1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DomTreeUpdater.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/SSAUpdater.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<bool> PrintLVIAfterJumpThreading(
101     "print-lvi-after-jump-threading",
102     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
103     cl::Hidden);
104 
105 namespace {
106 
107   /// This pass performs 'jump threading', which looks at blocks that have
108   /// multiple predecessors and multiple successors.  If one or more of the
109   /// predecessors of the block can be proven to always jump to one of the
110   /// successors, we forward the edge from the predecessor to the successor by
111   /// duplicating the contents of this block.
112   ///
113   /// An example of when this can occur is code like this:
114   ///
115   ///   if () { ...
116   ///     X = 4;
117   ///   }
118   ///   if (X < 3) {
119   ///
120   /// In this case, the unconditional branch at the end of the first if can be
121   /// revectored to the false side of the second if.
122   class JumpThreading : public FunctionPass {
123     JumpThreadingPass Impl;
124 
125   public:
126     static char ID; // Pass identification
127 
128     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
129       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
130     }
131 
132     bool runOnFunction(Function &F) override;
133 
134     void getAnalysisUsage(AnalysisUsage &AU) const override {
135       AU.addRequired<DominatorTreeWrapperPass>();
136       AU.addPreserved<DominatorTreeWrapperPass>();
137       AU.addRequired<AAResultsWrapperPass>();
138       AU.addRequired<LazyValueInfoWrapperPass>();
139       AU.addPreserved<LazyValueInfoWrapperPass>();
140       AU.addPreserved<GlobalsAAWrapperPass>();
141       AU.addRequired<TargetLibraryInfoWrapperPass>();
142     }
143 
144     void releaseMemory() override { Impl.releaseMemory(); }
145   };
146 
147 } // end anonymous namespace
148 
149 char JumpThreading::ID = 0;
150 
151 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
152                 "Jump Threading", false, false)
153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
157 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
158                 "Jump Threading", false, false)
159 
160 // Public interface to the Jump Threading pass
161 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
162   return new JumpThreading(Threshold);
163 }
164 
165 JumpThreadingPass::JumpThreadingPass(int T) {
166   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
167 }
168 
169 // Update branch probability information according to conditional
170 // branch probability. This is usually made possible for cloned branches
171 // in inline instances by the context specific profile in the caller.
172 // For instance,
173 //
174 //  [Block PredBB]
175 //  [Branch PredBr]
176 //  if (t) {
177 //     Block A;
178 //  } else {
179 //     Block B;
180 //  }
181 //
182 //  [Block BB]
183 //  cond = PN([true, %A], [..., %B]); // PHI node
184 //  [Branch CondBr]
185 //  if (cond) {
186 //    ...  // P(cond == true) = 1%
187 //  }
188 //
189 //  Here we know that when block A is taken, cond must be true, which means
190 //      P(cond == true | A) = 1
191 //
192 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
193 //                               P(cond == true | B) * P(B)
194 //  we get:
195 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
196 //
197 //  which gives us:
198 //     P(A) is less than P(cond == true), i.e.
199 //     P(t == true) <= P(cond == true)
200 //
201 //  In other words, if we know P(cond == true) is unlikely, we know
202 //  that P(t == true) is also unlikely.
203 //
204 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
205   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
206   if (!CondBr)
207     return;
208 
209   BranchProbability BP;
210   uint64_t TrueWeight, FalseWeight;
211   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
212     return;
213 
214   // Returns the outgoing edge of the dominating predecessor block
215   // that leads to the PhiNode's incoming block:
216   auto GetPredOutEdge =
217       [](BasicBlock *IncomingBB,
218          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
219     auto *PredBB = IncomingBB;
220     auto *SuccBB = PhiBB;
221     while (true) {
222       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
223       if (PredBr && PredBr->isConditional())
224         return {PredBB, SuccBB};
225       auto *SinglePredBB = PredBB->getSinglePredecessor();
226       if (!SinglePredBB)
227         return {nullptr, nullptr};
228       SuccBB = PredBB;
229       PredBB = SinglePredBB;
230     }
231   };
232 
233   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
234     Value *PhiOpnd = PN->getIncomingValue(i);
235     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
236 
237     if (!CI || !CI->getType()->isIntegerTy(1))
238       continue;
239 
240     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
241                             TrueWeight, TrueWeight + FalseWeight)
242                       : BranchProbability::getBranchProbability(
243                             FalseWeight, TrueWeight + FalseWeight));
244 
245     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
246     if (!PredOutEdge.first)
247       return;
248 
249     BasicBlock *PredBB = PredOutEdge.first;
250     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
251 
252     uint64_t PredTrueWeight, PredFalseWeight;
253     // FIXME: We currently only set the profile data when it is missing.
254     // With PGO, this can be used to refine even existing profile data with
255     // context information. This needs to be done after more performance
256     // testing.
257     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
258       continue;
259 
260     // We can not infer anything useful when BP >= 50%, because BP is the
261     // upper bound probability value.
262     if (BP >= BranchProbability(50, 100))
263       continue;
264 
265     SmallVector<uint32_t, 2> Weights;
266     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
267       Weights.push_back(BP.getNumerator());
268       Weights.push_back(BP.getCompl().getNumerator());
269     } else {
270       Weights.push_back(BP.getCompl().getNumerator());
271       Weights.push_back(BP.getNumerator());
272     }
273     PredBr->setMetadata(LLVMContext::MD_prof,
274                         MDBuilder(PredBr->getParent()->getContext())
275                             .createBranchWeights(Weights));
276   }
277 }
278 
279 /// runOnFunction - Toplevel algorithm.
280 bool JumpThreading::runOnFunction(Function &F) {
281   if (skipFunction(F))
282     return false;
283   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
284   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
285   // DT if it's available.
286   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
287   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
288   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
289   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
290   std::unique_ptr<BlockFrequencyInfo> BFI;
291   std::unique_ptr<BranchProbabilityInfo> BPI;
292   bool HasProfileData = F.hasProfileData();
293   if (HasProfileData) {
294     LoopInfo LI{DominatorTree(F)};
295     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
296     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
297   }
298 
299   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData,
300                               std::move(BFI), std::move(BPI));
301   if (PrintLVIAfterJumpThreading) {
302     dbgs() << "LVI for function '" << F.getName() << "':\n";
303     LVI->printLVI(F, *DT, dbgs());
304   }
305   return Changed;
306 }
307 
308 PreservedAnalyses JumpThreadingPass::run(Function &F,
309                                          FunctionAnalysisManager &AM) {
310   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
311   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
312   // DT if it's available.
313   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
314   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
315   auto &AA = AM.getResult<AAManager>(F);
316   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
317 
318   std::unique_ptr<BlockFrequencyInfo> BFI;
319   std::unique_ptr<BranchProbabilityInfo> BPI;
320   if (F.hasProfileData()) {
321     LoopInfo LI{DominatorTree(F)};
322     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
323     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
324   }
325 
326   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData,
327                          std::move(BFI), std::move(BPI));
328 
329   if (!Changed)
330     return PreservedAnalyses::all();
331   PreservedAnalyses PA;
332   PA.preserve<GlobalsAA>();
333   PA.preserve<DominatorTreeAnalysis>();
334   PA.preserve<LazyValueAnalysis>();
335   return PA;
336 }
337 
338 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
339                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
340                                 DomTreeUpdater *DTU_, bool HasProfileData_,
341                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
342                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
343   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
344   TLI = TLI_;
345   LVI = LVI_;
346   AA = AA_;
347   DTU = DTU_;
348   BFI.reset();
349   BPI.reset();
350   // When profile data is available, we need to update edge weights after
351   // successful jump threading, which requires both BPI and BFI being available.
352   HasProfileData = HasProfileData_;
353   auto *GuardDecl = F.getParent()->getFunction(
354       Intrinsic::getName(Intrinsic::experimental_guard));
355   HasGuards = GuardDecl && !GuardDecl->use_empty();
356   if (HasProfileData) {
357     BPI = std::move(BPI_);
358     BFI = std::move(BFI_);
359   }
360 
361   // JumpThreading must not processes blocks unreachable from entry. It's a
362   // waste of compute time and can potentially lead to hangs.
363   SmallPtrSet<BasicBlock *, 16> Unreachable;
364   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
365   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
366   DominatorTree &DT = DTU->getDomTree();
367   for (auto &BB : F)
368     if (!DT.isReachableFromEntry(&BB))
369       Unreachable.insert(&BB);
370 
371   FindLoopHeaders(F);
372 
373   bool EverChanged = false;
374   bool Changed;
375   do {
376     Changed = false;
377     for (auto &BB : F) {
378       if (Unreachable.count(&BB))
379         continue;
380       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
381         Changed = true;
382       // Stop processing BB if it's the entry or is now deleted. The following
383       // routines attempt to eliminate BB and locating a suitable replacement
384       // for the entry is non-trivial.
385       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
386         continue;
387 
388       if (pred_empty(&BB)) {
389         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
390         // the instructions in it. We must remove BB to prevent invalid IR.
391         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
392                           << "' with terminator: " << *BB.getTerminator()
393                           << '\n');
394         LoopHeaders.erase(&BB);
395         LVI->eraseBlock(&BB);
396         DeleteDeadBlock(&BB, DTU);
397         Changed = true;
398         continue;
399       }
400 
401       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
402       // is "almost empty", we attempt to merge BB with its sole successor.
403       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
404       if (BI && BI->isUnconditional() &&
405           // The terminator must be the only non-phi instruction in BB.
406           BB.getFirstNonPHIOrDbg()->isTerminator() &&
407           // Don't alter Loop headers and latches to ensure another pass can
408           // detect and transform nested loops later.
409           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
410           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
411         // BB is valid for cleanup here because we passed in DTU. F remains
412         // BB's parent until a DTU->getDomTree() event.
413         LVI->eraseBlock(&BB);
414         Changed = true;
415       }
416     }
417     EverChanged |= Changed;
418   } while (Changed);
419 
420   LoopHeaders.clear();
421   // Flush only the Dominator Tree.
422   DTU->getDomTree();
423   LVI->enableDT();
424   return EverChanged;
425 }
426 
427 // Replace uses of Cond with ToVal when safe to do so. If all uses are
428 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
429 // because we may incorrectly replace uses when guards/assumes are uses of
430 // of `Cond` and we used the guards/assume to reason about the `Cond` value
431 // at the end of block. RAUW unconditionally replaces all uses
432 // including the guards/assumes themselves and the uses before the
433 // guard/assume.
434 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
435   assert(Cond->getType() == ToVal->getType());
436   auto *BB = Cond->getParent();
437   // We can unconditionally replace all uses in non-local blocks (i.e. uses
438   // strictly dominated by BB), since LVI information is true from the
439   // terminator of BB.
440   replaceNonLocalUsesWith(Cond, ToVal);
441   for (Instruction &I : reverse(*BB)) {
442     // Reached the Cond whose uses we are trying to replace, so there are no
443     // more uses.
444     if (&I == Cond)
445       break;
446     // We only replace uses in instructions that are guaranteed to reach the end
447     // of BB, where we know Cond is ToVal.
448     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
449       break;
450     I.replaceUsesOfWith(Cond, ToVal);
451   }
452   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
453     Cond->eraseFromParent();
454 }
455 
456 /// Return the cost of duplicating a piece of this block from first non-phi
457 /// and before StopAt instruction to thread across it. Stop scanning the block
458 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
459 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
460                                              Instruction *StopAt,
461                                              unsigned Threshold) {
462   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
463   /// Ignore PHI nodes, these will be flattened when duplication happens.
464   BasicBlock::const_iterator I(BB->getFirstNonPHI());
465 
466   // FIXME: THREADING will delete values that are just used to compute the
467   // branch, so they shouldn't count against the duplication cost.
468 
469   unsigned Bonus = 0;
470   if (BB->getTerminator() == StopAt) {
471     // Threading through a switch statement is particularly profitable.  If this
472     // block ends in a switch, decrease its cost to make it more likely to
473     // happen.
474     if (isa<SwitchInst>(StopAt))
475       Bonus = 6;
476 
477     // The same holds for indirect branches, but slightly more so.
478     if (isa<IndirectBrInst>(StopAt))
479       Bonus = 8;
480   }
481 
482   // Bump the threshold up so the early exit from the loop doesn't skip the
483   // terminator-based Size adjustment at the end.
484   Threshold += Bonus;
485 
486   // Sum up the cost of each instruction until we get to the terminator.  Don't
487   // include the terminator because the copy won't include it.
488   unsigned Size = 0;
489   for (; &*I != StopAt; ++I) {
490 
491     // Stop scanning the block if we've reached the threshold.
492     if (Size > Threshold)
493       return Size;
494 
495     // Debugger intrinsics don't incur code size.
496     if (isa<DbgInfoIntrinsic>(I)) continue;
497 
498     // If this is a pointer->pointer bitcast, it is free.
499     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
500       continue;
501 
502     // Bail out if this instruction gives back a token type, it is not possible
503     // to duplicate it if it is used outside this BB.
504     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
505       return ~0U;
506 
507     // All other instructions count for at least one unit.
508     ++Size;
509 
510     // Calls are more expensive.  If they are non-intrinsic calls, we model them
511     // as having cost of 4.  If they are a non-vector intrinsic, we model them
512     // as having cost of 2 total, and if they are a vector intrinsic, we model
513     // them as having cost 1.
514     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
515       if (CI->cannotDuplicate() || CI->isConvergent())
516         // Blocks with NoDuplicate are modelled as having infinite cost, so they
517         // are never duplicated.
518         return ~0U;
519       else if (!isa<IntrinsicInst>(CI))
520         Size += 3;
521       else if (!CI->getType()->isVectorTy())
522         Size += 1;
523     }
524   }
525 
526   return Size > Bonus ? Size - Bonus : 0;
527 }
528 
529 /// FindLoopHeaders - We do not want jump threading to turn proper loop
530 /// structures into irreducible loops.  Doing this breaks up the loop nesting
531 /// hierarchy and pessimizes later transformations.  To prevent this from
532 /// happening, we first have to find the loop headers.  Here we approximate this
533 /// by finding targets of backedges in the CFG.
534 ///
535 /// Note that there definitely are cases when we want to allow threading of
536 /// edges across a loop header.  For example, threading a jump from outside the
537 /// loop (the preheader) to an exit block of the loop is definitely profitable.
538 /// It is also almost always profitable to thread backedges from within the loop
539 /// to exit blocks, and is often profitable to thread backedges to other blocks
540 /// within the loop (forming a nested loop).  This simple analysis is not rich
541 /// enough to track all of these properties and keep it up-to-date as the CFG
542 /// mutates, so we don't allow any of these transformations.
543 void JumpThreadingPass::FindLoopHeaders(Function &F) {
544   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
545   FindFunctionBackedges(F, Edges);
546 
547   for (const auto &Edge : Edges)
548     LoopHeaders.insert(Edge.second);
549 }
550 
551 /// getKnownConstant - Helper method to determine if we can thread over a
552 /// terminator with the given value as its condition, and if so what value to
553 /// use for that. What kind of value this is depends on whether we want an
554 /// integer or a block address, but an undef is always accepted.
555 /// Returns null if Val is null or not an appropriate constant.
556 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
557   if (!Val)
558     return nullptr;
559 
560   // Undef is "known" enough.
561   if (UndefValue *U = dyn_cast<UndefValue>(Val))
562     return U;
563 
564   if (Preference == WantBlockAddress)
565     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
566 
567   return dyn_cast<ConstantInt>(Val);
568 }
569 
570 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
571 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
572 /// in any of our predecessors.  If so, return the known list of value and pred
573 /// BB in the result vector.
574 ///
575 /// This returns true if there were any known values.
576 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
577     Value *V, BasicBlock *BB, PredValueInfo &Result,
578     ConstantPreference Preference,
579     DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet,
580     Instruction *CxtI) {
581   // This method walks up use-def chains recursively.  Because of this, we could
582   // get into an infinite loop going around loops in the use-def chain.  To
583   // prevent this, keep track of what (value, block) pairs we've already visited
584   // and terminate the search if we loop back to them
585   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
586     return false;
587 
588   // If V is a constant, then it is known in all predecessors.
589   if (Constant *KC = getKnownConstant(V, Preference)) {
590     for (BasicBlock *Pred : predecessors(BB))
591       Result.push_back(std::make_pair(KC, Pred));
592 
593     return !Result.empty();
594   }
595 
596   // If V is a non-instruction value, or an instruction in a different block,
597   // then it can't be derived from a PHI.
598   Instruction *I = dyn_cast<Instruction>(V);
599   if (!I || I->getParent() != BB) {
600 
601     // Okay, if this is a live-in value, see if it has a known value at the end
602     // of any of our predecessors.
603     //
604     // FIXME: This should be an edge property, not a block end property.
605     /// TODO: Per PR2563, we could infer value range information about a
606     /// predecessor based on its terminator.
607     //
608     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
609     // "I" is a non-local compare-with-a-constant instruction.  This would be
610     // able to handle value inequalities better, for example if the compare is
611     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
612     // Perhaps getConstantOnEdge should be smart enough to do this?
613 
614     if (DTU->hasPendingDomTreeUpdates())
615       LVI->disableDT();
616     else
617       LVI->enableDT();
618     for (BasicBlock *P : predecessors(BB)) {
619       // If the value is known by LazyValueInfo to be a constant in a
620       // predecessor, use that information to try to thread this block.
621       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
622       if (Constant *KC = getKnownConstant(PredCst, Preference))
623         Result.push_back(std::make_pair(KC, P));
624     }
625 
626     return !Result.empty();
627   }
628 
629   /// If I is a PHI node, then we know the incoming values for any constants.
630   if (PHINode *PN = dyn_cast<PHINode>(I)) {
631     if (DTU->hasPendingDomTreeUpdates())
632       LVI->disableDT();
633     else
634       LVI->enableDT();
635     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
636       Value *InVal = PN->getIncomingValue(i);
637       if (Constant *KC = getKnownConstant(InVal, Preference)) {
638         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
639       } else {
640         Constant *CI = LVI->getConstantOnEdge(InVal,
641                                               PN->getIncomingBlock(i),
642                                               BB, CxtI);
643         if (Constant *KC = getKnownConstant(CI, Preference))
644           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
645       }
646     }
647 
648     return !Result.empty();
649   }
650 
651   // Handle Cast instructions.  Only see through Cast when the source operand is
652   // PHI or Cmp to save the compilation time.
653   if (CastInst *CI = dyn_cast<CastInst>(I)) {
654     Value *Source = CI->getOperand(0);
655     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
656       return false;
657     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
658                                         RecursionSet, CxtI);
659     if (Result.empty())
660       return false;
661 
662     // Convert the known values.
663     for (auto &R : Result)
664       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
665 
666     return true;
667   }
668 
669   // Handle some boolean conditions.
670   if (I->getType()->getPrimitiveSizeInBits() == 1) {
671     assert(Preference == WantInteger && "One-bit non-integer type?");
672     // X | true -> true
673     // X & false -> false
674     if (I->getOpcode() == Instruction::Or ||
675         I->getOpcode() == Instruction::And) {
676       PredValueInfoTy LHSVals, RHSVals;
677 
678       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
679                                       WantInteger, RecursionSet, CxtI);
680       ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
681                                           WantInteger, RecursionSet, CxtI);
682 
683       if (LHSVals.empty() && RHSVals.empty())
684         return false;
685 
686       ConstantInt *InterestingVal;
687       if (I->getOpcode() == Instruction::Or)
688         InterestingVal = ConstantInt::getTrue(I->getContext());
689       else
690         InterestingVal = ConstantInt::getFalse(I->getContext());
691 
692       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
693 
694       // Scan for the sentinel.  If we find an undef, force it to the
695       // interesting value: x|undef -> true and x&undef -> false.
696       for (const auto &LHSVal : LHSVals)
697         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
698           Result.emplace_back(InterestingVal, LHSVal.second);
699           LHSKnownBBs.insert(LHSVal.second);
700         }
701       for (const auto &RHSVal : RHSVals)
702         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
703           // If we already inferred a value for this block on the LHS, don't
704           // re-add it.
705           if (!LHSKnownBBs.count(RHSVal.second))
706             Result.emplace_back(InterestingVal, RHSVal.second);
707         }
708 
709       return !Result.empty();
710     }
711 
712     // Handle the NOT form of XOR.
713     if (I->getOpcode() == Instruction::Xor &&
714         isa<ConstantInt>(I->getOperand(1)) &&
715         cast<ConstantInt>(I->getOperand(1))->isOne()) {
716       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
717                                           WantInteger, RecursionSet, CxtI);
718       if (Result.empty())
719         return false;
720 
721       // Invert the known values.
722       for (auto &R : Result)
723         R.first = ConstantExpr::getNot(R.first);
724 
725       return true;
726     }
727 
728   // Try to simplify some other binary operator values.
729   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
730     assert(Preference != WantBlockAddress
731             && "A binary operator creating a block address?");
732     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
733       PredValueInfoTy LHSVals;
734       ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
735                                           WantInteger, RecursionSet, CxtI);
736 
737       // Try to use constant folding to simplify the binary operator.
738       for (const auto &LHSVal : LHSVals) {
739         Constant *V = LHSVal.first;
740         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
741 
742         if (Constant *KC = getKnownConstant(Folded, WantInteger))
743           Result.push_back(std::make_pair(KC, LHSVal.second));
744       }
745     }
746 
747     return !Result.empty();
748   }
749 
750   // Handle compare with phi operand, where the PHI is defined in this block.
751   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
752     assert(Preference == WantInteger && "Compares only produce integers");
753     Type *CmpType = Cmp->getType();
754     Value *CmpLHS = Cmp->getOperand(0);
755     Value *CmpRHS = Cmp->getOperand(1);
756     CmpInst::Predicate Pred = Cmp->getPredicate();
757 
758     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
759     if (!PN)
760       PN = dyn_cast<PHINode>(CmpRHS);
761     if (PN && PN->getParent() == BB) {
762       const DataLayout &DL = PN->getModule()->getDataLayout();
763       // We can do this simplification if any comparisons fold to true or false.
764       // See if any do.
765       if (DTU->hasPendingDomTreeUpdates())
766         LVI->disableDT();
767       else
768         LVI->enableDT();
769       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
770         BasicBlock *PredBB = PN->getIncomingBlock(i);
771         Value *LHS, *RHS;
772         if (PN == CmpLHS) {
773           LHS = PN->getIncomingValue(i);
774           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
775         } else {
776           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
777           RHS = PN->getIncomingValue(i);
778         }
779         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
780         if (!Res) {
781           if (!isa<Constant>(RHS))
782             continue;
783 
784           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
785           auto LHSInst = dyn_cast<Instruction>(LHS);
786           if (LHSInst && LHSInst->getParent() == BB)
787             continue;
788 
789           LazyValueInfo::Tristate
790             ResT = LVI->getPredicateOnEdge(Pred, LHS,
791                                            cast<Constant>(RHS), PredBB, BB,
792                                            CxtI ? CxtI : Cmp);
793           if (ResT == LazyValueInfo::Unknown)
794             continue;
795           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
796         }
797 
798         if (Constant *KC = getKnownConstant(Res, WantInteger))
799           Result.push_back(std::make_pair(KC, PredBB));
800       }
801 
802       return !Result.empty();
803     }
804 
805     // If comparing a live-in value against a constant, see if we know the
806     // live-in value on any predecessors.
807     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
808       Constant *CmpConst = cast<Constant>(CmpRHS);
809 
810       if (!isa<Instruction>(CmpLHS) ||
811           cast<Instruction>(CmpLHS)->getParent() != BB) {
812         if (DTU->hasPendingDomTreeUpdates())
813           LVI->disableDT();
814         else
815           LVI->enableDT();
816         for (BasicBlock *P : predecessors(BB)) {
817           // If the value is known by LazyValueInfo to be a constant in a
818           // predecessor, use that information to try to thread this block.
819           LazyValueInfo::Tristate Res =
820             LVI->getPredicateOnEdge(Pred, CmpLHS,
821                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
822           if (Res == LazyValueInfo::Unknown)
823             continue;
824 
825           Constant *ResC = ConstantInt::get(CmpType, Res);
826           Result.push_back(std::make_pair(ResC, P));
827         }
828 
829         return !Result.empty();
830       }
831 
832       // InstCombine can fold some forms of constant range checks into
833       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
834       // x as a live-in.
835       {
836         using namespace PatternMatch;
837 
838         Value *AddLHS;
839         ConstantInt *AddConst;
840         if (isa<ConstantInt>(CmpConst) &&
841             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
842           if (!isa<Instruction>(AddLHS) ||
843               cast<Instruction>(AddLHS)->getParent() != BB) {
844             if (DTU->hasPendingDomTreeUpdates())
845               LVI->disableDT();
846             else
847               LVI->enableDT();
848             for (BasicBlock *P : predecessors(BB)) {
849               // If the value is known by LazyValueInfo to be a ConstantRange in
850               // a predecessor, use that information to try to thread this
851               // block.
852               ConstantRange CR = LVI->getConstantRangeOnEdge(
853                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
854               // Propagate the range through the addition.
855               CR = CR.add(AddConst->getValue());
856 
857               // Get the range where the compare returns true.
858               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
859                   Pred, cast<ConstantInt>(CmpConst)->getValue());
860 
861               Constant *ResC;
862               if (CmpRange.contains(CR))
863                 ResC = ConstantInt::getTrue(CmpType);
864               else if (CmpRange.inverse().contains(CR))
865                 ResC = ConstantInt::getFalse(CmpType);
866               else
867                 continue;
868 
869               Result.push_back(std::make_pair(ResC, P));
870             }
871 
872             return !Result.empty();
873           }
874         }
875       }
876 
877       // Try to find a constant value for the LHS of a comparison,
878       // and evaluate it statically if we can.
879       PredValueInfoTy LHSVals;
880       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
881                                           WantInteger, RecursionSet, CxtI);
882 
883       for (const auto &LHSVal : LHSVals) {
884         Constant *V = LHSVal.first;
885         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
886         if (Constant *KC = getKnownConstant(Folded, WantInteger))
887           Result.push_back(std::make_pair(KC, LHSVal.second));
888       }
889 
890       return !Result.empty();
891     }
892   }
893 
894   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
895     // Handle select instructions where at least one operand is a known constant
896     // and we can figure out the condition value for any predecessor block.
897     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
898     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
899     PredValueInfoTy Conds;
900     if ((TrueVal || FalseVal) &&
901         ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
902                                             WantInteger, RecursionSet, CxtI)) {
903       for (auto &C : Conds) {
904         Constant *Cond = C.first;
905 
906         // Figure out what value to use for the condition.
907         bool KnownCond;
908         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
909           // A known boolean.
910           KnownCond = CI->isOne();
911         } else {
912           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
913           // Either operand will do, so be sure to pick the one that's a known
914           // constant.
915           // FIXME: Do this more cleverly if both values are known constants?
916           KnownCond = (TrueVal != nullptr);
917         }
918 
919         // See if the select has a known constant value for this predecessor.
920         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
921           Result.push_back(std::make_pair(Val, C.second));
922       }
923 
924       return !Result.empty();
925     }
926   }
927 
928   // If all else fails, see if LVI can figure out a constant value for us.
929   if (DTU->hasPendingDomTreeUpdates())
930     LVI->disableDT();
931   else
932     LVI->enableDT();
933   Constant *CI = LVI->getConstant(V, BB, CxtI);
934   if (Constant *KC = getKnownConstant(CI, Preference)) {
935     for (BasicBlock *Pred : predecessors(BB))
936       Result.push_back(std::make_pair(KC, Pred));
937   }
938 
939   return !Result.empty();
940 }
941 
942 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
943 /// in an undefined jump, decide which block is best to revector to.
944 ///
945 /// Since we can pick an arbitrary destination, we pick the successor with the
946 /// fewest predecessors.  This should reduce the in-degree of the others.
947 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
948   Instruction *BBTerm = BB->getTerminator();
949   unsigned MinSucc = 0;
950   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
951   // Compute the successor with the minimum number of predecessors.
952   unsigned MinNumPreds = pred_size(TestBB);
953   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
954     TestBB = BBTerm->getSuccessor(i);
955     unsigned NumPreds = pred_size(TestBB);
956     if (NumPreds < MinNumPreds) {
957       MinSucc = i;
958       MinNumPreds = NumPreds;
959     }
960   }
961 
962   return MinSucc;
963 }
964 
965 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
966   if (!BB->hasAddressTaken()) return false;
967 
968   // If the block has its address taken, it may be a tree of dead constants
969   // hanging off of it.  These shouldn't keep the block alive.
970   BlockAddress *BA = BlockAddress::get(BB);
971   BA->removeDeadConstantUsers();
972   return !BA->use_empty();
973 }
974 
975 /// ProcessBlock - If there are any predecessors whose control can be threaded
976 /// through to a successor, transform them now.
977 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
978   // If the block is trivially dead, just return and let the caller nuke it.
979   // This simplifies other transformations.
980   if (DTU->isBBPendingDeletion(BB) ||
981       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
982     return false;
983 
984   // If this block has a single predecessor, and if that pred has a single
985   // successor, merge the blocks.  This encourages recursive jump threading
986   // because now the condition in this block can be threaded through
987   // predecessors of our predecessor block.
988   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
989     const Instruction *TI = SinglePred->getTerminator();
990     if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 &&
991         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
992       // If SinglePred was a loop header, BB becomes one.
993       if (LoopHeaders.erase(SinglePred))
994         LoopHeaders.insert(BB);
995 
996       LVI->eraseBlock(SinglePred);
997       MergeBasicBlockIntoOnlyPred(BB, DTU);
998 
999       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
1000       // BB code within one basic block `BB`), we need to invalidate the LVI
1001       // information associated with BB, because the LVI information need not be
1002       // true for all of BB after the merge. For example,
1003       // Before the merge, LVI info and code is as follows:
1004       // SinglePred: <LVI info1 for %p val>
1005       // %y = use of %p
1006       // call @exit() // need not transfer execution to successor.
1007       // assume(%p) // from this point on %p is true
1008       // br label %BB
1009       // BB: <LVI info2 for %p val, i.e. %p is true>
1010       // %x = use of %p
1011       // br label exit
1012       //
1013       // Note that this LVI info for blocks BB and SinglPred is correct for %p
1014       // (info2 and info1 respectively). After the merge and the deletion of the
1015       // LVI info1 for SinglePred. We have the following code:
1016       // BB: <LVI info2 for %p val>
1017       // %y = use of %p
1018       // call @exit()
1019       // assume(%p)
1020       // %x = use of %p <-- LVI info2 is correct from here onwards.
1021       // br label exit
1022       // LVI info2 for BB is incorrect at the beginning of BB.
1023 
1024       // Invalidate LVI information for BB if the LVI is not provably true for
1025       // all of BB.
1026       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1027         LVI->eraseBlock(BB);
1028       return true;
1029     }
1030   }
1031 
1032   if (TryToUnfoldSelectInCurrBB(BB))
1033     return true;
1034 
1035   // Look if we can propagate guards to predecessors.
1036   if (HasGuards && ProcessGuards(BB))
1037     return true;
1038 
1039   // What kind of constant we're looking for.
1040   ConstantPreference Preference = WantInteger;
1041 
1042   // Look to see if the terminator is a conditional branch, switch or indirect
1043   // branch, if not we can't thread it.
1044   Value *Condition;
1045   Instruction *Terminator = BB->getTerminator();
1046   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1047     // Can't thread an unconditional jump.
1048     if (BI->isUnconditional()) return false;
1049     Condition = BI->getCondition();
1050   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1051     Condition = SI->getCondition();
1052   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1053     // Can't thread indirect branch with no successors.
1054     if (IB->getNumSuccessors() == 0) return false;
1055     Condition = IB->getAddress()->stripPointerCasts();
1056     Preference = WantBlockAddress;
1057   } else {
1058     return false; // Must be an invoke.
1059   }
1060 
1061   // Run constant folding to see if we can reduce the condition to a simple
1062   // constant.
1063   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1064     Value *SimpleVal =
1065         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1066     if (SimpleVal) {
1067       I->replaceAllUsesWith(SimpleVal);
1068       if (isInstructionTriviallyDead(I, TLI))
1069         I->eraseFromParent();
1070       Condition = SimpleVal;
1071     }
1072   }
1073 
1074   // If the terminator is branching on an undef, we can pick any of the
1075   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1076   if (isa<UndefValue>(Condition)) {
1077     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1078     std::vector<DominatorTree::UpdateType> Updates;
1079 
1080     // Fold the branch/switch.
1081     Instruction *BBTerm = BB->getTerminator();
1082     Updates.reserve(BBTerm->getNumSuccessors());
1083     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1084       if (i == BestSucc) continue;
1085       BasicBlock *Succ = BBTerm->getSuccessor(i);
1086       Succ->removePredecessor(BB, true);
1087       Updates.push_back({DominatorTree::Delete, BB, Succ});
1088     }
1089 
1090     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1091                       << "' folding undef terminator: " << *BBTerm << '\n');
1092     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1093     BBTerm->eraseFromParent();
1094     DTU->applyUpdates(Updates);
1095     return true;
1096   }
1097 
1098   // If the terminator of this block is branching on a constant, simplify the
1099   // terminator to an unconditional branch.  This can occur due to threading in
1100   // other blocks.
1101   if (getKnownConstant(Condition, Preference)) {
1102     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1103                       << "' folding terminator: " << *BB->getTerminator()
1104                       << '\n');
1105     ++NumFolds;
1106     ConstantFoldTerminator(BB, true, nullptr, DTU);
1107     return true;
1108   }
1109 
1110   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1111 
1112   // All the rest of our checks depend on the condition being an instruction.
1113   if (!CondInst) {
1114     // FIXME: Unify this with code below.
1115     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1116       return true;
1117     return false;
1118   }
1119 
1120   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1121     // If we're branching on a conditional, LVI might be able to determine
1122     // it's value at the branch instruction.  We only handle comparisons
1123     // against a constant at this time.
1124     // TODO: This should be extended to handle switches as well.
1125     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1126     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1127     if (CondBr && CondConst) {
1128       // We should have returned as soon as we turn a conditional branch to
1129       // unconditional. Because its no longer interesting as far as jump
1130       // threading is concerned.
1131       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1132 
1133       if (DTU->hasPendingDomTreeUpdates())
1134         LVI->disableDT();
1135       else
1136         LVI->enableDT();
1137       LazyValueInfo::Tristate Ret =
1138         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1139                             CondConst, CondBr);
1140       if (Ret != LazyValueInfo::Unknown) {
1141         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1142         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1143         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1144         ToRemoveSucc->removePredecessor(BB, true);
1145         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1146         CondBr->eraseFromParent();
1147         if (CondCmp->use_empty())
1148           CondCmp->eraseFromParent();
1149         // We can safely replace *some* uses of the CondInst if it has
1150         // exactly one value as returned by LVI. RAUW is incorrect in the
1151         // presence of guards and assumes, that have the `Cond` as the use. This
1152         // is because we use the guards/assume to reason about the `Cond` value
1153         // at the end of block, but RAUW unconditionally replaces all uses
1154         // including the guards/assumes themselves and the uses before the
1155         // guard/assume.
1156         else if (CondCmp->getParent() == BB) {
1157           auto *CI = Ret == LazyValueInfo::True ?
1158             ConstantInt::getTrue(CondCmp->getType()) :
1159             ConstantInt::getFalse(CondCmp->getType());
1160           ReplaceFoldableUses(CondCmp, CI);
1161         }
1162         DTU->deleteEdgeRelaxed(BB, ToRemoveSucc);
1163         return true;
1164       }
1165 
1166       // We did not manage to simplify this branch, try to see whether
1167       // CondCmp depends on a known phi-select pattern.
1168       if (TryToUnfoldSelect(CondCmp, BB))
1169         return true;
1170     }
1171   }
1172 
1173   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1174     TryToUnfoldSelect(SI, BB);
1175 
1176   // Check for some cases that are worth simplifying.  Right now we want to look
1177   // for loads that are used by a switch or by the condition for the branch.  If
1178   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1179   // which can then be used to thread the values.
1180   Value *SimplifyValue = CondInst;
1181   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1182     if (isa<Constant>(CondCmp->getOperand(1)))
1183       SimplifyValue = CondCmp->getOperand(0);
1184 
1185   // TODO: There are other places where load PRE would be profitable, such as
1186   // more complex comparisons.
1187   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1188     if (SimplifyPartiallyRedundantLoad(LoadI))
1189       return true;
1190 
1191   // Before threading, try to propagate profile data backwards:
1192   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1193     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1194       updatePredecessorProfileMetadata(PN, BB);
1195 
1196   // Handle a variety of cases where we are branching on something derived from
1197   // a PHI node in the current block.  If we can prove that any predecessors
1198   // compute a predictable value based on a PHI node, thread those predecessors.
1199   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1200     return true;
1201 
1202   // If this is an otherwise-unfoldable branch on a phi node in the current
1203   // block, see if we can simplify.
1204   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1205     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1206       return ProcessBranchOnPHI(PN);
1207 
1208   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1209   if (CondInst->getOpcode() == Instruction::Xor &&
1210       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1211     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1212 
1213   // Search for a stronger dominating condition that can be used to simplify a
1214   // conditional branch leaving BB.
1215   if (ProcessImpliedCondition(BB))
1216     return true;
1217 
1218   return false;
1219 }
1220 
1221 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1222   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1223   if (!BI || !BI->isConditional())
1224     return false;
1225 
1226   Value *Cond = BI->getCondition();
1227   BasicBlock *CurrentBB = BB;
1228   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1229   unsigned Iter = 0;
1230 
1231   auto &DL = BB->getModule()->getDataLayout();
1232 
1233   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1234     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1235     if (!PBI || !PBI->isConditional())
1236       return false;
1237     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1238       return false;
1239 
1240     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1241     Optional<bool> Implication =
1242         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1243     if (Implication) {
1244       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1245       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1246       RemoveSucc->removePredecessor(BB);
1247       BranchInst::Create(KeepSucc, BI);
1248       BI->eraseFromParent();
1249       DTU->deleteEdgeRelaxed(BB, RemoveSucc);
1250       return true;
1251     }
1252     CurrentBB = CurrentPred;
1253     CurrentPred = CurrentBB->getSinglePredecessor();
1254   }
1255 
1256   return false;
1257 }
1258 
1259 /// Return true if Op is an instruction defined in the given block.
1260 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1261   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1262     if (OpInst->getParent() == BB)
1263       return true;
1264   return false;
1265 }
1266 
1267 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1268 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1269 /// This is an important optimization that encourages jump threading, and needs
1270 /// to be run interlaced with other jump threading tasks.
1271 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1272   // Don't hack volatile and ordered loads.
1273   if (!LoadI->isUnordered()) return false;
1274 
1275   // If the load is defined in a block with exactly one predecessor, it can't be
1276   // partially redundant.
1277   BasicBlock *LoadBB = LoadI->getParent();
1278   if (LoadBB->getSinglePredecessor())
1279     return false;
1280 
1281   // If the load is defined in an EH pad, it can't be partially redundant,
1282   // because the edges between the invoke and the EH pad cannot have other
1283   // instructions between them.
1284   if (LoadBB->isEHPad())
1285     return false;
1286 
1287   Value *LoadedPtr = LoadI->getOperand(0);
1288 
1289   // If the loaded operand is defined in the LoadBB and its not a phi,
1290   // it can't be available in predecessors.
1291   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1292     return false;
1293 
1294   // Scan a few instructions up from the load, to see if it is obviously live at
1295   // the entry to its block.
1296   BasicBlock::iterator BBIt(LoadI);
1297   bool IsLoadCSE;
1298   if (Value *AvailableVal = FindAvailableLoadedValue(
1299           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1300     // If the value of the load is locally available within the block, just use
1301     // it.  This frequently occurs for reg2mem'd allocas.
1302 
1303     if (IsLoadCSE) {
1304       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1305       combineMetadataForCSE(NLoadI, LoadI, false);
1306     };
1307 
1308     // If the returned value is the load itself, replace with an undef. This can
1309     // only happen in dead loops.
1310     if (AvailableVal == LoadI)
1311       AvailableVal = UndefValue::get(LoadI->getType());
1312     if (AvailableVal->getType() != LoadI->getType())
1313       AvailableVal = CastInst::CreateBitOrPointerCast(
1314           AvailableVal, LoadI->getType(), "", LoadI);
1315     LoadI->replaceAllUsesWith(AvailableVal);
1316     LoadI->eraseFromParent();
1317     return true;
1318   }
1319 
1320   // Otherwise, if we scanned the whole block and got to the top of the block,
1321   // we know the block is locally transparent to the load.  If not, something
1322   // might clobber its value.
1323   if (BBIt != LoadBB->begin())
1324     return false;
1325 
1326   // If all of the loads and stores that feed the value have the same AA tags,
1327   // then we can propagate them onto any newly inserted loads.
1328   AAMDNodes AATags;
1329   LoadI->getAAMetadata(AATags);
1330 
1331   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1332 
1333   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1334 
1335   AvailablePredsTy AvailablePreds;
1336   BasicBlock *OneUnavailablePred = nullptr;
1337   SmallVector<LoadInst*, 8> CSELoads;
1338 
1339   // If we got here, the loaded value is transparent through to the start of the
1340   // block.  Check to see if it is available in any of the predecessor blocks.
1341   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1342     // If we already scanned this predecessor, skip it.
1343     if (!PredsScanned.insert(PredBB).second)
1344       continue;
1345 
1346     BBIt = PredBB->end();
1347     unsigned NumScanedInst = 0;
1348     Value *PredAvailable = nullptr;
1349     // NOTE: We don't CSE load that is volatile or anything stronger than
1350     // unordered, that should have been checked when we entered the function.
1351     assert(LoadI->isUnordered() &&
1352            "Attempting to CSE volatile or atomic loads");
1353     // If this is a load on a phi pointer, phi-translate it and search
1354     // for available load/store to the pointer in predecessors.
1355     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1356     PredAvailable = FindAvailablePtrLoadStore(
1357         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1358         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1359 
1360     // If PredBB has a single predecessor, continue scanning through the
1361     // single predecessor.
1362     BasicBlock *SinglePredBB = PredBB;
1363     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1364            NumScanedInst < DefMaxInstsToScan) {
1365       SinglePredBB = SinglePredBB->getSinglePredecessor();
1366       if (SinglePredBB) {
1367         BBIt = SinglePredBB->end();
1368         PredAvailable = FindAvailablePtrLoadStore(
1369             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1370             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1371             &NumScanedInst);
1372       }
1373     }
1374 
1375     if (!PredAvailable) {
1376       OneUnavailablePred = PredBB;
1377       continue;
1378     }
1379 
1380     if (IsLoadCSE)
1381       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1382 
1383     // If so, this load is partially redundant.  Remember this info so that we
1384     // can create a PHI node.
1385     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1386   }
1387 
1388   // If the loaded value isn't available in any predecessor, it isn't partially
1389   // redundant.
1390   if (AvailablePreds.empty()) return false;
1391 
1392   // Okay, the loaded value is available in at least one (and maybe all!)
1393   // predecessors.  If the value is unavailable in more than one unique
1394   // predecessor, we want to insert a merge block for those common predecessors.
1395   // This ensures that we only have to insert one reload, thus not increasing
1396   // code size.
1397   BasicBlock *UnavailablePred = nullptr;
1398 
1399   // If the value is unavailable in one of predecessors, we will end up
1400   // inserting a new instruction into them. It is only valid if all the
1401   // instructions before LoadI are guaranteed to pass execution to its
1402   // successor, or if LoadI is safe to speculate.
1403   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1404   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1405   // It requires domination tree analysis, so for this simple case it is an
1406   // overkill.
1407   if (PredsScanned.size() != AvailablePreds.size() &&
1408       !isSafeToSpeculativelyExecute(LoadI))
1409     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1410       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1411         return false;
1412 
1413   // If there is exactly one predecessor where the value is unavailable, the
1414   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1415   // unconditional branch, we know that it isn't a critical edge.
1416   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1417       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1418     UnavailablePred = OneUnavailablePred;
1419   } else if (PredsScanned.size() != AvailablePreds.size()) {
1420     // Otherwise, we had multiple unavailable predecessors or we had a critical
1421     // edge from the one.
1422     SmallVector<BasicBlock*, 8> PredsToSplit;
1423     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1424 
1425     for (const auto &AvailablePred : AvailablePreds)
1426       AvailablePredSet.insert(AvailablePred.first);
1427 
1428     // Add all the unavailable predecessors to the PredsToSplit list.
1429     for (BasicBlock *P : predecessors(LoadBB)) {
1430       // If the predecessor is an indirect goto, we can't split the edge.
1431       if (isa<IndirectBrInst>(P->getTerminator()))
1432         return false;
1433 
1434       if (!AvailablePredSet.count(P))
1435         PredsToSplit.push_back(P);
1436     }
1437 
1438     // Split them out to their own block.
1439     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1440   }
1441 
1442   // If the value isn't available in all predecessors, then there will be
1443   // exactly one where it isn't available.  Insert a load on that edge and add
1444   // it to the AvailablePreds list.
1445   if (UnavailablePred) {
1446     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1447            "Can't handle critical edge here!");
1448     LoadInst *NewVal =
1449         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1450                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1451                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
1452                      UnavailablePred->getTerminator());
1453     NewVal->setDebugLoc(LoadI->getDebugLoc());
1454     if (AATags)
1455       NewVal->setAAMetadata(AATags);
1456 
1457     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1458   }
1459 
1460   // Now we know that each predecessor of this block has a value in
1461   // AvailablePreds, sort them for efficient access as we're walking the preds.
1462   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1463 
1464   // Create a PHI node at the start of the block for the PRE'd load value.
1465   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1466   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1467                                 &LoadBB->front());
1468   PN->takeName(LoadI);
1469   PN->setDebugLoc(LoadI->getDebugLoc());
1470 
1471   // Insert new entries into the PHI for each predecessor.  A single block may
1472   // have multiple entries here.
1473   for (pred_iterator PI = PB; PI != PE; ++PI) {
1474     BasicBlock *P = *PI;
1475     AvailablePredsTy::iterator I =
1476       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1477                        std::make_pair(P, (Value*)nullptr));
1478 
1479     assert(I != AvailablePreds.end() && I->first == P &&
1480            "Didn't find entry for predecessor!");
1481 
1482     // If we have an available predecessor but it requires casting, insert the
1483     // cast in the predecessor and use the cast. Note that we have to update the
1484     // AvailablePreds vector as we go so that all of the PHI entries for this
1485     // predecessor use the same bitcast.
1486     Value *&PredV = I->second;
1487     if (PredV->getType() != LoadI->getType())
1488       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1489                                                P->getTerminator());
1490 
1491     PN->addIncoming(PredV, I->first);
1492   }
1493 
1494   for (LoadInst *PredLoadI : CSELoads) {
1495     combineMetadataForCSE(PredLoadI, LoadI, true);
1496   }
1497 
1498   LoadI->replaceAllUsesWith(PN);
1499   LoadI->eraseFromParent();
1500 
1501   return true;
1502 }
1503 
1504 /// FindMostPopularDest - The specified list contains multiple possible
1505 /// threadable destinations.  Pick the one that occurs the most frequently in
1506 /// the list.
1507 static BasicBlock *
1508 FindMostPopularDest(BasicBlock *BB,
1509                     const SmallVectorImpl<std::pair<BasicBlock *,
1510                                           BasicBlock *>> &PredToDestList) {
1511   assert(!PredToDestList.empty());
1512 
1513   // Determine popularity.  If there are multiple possible destinations, we
1514   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1515   // blocks with known and real destinations to threading undef.  We'll handle
1516   // them later if interesting.
1517   DenseMap<BasicBlock*, unsigned> DestPopularity;
1518   for (const auto &PredToDest : PredToDestList)
1519     if (PredToDest.second)
1520       DestPopularity[PredToDest.second]++;
1521 
1522   if (DestPopularity.empty())
1523     return nullptr;
1524 
1525   // Find the most popular dest.
1526   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1527   BasicBlock *MostPopularDest = DPI->first;
1528   unsigned Popularity = DPI->second;
1529   SmallVector<BasicBlock*, 4> SamePopularity;
1530 
1531   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1532     // If the popularity of this entry isn't higher than the popularity we've
1533     // seen so far, ignore it.
1534     if (DPI->second < Popularity)
1535       ; // ignore.
1536     else if (DPI->second == Popularity) {
1537       // If it is the same as what we've seen so far, keep track of it.
1538       SamePopularity.push_back(DPI->first);
1539     } else {
1540       // If it is more popular, remember it.
1541       SamePopularity.clear();
1542       MostPopularDest = DPI->first;
1543       Popularity = DPI->second;
1544     }
1545   }
1546 
1547   // Okay, now we know the most popular destination.  If there is more than one
1548   // destination, we need to determine one.  This is arbitrary, but we need
1549   // to make a deterministic decision.  Pick the first one that appears in the
1550   // successor list.
1551   if (!SamePopularity.empty()) {
1552     SamePopularity.push_back(MostPopularDest);
1553     Instruction *TI = BB->getTerminator();
1554     for (unsigned i = 0; ; ++i) {
1555       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1556 
1557       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1558         continue;
1559 
1560       MostPopularDest = TI->getSuccessor(i);
1561       break;
1562     }
1563   }
1564 
1565   // Okay, we have finally picked the most popular destination.
1566   return MostPopularDest;
1567 }
1568 
1569 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1570                                                ConstantPreference Preference,
1571                                                Instruction *CxtI) {
1572   // If threading this would thread across a loop header, don't even try to
1573   // thread the edge.
1574   if (LoopHeaders.count(BB))
1575     return false;
1576 
1577   PredValueInfoTy PredValues;
1578   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1579     return false;
1580 
1581   assert(!PredValues.empty() &&
1582          "ComputeValueKnownInPredecessors returned true with no values");
1583 
1584   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1585              for (const auto &PredValue : PredValues) {
1586                dbgs() << "  BB '" << BB->getName()
1587                       << "': FOUND condition = " << *PredValue.first
1588                       << " for pred '" << PredValue.second->getName() << "'.\n";
1589   });
1590 
1591   // Decide what we want to thread through.  Convert our list of known values to
1592   // a list of known destinations for each pred.  This also discards duplicate
1593   // predecessors and keeps track of the undefined inputs (which are represented
1594   // as a null dest in the PredToDestList).
1595   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1596   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1597 
1598   BasicBlock *OnlyDest = nullptr;
1599   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1600   Constant *OnlyVal = nullptr;
1601   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1602 
1603   unsigned PredWithKnownDest = 0;
1604   for (const auto &PredValue : PredValues) {
1605     BasicBlock *Pred = PredValue.second;
1606     if (!SeenPreds.insert(Pred).second)
1607       continue;  // Duplicate predecessor entry.
1608 
1609     Constant *Val = PredValue.first;
1610 
1611     BasicBlock *DestBB;
1612     if (isa<UndefValue>(Val))
1613       DestBB = nullptr;
1614     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1615       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1616       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1617     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1618       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1619       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1620     } else {
1621       assert(isa<IndirectBrInst>(BB->getTerminator())
1622               && "Unexpected terminator");
1623       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1624       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1625     }
1626 
1627     // If we have exactly one destination, remember it for efficiency below.
1628     if (PredToDestList.empty()) {
1629       OnlyDest = DestBB;
1630       OnlyVal = Val;
1631     } else {
1632       if (OnlyDest != DestBB)
1633         OnlyDest = MultipleDestSentinel;
1634       // It possible we have same destination, but different value, e.g. default
1635       // case in switchinst.
1636       if (Val != OnlyVal)
1637         OnlyVal = MultipleVal;
1638     }
1639 
1640     // We know where this predecessor is going.
1641     ++PredWithKnownDest;
1642 
1643     // If the predecessor ends with an indirect goto, we can't change its
1644     // destination.
1645     if (isa<IndirectBrInst>(Pred->getTerminator()))
1646       continue;
1647 
1648     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1649   }
1650 
1651   // If all edges were unthreadable, we fail.
1652   if (PredToDestList.empty())
1653     return false;
1654 
1655   // If all the predecessors go to a single known successor, we want to fold,
1656   // not thread. By doing so, we do not need to duplicate the current block and
1657   // also miss potential opportunities in case we dont/cant duplicate.
1658   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1659     if (PredWithKnownDest == (size_t)pred_size(BB)) {
1660       bool SeenFirstBranchToOnlyDest = false;
1661       std::vector <DominatorTree::UpdateType> Updates;
1662       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1663       for (BasicBlock *SuccBB : successors(BB)) {
1664         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1665           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1666         } else {
1667           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1668           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1669         }
1670       }
1671 
1672       // Finally update the terminator.
1673       Instruction *Term = BB->getTerminator();
1674       BranchInst::Create(OnlyDest, Term);
1675       Term->eraseFromParent();
1676       DTU->applyUpdates(Updates);
1677 
1678       // If the condition is now dead due to the removal of the old terminator,
1679       // erase it.
1680       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1681         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1682           CondInst->eraseFromParent();
1683         // We can safely replace *some* uses of the CondInst if it has
1684         // exactly one value as returned by LVI. RAUW is incorrect in the
1685         // presence of guards and assumes, that have the `Cond` as the use. This
1686         // is because we use the guards/assume to reason about the `Cond` value
1687         // at the end of block, but RAUW unconditionally replaces all uses
1688         // including the guards/assumes themselves and the uses before the
1689         // guard/assume.
1690         else if (OnlyVal && OnlyVal != MultipleVal &&
1691                  CondInst->getParent() == BB)
1692           ReplaceFoldableUses(CondInst, OnlyVal);
1693       }
1694       return true;
1695     }
1696   }
1697 
1698   // Determine which is the most common successor.  If we have many inputs and
1699   // this block is a switch, we want to start by threading the batch that goes
1700   // to the most popular destination first.  If we only know about one
1701   // threadable destination (the common case) we can avoid this.
1702   BasicBlock *MostPopularDest = OnlyDest;
1703 
1704   if (MostPopularDest == MultipleDestSentinel) {
1705     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1706     // won't process them, but we might have other destination that are eligible
1707     // and we still want to process.
1708     erase_if(PredToDestList,
1709              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1710                return LoopHeaders.count(PredToDest.second) != 0;
1711              });
1712 
1713     if (PredToDestList.empty())
1714       return false;
1715 
1716     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1717   }
1718 
1719   // Now that we know what the most popular destination is, factor all
1720   // predecessors that will jump to it into a single predecessor.
1721   SmallVector<BasicBlock*, 16> PredsToFactor;
1722   for (const auto &PredToDest : PredToDestList)
1723     if (PredToDest.second == MostPopularDest) {
1724       BasicBlock *Pred = PredToDest.first;
1725 
1726       // This predecessor may be a switch or something else that has multiple
1727       // edges to the block.  Factor each of these edges by listing them
1728       // according to # occurrences in PredsToFactor.
1729       for (BasicBlock *Succ : successors(Pred))
1730         if (Succ == BB)
1731           PredsToFactor.push_back(Pred);
1732     }
1733 
1734   // If the threadable edges are branching on an undefined value, we get to pick
1735   // the destination that these predecessors should get to.
1736   if (!MostPopularDest)
1737     MostPopularDest = BB->getTerminator()->
1738                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1739 
1740   // Ok, try to thread it!
1741   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1742 }
1743 
1744 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1745 /// a PHI node in the current block.  See if there are any simplifications we
1746 /// can do based on inputs to the phi node.
1747 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1748   BasicBlock *BB = PN->getParent();
1749 
1750   // TODO: We could make use of this to do it once for blocks with common PHI
1751   // values.
1752   SmallVector<BasicBlock*, 1> PredBBs;
1753   PredBBs.resize(1);
1754 
1755   // If any of the predecessor blocks end in an unconditional branch, we can
1756   // *duplicate* the conditional branch into that block in order to further
1757   // encourage jump threading and to eliminate cases where we have branch on a
1758   // phi of an icmp (branch on icmp is much better).
1759   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1760     BasicBlock *PredBB = PN->getIncomingBlock(i);
1761     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1762       if (PredBr->isUnconditional()) {
1763         PredBBs[0] = PredBB;
1764         // Try to duplicate BB into PredBB.
1765         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1766           return true;
1767       }
1768   }
1769 
1770   return false;
1771 }
1772 
1773 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1774 /// a xor instruction in the current block.  See if there are any
1775 /// simplifications we can do based on inputs to the xor.
1776 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1777   BasicBlock *BB = BO->getParent();
1778 
1779   // If either the LHS or RHS of the xor is a constant, don't do this
1780   // optimization.
1781   if (isa<ConstantInt>(BO->getOperand(0)) ||
1782       isa<ConstantInt>(BO->getOperand(1)))
1783     return false;
1784 
1785   // If the first instruction in BB isn't a phi, we won't be able to infer
1786   // anything special about any particular predecessor.
1787   if (!isa<PHINode>(BB->front()))
1788     return false;
1789 
1790   // If this BB is a landing pad, we won't be able to split the edge into it.
1791   if (BB->isEHPad())
1792     return false;
1793 
1794   // If we have a xor as the branch input to this block, and we know that the
1795   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1796   // the condition into the predecessor and fix that value to true, saving some
1797   // logical ops on that path and encouraging other paths to simplify.
1798   //
1799   // This copies something like this:
1800   //
1801   //  BB:
1802   //    %X = phi i1 [1],  [%X']
1803   //    %Y = icmp eq i32 %A, %B
1804   //    %Z = xor i1 %X, %Y
1805   //    br i1 %Z, ...
1806   //
1807   // Into:
1808   //  BB':
1809   //    %Y = icmp ne i32 %A, %B
1810   //    br i1 %Y, ...
1811 
1812   PredValueInfoTy XorOpValues;
1813   bool isLHS = true;
1814   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1815                                        WantInteger, BO)) {
1816     assert(XorOpValues.empty());
1817     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1818                                          WantInteger, BO))
1819       return false;
1820     isLHS = false;
1821   }
1822 
1823   assert(!XorOpValues.empty() &&
1824          "ComputeValueKnownInPredecessors returned true with no values");
1825 
1826   // Scan the information to see which is most popular: true or false.  The
1827   // predecessors can be of the set true, false, or undef.
1828   unsigned NumTrue = 0, NumFalse = 0;
1829   for (const auto &XorOpValue : XorOpValues) {
1830     if (isa<UndefValue>(XorOpValue.first))
1831       // Ignore undefs for the count.
1832       continue;
1833     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1834       ++NumFalse;
1835     else
1836       ++NumTrue;
1837   }
1838 
1839   // Determine which value to split on, true, false, or undef if neither.
1840   ConstantInt *SplitVal = nullptr;
1841   if (NumTrue > NumFalse)
1842     SplitVal = ConstantInt::getTrue(BB->getContext());
1843   else if (NumTrue != 0 || NumFalse != 0)
1844     SplitVal = ConstantInt::getFalse(BB->getContext());
1845 
1846   // Collect all of the blocks that this can be folded into so that we can
1847   // factor this once and clone it once.
1848   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1849   for (const auto &XorOpValue : XorOpValues) {
1850     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1851       continue;
1852 
1853     BlocksToFoldInto.push_back(XorOpValue.second);
1854   }
1855 
1856   // If we inferred a value for all of the predecessors, then duplication won't
1857   // help us.  However, we can just replace the LHS or RHS with the constant.
1858   if (BlocksToFoldInto.size() ==
1859       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1860     if (!SplitVal) {
1861       // If all preds provide undef, just nuke the xor, because it is undef too.
1862       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1863       BO->eraseFromParent();
1864     } else if (SplitVal->isZero()) {
1865       // If all preds provide 0, replace the xor with the other input.
1866       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1867       BO->eraseFromParent();
1868     } else {
1869       // If all preds provide 1, set the computed value to 1.
1870       BO->setOperand(!isLHS, SplitVal);
1871     }
1872 
1873     return true;
1874   }
1875 
1876   // Try to duplicate BB into PredBB.
1877   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1878 }
1879 
1880 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1881 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1882 /// NewPred using the entries from OldPred (suitably mapped).
1883 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1884                                             BasicBlock *OldPred,
1885                                             BasicBlock *NewPred,
1886                                      DenseMap<Instruction*, Value*> &ValueMap) {
1887   for (PHINode &PN : PHIBB->phis()) {
1888     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1889     // DestBlock.
1890     Value *IV = PN.getIncomingValueForBlock(OldPred);
1891 
1892     // Remap the value if necessary.
1893     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1894       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1895       if (I != ValueMap.end())
1896         IV = I->second;
1897     }
1898 
1899     PN.addIncoming(IV, NewPred);
1900   }
1901 }
1902 
1903 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1904 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1905 /// across BB.  Transform the IR to reflect this change.
1906 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1907                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1908                                    BasicBlock *SuccBB) {
1909   // If threading to the same block as we come from, we would infinite loop.
1910   if (SuccBB == BB) {
1911     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1912                       << "' - would thread to self!\n");
1913     return false;
1914   }
1915 
1916   // If threading this would thread across a loop header, don't thread the edge.
1917   // See the comments above FindLoopHeaders for justifications and caveats.
1918   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1919     LLVM_DEBUG({
1920       bool BBIsHeader = LoopHeaders.count(BB);
1921       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1922       dbgs() << "  Not threading across "
1923           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1924           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1925           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1926     });
1927     return false;
1928   }
1929 
1930   unsigned JumpThreadCost =
1931       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1932   if (JumpThreadCost > BBDupThreshold) {
1933     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1934                       << "' - Cost is too high: " << JumpThreadCost << "\n");
1935     return false;
1936   }
1937 
1938   // And finally, do it!  Start by factoring the predecessors if needed.
1939   BasicBlock *PredBB;
1940   if (PredBBs.size() == 1)
1941     PredBB = PredBBs[0];
1942   else {
1943     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1944                       << " common predecessors.\n");
1945     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1946   }
1947 
1948   // And finally, do it!
1949   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
1950                     << "' to '" << SuccBB->getName()
1951                     << "' with cost: " << JumpThreadCost
1952                     << ", across block:\n    " << *BB << "\n");
1953 
1954   if (DTU->hasPendingDomTreeUpdates())
1955     LVI->disableDT();
1956   else
1957     LVI->enableDT();
1958   LVI->threadEdge(PredBB, BB, SuccBB);
1959 
1960   // We are going to have to map operands from the original BB block to the new
1961   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1962   // account for entry from PredBB.
1963   DenseMap<Instruction*, Value*> ValueMapping;
1964 
1965   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1966                                          BB->getName()+".thread",
1967                                          BB->getParent(), BB);
1968   NewBB->moveAfter(PredBB);
1969 
1970   // Set the block frequency of NewBB.
1971   if (HasProfileData) {
1972     auto NewBBFreq =
1973         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1974     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1975   }
1976 
1977   BasicBlock::iterator BI = BB->begin();
1978   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1979     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1980 
1981   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1982   // mapping and using it to remap operands in the cloned instructions.
1983   for (; !BI->isTerminator(); ++BI) {
1984     Instruction *New = BI->clone();
1985     New->setName(BI->getName());
1986     NewBB->getInstList().push_back(New);
1987     ValueMapping[&*BI] = New;
1988 
1989     // Remap operands to patch up intra-block references.
1990     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1991       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1992         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1993         if (I != ValueMapping.end())
1994           New->setOperand(i, I->second);
1995       }
1996   }
1997 
1998   // We didn't copy the terminator from BB over to NewBB, because there is now
1999   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2000   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2001   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2002 
2003   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2004   // PHI nodes for NewBB now.
2005   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2006 
2007   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2008   // eliminates predecessors from BB, which requires us to simplify any PHI
2009   // nodes in BB.
2010   Instruction *PredTerm = PredBB->getTerminator();
2011   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2012     if (PredTerm->getSuccessor(i) == BB) {
2013       BB->removePredecessor(PredBB, true);
2014       PredTerm->setSuccessor(i, NewBB);
2015     }
2016 
2017   // Enqueue required DT updates.
2018   DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2019                      {DominatorTree::Insert, PredBB, NewBB},
2020                      {DominatorTree::Delete, PredBB, BB}});
2021 
2022   // If there were values defined in BB that are used outside the block, then we
2023   // now have to update all uses of the value to use either the original value,
2024   // the cloned value, or some PHI derived value.  This can require arbitrary
2025   // PHI insertion, of which we are prepared to do, clean these up now.
2026   SSAUpdater SSAUpdate;
2027   SmallVector<Use*, 16> UsesToRename;
2028 
2029   for (Instruction &I : *BB) {
2030     // Scan all uses of this instruction to see if their uses are no longer
2031     // dominated by the previous def and if so, record them in UsesToRename.
2032     // Also, skip phi operands from PredBB - we'll remove them anyway.
2033     for (Use &U : I.uses()) {
2034       Instruction *User = cast<Instruction>(U.getUser());
2035       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2036         if (UserPN->getIncomingBlock(U) == BB)
2037           continue;
2038       } else if (User->getParent() == BB)
2039         continue;
2040 
2041       UsesToRename.push_back(&U);
2042     }
2043 
2044     // If there are no uses outside the block, we're done with this instruction.
2045     if (UsesToRename.empty())
2046       continue;
2047     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2048 
2049     // We found a use of I outside of BB.  Rename all uses of I that are outside
2050     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2051     // with the two values we know.
2052     SSAUpdate.Initialize(I.getType(), I.getName());
2053     SSAUpdate.AddAvailableValue(BB, &I);
2054     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2055 
2056     while (!UsesToRename.empty())
2057       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2058     LLVM_DEBUG(dbgs() << "\n");
2059   }
2060 
2061   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2062   // over the new instructions and zap any that are constants or dead.  This
2063   // frequently happens because of phi translation.
2064   SimplifyInstructionsInBlock(NewBB, TLI);
2065 
2066   // Update the edge weight from BB to SuccBB, which should be less than before.
2067   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2068 
2069   // Threaded an edge!
2070   ++NumThreads;
2071   return true;
2072 }
2073 
2074 /// Create a new basic block that will be the predecessor of BB and successor of
2075 /// all blocks in Preds. When profile data is available, update the frequency of
2076 /// this new block.
2077 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2078                                                ArrayRef<BasicBlock *> Preds,
2079                                                const char *Suffix) {
2080   SmallVector<BasicBlock *, 2> NewBBs;
2081 
2082   // Collect the frequencies of all predecessors of BB, which will be used to
2083   // update the edge weight of the result of splitting predecessors.
2084   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2085   if (HasProfileData)
2086     for (auto Pred : Preds)
2087       FreqMap.insert(std::make_pair(
2088           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2089 
2090   // In the case when BB is a LandingPad block we create 2 new predecessors
2091   // instead of just one.
2092   if (BB->isLandingPad()) {
2093     std::string NewName = std::string(Suffix) + ".split-lp";
2094     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2095   } else {
2096     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2097   }
2098 
2099   std::vector<DominatorTree::UpdateType> Updates;
2100   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2101   for (auto NewBB : NewBBs) {
2102     BlockFrequency NewBBFreq(0);
2103     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2104     for (auto Pred : predecessors(NewBB)) {
2105       Updates.push_back({DominatorTree::Delete, Pred, BB});
2106       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2107       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2108         NewBBFreq += FreqMap.lookup(Pred);
2109     }
2110     if (HasProfileData) // Apply the summed frequency to NewBB.
2111       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2112   }
2113 
2114   DTU->applyUpdates(Updates);
2115   return NewBBs[0];
2116 }
2117 
2118 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2119   const Instruction *TI = BB->getTerminator();
2120   assert(TI->getNumSuccessors() > 1 && "not a split");
2121 
2122   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2123   if (!WeightsNode)
2124     return false;
2125 
2126   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2127   if (MDName->getString() != "branch_weights")
2128     return false;
2129 
2130   // Ensure there are weights for all of the successors. Note that the first
2131   // operand to the metadata node is a name, not a weight.
2132   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2133 }
2134 
2135 /// Update the block frequency of BB and branch weight and the metadata on the
2136 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2137 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2138 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2139                                                      BasicBlock *BB,
2140                                                      BasicBlock *NewBB,
2141                                                      BasicBlock *SuccBB) {
2142   if (!HasProfileData)
2143     return;
2144 
2145   assert(BFI && BPI && "BFI & BPI should have been created here");
2146 
2147   // As the edge from PredBB to BB is deleted, we have to update the block
2148   // frequency of BB.
2149   auto BBOrigFreq = BFI->getBlockFreq(BB);
2150   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2151   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2152   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2153   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2154 
2155   // Collect updated outgoing edges' frequencies from BB and use them to update
2156   // edge probabilities.
2157   SmallVector<uint64_t, 4> BBSuccFreq;
2158   for (BasicBlock *Succ : successors(BB)) {
2159     auto SuccFreq = (Succ == SuccBB)
2160                         ? BB2SuccBBFreq - NewBBFreq
2161                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2162     BBSuccFreq.push_back(SuccFreq.getFrequency());
2163   }
2164 
2165   uint64_t MaxBBSuccFreq =
2166       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2167 
2168   SmallVector<BranchProbability, 4> BBSuccProbs;
2169   if (MaxBBSuccFreq == 0)
2170     BBSuccProbs.assign(BBSuccFreq.size(),
2171                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2172   else {
2173     for (uint64_t Freq : BBSuccFreq)
2174       BBSuccProbs.push_back(
2175           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2176     // Normalize edge probabilities so that they sum up to one.
2177     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2178                                               BBSuccProbs.end());
2179   }
2180 
2181   // Update edge probabilities in BPI.
2182   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2183     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2184 
2185   // Update the profile metadata as well.
2186   //
2187   // Don't do this if the profile of the transformed blocks was statically
2188   // estimated.  (This could occur despite the function having an entry
2189   // frequency in completely cold parts of the CFG.)
2190   //
2191   // In this case we don't want to suggest to subsequent passes that the
2192   // calculated weights are fully consistent.  Consider this graph:
2193   //
2194   //                 check_1
2195   //             50% /  |
2196   //             eq_1   | 50%
2197   //                 \  |
2198   //                 check_2
2199   //             50% /  |
2200   //             eq_2   | 50%
2201   //                 \  |
2202   //                 check_3
2203   //             50% /  |
2204   //             eq_3   | 50%
2205   //                 \  |
2206   //
2207   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2208   // the overall probabilities are inconsistent; the total probability that the
2209   // value is either 1, 2 or 3 is 150%.
2210   //
2211   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2212   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2213   // the loop exit edge.  Then based solely on static estimation we would assume
2214   // the loop was extremely hot.
2215   //
2216   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2217   // shouldn't make edges extremely likely or unlikely based solely on static
2218   // estimation.
2219   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2220     SmallVector<uint32_t, 4> Weights;
2221     for (auto Prob : BBSuccProbs)
2222       Weights.push_back(Prob.getNumerator());
2223 
2224     auto TI = BB->getTerminator();
2225     TI->setMetadata(
2226         LLVMContext::MD_prof,
2227         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2228   }
2229 }
2230 
2231 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2232 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2233 /// If we can duplicate the contents of BB up into PredBB do so now, this
2234 /// improves the odds that the branch will be on an analyzable instruction like
2235 /// a compare.
2236 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2237     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2238   assert(!PredBBs.empty() && "Can't handle an empty set");
2239 
2240   // If BB is a loop header, then duplicating this block outside the loop would
2241   // cause us to transform this into an irreducible loop, don't do this.
2242   // See the comments above FindLoopHeaders for justifications and caveats.
2243   if (LoopHeaders.count(BB)) {
2244     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2245                       << "' into predecessor block '" << PredBBs[0]->getName()
2246                       << "' - it might create an irreducible loop!\n");
2247     return false;
2248   }
2249 
2250   unsigned DuplicationCost =
2251       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2252   if (DuplicationCost > BBDupThreshold) {
2253     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2254                       << "' - Cost is too high: " << DuplicationCost << "\n");
2255     return false;
2256   }
2257 
2258   // And finally, do it!  Start by factoring the predecessors if needed.
2259   std::vector<DominatorTree::UpdateType> Updates;
2260   BasicBlock *PredBB;
2261   if (PredBBs.size() == 1)
2262     PredBB = PredBBs[0];
2263   else {
2264     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2265                       << " common predecessors.\n");
2266     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2267   }
2268   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2269 
2270   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2271   // of PredBB.
2272   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2273                     << "' into end of '" << PredBB->getName()
2274                     << "' to eliminate branch on phi.  Cost: "
2275                     << DuplicationCost << " block is:" << *BB << "\n");
2276 
2277   // Unless PredBB ends with an unconditional branch, split the edge so that we
2278   // can just clone the bits from BB into the end of the new PredBB.
2279   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2280 
2281   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2282     BasicBlock *OldPredBB = PredBB;
2283     PredBB = SplitEdge(OldPredBB, BB);
2284     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2285     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2286     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2287     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2288   }
2289 
2290   // We are going to have to map operands from the original BB block into the
2291   // PredBB block.  Evaluate PHI nodes in BB.
2292   DenseMap<Instruction*, Value*> ValueMapping;
2293 
2294   BasicBlock::iterator BI = BB->begin();
2295   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2296     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2297   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2298   // mapping and using it to remap operands in the cloned instructions.
2299   for (; BI != BB->end(); ++BI) {
2300     Instruction *New = BI->clone();
2301 
2302     // Remap operands to patch up intra-block references.
2303     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2304       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2305         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2306         if (I != ValueMapping.end())
2307           New->setOperand(i, I->second);
2308       }
2309 
2310     // If this instruction can be simplified after the operands are updated,
2311     // just use the simplified value instead.  This frequently happens due to
2312     // phi translation.
2313     if (Value *IV = SimplifyInstruction(
2314             New,
2315             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2316       ValueMapping[&*BI] = IV;
2317       if (!New->mayHaveSideEffects()) {
2318         New->deleteValue();
2319         New = nullptr;
2320       }
2321     } else {
2322       ValueMapping[&*BI] = New;
2323     }
2324     if (New) {
2325       // Otherwise, insert the new instruction into the block.
2326       New->setName(BI->getName());
2327       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2328       // Update Dominance from simplified New instruction operands.
2329       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2330         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2331           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2332     }
2333   }
2334 
2335   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2336   // add entries to the PHI nodes for branch from PredBB now.
2337   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2338   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2339                                   ValueMapping);
2340   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2341                                   ValueMapping);
2342 
2343   // If there were values defined in BB that are used outside the block, then we
2344   // now have to update all uses of the value to use either the original value,
2345   // the cloned value, or some PHI derived value.  This can require arbitrary
2346   // PHI insertion, of which we are prepared to do, clean these up now.
2347   SSAUpdater SSAUpdate;
2348   SmallVector<Use*, 16> UsesToRename;
2349   for (Instruction &I : *BB) {
2350     // Scan all uses of this instruction to see if it is used outside of its
2351     // block, and if so, record them in UsesToRename.
2352     for (Use &U : I.uses()) {
2353       Instruction *User = cast<Instruction>(U.getUser());
2354       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2355         if (UserPN->getIncomingBlock(U) == BB)
2356           continue;
2357       } else if (User->getParent() == BB)
2358         continue;
2359 
2360       UsesToRename.push_back(&U);
2361     }
2362 
2363     // If there are no uses outside the block, we're done with this instruction.
2364     if (UsesToRename.empty())
2365       continue;
2366 
2367     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2368 
2369     // We found a use of I outside of BB.  Rename all uses of I that are outside
2370     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2371     // with the two values we know.
2372     SSAUpdate.Initialize(I.getType(), I.getName());
2373     SSAUpdate.AddAvailableValue(BB, &I);
2374     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2375 
2376     while (!UsesToRename.empty())
2377       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2378     LLVM_DEBUG(dbgs() << "\n");
2379   }
2380 
2381   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2382   // that we nuked.
2383   BB->removePredecessor(PredBB, true);
2384 
2385   // Remove the unconditional branch at the end of the PredBB block.
2386   OldPredBranch->eraseFromParent();
2387   DTU->applyUpdates(Updates);
2388 
2389   ++NumDupes;
2390   return true;
2391 }
2392 
2393 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2394 // a Select instruction in Pred. BB has other predecessors and SI is used in
2395 // a PHI node in BB. SI has no other use.
2396 // A new basic block, NewBB, is created and SI is converted to compare and
2397 // conditional branch. SI is erased from parent.
2398 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2399                                           SelectInst *SI, PHINode *SIUse,
2400                                           unsigned Idx) {
2401   // Expand the select.
2402   //
2403   // Pred --
2404   //  |    v
2405   //  |  NewBB
2406   //  |    |
2407   //  |-----
2408   //  v
2409   // BB
2410   BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2411   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2412                                          BB->getParent(), BB);
2413   // Move the unconditional branch to NewBB.
2414   PredTerm->removeFromParent();
2415   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2416   // Create a conditional branch and update PHI nodes.
2417   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2418   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2419   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2420 
2421   // The select is now dead.
2422   SI->eraseFromParent();
2423   DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2424                     {DominatorTree::Insert, Pred, NewBB}});
2425 
2426   // Update any other PHI nodes in BB.
2427   for (BasicBlock::iterator BI = BB->begin();
2428        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2429     if (Phi != SIUse)
2430       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2431 }
2432 
2433 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2434   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2435 
2436   if (!CondPHI || CondPHI->getParent() != BB)
2437     return false;
2438 
2439   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2440     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2441     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2442 
2443     // The second and third condition can be potentially relaxed. Currently
2444     // the conditions help to simplify the code and allow us to reuse existing
2445     // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2446     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2447       continue;
2448 
2449     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2450     if (!PredTerm || !PredTerm->isUnconditional())
2451       continue;
2452 
2453     UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2454     return true;
2455   }
2456   return false;
2457 }
2458 
2459 /// TryToUnfoldSelect - Look for blocks of the form
2460 /// bb1:
2461 ///   %a = select
2462 ///   br bb2
2463 ///
2464 /// bb2:
2465 ///   %p = phi [%a, %bb1] ...
2466 ///   %c = icmp %p
2467 ///   br i1 %c
2468 ///
2469 /// And expand the select into a branch structure if one of its arms allows %c
2470 /// to be folded. This later enables threading from bb1 over bb2.
2471 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2472   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2473   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2474   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2475 
2476   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2477       CondLHS->getParent() != BB)
2478     return false;
2479 
2480   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2481     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2482     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2483 
2484     // Look if one of the incoming values is a select in the corresponding
2485     // predecessor.
2486     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2487       continue;
2488 
2489     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2490     if (!PredTerm || !PredTerm->isUnconditional())
2491       continue;
2492 
2493     // Now check if one of the select values would allow us to constant fold the
2494     // terminator in BB. We don't do the transform if both sides fold, those
2495     // cases will be threaded in any case.
2496     if (DTU->hasPendingDomTreeUpdates())
2497       LVI->disableDT();
2498     else
2499       LVI->enableDT();
2500     LazyValueInfo::Tristate LHSFolds =
2501         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2502                                 CondRHS, Pred, BB, CondCmp);
2503     LazyValueInfo::Tristate RHSFolds =
2504         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2505                                 CondRHS, Pred, BB, CondCmp);
2506     if ((LHSFolds != LazyValueInfo::Unknown ||
2507          RHSFolds != LazyValueInfo::Unknown) &&
2508         LHSFolds != RHSFolds) {
2509       UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2510       return true;
2511     }
2512   }
2513   return false;
2514 }
2515 
2516 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2517 /// same BB in the form
2518 /// bb:
2519 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2520 ///   %s = select %p, trueval, falseval
2521 ///
2522 /// or
2523 ///
2524 /// bb:
2525 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2526 ///   %c = cmp %p, 0
2527 ///   %s = select %c, trueval, falseval
2528 ///
2529 /// And expand the select into a branch structure. This later enables
2530 /// jump-threading over bb in this pass.
2531 ///
2532 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2533 /// select if the associated PHI has at least one constant.  If the unfolded
2534 /// select is not jump-threaded, it will be folded again in the later
2535 /// optimizations.
2536 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2537   // If threading this would thread across a loop header, don't thread the edge.
2538   // See the comments above FindLoopHeaders for justifications and caveats.
2539   if (LoopHeaders.count(BB))
2540     return false;
2541 
2542   for (BasicBlock::iterator BI = BB->begin();
2543        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2544     // Look for a Phi having at least one constant incoming value.
2545     if (llvm::all_of(PN->incoming_values(),
2546                      [](Value *V) { return !isa<ConstantInt>(V); }))
2547       continue;
2548 
2549     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2550       // Check if SI is in BB and use V as condition.
2551       if (SI->getParent() != BB)
2552         return false;
2553       Value *Cond = SI->getCondition();
2554       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2555     };
2556 
2557     SelectInst *SI = nullptr;
2558     for (Use &U : PN->uses()) {
2559       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2560         // Look for a ICmp in BB that compares PN with a constant and is the
2561         // condition of a Select.
2562         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2563             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2564           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2565             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2566               SI = SelectI;
2567               break;
2568             }
2569       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2570         // Look for a Select in BB that uses PN as condition.
2571         if (isUnfoldCandidate(SelectI, U.get())) {
2572           SI = SelectI;
2573           break;
2574         }
2575       }
2576     }
2577 
2578     if (!SI)
2579       continue;
2580     // Expand the select.
2581     Instruction *Term =
2582         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2583     BasicBlock *SplitBB = SI->getParent();
2584     BasicBlock *NewBB = Term->getParent();
2585     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2586     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2587     NewPN->addIncoming(SI->getFalseValue(), BB);
2588     SI->replaceAllUsesWith(NewPN);
2589     SI->eraseFromParent();
2590     // NewBB and SplitBB are newly created blocks which require insertion.
2591     std::vector<DominatorTree::UpdateType> Updates;
2592     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2593     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2594     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2595     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2596     // BB's successors were moved to SplitBB, update DTU accordingly.
2597     for (auto *Succ : successors(SplitBB)) {
2598       Updates.push_back({DominatorTree::Delete, BB, Succ});
2599       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2600     }
2601     DTU->applyUpdates(Updates);
2602     return true;
2603   }
2604   return false;
2605 }
2606 
2607 /// Try to propagate a guard from the current BB into one of its predecessors
2608 /// in case if another branch of execution implies that the condition of this
2609 /// guard is always true. Currently we only process the simplest case that
2610 /// looks like:
2611 ///
2612 /// Start:
2613 ///   %cond = ...
2614 ///   br i1 %cond, label %T1, label %F1
2615 /// T1:
2616 ///   br label %Merge
2617 /// F1:
2618 ///   br label %Merge
2619 /// Merge:
2620 ///   %condGuard = ...
2621 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2622 ///
2623 /// And cond either implies condGuard or !condGuard. In this case all the
2624 /// instructions before the guard can be duplicated in both branches, and the
2625 /// guard is then threaded to one of them.
2626 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2627   using namespace PatternMatch;
2628 
2629   // We only want to deal with two predecessors.
2630   BasicBlock *Pred1, *Pred2;
2631   auto PI = pred_begin(BB), PE = pred_end(BB);
2632   if (PI == PE)
2633     return false;
2634   Pred1 = *PI++;
2635   if (PI == PE)
2636     return false;
2637   Pred2 = *PI++;
2638   if (PI != PE)
2639     return false;
2640   if (Pred1 == Pred2)
2641     return false;
2642 
2643   // Try to thread one of the guards of the block.
2644   // TODO: Look up deeper than to immediate predecessor?
2645   auto *Parent = Pred1->getSinglePredecessor();
2646   if (!Parent || Parent != Pred2->getSinglePredecessor())
2647     return false;
2648 
2649   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2650     for (auto &I : *BB)
2651       if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2652         return true;
2653 
2654   return false;
2655 }
2656 
2657 /// Try to propagate the guard from BB which is the lower block of a diamond
2658 /// to one of its branches, in case if diamond's condition implies guard's
2659 /// condition.
2660 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2661                                     BranchInst *BI) {
2662   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2663   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2664   Value *GuardCond = Guard->getArgOperand(0);
2665   Value *BranchCond = BI->getCondition();
2666   BasicBlock *TrueDest = BI->getSuccessor(0);
2667   BasicBlock *FalseDest = BI->getSuccessor(1);
2668 
2669   auto &DL = BB->getModule()->getDataLayout();
2670   bool TrueDestIsSafe = false;
2671   bool FalseDestIsSafe = false;
2672 
2673   // True dest is safe if BranchCond => GuardCond.
2674   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2675   if (Impl && *Impl)
2676     TrueDestIsSafe = true;
2677   else {
2678     // False dest is safe if !BranchCond => GuardCond.
2679     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2680     if (Impl && *Impl)
2681       FalseDestIsSafe = true;
2682   }
2683 
2684   if (!TrueDestIsSafe && !FalseDestIsSafe)
2685     return false;
2686 
2687   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2688   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2689 
2690   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2691   Instruction *AfterGuard = Guard->getNextNode();
2692   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2693   if (Cost > BBDupThreshold)
2694     return false;
2695   // Duplicate all instructions before the guard and the guard itself to the
2696   // branch where implication is not proved.
2697   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2698       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2699   assert(GuardedBlock && "Could not create the guarded block?");
2700   // Duplicate all instructions before the guard in the unguarded branch.
2701   // Since we have successfully duplicated the guarded block and this block
2702   // has fewer instructions, we expect it to succeed.
2703   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2704       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2705   assert(UnguardedBlock && "Could not create the unguarded block?");
2706   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2707                     << GuardedBlock->getName() << "\n");
2708   // Some instructions before the guard may still have uses. For them, we need
2709   // to create Phi nodes merging their copies in both guarded and unguarded
2710   // branches. Those instructions that have no uses can be just removed.
2711   SmallVector<Instruction *, 4> ToRemove;
2712   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2713     if (!isa<PHINode>(&*BI))
2714       ToRemove.push_back(&*BI);
2715 
2716   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2717   assert(InsertionPoint && "Empty block?");
2718   // Substitute with Phis & remove.
2719   for (auto *Inst : reverse(ToRemove)) {
2720     if (!Inst->use_empty()) {
2721       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2722       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2723       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2724       NewPN->insertBefore(InsertionPoint);
2725       Inst->replaceAllUsesWith(NewPN);
2726     }
2727     Inst->eraseFromParent();
2728   }
2729   return true;
2730 }
2731