// fewest predecessors. This should reduce the in-degree of the others. 947 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 948 Instruction *BBTerm = BB->getTerminator(); 949 unsigned MinSucc = 0; 950 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 951 // Compute the successor with the minimum number of predecessors. 952 unsigned MinNumPreds = pred_size(TestBB); 953 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 954 TestBB = BBTerm->getSuccessor(i); 955 unsigned NumPreds = pred_size(TestBB); 956 if (NumPreds < MinNumPreds) { 957 MinSucc = i; 958 MinNumPreds = NumPreds; 959 } 960 } 961 962 return MinSucc; 963 } 964 965 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 966 if (!BB->hasAddressTaken()) return false; 967 968 // If the block has its address taken, it may be a tree of dead constants 969 // hanging off of it. These shouldn't keep the block alive. 970 BlockAddress *BA = BlockAddress::get(BB); 971 BA->removeDeadConstantUsers(); 972 return !BA->use_empty(); 973 } 974 975 /// ProcessBlock - If there are any predecessors whose control can be threaded 976 /// through to a successor, transform them now. 977 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 978 // If the block is trivially dead, just return and let the caller nuke it. 979 // This simplifies other transformations. 980 if (DTU->isBBPendingDeletion(BB) || 981 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 982 return false; 983 984 // If this block has a single predecessor, and if that pred has a single 985 // successor, merge the blocks. This encourages recursive jump threading 986 // because now the condition in this block can be threaded through 987 // predecessors of our predecessor block. 988 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 989 const Instruction *TI = SinglePred->getTerminator(); 990 if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 && 991 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 992 // If SinglePred was a loop header, BB becomes one. 993 if (LoopHeaders.erase(SinglePred)) 994 LoopHeaders.insert(BB); 995 996 LVI->eraseBlock(SinglePred); 997 MergeBasicBlockIntoOnlyPred(BB, DTU); 998 999 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 1000 // BB code within one basic block `BB`), we need to invalidate the LVI 1001 // information associated with BB, because the LVI information need not be 1002 // true for all of BB after the merge. For example, 1003 // Before the merge, LVI info and code is as follows: 1004 // SinglePred: <LVI info1 for %p val> 1005 // %y = use of %p 1006 // call @exit() // need not transfer execution to successor. 1007 // assume(%p) // from this point on %p is true 1008 // br label %BB 1009 // BB: <LVI info2 for %p val, i.e. %p is true> 1010 // %x = use of %p 1011 // br label exit 1012 // 1013 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1014 // (info2 and info1 respectively). After the merge and the deletion of the 1015 // LVI info1 for SinglePred. We have the following code: 1016 // BB: <LVI info2 for %p val> 1017 // %y = use of %p 1018 // call @exit() 1019 // assume(%p) 1020 // %x = use of %p <-- LVI info2 is correct from here onwards. 1021 // br label exit 1022 // LVI info2 for BB is incorrect at the beginning of BB. 1023 1024 // Invalidate LVI information for BB if the LVI is not provably true for 1025 // all of BB. 1026 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1027 LVI->eraseBlock(BB); 1028 return true; 1029 } 1030 } 1031 1032 if (TryToUnfoldSelectInCurrBB(BB)) 1033 return true; 1034 1035 // Look if we can propagate guards to predecessors. 1036 if (HasGuards && ProcessGuards(BB)) 1037 return true; 1038 1039 // What kind of constant we're looking for. 1040 ConstantPreference Preference = WantInteger; 1041 1042 // Look to see if the terminator is a conditional branch, switch or indirect 1043 // branch, if not we can't thread it. 1044 Value *Condition; 1045 Instruction *Terminator = BB->getTerminator(); 1046 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1047 // Can't thread an unconditional jump. 1048 if (BI->isUnconditional()) return false; 1049 Condition = BI->getCondition(); 1050 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1051 Condition = SI->getCondition(); 1052 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1053 // Can't thread indirect branch with no successors. 1054 if (IB->getNumSuccessors() == 0) return false; 1055 Condition = IB->getAddress()->stripPointerCasts(); 1056 Preference = WantBlockAddress; 1057 } else { 1058 return false; // Must be an invoke. 1059 } 1060 1061 // Run constant folding to see if we can reduce the condition to a simple 1062 // constant. 1063 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1064 Value *SimpleVal = 1065 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1066 if (SimpleVal) { 1067 I->replaceAllUsesWith(SimpleVal); 1068 if (isInstructionTriviallyDead(I, TLI)) 1069 I->eraseFromParent(); 1070 Condition = SimpleVal; 1071 } 1072 } 1073 1074 // If the terminator is branching on an undef, we can pick any of the 1075 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1076 if (isa<UndefValue>(Condition)) { 1077 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1078 std::vector<DominatorTree::UpdateType> Updates; 1079 1080 // Fold the branch/switch. 1081 Instruction *BBTerm = BB->getTerminator(); 1082 Updates.reserve(BBTerm->getNumSuccessors()); 1083 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1084 if (i == BestSucc) continue; 1085 BasicBlock *Succ = BBTerm->getSuccessor(i); 1086 Succ->removePredecessor(BB, true); 1087 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1088 } 1089 1090 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1091 << "' folding undef terminator: " << *BBTerm << '\n'); 1092 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1093 BBTerm->eraseFromParent(); 1094 DTU->applyUpdates(Updates); 1095 return true; 1096 } 1097 1098 // If the terminator of this block is branching on a constant, simplify the 1099 // terminator to an unconditional branch. This can occur due to threading in 1100 // other blocks. 1101 if (getKnownConstant(Condition, Preference)) { 1102 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1103 << "' folding terminator: " << *BB->getTerminator() 1104 << '\n'); 1105 ++NumFolds; 1106 ConstantFoldTerminator(BB, true, nullptr, DTU); 1107 return true; 1108 } 1109 1110 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1111 1112 // All the rest of our checks depend on the condition being an instruction. 1113 if (!CondInst) { 1114 // FIXME: Unify this with code below. 1115 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1116 return true; 1117 return false; 1118 } 1119 1120 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1121 // If we're branching on a conditional, LVI might be able to determine 1122 // it's value at the branch instruction. We only handle comparisons 1123 // against a constant at this time. 1124 // TODO: This should be extended to handle switches as well. 1125 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1126 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1127 if (CondBr && CondConst) { 1128 // We should have returned as soon as we turn a conditional branch to 1129 // unconditional. Because its no longer interesting as far as jump 1130 // threading is concerned. 1131 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1132 1133 if (DTU->hasPendingDomTreeUpdates()) 1134 LVI->disableDT(); 1135 else 1136 LVI->enableDT(); 1137 LazyValueInfo::Tristate Ret = 1138 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1139 CondConst, CondBr); 1140 if (Ret != LazyValueInfo::Unknown) { 1141 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1142 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1143 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1144 ToRemoveSucc->removePredecessor(BB, true); 1145 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1146 CondBr->eraseFromParent(); 1147 if (CondCmp->use_empty()) 1148 CondCmp->eraseFromParent(); 1149 // We can safely replace *some* uses of the CondInst if it has 1150 // exactly one value as returned by LVI. RAUW is incorrect in the 1151 // presence of guards and assumes, that have the `Cond` as the use. This 1152 // is because we use the guards/assume to reason about the `Cond` value 1153 // at the end of block, but RAUW unconditionally replaces all uses 1154 // including the guards/assumes themselves and the uses before the 1155 // guard/assume. 1156 else if (CondCmp->getParent() == BB) { 1157 auto *CI = Ret == LazyValueInfo::True ? 1158 ConstantInt::getTrue(CondCmp->getType()) : 1159 ConstantInt::getFalse(CondCmp->getType()); 1160 ReplaceFoldableUses(CondCmp, CI); 1161 } 1162 DTU->deleteEdgeRelaxed(BB, ToRemoveSucc); 1163 return true; 1164 } 1165 1166 // We did not manage to simplify this branch, try to see whether 1167 // CondCmp depends on a known phi-select pattern. 1168 if (TryToUnfoldSelect(CondCmp, BB)) 1169 return true; 1170 } 1171 } 1172 1173 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1174 TryToUnfoldSelect(SI, BB); 1175 1176 // Check for some cases that are worth simplifying. Right now we want to look 1177 // for loads that are used by a switch or by the condition for the branch. If 1178 // we see one, check to see if it's partially redundant. If so, insert a PHI 1179 // which can then be used to thread the values. 1180 Value *SimplifyValue = CondInst; 1181 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1182 if (isa<Constant>(CondCmp->getOperand(1))) 1183 SimplifyValue = CondCmp->getOperand(0); 1184 1185 // TODO: There are other places where load PRE would be profitable, such as 1186 // more complex comparisons. 1187 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1188 if (SimplifyPartiallyRedundantLoad(LoadI)) 1189 return true; 1190 1191 // Before threading, try to propagate profile data backwards: 1192 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1193 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1194 updatePredecessorProfileMetadata(PN, BB); 1195 1196 // Handle a variety of cases where we are branching on something derived from 1197 // a PHI node in the current block. If we can prove that any predecessors 1198 // compute a predictable value based on a PHI node, thread those predecessors. 1199 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1200 return true; 1201 1202 // If this is an otherwise-unfoldable branch on a phi node in the current 1203 // block, see if we can simplify. 1204 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1205 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1206 return ProcessBranchOnPHI(PN); 1207 1208 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1209 if (CondInst->getOpcode() == Instruction::Xor && 1210 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1211 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1212 1213 // Search for a stronger dominating condition that can be used to simplify a 1214 // conditional branch leaving BB. 1215 if (ProcessImpliedCondition(BB)) 1216 return true; 1217 1218 return false; 1219 } 1220 1221 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1222 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1223 if (!BI || !BI->isConditional()) 1224 return false; 1225 1226 Value *Cond = BI->getCondition(); 1227 BasicBlock *CurrentBB = BB; 1228 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1229 unsigned Iter = 0; 1230 1231 auto &DL = BB->getModule()->getDataLayout(); 1232 1233 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1234 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1235 if (!PBI || !PBI->isConditional()) 1236 return false; 1237 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1238 return false; 1239 1240 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1241 Optional<bool> Implication = 1242 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1243 if (Implication) { 1244 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1245 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1246 RemoveSucc->removePredecessor(BB); 1247 BranchInst::Create(KeepSucc, BI); 1248 BI->eraseFromParent(); 1249 DTU->deleteEdgeRelaxed(BB, RemoveSucc); 1250 return true; 1251 } 1252 CurrentBB = CurrentPred; 1253 CurrentPred = CurrentBB->getSinglePredecessor(); 1254 } 1255 1256 return false; 1257 } 1258 1259 /// Return true if Op is an instruction defined in the given block. 1260 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1261 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1262 if (OpInst->getParent() == BB) 1263 return true; 1264 return false; 1265 } 1266 1267 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1268 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1269 /// This is an important optimization that encourages jump threading, and needs 1270 /// to be run interlaced with other jump threading tasks. 1271 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1272 // Don't hack volatile and ordered loads. 1273 if (!LoadI->isUnordered()) return false; 1274 1275 // If the load is defined in a block with exactly one predecessor, it can't be 1276 // partially redundant. 1277 BasicBlock *LoadBB = LoadI->getParent(); 1278 if (LoadBB->getSinglePredecessor()) 1279 return false; 1280 1281 // If the load is defined in an EH pad, it can't be partially redundant, 1282 // because the edges between the invoke and the EH pad cannot have other 1283 // instructions between them. 1284 if (LoadBB->isEHPad()) 1285 return false; 1286 1287 Value *LoadedPtr = LoadI->getOperand(0); 1288 1289 // If the loaded operand is defined in the LoadBB and its not a phi, 1290 // it can't be available in predecessors. 1291 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1292 return false; 1293 1294 // Scan a few instructions up from the load, to see if it is obviously live at 1295 // the entry to its block. 1296 BasicBlock::iterator BBIt(LoadI); 1297 bool IsLoadCSE; 1298 if (Value *AvailableVal = FindAvailableLoadedValue( 1299 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1300 // If the value of the load is locally available within the block, just use 1301 // it. This frequently occurs for reg2mem'd allocas. 1302 1303 if (IsLoadCSE) { 1304 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1305 combineMetadataForCSE(NLoadI, LoadI, false); 1306 }; 1307 1308 // If the returned value is the load itself, replace with an undef. This can 1309 // only happen in dead loops. 1310 if (AvailableVal == LoadI) 1311 AvailableVal = UndefValue::get(LoadI->getType()); 1312 if (AvailableVal->getType() != LoadI->getType()) 1313 AvailableVal = CastInst::CreateBitOrPointerCast( 1314 AvailableVal, LoadI->getType(), "", LoadI); 1315 LoadI->replaceAllUsesWith(AvailableVal); 1316 LoadI->eraseFromParent(); 1317 return true; 1318 } 1319 1320 // Otherwise, if we scanned the whole block and got to the top of the block, 1321 // we know the block is locally transparent to the load. If not, something 1322 // might clobber its value. 1323 if (BBIt != LoadBB->begin()) 1324 return false; 1325 1326 // If all of the loads and stores that feed the value have the same AA tags, 1327 // then we can propagate them onto any newly inserted loads. 1328 AAMDNodes AATags; 1329 LoadI->getAAMetadata(AATags); 1330 1331 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1332 1333 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1334 1335 AvailablePredsTy AvailablePreds; 1336 BasicBlock *OneUnavailablePred = nullptr; 1337 SmallVector<LoadInst*, 8> CSELoads; 1338 1339 // If we got here, the loaded value is transparent through to the start of the 1340 // block. Check to see if it is available in any of the predecessor blocks. 1341 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1342 // If we already scanned this predecessor, skip it. 1343 if (!PredsScanned.insert(PredBB).second) 1344 continue; 1345 1346 BBIt = PredBB->end(); 1347 unsigned NumScanedInst = 0; 1348 Value *PredAvailable = nullptr; 1349 // NOTE: We don't CSE load that is volatile or anything stronger than 1350 // unordered, that should have been checked when we entered the function. 1351 assert(LoadI->isUnordered() && 1352 "Attempting to CSE volatile or atomic loads"); 1353 // If this is a load on a phi pointer, phi-translate it and search 1354 // for available load/store to the pointer in predecessors. 1355 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1356 PredAvailable = FindAvailablePtrLoadStore( 1357 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1358 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1359 1360 // If PredBB has a single predecessor, continue scanning through the 1361 // single predecessor. 1362 BasicBlock *SinglePredBB = PredBB; 1363 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1364 NumScanedInst < DefMaxInstsToScan) { 1365 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1366 if (SinglePredBB) { 1367 BBIt = SinglePredBB->end(); 1368 PredAvailable = FindAvailablePtrLoadStore( 1369 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1370 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1371 &NumScanedInst); 1372 } 1373 } 1374 1375 if (!PredAvailable) { 1376 OneUnavailablePred = PredBB; 1377 continue; 1378 } 1379 1380 if (IsLoadCSE) 1381 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1382 1383 // If so, this load is partially redundant. Remember this info so that we 1384 // can create a PHI node. 1385 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1386 } 1387 1388 // If the loaded value isn't available in any predecessor, it isn't partially 1389 // redundant. 1390 if (AvailablePreds.empty()) return false; 1391 1392 // Okay, the loaded value is available in at least one (and maybe all!) 1393 // predecessors. If the value is unavailable in more than one unique 1394 // predecessor, we want to insert a merge block for those common predecessors. 1395 // This ensures that we only have to insert one reload, thus not increasing 1396 // code size. 1397 BasicBlock *UnavailablePred = nullptr; 1398 1399 // If the value is unavailable in one of predecessors, we will end up 1400 // inserting a new instruction into them. It is only valid if all the 1401 // instructions before LoadI are guaranteed to pass execution to its 1402 // successor, or if LoadI is safe to speculate. 1403 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1404 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1405 // It requires domination tree analysis, so for this simple case it is an 1406 // overkill. 1407 if (PredsScanned.size() != AvailablePreds.size() && 1408 !isSafeToSpeculativelyExecute(LoadI)) 1409 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1410 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1411 return false; 1412 1413 // If there is exactly one predecessor where the value is unavailable, the 1414 // already computed 'OneUnavailablePred' block is it. If it ends in an 1415 // unconditional branch, we know that it isn't a critical edge. 1416 if (PredsScanned.size() == AvailablePreds.size()+1 && 1417 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1418 UnavailablePred = OneUnavailablePred; 1419 } else if (PredsScanned.size() != AvailablePreds.size()) { 1420 // Otherwise, we had multiple unavailable predecessors or we had a critical 1421 // edge from the one. 1422 SmallVector<BasicBlock*, 8> PredsToSplit; 1423 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1424 1425 for (const auto &AvailablePred : AvailablePreds) 1426 AvailablePredSet.insert(AvailablePred.first); 1427 1428 // Add all the unavailable predecessors to the PredsToSplit list. 1429 for (BasicBlock *P : predecessors(LoadBB)) { 1430 // If the predecessor is an indirect goto, we can't split the edge. 1431 if (isa<IndirectBrInst>(P->getTerminator())) 1432 return false; 1433 1434 if (!AvailablePredSet.count(P)) 1435 PredsToSplit.push_back(P); 1436 } 1437 1438 // Split them out to their own block. 1439 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1440 } 1441 1442 // If the value isn't available in all predecessors, then there will be 1443 // exactly one where it isn't available. Insert a load on that edge and add 1444 // it to the AvailablePreds list. 1445 if (UnavailablePred) { 1446 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1447 "Can't handle critical edge here!"); 1448 LoadInst *NewVal = 1449 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1450 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1451 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1452 UnavailablePred->getTerminator()); 1453 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1454 if (AATags) 1455 NewVal->setAAMetadata(AATags); 1456 1457 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1458 } 1459 1460 // Now we know that each predecessor of this block has a value in 1461 // AvailablePreds, sort them for efficient access as we're walking the preds. 1462 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1463 1464 // Create a PHI node at the start of the block for the PRE'd load value. 1465 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1466 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1467 &LoadBB->front()); 1468 PN->takeName(LoadI); 1469 PN->setDebugLoc(LoadI->getDebugLoc()); 1470 1471 // Insert new entries into the PHI for each predecessor. A single block may 1472 // have multiple entries here. 1473 for (pred_iterator PI = PB; PI != PE; ++PI) { 1474 BasicBlock *P = *PI; 1475 AvailablePredsTy::iterator I = 1476 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1477 std::make_pair(P, (Value*)nullptr)); 1478 1479 assert(I != AvailablePreds.end() && I->first == P && 1480 "Didn't find entry for predecessor!"); 1481 1482 // If we have an available predecessor but it requires casting, insert the 1483 // cast in the predecessor and use the cast. Note that we have to update the 1484 // AvailablePreds vector as we go so that all of the PHI entries for this 1485 // predecessor use the same bitcast. 1486 Value *&PredV = I->second; 1487 if (PredV->getType() != LoadI->getType()) 1488 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1489 P->getTerminator()); 1490 1491 PN->addIncoming(PredV, I->first); 1492 } 1493 1494 for (LoadInst *PredLoadI : CSELoads) { 1495 combineMetadataForCSE(PredLoadI, LoadI, true); 1496 } 1497 1498 LoadI->replaceAllUsesWith(PN); 1499 LoadI->eraseFromParent(); 1500 1501 return true; 1502 } 1503 1504 /// FindMostPopularDest - The specified list contains multiple possible 1505 /// threadable destinations. Pick the one that occurs the most frequently in 1506 /// the list. 1507 static BasicBlock * 1508 FindMostPopularDest(BasicBlock *BB, 1509 const SmallVectorImpl<std::pair<BasicBlock *, 1510 BasicBlock *>> &PredToDestList) { 1511 assert(!PredToDestList.empty()); 1512 1513 // Determine popularity. If there are multiple possible destinations, we 1514 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1515 // blocks with known and real destinations to threading undef. We'll handle 1516 // them later if interesting. 1517 DenseMap<BasicBlock*, unsigned> DestPopularity; 1518 for (const auto &PredToDest : PredToDestList) 1519 if (PredToDest.second) 1520 DestPopularity[PredToDest.second]++; 1521 1522 if (DestPopularity.empty()) 1523 return nullptr; 1524 1525 // Find the most popular dest. 1526 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1527 BasicBlock *MostPopularDest = DPI->first; 1528 unsigned Popularity = DPI->second; 1529 SmallVector<BasicBlock*, 4> SamePopularity; 1530 1531 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1532 // If the popularity of this entry isn't higher than the popularity we've 1533 // seen so far, ignore it. 1534 if (DPI->second < Popularity) 1535 ; // ignore. 1536 else if (DPI->second == Popularity) { 1537 // If it is the same as what we've seen so far, keep track of it. 1538 SamePopularity.push_back(DPI->first); 1539 } else { 1540 // If it is more popular, remember it. 1541 SamePopularity.clear(); 1542 MostPopularDest = DPI->first; 1543 Popularity = DPI->second; 1544 } 1545 } 1546 1547 // Okay, now we know the most popular destination. If there is more than one 1548 // destination, we need to determine one. This is arbitrary, but we need 1549 // to make a deterministic decision. Pick the first one that appears in the 1550 // successor list. 1551 if (!SamePopularity.empty()) { 1552 SamePopularity.push_back(MostPopularDest); 1553 Instruction *TI = BB->getTerminator(); 1554 for (unsigned i = 0; ; ++i) { 1555 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1556 1557 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1558 continue; 1559 1560 MostPopularDest = TI->getSuccessor(i); 1561 break; 1562 } 1563 } 1564 1565 // Okay, we have finally picked the most popular destination. 1566 return MostPopularDest; 1567 } 1568 1569 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1570 ConstantPreference Preference, 1571 Instruction *CxtI) { 1572 // If threading this would thread across a loop header, don't even try to 1573 // thread the edge. 1574 if (LoopHeaders.count(BB)) 1575 return false; 1576 1577 PredValueInfoTy PredValues; 1578 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1579 return false; 1580 1581 assert(!PredValues.empty() && 1582 "ComputeValueKnownInPredecessors returned true with no values"); 1583 1584 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1585 for (const auto &PredValue : PredValues) { 1586 dbgs() << " BB '" << BB->getName() 1587 << "': FOUND condition = " << *PredValue.first 1588 << " for pred '" << PredValue.second->getName() << "'.\n"; 1589 }); 1590 1591 // Decide what we want to thread through. Convert our list of known values to 1592 // a list of known destinations for each pred. This also discards duplicate 1593 // predecessors and keeps track of the undefined inputs (which are represented 1594 // as a null dest in the PredToDestList). 1595 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1596 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1597 1598 BasicBlock *OnlyDest = nullptr; 1599 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1600 Constant *OnlyVal = nullptr; 1601 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1602 1603 unsigned PredWithKnownDest = 0; 1604 for (const auto &PredValue : PredValues) { 1605 BasicBlock *Pred = PredValue.second; 1606 if (!SeenPreds.insert(Pred).second) 1607 continue; // Duplicate predecessor entry. 1608 1609 Constant *Val = PredValue.first; 1610 1611 BasicBlock *DestBB; 1612 if (isa<UndefValue>(Val)) 1613 DestBB = nullptr; 1614 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1615 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1616 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1617 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1618 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1619 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1620 } else { 1621 assert(isa<IndirectBrInst>(BB->getTerminator()) 1622 && "Unexpected terminator"); 1623 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1624 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1625 } 1626 1627 // If we have exactly one destination, remember it for efficiency below. 1628 if (PredToDestList.empty()) { 1629 OnlyDest = DestBB; 1630 OnlyVal = Val; 1631 } else { 1632 if (OnlyDest != DestBB) 1633 OnlyDest = MultipleDestSentinel; 1634 // It possible we have same destination, but different value, e.g. default 1635 // case in switchinst. 1636 if (Val != OnlyVal) 1637 OnlyVal = MultipleVal; 1638 } 1639 1640 // We know where this predecessor is going. 1641 ++PredWithKnownDest; 1642 1643 // If the predecessor ends with an indirect goto, we can't change its 1644 // destination. 1645 if (isa<IndirectBrInst>(Pred->getTerminator())) 1646 continue; 1647 1648 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1649 } 1650 1651 // If all edges were unthreadable, we fail. 1652 if (PredToDestList.empty()) 1653 return false; 1654 1655 // If all the predecessors go to a single known successor, we want to fold, 1656 // not thread. By doing so, we do not need to duplicate the current block and 1657 // also miss potential opportunities in case we dont/cant duplicate. 1658 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1659 if (PredWithKnownDest == (size_t)pred_size(BB)) { 1660 bool SeenFirstBranchToOnlyDest = false; 1661 std::vector <DominatorTree::UpdateType> Updates; 1662 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1663 for (BasicBlock *SuccBB : successors(BB)) { 1664 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1665 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1666 } else { 1667 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1668 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1669 } 1670 } 1671 1672 // Finally update the terminator. 1673 Instruction *Term = BB->getTerminator(); 1674 BranchInst::Create(OnlyDest, Term); 1675 Term->eraseFromParent(); 1676 DTU->applyUpdates(Updates); 1677 1678 // If the condition is now dead due to the removal of the old terminator, 1679 // erase it. 1680 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1681 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1682 CondInst->eraseFromParent(); 1683 // We can safely replace *some* uses of the CondInst if it has 1684 // exactly one value as returned by LVI. RAUW is incorrect in the 1685 // presence of guards and assumes, that have the `Cond` as the use. This 1686 // is because we use the guards/assume to reason about the `Cond` value 1687 // at the end of block, but RAUW unconditionally replaces all uses 1688 // including the guards/assumes themselves and the uses before the 1689 // guard/assume. 1690 else if (OnlyVal && OnlyVal != MultipleVal && 1691 CondInst->getParent() == BB) 1692 ReplaceFoldableUses(CondInst, OnlyVal); 1693 } 1694 return true; 1695 } 1696 } 1697 1698 // Determine which is the most common successor. If we have many inputs and 1699 // this block is a switch, we want to start by threading the batch that goes 1700 // to the most popular destination first. If we only know about one 1701 // threadable destination (the common case) we can avoid this. 1702 BasicBlock *MostPopularDest = OnlyDest; 1703 1704 if (MostPopularDest == MultipleDestSentinel) { 1705 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1706 // won't process them, but we might have other destination that are eligible 1707 // and we still want to process. 1708 erase_if(PredToDestList, 1709 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1710 return LoopHeaders.count(PredToDest.second) != 0; 1711 }); 1712 1713 if (PredToDestList.empty()) 1714 return false; 1715 1716 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1717 } 1718 1719 // Now that we know what the most popular destination is, factor all 1720 // predecessors that will jump to it into a single predecessor. 1721 SmallVector<BasicBlock*, 16> PredsToFactor; 1722 for (const auto &PredToDest : PredToDestList) 1723 if (PredToDest.second == MostPopularDest) { 1724 BasicBlock *Pred = PredToDest.first; 1725 1726 // This predecessor may be a switch or something else that has multiple 1727 // edges to the block. Factor each of these edges by listing them 1728 // according to # occurrences in PredsToFactor. 1729 for (BasicBlock *Succ : successors(Pred)) 1730 if (Succ == BB) 1731 PredsToFactor.push_back(Pred); 1732 } 1733 1734 // If the threadable edges are branching on an undefined value, we get to pick 1735 // the destination that these predecessors should get to. 1736 if (!MostPopularDest) 1737 MostPopularDest = BB->getTerminator()-> 1738 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1739 1740 // Ok, try to thread it! 1741 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1742 } 1743 1744 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1745 /// a PHI node in the current block. See if there are any simplifications we 1746 /// can do based on inputs to the phi node. 1747 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1748 BasicBlock *BB = PN->getParent(); 1749 1750 // TODO: We could make use of this to do it once for blocks with common PHI 1751 // values. 1752 SmallVector<BasicBlock*, 1> PredBBs; 1753 PredBBs.resize(1); 1754 1755 // If any of the predecessor blocks end in an unconditional branch, we can 1756 // *duplicate* the conditional branch into that block in order to further 1757 // encourage jump threading and to eliminate cases where we have branch on a 1758 // phi of an icmp (branch on icmp is much better). 1759 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1760 BasicBlock *PredBB = PN->getIncomingBlock(i); 1761 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1762 if (PredBr->isUnconditional()) { 1763 PredBBs[0] = PredBB; 1764 // Try to duplicate BB into PredBB. 1765 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1766 return true; 1767 } 1768 } 1769 1770 return false; 1771 } 1772 1773 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1774 /// a xor instruction in the current block. See if there are any 1775 /// simplifications we can do based on inputs to the xor. 1776 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1777 BasicBlock *BB = BO->getParent(); 1778 1779 // If either the LHS or RHS of the xor is a constant, don't do this 1780 // optimization. 1781 if (isa<ConstantInt>(BO->getOperand(0)) || 1782 isa<ConstantInt>(BO->getOperand(1))) 1783 return false; 1784 1785 // If the first instruction in BB isn't a phi, we won't be able to infer 1786 // anything special about any particular predecessor. 1787 if (!isa<PHINode>(BB->front())) 1788 return false; 1789 1790 // If this BB is a landing pad, we won't be able to split the edge into it. 1791 if (BB->isEHPad()) 1792 return false; 1793 1794 // If we have a xor as the branch input to this block, and we know that the 1795 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1796 // the condition into the predecessor and fix that value to true, saving some 1797 // logical ops on that path and encouraging other paths to simplify. 1798 // 1799 // This copies something like this: 1800 // 1801 // BB: 1802 // %X = phi i1 [1], [%X'] 1803 // %Y = icmp eq i32 %A, %B 1804 // %Z = xor i1 %X, %Y 1805 // br i1 %Z, ... 1806 // 1807 // Into: 1808 // BB': 1809 // %Y = icmp ne i32 %A, %B 1810 // br i1 %Y, ... 1811 1812 PredValueInfoTy XorOpValues; 1813 bool isLHS = true; 1814 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1815 WantInteger, BO)) { 1816 assert(XorOpValues.empty()); 1817 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1818 WantInteger, BO)) 1819 return false; 1820 isLHS = false; 1821 } 1822 1823 assert(!XorOpValues.empty() && 1824 "ComputeValueKnownInPredecessors returned true with no values"); 1825 1826 // Scan the information to see which is most popular: true or false. The 1827 // predecessors can be of the set true, false, or undef. 1828 unsigned NumTrue = 0, NumFalse = 0; 1829 for (const auto &XorOpValue : XorOpValues) { 1830 if (isa<UndefValue>(XorOpValue.first)) 1831 // Ignore undefs for the count. 1832 continue; 1833 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1834 ++NumFalse; 1835 else 1836 ++NumTrue; 1837 } 1838 1839 // Determine which value to split on, true, false, or undef if neither. 1840 ConstantInt *SplitVal = nullptr; 1841 if (NumTrue > NumFalse) 1842 SplitVal = ConstantInt::getTrue(BB->getContext()); 1843 else if (NumTrue != 0 || NumFalse != 0) 1844 SplitVal = ConstantInt::getFalse(BB->getContext()); 1845 1846 // Collect all of the blocks that this can be folded into so that we can 1847 // factor this once and clone it once. 1848 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1849 for (const auto &XorOpValue : XorOpValues) { 1850 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1851 continue; 1852 1853 BlocksToFoldInto.push_back(XorOpValue.second); 1854 } 1855 1856 // If we inferred a value for all of the predecessors, then duplication won't 1857 // help us. However, we can just replace the LHS or RHS with the constant. 1858 if (BlocksToFoldInto.size() == 1859 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1860 if (!SplitVal) { 1861 // If all preds provide undef, just nuke the xor, because it is undef too. 1862 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1863 BO->eraseFromParent(); 1864 } else if (SplitVal->isZero()) { 1865 // If all preds provide 0, replace the xor with the other input. 1866 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1867 BO->eraseFromParent(); 1868 } else { 1869 // If all preds provide 1, set the computed value to 1. 1870 BO->setOperand(!isLHS, SplitVal); 1871 } 1872 1873 return true; 1874 } 1875 1876 // Try to duplicate BB into PredBB. 1877 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1878 } 1879 1880 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1881 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1882 /// NewPred using the entries from OldPred (suitably mapped). 1883 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1884 BasicBlock *OldPred, 1885 BasicBlock *NewPred, 1886 DenseMap<Instruction*, Value*> &ValueMap) { 1887 for (PHINode &PN : PHIBB->phis()) { 1888 // Ok, we have a PHI node. Figure out what the incoming value was for the 1889 // DestBlock. 1890 Value *IV = PN.getIncomingValueForBlock(OldPred); 1891 1892 // Remap the value if necessary. 1893 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1894 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1895 if (I != ValueMap.end()) 1896 IV = I->second; 1897 } 1898 1899 PN.addIncoming(IV, NewPred); 1900 } 1901 } 1902 1903 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1904 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1905 /// across BB. Transform the IR to reflect this change. 1906 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1907 const SmallVectorImpl<BasicBlock *> &PredBBs, 1908 BasicBlock *SuccBB) { 1909 // If threading to the same block as we come from, we would infinite loop. 1910 if (SuccBB == BB) { 1911 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1912 << "' - would thread to self!\n"); 1913 return false; 1914 } 1915 1916 // If threading this would thread across a loop header, don't thread the edge. 1917 // See the comments above FindLoopHeaders for justifications and caveats. 1918 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1919 LLVM_DEBUG({ 1920 bool BBIsHeader = LoopHeaders.count(BB); 1921 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1922 dbgs() << " Not threading across " 1923 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1924 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1925 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1926 }); 1927 return false; 1928 } 1929 1930 unsigned JumpThreadCost = 1931 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1932 if (JumpThreadCost > BBDupThreshold) { 1933 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1934 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1935 return false; 1936 } 1937 1938 // And finally, do it! Start by factoring the predecessors if needed. 1939 BasicBlock *PredBB; 1940 if (PredBBs.size() == 1) 1941 PredBB = PredBBs[0]; 1942 else { 1943 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1944 << " common predecessors.\n"); 1945 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1946 } 1947 1948 // And finally, do it! 1949 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 1950 << "' to '" << SuccBB->getName() 1951 << "' with cost: " << JumpThreadCost 1952 << ", across block:\n " << *BB << "\n"); 1953 1954 if (DTU->hasPendingDomTreeUpdates()) 1955 LVI->disableDT(); 1956 else 1957 LVI->enableDT(); 1958 LVI->threadEdge(PredBB, BB, SuccBB); 1959 1960 // We are going to have to map operands from the original BB block to the new 1961 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1962 // account for entry from PredBB. 1963 DenseMap<Instruction*, Value*> ValueMapping; 1964 1965 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1966 BB->getName()+".thread", 1967 BB->getParent(), BB); 1968 NewBB->moveAfter(PredBB); 1969 1970 // Set the block frequency of NewBB. 1971 if (HasProfileData) { 1972 auto NewBBFreq = 1973 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1974 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1975 } 1976 1977 BasicBlock::iterator BI = BB->begin(); 1978 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1979 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1980 1981 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1982 // mapping and using it to remap operands in the cloned instructions. 1983 for (; !BI->isTerminator(); ++BI) { 1984 Instruction *New = BI->clone(); 1985 New->setName(BI->getName()); 1986 NewBB->getInstList().push_back(New); 1987 ValueMapping[&*BI] = New; 1988 1989 // Remap operands to patch up intra-block references. 1990 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1991 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1992 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1993 if (I != ValueMapping.end()) 1994 New->setOperand(i, I->second); 1995 } 1996 } 1997 1998 // We didn't copy the terminator from BB over to NewBB, because there is now 1999 // an unconditional jump to SuccBB. Insert the unconditional jump. 2000 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2001 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2002 2003 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2004 // PHI nodes for NewBB now. 2005 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2006 2007 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2008 // eliminates predecessors from BB, which requires us to simplify any PHI 2009 // nodes in BB. 2010 Instruction *PredTerm = PredBB->getTerminator(); 2011 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2012 if (PredTerm->getSuccessor(i) == BB) { 2013 BB->removePredecessor(PredBB, true); 2014 PredTerm->setSuccessor(i, NewBB); 2015 } 2016 2017 // Enqueue required DT updates. 2018 DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2019 {DominatorTree::Insert, PredBB, NewBB}, 2020 {DominatorTree::Delete, PredBB, BB}}); 2021 2022 // If there were values defined in BB that are used outside the block, then we 2023 // now have to update all uses of the value to use either the original value, 2024 // the cloned value, or some PHI derived value. This can require arbitrary 2025 // PHI insertion, of which we are prepared to do, clean these up now. 2026 SSAUpdater SSAUpdate; 2027 SmallVector<Use*, 16> UsesToRename; 2028 2029 for (Instruction &I : *BB) { 2030 // Scan all uses of this instruction to see if their uses are no longer 2031 // dominated by the previous def and if so, record them in UsesToRename. 2032 // Also, skip phi operands from PredBB - we'll remove them anyway. 2033 for (Use &U : I.uses()) { 2034 Instruction *User = cast<Instruction>(U.getUser()); 2035 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2036 if (UserPN->getIncomingBlock(U) == BB) 2037 continue; 2038 } else if (User->getParent() == BB) 2039 continue; 2040 2041 UsesToRename.push_back(&U); 2042 } 2043 2044 // If there are no uses outside the block, we're done with this instruction. 2045 if (UsesToRename.empty()) 2046 continue; 2047 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2048 2049 // We found a use of I outside of BB. Rename all uses of I that are outside 2050 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2051 // with the two values we know. 2052 SSAUpdate.Initialize(I.getType(), I.getName()); 2053 SSAUpdate.AddAvailableValue(BB, &I); 2054 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2055 2056 while (!UsesToRename.empty()) 2057 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2058 LLVM_DEBUG(dbgs() << "\n"); 2059 } 2060 2061 // At this point, the IR is fully up to date and consistent. Do a quick scan 2062 // over the new instructions and zap any that are constants or dead. This 2063 // frequently happens because of phi translation. 2064 SimplifyInstructionsInBlock(NewBB, TLI); 2065 2066 // Update the edge weight from BB to SuccBB, which should be less than before. 2067 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2068 2069 // Threaded an edge! 2070 ++NumThreads; 2071 return true; 2072 } 2073 2074 /// Create a new basic block that will be the predecessor of BB and successor of 2075 /// all blocks in Preds. When profile data is available, update the frequency of 2076 /// this new block. 2077 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2078 ArrayRef<BasicBlock *> Preds, 2079 const char *Suffix) { 2080 SmallVector<BasicBlock *, 2> NewBBs; 2081 2082 // Collect the frequencies of all predecessors of BB, which will be used to 2083 // update the edge weight of the result of splitting predecessors. 2084 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2085 if (HasProfileData) 2086 for (auto Pred : Preds) 2087 FreqMap.insert(std::make_pair( 2088 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2089 2090 // In the case when BB is a LandingPad block we create 2 new predecessors 2091 // instead of just one. 2092 if (BB->isLandingPad()) { 2093 std::string NewName = std::string(Suffix) + ".split-lp"; 2094 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2095 } else { 2096 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2097 } 2098 2099 std::vector<DominatorTree::UpdateType> Updates; 2100 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2101 for (auto NewBB : NewBBs) { 2102 BlockFrequency NewBBFreq(0); 2103 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2104 for (auto Pred : predecessors(NewBB)) { 2105 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2106 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2107 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2108 NewBBFreq += FreqMap.lookup(Pred); 2109 } 2110 if (HasProfileData) // Apply the summed frequency to NewBB. 2111 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2112 } 2113 2114 DTU->applyUpdates(Updates); 2115 return NewBBs[0]; 2116 } 2117 2118 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2119 const Instruction *TI = BB->getTerminator(); 2120 assert(TI->getNumSuccessors() > 1 && "not a split"); 2121 2122 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2123 if (!WeightsNode) 2124 return false; 2125 2126 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2127 if (MDName->getString() != "branch_weights") 2128 return false; 2129 2130 // Ensure there are weights for all of the successors. Note that the first 2131 // operand to the metadata node is a name, not a weight. 2132 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2133 } 2134 2135 /// Update the block frequency of BB and branch weight and the metadata on the 2136 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2137 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2138 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2139 BasicBlock *BB, 2140 BasicBlock *NewBB, 2141 BasicBlock *SuccBB) { 2142 if (!HasProfileData) 2143 return; 2144 2145 assert(BFI && BPI && "BFI & BPI should have been created here"); 2146 2147 // As the edge from PredBB to BB is deleted, we have to update the block 2148 // frequency of BB. 2149 auto BBOrigFreq = BFI->getBlockFreq(BB); 2150 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2151 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2152 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2153 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2154 2155 // Collect updated outgoing edges' frequencies from BB and use them to update 2156 // edge probabilities. 2157 SmallVector<uint64_t, 4> BBSuccFreq; 2158 for (BasicBlock *Succ : successors(BB)) { 2159 auto SuccFreq = (Succ == SuccBB) 2160 ? BB2SuccBBFreq - NewBBFreq 2161 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2162 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2163 } 2164 2165 uint64_t MaxBBSuccFreq = 2166 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2167 2168 SmallVector<BranchProbability, 4> BBSuccProbs; 2169 if (MaxBBSuccFreq == 0) 2170 BBSuccProbs.assign(BBSuccFreq.size(), 2171 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2172 else { 2173 for (uint64_t Freq : BBSuccFreq) 2174 BBSuccProbs.push_back( 2175 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2176 // Normalize edge probabilities so that they sum up to one. 2177 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2178 BBSuccProbs.end()); 2179 } 2180 2181 // Update edge probabilities in BPI. 2182 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2183 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2184 2185 // Update the profile metadata as well. 2186 // 2187 // Don't do this if the profile of the transformed blocks was statically 2188 // estimated. (This could occur despite the function having an entry 2189 // frequency in completely cold parts of the CFG.) 2190 // 2191 // In this case we don't want to suggest to subsequent passes that the 2192 // calculated weights are fully consistent. Consider this graph: 2193 // 2194 // check_1 2195 // 50% / | 2196 // eq_1 | 50% 2197 // \ | 2198 // check_2 2199 // 50% / | 2200 // eq_2 | 50% 2201 // \ | 2202 // check_3 2203 // 50% / | 2204 // eq_3 | 50% 2205 // \ | 2206 // 2207 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2208 // the overall probabilities are inconsistent; the total probability that the 2209 // value is either 1, 2 or 3 is 150%. 2210 // 2211 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2212 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2213 // the loop exit edge. Then based solely on static estimation we would assume 2214 // the loop was extremely hot. 2215 // 2216 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2217 // shouldn't make edges extremely likely or unlikely based solely on static 2218 // estimation. 2219 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2220 SmallVector<uint32_t, 4> Weights; 2221 for (auto Prob : BBSuccProbs) 2222 Weights.push_back(Prob.getNumerator()); 2223 2224 auto TI = BB->getTerminator(); 2225 TI->setMetadata( 2226 LLVMContext::MD_prof, 2227 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2228 } 2229 } 2230 2231 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2232 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2233 /// If we can duplicate the contents of BB up into PredBB do so now, this 2234 /// improves the odds that the branch will be on an analyzable instruction like 2235 /// a compare. 2236 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2237 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2238 assert(!PredBBs.empty() && "Can't handle an empty set"); 2239 2240 // If BB is a loop header, then duplicating this block outside the loop would 2241 // cause us to transform this into an irreducible loop, don't do this. 2242 // See the comments above FindLoopHeaders for justifications and caveats. 2243 if (LoopHeaders.count(BB)) { 2244 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2245 << "' into predecessor block '" << PredBBs[0]->getName() 2246 << "' - it might create an irreducible loop!\n"); 2247 return false; 2248 } 2249 2250 unsigned DuplicationCost = 2251 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2252 if (DuplicationCost > BBDupThreshold) { 2253 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2254 << "' - Cost is too high: " << DuplicationCost << "\n"); 2255 return false; 2256 } 2257 2258 // And finally, do it! Start by factoring the predecessors if needed. 2259 std::vector<DominatorTree::UpdateType> Updates; 2260 BasicBlock *PredBB; 2261 if (PredBBs.size() == 1) 2262 PredBB = PredBBs[0]; 2263 else { 2264 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2265 << " common predecessors.\n"); 2266 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2267 } 2268 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2269 2270 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2271 // of PredBB. 2272 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2273 << "' into end of '" << PredBB->getName() 2274 << "' to eliminate branch on phi. Cost: " 2275 << DuplicationCost << " block is:" << *BB << "\n"); 2276 2277 // Unless PredBB ends with an unconditional branch, split the edge so that we 2278 // can just clone the bits from BB into the end of the new PredBB. 2279 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2280 2281 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2282 BasicBlock *OldPredBB = PredBB; 2283 PredBB = SplitEdge(OldPredBB, BB); 2284 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2285 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2286 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2287 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2288 } 2289 2290 // We are going to have to map operands from the original BB block into the 2291 // PredBB block. Evaluate PHI nodes in BB. 2292 DenseMap<Instruction*, Value*> ValueMapping; 2293 2294 BasicBlock::iterator BI = BB->begin(); 2295 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2296 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2297 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2298 // mapping and using it to remap operands in the cloned instructions. 2299 for (; BI != BB->end(); ++BI) { 2300 Instruction *New = BI->clone(); 2301 2302 // Remap operands to patch up intra-block references. 2303 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2304 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2305 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2306 if (I != ValueMapping.end()) 2307 New->setOperand(i, I->second); 2308 } 2309 2310 // If this instruction can be simplified after the operands are updated, 2311 // just use the simplified value instead. This frequently happens due to 2312 // phi translation. 2313 if (Value *IV = SimplifyInstruction( 2314 New, 2315 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2316 ValueMapping[&*BI] = IV; 2317 if (!New->mayHaveSideEffects()) { 2318 New->deleteValue(); 2319 New = nullptr; 2320 } 2321 } else { 2322 ValueMapping[&*BI] = New; 2323 } 2324 if (New) { 2325 // Otherwise, insert the new instruction into the block. 2326 New->setName(BI->getName()); 2327 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2328 // Update Dominance from simplified New instruction operands. 2329 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2330 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2331 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2332 } 2333 } 2334 2335 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2336 // add entries to the PHI nodes for branch from PredBB now. 2337 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2338 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2339 ValueMapping); 2340 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2341 ValueMapping); 2342 2343 // If there were values defined in BB that are used outside the block, then we 2344 // now have to update all uses of the value to use either the original value, 2345 // the cloned value, or some PHI derived value. This can require arbitrary 2346 // PHI insertion, of which we are prepared to do, clean these up now. 2347 SSAUpdater SSAUpdate; 2348 SmallVector<Use*, 16> UsesToRename; 2349 for (Instruction &I : *BB) { 2350 // Scan all uses of this instruction to see if it is used outside of its 2351 // block, and if so, record them in UsesToRename. 2352 for (Use &U : I.uses()) { 2353 Instruction *User = cast<Instruction>(U.getUser()); 2354 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2355 if (UserPN->getIncomingBlock(U) == BB) 2356 continue; 2357 } else if (User->getParent() == BB) 2358 continue; 2359 2360 UsesToRename.push_back(&U); 2361 } 2362 2363 // If there are no uses outside the block, we're done with this instruction. 2364 if (UsesToRename.empty()) 2365 continue; 2366 2367 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2368 2369 // We found a use of I outside of BB. Rename all uses of I that are outside 2370 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2371 // with the two values we know. 2372 SSAUpdate.Initialize(I.getType(), I.getName()); 2373 SSAUpdate.AddAvailableValue(BB, &I); 2374 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2375 2376 while (!UsesToRename.empty()) 2377 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2378 LLVM_DEBUG(dbgs() << "\n"); 2379 } 2380 2381 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2382 // that we nuked. 2383 BB->removePredecessor(PredBB, true); 2384 2385 // Remove the unconditional branch at the end of the PredBB block. 2386 OldPredBranch->eraseFromParent(); 2387 DTU->applyUpdates(Updates); 2388 2389 ++NumDupes; 2390 return true; 2391 } 2392 2393 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2394 // a Select instruction in Pred. BB has other predecessors and SI is used in 2395 // a PHI node in BB. SI has no other use. 2396 // A new basic block, NewBB, is created and SI is converted to compare and 2397 // conditional branch. SI is erased from parent. 2398 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2399 SelectInst *SI, PHINode *SIUse, 2400 unsigned Idx) { 2401 // Expand the select. 2402 // 2403 // Pred -- 2404 // | v 2405 // | NewBB 2406 // | | 2407 // |----- 2408 // v 2409 // BB 2410 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2411 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2412 BB->getParent(), BB); 2413 // Move the unconditional branch to NewBB. 2414 PredTerm->removeFromParent(); 2415 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2416 // Create a conditional branch and update PHI nodes. 2417 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2418 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2419 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2420 2421 // The select is now dead. 2422 SI->eraseFromParent(); 2423 DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2424 {DominatorTree::Insert, Pred, NewBB}}); 2425 2426 // Update any other PHI nodes in BB. 2427 for (BasicBlock::iterator BI = BB->begin(); 2428 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2429 if (Phi != SIUse) 2430 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2431 } 2432 2433 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2434 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2435 2436 if (!CondPHI || CondPHI->getParent() != BB) 2437 return false; 2438 2439 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2440 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2441 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2442 2443 // The second and third condition can be potentially relaxed. Currently 2444 // the conditions help to simplify the code and allow us to reuse existing 2445 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2446 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2447 continue; 2448 2449 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2450 if (!PredTerm || !PredTerm->isUnconditional()) 2451 continue; 2452 2453 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2454 return true; 2455 } 2456 return false; 2457 } 2458 2459 /// TryToUnfoldSelect - Look for blocks of the form 2460 /// bb1: 2461 /// %a = select 2462 /// br bb2 2463 /// 2464 /// bb2: 2465 /// %p = phi [%a, %bb1] ... 2466 /// %c = icmp %p 2467 /// br i1 %c 2468 /// 2469 /// And expand the select into a branch structure if one of its arms allows %c 2470 /// to be folded. This later enables threading from bb1 over bb2. 2471 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2472 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2473 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2474 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2475 2476 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2477 CondLHS->getParent() != BB) 2478 return false; 2479 2480 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2481 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2482 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2483 2484 // Look if one of the incoming values is a select in the corresponding 2485 // predecessor. 2486 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2487 continue; 2488 2489 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2490 if (!PredTerm || !PredTerm->isUnconditional()) 2491 continue; 2492 2493 // Now check if one of the select values would allow us to constant fold the 2494 // terminator in BB. We don't do the transform if both sides fold, those 2495 // cases will be threaded in any case. 2496 if (DTU->hasPendingDomTreeUpdates()) 2497 LVI->disableDT(); 2498 else 2499 LVI->enableDT(); 2500 LazyValueInfo::Tristate LHSFolds = 2501 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2502 CondRHS, Pred, BB, CondCmp); 2503 LazyValueInfo::Tristate RHSFolds = 2504 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2505 CondRHS, Pred, BB, CondCmp); 2506 if ((LHSFolds != LazyValueInfo::Unknown || 2507 RHSFolds != LazyValueInfo::Unknown) && 2508 LHSFolds != RHSFolds) { 2509 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2510 return true; 2511 } 2512 } 2513 return false; 2514 } 2515 2516 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2517 /// same BB in the form 2518 /// bb: 2519 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2520 /// %s = select %p, trueval, falseval 2521 /// 2522 /// or 2523 /// 2524 /// bb: 2525 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2526 /// %c = cmp %p, 0 2527 /// %s = select %c, trueval, falseval 2528 /// 2529 /// And expand the select into a branch structure. This later enables 2530 /// jump-threading over bb in this pass. 2531 /// 2532 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2533 /// select if the associated PHI has at least one constant. If the unfolded 2534 /// select is not jump-threaded, it will be folded again in the later 2535 /// optimizations. 2536 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2537 // If threading this would thread across a loop header, don't thread the edge. 2538 // See the comments above FindLoopHeaders for justifications and caveats. 2539 if (LoopHeaders.count(BB)) 2540 return false; 2541 2542 for (BasicBlock::iterator BI = BB->begin(); 2543 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2544 // Look for a Phi having at least one constant incoming value. 2545 if (llvm::all_of(PN->incoming_values(), 2546 [](Value *V) { return !isa<ConstantInt>(V); })) 2547 continue; 2548 2549 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2550 // Check if SI is in BB and use V as condition. 2551 if (SI->getParent() != BB) 2552 return false; 2553 Value *Cond = SI->getCondition(); 2554 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2555 }; 2556 2557 SelectInst *SI = nullptr; 2558 for (Use &U : PN->uses()) { 2559 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2560 // Look for a ICmp in BB that compares PN with a constant and is the 2561 // condition of a Select. 2562 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2563 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2564 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2565 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2566 SI = SelectI; 2567 break; 2568 } 2569 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2570 // Look for a Select in BB that uses PN as condition. 2571 if (isUnfoldCandidate(SelectI, U.get())) { 2572 SI = SelectI; 2573 break; 2574 } 2575 } 2576 } 2577 2578 if (!SI) 2579 continue; 2580 // Expand the select. 2581 Instruction *Term = 2582 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2583 BasicBlock *SplitBB = SI->getParent(); 2584 BasicBlock *NewBB = Term->getParent(); 2585 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2586 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2587 NewPN->addIncoming(SI->getFalseValue(), BB); 2588 SI->replaceAllUsesWith(NewPN); 2589 SI->eraseFromParent(); 2590 // NewBB and SplitBB are newly created blocks which require insertion. 2591 std::vector<DominatorTree::UpdateType> Updates; 2592 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2593 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2594 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2595 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2596 // BB's successors were moved to SplitBB, update DTU accordingly. 2597 for (auto *Succ : successors(SplitBB)) { 2598 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2599 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2600 } 2601 DTU->applyUpdates(Updates); 2602 return true; 2603 } 2604 return false; 2605 } 2606 2607 /// Try to propagate a guard from the current BB into one of its predecessors 2608 /// in case if another branch of execution implies that the condition of this 2609 /// guard is always true. Currently we only process the simplest case that 2610 /// looks like: 2611 /// 2612 /// Start: 2613 /// %cond = ... 2614 /// br i1 %cond, label %T1, label %F1 2615 /// T1: 2616 /// br label %Merge 2617 /// F1: 2618 /// br label %Merge 2619 /// Merge: 2620 /// %condGuard = ... 2621 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2622 /// 2623 /// And cond either implies condGuard or !condGuard. In this case all the 2624 /// instructions before the guard can be duplicated in both branches, and the 2625 /// guard is then threaded to one of them. 2626 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2627 using namespace PatternMatch; 2628 2629 // We only want to deal with two predecessors. 2630 BasicBlock *Pred1, *Pred2; 2631 auto PI = pred_begin(BB), PE = pred_end(BB); 2632 if (PI == PE) 2633 return false; 2634 Pred1 = *PI++; 2635 if (PI == PE) 2636 return false; 2637 Pred2 = *PI++; 2638 if (PI != PE) 2639 return false; 2640 if (Pred1 == Pred2) 2641 return false; 2642 2643 // Try to thread one of the guards of the block. 2644 // TODO: Look up deeper than to immediate predecessor? 2645 auto *Parent = Pred1->getSinglePredecessor(); 2646 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2647 return false; 2648 2649 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2650 for (auto &I : *BB) 2651 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2652 return true; 2653 2654 return false; 2655 } 2656 2657 /// Try to propagate the guard from BB which is the lower block of a diamond 2658 /// to one of its branches, in case if diamond's condition implies guard's 2659 /// condition. 2660 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2661 BranchInst *BI) { 2662 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2663 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2664 Value *GuardCond = Guard->getArgOperand(0); 2665 Value *BranchCond = BI->getCondition(); 2666 BasicBlock *TrueDest = BI->getSuccessor(0); 2667 BasicBlock *FalseDest = BI->getSuccessor(1); 2668 2669 auto &DL = BB->getModule()->getDataLayout(); 2670 bool TrueDestIsSafe = false; 2671 bool FalseDestIsSafe = false; 2672 2673 // True dest is safe if BranchCond => GuardCond. 2674 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2675 if (Impl && *Impl) 2676 TrueDestIsSafe = true; 2677 else { 2678 // False dest is safe if !BranchCond => GuardCond. 2679 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2680 if (Impl && *Impl) 2681 FalseDestIsSafe = true; 2682 } 2683 2684 if (!TrueDestIsSafe && !FalseDestIsSafe) 2685 return false; 2686 2687 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2688 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2689 2690 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2691 Instruction *AfterGuard = Guard->getNextNode(); 2692 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2693 if (Cost > BBDupThreshold) 2694 return false; 2695 // Duplicate all instructions before the guard and the guard itself to the 2696 // branch where implication is not proved. 2697 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2698 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2699 assert(GuardedBlock && "Could not create the guarded block?"); 2700 // Duplicate all instructions before the guard in the unguarded branch. 2701 // Since we have successfully duplicated the guarded block and this block 2702 // has fewer instructions, we expect it to succeed. 2703 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2704 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2705 assert(UnguardedBlock && "Could not create the unguarded block?"); 2706 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2707 << GuardedBlock->getName() << "\n"); 2708 // Some instructions before the guard may still have uses. For them, we need 2709 // to create Phi nodes merging their copies in both guarded and unguarded 2710 // branches. Those instructions that have no uses can be just removed. 2711 SmallVector<Instruction *, 4> ToRemove; 2712 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2713 if (!isa<PHINode>(&*BI)) 2714 ToRemove.push_back(&*BI); 2715 2716 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2717 assert(InsertionPoint && "Empty block?"); 2718 // Substitute with Phis & remove. 2719 for (auto *Inst : reverse(ToRemove)) { 2720 if (!Inst->use_empty()) { 2721 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2722 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2723 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2724 NewPN->insertBefore(InsertionPoint); 2725 Inst->replaceAllUsesWith(NewPN); 2726 } 2727 Inst->eraseFromParent(); 2728 } 2729 return true; 2730 } 2731