1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/BranchProbability.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <memory>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace jumpthreading;
80 
81 #define DEBUG_TYPE "jump-threading"
82 
83 STATISTIC(NumThreads, "Number of jumps threaded");
84 STATISTIC(NumFolds,   "Number of terminators folded");
85 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
86 
87 static cl::opt<unsigned>
88 BBDuplicateThreshold("jump-threading-threshold",
89           cl::desc("Max block size to duplicate for jump threading"),
90           cl::init(6), cl::Hidden);
91 
92 static cl::opt<unsigned>
93 ImplicationSearchThreshold(
94   "jump-threading-implication-search-threshold",
95   cl::desc("The number of predecessors to search for a stronger "
96            "condition to use to thread over a weaker condition"),
97   cl::init(3), cl::Hidden);
98 
99 static cl::opt<bool> PrintLVIAfterJumpThreading(
100     "print-lvi-after-jump-threading",
101     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
102     cl::Hidden);
103 
104 namespace {
105 
106   /// This pass performs 'jump threading', which looks at blocks that have
107   /// multiple predecessors and multiple successors.  If one or more of the
108   /// predecessors of the block can be proven to always jump to one of the
109   /// successors, we forward the edge from the predecessor to the successor by
110   /// duplicating the contents of this block.
111   ///
112   /// An example of when this can occur is code like this:
113   ///
114   ///   if () { ...
115   ///     X = 4;
116   ///   }
117   ///   if (X < 3) {
118   ///
119   /// In this case, the unconditional branch at the end of the first if can be
120   /// revectored to the false side of the second if.
121   class JumpThreading : public FunctionPass {
122     JumpThreadingPass Impl;
123 
124   public:
125     static char ID; // Pass identification
126 
127     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       if (PrintLVIAfterJumpThreading)
135         AU.addRequired<DominatorTreeWrapperPass>();
136       AU.addRequired<AAResultsWrapperPass>();
137       AU.addRequired<LazyValueInfoWrapperPass>();
138       AU.addPreserved<GlobalsAAWrapperPass>();
139       AU.addRequired<TargetLibraryInfoWrapperPass>();
140     }
141 
142     void releaseMemory() override { Impl.releaseMemory(); }
143   };
144 
145 } // end anonymous namespace
146 
147 char JumpThreading::ID = 0;
148 
149 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
150                 "Jump Threading", false, false)
151 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
152 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
154 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
155                 "Jump Threading", false, false)
156 
157 // Public interface to the Jump Threading pass
158 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
159   return new JumpThreading(Threshold);
160 }
161 
162 JumpThreadingPass::JumpThreadingPass(int T) {
163   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
164 }
165 
166 // Update branch probability information according to conditional
167 // branch probablity. This is usually made possible for cloned branches
168 // in inline instances by the context specific profile in the caller.
169 // For instance,
170 //
171 //  [Block PredBB]
172 //  [Branch PredBr]
173 //  if (t) {
174 //     Block A;
175 //  } else {
176 //     Block B;
177 //  }
178 //
179 //  [Block BB]
180 //  cond = PN([true, %A], [..., %B]); // PHI node
181 //  [Branch CondBr]
182 //  if (cond) {
183 //    ...  // P(cond == true) = 1%
184 //  }
185 //
186 //  Here we know that when block A is taken, cond must be true, which means
187 //      P(cond == true | A) = 1
188 //
189 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
190 //                               P(cond == true | B) * P(B)
191 //  we get:
192 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
193 //
194 //  which gives us:
195 //     P(A) is less than P(cond == true), i.e.
196 //     P(t == true) <= P(cond == true)
197 //
198 //  In other words, if we know P(cond == true) is unlikely, we know
199 //  that P(t == true) is also unlikely.
200 //
201 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
202   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
203   if (!CondBr)
204     return;
205 
206   BranchProbability BP;
207   uint64_t TrueWeight, FalseWeight;
208   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
209     return;
210 
211   // Returns the outgoing edge of the dominating predecessor block
212   // that leads to the PhiNode's incoming block:
213   auto GetPredOutEdge =
214       [](BasicBlock *IncomingBB,
215          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
216     auto *PredBB = IncomingBB;
217     auto *SuccBB = PhiBB;
218     while (true) {
219       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
220       if (PredBr && PredBr->isConditional())
221         return {PredBB, SuccBB};
222       auto *SinglePredBB = PredBB->getSinglePredecessor();
223       if (!SinglePredBB)
224         return {nullptr, nullptr};
225       SuccBB = PredBB;
226       PredBB = SinglePredBB;
227     }
228   };
229 
230   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
231     Value *PhiOpnd = PN->getIncomingValue(i);
232     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
233 
234     if (!CI || !CI->getType()->isIntegerTy(1))
235       continue;
236 
237     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
238                             TrueWeight, TrueWeight + FalseWeight)
239                       : BranchProbability::getBranchProbability(
240                             FalseWeight, TrueWeight + FalseWeight));
241 
242     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
243     if (!PredOutEdge.first)
244       return;
245 
246     BasicBlock *PredBB = PredOutEdge.first;
247     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
248 
249     uint64_t PredTrueWeight, PredFalseWeight;
250     // FIXME: We currently only set the profile data when it is missing.
251     // With PGO, this can be used to refine even existing profile data with
252     // context information. This needs to be done after more performance
253     // testing.
254     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
255       continue;
256 
257     // We can not infer anything useful when BP >= 50%, because BP is the
258     // upper bound probability value.
259     if (BP >= BranchProbability(50, 100))
260       continue;
261 
262     SmallVector<uint32_t, 2> Weights;
263     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
264       Weights.push_back(BP.getNumerator());
265       Weights.push_back(BP.getCompl().getNumerator());
266     } else {
267       Weights.push_back(BP.getCompl().getNumerator());
268       Weights.push_back(BP.getNumerator());
269     }
270     PredBr->setMetadata(LLVMContext::MD_prof,
271                         MDBuilder(PredBr->getParent()->getContext())
272                             .createBranchWeights(Weights));
273   }
274 }
275 
276 /// runOnFunction - Toplevel algorithm.
277 bool JumpThreading::runOnFunction(Function &F) {
278   if (skipFunction(F))
279     return false;
280   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
281   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
282   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
283   std::unique_ptr<BlockFrequencyInfo> BFI;
284   std::unique_ptr<BranchProbabilityInfo> BPI;
285   bool HasProfileData = F.getEntryCount().hasValue();
286   if (HasProfileData) {
287     LoopInfo LI{DominatorTree(F)};
288     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
289     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
290   }
291 
292   bool Changed = Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI),
293                               std::move(BPI));
294   if (PrintLVIAfterJumpThreading) {
295     dbgs() << "LVI for function '" << F.getName() << "':\n";
296     LVI->printLVI(F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
297                   dbgs());
298   }
299   return Changed;
300 }
301 
302 PreservedAnalyses JumpThreadingPass::run(Function &F,
303                                          FunctionAnalysisManager &AM) {
304   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
305   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
306   auto &AA = AM.getResult<AAManager>(F);
307 
308   std::unique_ptr<BlockFrequencyInfo> BFI;
309   std::unique_ptr<BranchProbabilityInfo> BPI;
310   bool HasProfileData = F.getEntryCount().hasValue();
311   if (HasProfileData) {
312     LoopInfo LI{DominatorTree(F)};
313     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
314     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
315   }
316 
317   bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI),
318                          std::move(BPI));
319 
320   if (!Changed)
321     return PreservedAnalyses::all();
322   PreservedAnalyses PA;
323   PA.preserve<GlobalsAA>();
324   return PA;
325 }
326 
327 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
328                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
329                                 bool HasProfileData_,
330                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
331                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
332   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
333   TLI = TLI_;
334   LVI = LVI_;
335   AA = AA_;
336   BFI.reset();
337   BPI.reset();
338   // When profile data is available, we need to update edge weights after
339   // successful jump threading, which requires both BPI and BFI being available.
340   HasProfileData = HasProfileData_;
341   auto *GuardDecl = F.getParent()->getFunction(
342       Intrinsic::getName(Intrinsic::experimental_guard));
343   HasGuards = GuardDecl && !GuardDecl->use_empty();
344   if (HasProfileData) {
345     BPI = std::move(BPI_);
346     BFI = std::move(BFI_);
347   }
348 
349   // Remove unreachable blocks from function as they may result in infinite
350   // loop. We do threading if we found something profitable. Jump threading a
351   // branch can create other opportunities. If these opportunities form a cycle
352   // i.e. if any jump threading is undoing previous threading in the path, then
353   // we will loop forever. We take care of this issue by not jump threading for
354   // back edges. This works for normal cases but not for unreachable blocks as
355   // they may have cycle with no back edge.
356   bool EverChanged = false;
357   EverChanged |= removeUnreachableBlocks(F, LVI);
358 
359   FindLoopHeaders(F);
360 
361   bool Changed;
362   do {
363     Changed = false;
364     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
365       BasicBlock *BB = &*I;
366       // Thread all of the branches we can over this block.
367       while (ProcessBlock(BB))
368         Changed = true;
369 
370       ++I;
371 
372       // If the block is trivially dead, zap it.  This eliminates the successor
373       // edges which simplifies the CFG.
374       if (pred_empty(BB) &&
375           BB != &BB->getParent()->getEntryBlock()) {
376         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
377               << "' with terminator: " << *BB->getTerminator() << '\n');
378         LoopHeaders.erase(BB);
379         LVI->eraseBlock(BB);
380         DeleteDeadBlock(BB);
381         Changed = true;
382         continue;
383       }
384 
385       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
386 
387       // Can't thread an unconditional jump, but if the block is "almost
388       // empty", we can replace uses of it with uses of the successor and make
389       // this dead.
390       // We should not eliminate the loop header or latch either, because
391       // eliminating a loop header or latch might later prevent LoopSimplify
392       // from transforming nested loops into simplified form. We will rely on
393       // later passes in backend to clean up empty blocks.
394       if (BI && BI->isUnconditional() &&
395           BB != &BB->getParent()->getEntryBlock() &&
396           // If the terminator is the only non-phi instruction, try to nuke it.
397           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) &&
398           !LoopHeaders.count(BI->getSuccessor(0))) {
399         // FIXME: It is always conservatively correct to drop the info
400         // for a block even if it doesn't get erased.  This isn't totally
401         // awesome, but it allows us to use AssertingVH to prevent nasty
402         // dangling pointer issues within LazyValueInfo.
403         LVI->eraseBlock(BB);
404         if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
405           Changed = true;
406       }
407     }
408     EverChanged |= Changed;
409   } while (Changed);
410 
411   LoopHeaders.clear();
412   return EverChanged;
413 }
414 
415 // Replace uses of Cond with ToVal when safe to do so. If all uses are
416 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
417 // because we may incorrectly replace uses when guards/assumes are uses of
418 // of `Cond` and we used the guards/assume to reason about the `Cond` value
419 // at the end of block. RAUW unconditionally replaces all uses
420 // including the guards/assumes themselves and the uses before the
421 // guard/assume.
422 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
423   assert(Cond->getType() == ToVal->getType());
424   auto *BB = Cond->getParent();
425   // We can unconditionally replace all uses in non-local blocks (i.e. uses
426   // strictly dominated by BB), since LVI information is true from the
427   // terminator of BB.
428   replaceNonLocalUsesWith(Cond, ToVal);
429   for (Instruction &I : reverse(*BB)) {
430     // Reached the Cond whose uses we are trying to replace, so there are no
431     // more uses.
432     if (&I == Cond)
433       break;
434     // We only replace uses in instructions that are guaranteed to reach the end
435     // of BB, where we know Cond is ToVal.
436     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
437       break;
438     I.replaceUsesOfWith(Cond, ToVal);
439   }
440   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
441     Cond->eraseFromParent();
442 }
443 
444 /// Return the cost of duplicating a piece of this block from first non-phi
445 /// and before StopAt instruction to thread across it. Stop scanning the block
446 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
447 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
448                                              Instruction *StopAt,
449                                              unsigned Threshold) {
450   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
451   /// Ignore PHI nodes, these will be flattened when duplication happens.
452   BasicBlock::const_iterator I(BB->getFirstNonPHI());
453 
454   // FIXME: THREADING will delete values that are just used to compute the
455   // branch, so they shouldn't count against the duplication cost.
456 
457   unsigned Bonus = 0;
458   if (BB->getTerminator() == StopAt) {
459     // Threading through a switch statement is particularly profitable.  If this
460     // block ends in a switch, decrease its cost to make it more likely to
461     // happen.
462     if (isa<SwitchInst>(StopAt))
463       Bonus = 6;
464 
465     // The same holds for indirect branches, but slightly more so.
466     if (isa<IndirectBrInst>(StopAt))
467       Bonus = 8;
468   }
469 
470   // Bump the threshold up so the early exit from the loop doesn't skip the
471   // terminator-based Size adjustment at the end.
472   Threshold += Bonus;
473 
474   // Sum up the cost of each instruction until we get to the terminator.  Don't
475   // include the terminator because the copy won't include it.
476   unsigned Size = 0;
477   for (; &*I != StopAt; ++I) {
478 
479     // Stop scanning the block if we've reached the threshold.
480     if (Size > Threshold)
481       return Size;
482 
483     // Debugger intrinsics don't incur code size.
484     if (isa<DbgInfoIntrinsic>(I)) continue;
485 
486     // If this is a pointer->pointer bitcast, it is free.
487     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
488       continue;
489 
490     // Bail out if this instruction gives back a token type, it is not possible
491     // to duplicate it if it is used outside this BB.
492     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
493       return ~0U;
494 
495     // All other instructions count for at least one unit.
496     ++Size;
497 
498     // Calls are more expensive.  If they are non-intrinsic calls, we model them
499     // as having cost of 4.  If they are a non-vector intrinsic, we model them
500     // as having cost of 2 total, and if they are a vector intrinsic, we model
501     // them as having cost 1.
502     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
503       if (CI->cannotDuplicate() || CI->isConvergent())
504         // Blocks with NoDuplicate are modelled as having infinite cost, so they
505         // are never duplicated.
506         return ~0U;
507       else if (!isa<IntrinsicInst>(CI))
508         Size += 3;
509       else if (!CI->getType()->isVectorTy())
510         Size += 1;
511     }
512   }
513 
514   return Size > Bonus ? Size - Bonus : 0;
515 }
516 
517 /// FindLoopHeaders - We do not want jump threading to turn proper loop
518 /// structures into irreducible loops.  Doing this breaks up the loop nesting
519 /// hierarchy and pessimizes later transformations.  To prevent this from
520 /// happening, we first have to find the loop headers.  Here we approximate this
521 /// by finding targets of backedges in the CFG.
522 ///
523 /// Note that there definitely are cases when we want to allow threading of
524 /// edges across a loop header.  For example, threading a jump from outside the
525 /// loop (the preheader) to an exit block of the loop is definitely profitable.
526 /// It is also almost always profitable to thread backedges from within the loop
527 /// to exit blocks, and is often profitable to thread backedges to other blocks
528 /// within the loop (forming a nested loop).  This simple analysis is not rich
529 /// enough to track all of these properties and keep it up-to-date as the CFG
530 /// mutates, so we don't allow any of these transformations.
531 void JumpThreadingPass::FindLoopHeaders(Function &F) {
532   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
533   FindFunctionBackedges(F, Edges);
534 
535   for (const auto &Edge : Edges)
536     LoopHeaders.insert(Edge.second);
537 }
538 
539 /// getKnownConstant - Helper method to determine if we can thread over a
540 /// terminator with the given value as its condition, and if so what value to
541 /// use for that. What kind of value this is depends on whether we want an
542 /// integer or a block address, but an undef is always accepted.
543 /// Returns null if Val is null or not an appropriate constant.
544 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
545   if (!Val)
546     return nullptr;
547 
548   // Undef is "known" enough.
549   if (UndefValue *U = dyn_cast<UndefValue>(Val))
550     return U;
551 
552   if (Preference == WantBlockAddress)
553     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
554 
555   return dyn_cast<ConstantInt>(Val);
556 }
557 
558 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
559 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
560 /// in any of our predecessors.  If so, return the known list of value and pred
561 /// BB in the result vector.
562 ///
563 /// This returns true if there were any known values.
564 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
565     Value *V, BasicBlock *BB, PredValueInfo &Result,
566     ConstantPreference Preference, Instruction *CxtI) {
567   // This method walks up use-def chains recursively.  Because of this, we could
568   // get into an infinite loop going around loops in the use-def chain.  To
569   // prevent this, keep track of what (value, block) pairs we've already visited
570   // and terminate the search if we loop back to them
571   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
572     return false;
573 
574   // An RAII help to remove this pair from the recursion set once the recursion
575   // stack pops back out again.
576   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
577 
578   // If V is a constant, then it is known in all predecessors.
579   if (Constant *KC = getKnownConstant(V, Preference)) {
580     for (BasicBlock *Pred : predecessors(BB))
581       Result.push_back(std::make_pair(KC, Pred));
582 
583     return !Result.empty();
584   }
585 
586   // If V is a non-instruction value, or an instruction in a different block,
587   // then it can't be derived from a PHI.
588   Instruction *I = dyn_cast<Instruction>(V);
589   if (!I || I->getParent() != BB) {
590 
591     // Okay, if this is a live-in value, see if it has a known value at the end
592     // of any of our predecessors.
593     //
594     // FIXME: This should be an edge property, not a block end property.
595     /// TODO: Per PR2563, we could infer value range information about a
596     /// predecessor based on its terminator.
597     //
598     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
599     // "I" is a non-local compare-with-a-constant instruction.  This would be
600     // able to handle value inequalities better, for example if the compare is
601     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
602     // Perhaps getConstantOnEdge should be smart enough to do this?
603 
604     for (BasicBlock *P : predecessors(BB)) {
605       // If the value is known by LazyValueInfo to be a constant in a
606       // predecessor, use that information to try to thread this block.
607       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
608       if (Constant *KC = getKnownConstant(PredCst, Preference))
609         Result.push_back(std::make_pair(KC, P));
610     }
611 
612     return !Result.empty();
613   }
614 
615   /// If I is a PHI node, then we know the incoming values for any constants.
616   if (PHINode *PN = dyn_cast<PHINode>(I)) {
617     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
618       Value *InVal = PN->getIncomingValue(i);
619       if (Constant *KC = getKnownConstant(InVal, Preference)) {
620         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
621       } else {
622         Constant *CI = LVI->getConstantOnEdge(InVal,
623                                               PN->getIncomingBlock(i),
624                                               BB, CxtI);
625         if (Constant *KC = getKnownConstant(CI, Preference))
626           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
627       }
628     }
629 
630     return !Result.empty();
631   }
632 
633   // Handle Cast instructions.  Only see through Cast when the source operand is
634   // PHI or Cmp and the source type is i1 to save the compilation time.
635   if (CastInst *CI = dyn_cast<CastInst>(I)) {
636     Value *Source = CI->getOperand(0);
637     if (!Source->getType()->isIntegerTy(1))
638       return false;
639     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
640       return false;
641     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
642     if (Result.empty())
643       return false;
644 
645     // Convert the known values.
646     for (auto &R : Result)
647       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
648 
649     return true;
650   }
651 
652   // Handle some boolean conditions.
653   if (I->getType()->getPrimitiveSizeInBits() == 1) {
654     assert(Preference == WantInteger && "One-bit non-integer type?");
655     // X | true -> true
656     // X & false -> false
657     if (I->getOpcode() == Instruction::Or ||
658         I->getOpcode() == Instruction::And) {
659       PredValueInfoTy LHSVals, RHSVals;
660 
661       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
662                                       WantInteger, CxtI);
663       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
664                                       WantInteger, CxtI);
665 
666       if (LHSVals.empty() && RHSVals.empty())
667         return false;
668 
669       ConstantInt *InterestingVal;
670       if (I->getOpcode() == Instruction::Or)
671         InterestingVal = ConstantInt::getTrue(I->getContext());
672       else
673         InterestingVal = ConstantInt::getFalse(I->getContext());
674 
675       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
676 
677       // Scan for the sentinel.  If we find an undef, force it to the
678       // interesting value: x|undef -> true and x&undef -> false.
679       for (const auto &LHSVal : LHSVals)
680         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
681           Result.emplace_back(InterestingVal, LHSVal.second);
682           LHSKnownBBs.insert(LHSVal.second);
683         }
684       for (const auto &RHSVal : RHSVals)
685         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
686           // If we already inferred a value for this block on the LHS, don't
687           // re-add it.
688           if (!LHSKnownBBs.count(RHSVal.second))
689             Result.emplace_back(InterestingVal, RHSVal.second);
690         }
691 
692       return !Result.empty();
693     }
694 
695     // Handle the NOT form of XOR.
696     if (I->getOpcode() == Instruction::Xor &&
697         isa<ConstantInt>(I->getOperand(1)) &&
698         cast<ConstantInt>(I->getOperand(1))->isOne()) {
699       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
700                                       WantInteger, CxtI);
701       if (Result.empty())
702         return false;
703 
704       // Invert the known values.
705       for (auto &R : Result)
706         R.first = ConstantExpr::getNot(R.first);
707 
708       return true;
709     }
710 
711   // Try to simplify some other binary operator values.
712   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
713     assert(Preference != WantBlockAddress
714             && "A binary operator creating a block address?");
715     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
716       PredValueInfoTy LHSVals;
717       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
718                                       WantInteger, CxtI);
719 
720       // Try to use constant folding to simplify the binary operator.
721       for (const auto &LHSVal : LHSVals) {
722         Constant *V = LHSVal.first;
723         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
724 
725         if (Constant *KC = getKnownConstant(Folded, WantInteger))
726           Result.push_back(std::make_pair(KC, LHSVal.second));
727       }
728     }
729 
730     return !Result.empty();
731   }
732 
733   // Handle compare with phi operand, where the PHI is defined in this block.
734   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
735     assert(Preference == WantInteger && "Compares only produce integers");
736     Type *CmpType = Cmp->getType();
737     Value *CmpLHS = Cmp->getOperand(0);
738     Value *CmpRHS = Cmp->getOperand(1);
739     CmpInst::Predicate Pred = Cmp->getPredicate();
740 
741     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
742     if (PN && PN->getParent() == BB) {
743       const DataLayout &DL = PN->getModule()->getDataLayout();
744       // We can do this simplification if any comparisons fold to true or false.
745       // See if any do.
746       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
747         BasicBlock *PredBB = PN->getIncomingBlock(i);
748         Value *LHS = PN->getIncomingValue(i);
749         Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB);
750 
751         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
752         if (!Res) {
753           if (!isa<Constant>(RHS))
754             continue;
755 
756           LazyValueInfo::Tristate
757             ResT = LVI->getPredicateOnEdge(Pred, LHS,
758                                            cast<Constant>(RHS), PredBB, BB,
759                                            CxtI ? CxtI : Cmp);
760           if (ResT == LazyValueInfo::Unknown)
761             continue;
762           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
763         }
764 
765         if (Constant *KC = getKnownConstant(Res, WantInteger))
766           Result.push_back(std::make_pair(KC, PredBB));
767       }
768 
769       return !Result.empty();
770     }
771 
772     // If comparing a live-in value against a constant, see if we know the
773     // live-in value on any predecessors.
774     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
775       Constant *CmpConst = cast<Constant>(CmpRHS);
776 
777       if (!isa<Instruction>(CmpLHS) ||
778           cast<Instruction>(CmpLHS)->getParent() != BB) {
779         for (BasicBlock *P : predecessors(BB)) {
780           // If the value is known by LazyValueInfo to be a constant in a
781           // predecessor, use that information to try to thread this block.
782           LazyValueInfo::Tristate Res =
783             LVI->getPredicateOnEdge(Pred, CmpLHS,
784                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
785           if (Res == LazyValueInfo::Unknown)
786             continue;
787 
788           Constant *ResC = ConstantInt::get(CmpType, Res);
789           Result.push_back(std::make_pair(ResC, P));
790         }
791 
792         return !Result.empty();
793       }
794 
795       // InstCombine can fold some forms of constant range checks into
796       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
797       // x as a live-in.
798       {
799         using namespace PatternMatch;
800 
801         Value *AddLHS;
802         ConstantInt *AddConst;
803         if (isa<ConstantInt>(CmpConst) &&
804             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
805           if (!isa<Instruction>(AddLHS) ||
806               cast<Instruction>(AddLHS)->getParent() != BB) {
807             for (BasicBlock *P : predecessors(BB)) {
808               // If the value is known by LazyValueInfo to be a ConstantRange in
809               // a predecessor, use that information to try to thread this
810               // block.
811               ConstantRange CR = LVI->getConstantRangeOnEdge(
812                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
813               // Propagate the range through the addition.
814               CR = CR.add(AddConst->getValue());
815 
816               // Get the range where the compare returns true.
817               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
818                   Pred, cast<ConstantInt>(CmpConst)->getValue());
819 
820               Constant *ResC;
821               if (CmpRange.contains(CR))
822                 ResC = ConstantInt::getTrue(CmpType);
823               else if (CmpRange.inverse().contains(CR))
824                 ResC = ConstantInt::getFalse(CmpType);
825               else
826                 continue;
827 
828               Result.push_back(std::make_pair(ResC, P));
829             }
830 
831             return !Result.empty();
832           }
833         }
834       }
835 
836       // Try to find a constant value for the LHS of a comparison,
837       // and evaluate it statically if we can.
838       PredValueInfoTy LHSVals;
839       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
840                                       WantInteger, CxtI);
841 
842       for (const auto &LHSVal : LHSVals) {
843         Constant *V = LHSVal.first;
844         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
845         if (Constant *KC = getKnownConstant(Folded, WantInteger))
846           Result.push_back(std::make_pair(KC, LHSVal.second));
847       }
848 
849       return !Result.empty();
850     }
851   }
852 
853   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
854     // Handle select instructions where at least one operand is a known constant
855     // and we can figure out the condition value for any predecessor block.
856     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
857     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
858     PredValueInfoTy Conds;
859     if ((TrueVal || FalseVal) &&
860         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
861                                         WantInteger, CxtI)) {
862       for (auto &C : Conds) {
863         Constant *Cond = C.first;
864 
865         // Figure out what value to use for the condition.
866         bool KnownCond;
867         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
868           // A known boolean.
869           KnownCond = CI->isOne();
870         } else {
871           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
872           // Either operand will do, so be sure to pick the one that's a known
873           // constant.
874           // FIXME: Do this more cleverly if both values are known constants?
875           KnownCond = (TrueVal != nullptr);
876         }
877 
878         // See if the select has a known constant value for this predecessor.
879         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
880           Result.push_back(std::make_pair(Val, C.second));
881       }
882 
883       return !Result.empty();
884     }
885   }
886 
887   // If all else fails, see if LVI can figure out a constant value for us.
888   Constant *CI = LVI->getConstant(V, BB, CxtI);
889   if (Constant *KC = getKnownConstant(CI, Preference)) {
890     for (BasicBlock *Pred : predecessors(BB))
891       Result.push_back(std::make_pair(KC, Pred));
892   }
893 
894   return !Result.empty();
895 }
896 
897 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
898 /// in an undefined jump, decide which block is best to revector to.
899 ///
900 /// Since we can pick an arbitrary destination, we pick the successor with the
901 /// fewest predecessors.  This should reduce the in-degree of the others.
902 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
903   TerminatorInst *BBTerm = BB->getTerminator();
904   unsigned MinSucc = 0;
905   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
906   // Compute the successor with the minimum number of predecessors.
907   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
908   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
909     TestBB = BBTerm->getSuccessor(i);
910     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
911     if (NumPreds < MinNumPreds) {
912       MinSucc = i;
913       MinNumPreds = NumPreds;
914     }
915   }
916 
917   return MinSucc;
918 }
919 
920 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
921   if (!BB->hasAddressTaken()) return false;
922 
923   // If the block has its address taken, it may be a tree of dead constants
924   // hanging off of it.  These shouldn't keep the block alive.
925   BlockAddress *BA = BlockAddress::get(BB);
926   BA->removeDeadConstantUsers();
927   return !BA->use_empty();
928 }
929 
930 /// ProcessBlock - If there are any predecessors whose control can be threaded
931 /// through to a successor, transform them now.
932 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
933   // If the block is trivially dead, just return and let the caller nuke it.
934   // This simplifies other transformations.
935   if (pred_empty(BB) &&
936       BB != &BB->getParent()->getEntryBlock())
937     return false;
938 
939   // If this block has a single predecessor, and if that pred has a single
940   // successor, merge the blocks.  This encourages recursive jump threading
941   // because now the condition in this block can be threaded through
942   // predecessors of our predecessor block.
943   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
944     const TerminatorInst *TI = SinglePred->getTerminator();
945     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
946         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
947       // If SinglePred was a loop header, BB becomes one.
948       if (LoopHeaders.erase(SinglePred))
949         LoopHeaders.insert(BB);
950 
951       LVI->eraseBlock(SinglePred);
952       MergeBasicBlockIntoOnlyPred(BB);
953 
954       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
955       // BB code within one basic block `BB`), we need to invalidate the LVI
956       // information associated with BB, because the LVI information need not be
957       // true for all of BB after the merge. For example,
958       // Before the merge, LVI info and code is as follows:
959       // SinglePred: <LVI info1 for %p val>
960       // %y = use of %p
961       // call @exit() // need not transfer execution to successor.
962       // assume(%p) // from this point on %p is true
963       // br label %BB
964       // BB: <LVI info2 for %p val, i.e. %p is true>
965       // %x = use of %p
966       // br label exit
967       //
968       // Note that this LVI info for blocks BB and SinglPred is correct for %p
969       // (info2 and info1 respectively). After the merge and the deletion of the
970       // LVI info1 for SinglePred. We have the following code:
971       // BB: <LVI info2 for %p val>
972       // %y = use of %p
973       // call @exit()
974       // assume(%p)
975       // %x = use of %p <-- LVI info2 is correct from here onwards.
976       // br label exit
977       // LVI info2 for BB is incorrect at the beginning of BB.
978 
979       // Invalidate LVI information for BB if the LVI is not provably true for
980       // all of BB.
981       if (any_of(*BB, [](Instruction &I) {
982             return !isGuaranteedToTransferExecutionToSuccessor(&I);
983           }))
984         LVI->eraseBlock(BB);
985       return true;
986     }
987   }
988 
989   if (TryToUnfoldSelectInCurrBB(BB))
990     return true;
991 
992   // Look if we can propagate guards to predecessors.
993   if (HasGuards && ProcessGuards(BB))
994     return true;
995 
996   // What kind of constant we're looking for.
997   ConstantPreference Preference = WantInteger;
998 
999   // Look to see if the terminator is a conditional branch, switch or indirect
1000   // branch, if not we can't thread it.
1001   Value *Condition;
1002   Instruction *Terminator = BB->getTerminator();
1003   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1004     // Can't thread an unconditional jump.
1005     if (BI->isUnconditional()) return false;
1006     Condition = BI->getCondition();
1007   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1008     Condition = SI->getCondition();
1009   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1010     // Can't thread indirect branch with no successors.
1011     if (IB->getNumSuccessors() == 0) return false;
1012     Condition = IB->getAddress()->stripPointerCasts();
1013     Preference = WantBlockAddress;
1014   } else {
1015     return false; // Must be an invoke.
1016   }
1017 
1018   // Run constant folding to see if we can reduce the condition to a simple
1019   // constant.
1020   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1021     Value *SimpleVal =
1022         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1023     if (SimpleVal) {
1024       I->replaceAllUsesWith(SimpleVal);
1025       if (isInstructionTriviallyDead(I, TLI))
1026         I->eraseFromParent();
1027       Condition = SimpleVal;
1028     }
1029   }
1030 
1031   // If the terminator is branching on an undef, we can pick any of the
1032   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1033   if (isa<UndefValue>(Condition)) {
1034     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1035 
1036     // Fold the branch/switch.
1037     TerminatorInst *BBTerm = BB->getTerminator();
1038     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1039       if (i == BestSucc) continue;
1040       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
1041     }
1042 
1043     DEBUG(dbgs() << "  In block '" << BB->getName()
1044           << "' folding undef terminator: " << *BBTerm << '\n');
1045     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1046     BBTerm->eraseFromParent();
1047     return true;
1048   }
1049 
1050   // If the terminator of this block is branching on a constant, simplify the
1051   // terminator to an unconditional branch.  This can occur due to threading in
1052   // other blocks.
1053   if (getKnownConstant(Condition, Preference)) {
1054     DEBUG(dbgs() << "  In block '" << BB->getName()
1055           << "' folding terminator: " << *BB->getTerminator() << '\n');
1056     ++NumFolds;
1057     ConstantFoldTerminator(BB, true);
1058     return true;
1059   }
1060 
1061   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1062 
1063   // All the rest of our checks depend on the condition being an instruction.
1064   if (!CondInst) {
1065     // FIXME: Unify this with code below.
1066     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1067       return true;
1068     return false;
1069   }
1070 
1071   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1072     // If we're branching on a conditional, LVI might be able to determine
1073     // it's value at the branch instruction.  We only handle comparisons
1074     // against a constant at this time.
1075     // TODO: This should be extended to handle switches as well.
1076     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1077     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1078     if (CondBr && CondConst) {
1079       // We should have returned as soon as we turn a conditional branch to
1080       // unconditional. Because its no longer interesting as far as jump
1081       // threading is concerned.
1082       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1083 
1084       LazyValueInfo::Tristate Ret =
1085         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1086                             CondConst, CondBr);
1087       if (Ret != LazyValueInfo::Unknown) {
1088         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1089         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1090         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
1091         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1092         CondBr->eraseFromParent();
1093         if (CondCmp->use_empty())
1094           CondCmp->eraseFromParent();
1095         // We can safely replace *some* uses of the CondInst if it has
1096         // exactly one value as returned by LVI. RAUW is incorrect in the
1097         // presence of guards and assumes, that have the `Cond` as the use. This
1098         // is because we use the guards/assume to reason about the `Cond` value
1099         // at the end of block, but RAUW unconditionally replaces all uses
1100         // including the guards/assumes themselves and the uses before the
1101         // guard/assume.
1102         else if (CondCmp->getParent() == BB) {
1103           auto *CI = Ret == LazyValueInfo::True ?
1104             ConstantInt::getTrue(CondCmp->getType()) :
1105             ConstantInt::getFalse(CondCmp->getType());
1106           ReplaceFoldableUses(CondCmp, CI);
1107         }
1108         return true;
1109       }
1110 
1111       // We did not manage to simplify this branch, try to see whether
1112       // CondCmp depends on a known phi-select pattern.
1113       if (TryToUnfoldSelect(CondCmp, BB))
1114         return true;
1115     }
1116   }
1117 
1118   // Check for some cases that are worth simplifying.  Right now we want to look
1119   // for loads that are used by a switch or by the condition for the branch.  If
1120   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1121   // which can then be used to thread the values.
1122   Value *SimplifyValue = CondInst;
1123   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1124     if (isa<Constant>(CondCmp->getOperand(1)))
1125       SimplifyValue = CondCmp->getOperand(0);
1126 
1127   // TODO: There are other places where load PRE would be profitable, such as
1128   // more complex comparisons.
1129   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
1130     if (SimplifyPartiallyRedundantLoad(LI))
1131       return true;
1132 
1133   // Before threading, try to propagate profile data backwards:
1134   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1135     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1136       updatePredecessorProfileMetadata(PN, BB);
1137 
1138   // Handle a variety of cases where we are branching on something derived from
1139   // a PHI node in the current block.  If we can prove that any predecessors
1140   // compute a predictable value based on a PHI node, thread those predecessors.
1141   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1142     return true;
1143 
1144   // If this is an otherwise-unfoldable branch on a phi node in the current
1145   // block, see if we can simplify.
1146   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1147     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1148       return ProcessBranchOnPHI(PN);
1149 
1150   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1151   if (CondInst->getOpcode() == Instruction::Xor &&
1152       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1153     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1154 
1155   // Search for a stronger dominating condition that can be used to simplify a
1156   // conditional branch leaving BB.
1157   if (ProcessImpliedCondition(BB))
1158     return true;
1159 
1160   return false;
1161 }
1162 
1163 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1164   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1165   if (!BI || !BI->isConditional())
1166     return false;
1167 
1168   Value *Cond = BI->getCondition();
1169   BasicBlock *CurrentBB = BB;
1170   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1171   unsigned Iter = 0;
1172 
1173   auto &DL = BB->getModule()->getDataLayout();
1174 
1175   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1176     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1177     if (!PBI || !PBI->isConditional())
1178       return false;
1179     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1180       return false;
1181 
1182     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1183     Optional<bool> Implication =
1184         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1185     if (Implication) {
1186       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
1187       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
1188       BI->eraseFromParent();
1189       return true;
1190     }
1191     CurrentBB = CurrentPred;
1192     CurrentPred = CurrentBB->getSinglePredecessor();
1193   }
1194 
1195   return false;
1196 }
1197 
1198 /// Return true if Op is an instruction defined in the given block.
1199 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1200   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1201     if (OpInst->getParent() == BB)
1202       return true;
1203   return false;
1204 }
1205 
1206 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
1207 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
1208 /// important optimization that encourages jump threading, and needs to be run
1209 /// interlaced with other jump threading tasks.
1210 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
1211   // Don't hack volatile and ordered loads.
1212   if (!LI->isUnordered()) return false;
1213 
1214   // If the load is defined in a block with exactly one predecessor, it can't be
1215   // partially redundant.
1216   BasicBlock *LoadBB = LI->getParent();
1217   if (LoadBB->getSinglePredecessor())
1218     return false;
1219 
1220   // If the load is defined in an EH pad, it can't be partially redundant,
1221   // because the edges between the invoke and the EH pad cannot have other
1222   // instructions between them.
1223   if (LoadBB->isEHPad())
1224     return false;
1225 
1226   Value *LoadedPtr = LI->getOperand(0);
1227 
1228   // If the loaded operand is defined in the LoadBB and its not a phi,
1229   // it can't be available in predecessors.
1230   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1231     return false;
1232 
1233   // Scan a few instructions up from the load, to see if it is obviously live at
1234   // the entry to its block.
1235   BasicBlock::iterator BBIt(LI);
1236   bool IsLoadCSE;
1237   if (Value *AvailableVal = FindAvailableLoadedValue(
1238           LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1239     // If the value of the load is locally available within the block, just use
1240     // it.  This frequently occurs for reg2mem'd allocas.
1241 
1242     if (IsLoadCSE) {
1243       LoadInst *NLI = cast<LoadInst>(AvailableVal);
1244       combineMetadataForCSE(NLI, LI);
1245     };
1246 
1247     // If the returned value is the load itself, replace with an undef. This can
1248     // only happen in dead loops.
1249     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
1250     if (AvailableVal->getType() != LI->getType())
1251       AvailableVal =
1252           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
1253     LI->replaceAllUsesWith(AvailableVal);
1254     LI->eraseFromParent();
1255     return true;
1256   }
1257 
1258   // Otherwise, if we scanned the whole block and got to the top of the block,
1259   // we know the block is locally transparent to the load.  If not, something
1260   // might clobber its value.
1261   if (BBIt != LoadBB->begin())
1262     return false;
1263 
1264   // If all of the loads and stores that feed the value have the same AA tags,
1265   // then we can propagate them onto any newly inserted loads.
1266   AAMDNodes AATags;
1267   LI->getAAMetadata(AATags);
1268 
1269   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1270 
1271   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1272 
1273   AvailablePredsTy AvailablePreds;
1274   BasicBlock *OneUnavailablePred = nullptr;
1275   SmallVector<LoadInst*, 8> CSELoads;
1276 
1277   // If we got here, the loaded value is transparent through to the start of the
1278   // block.  Check to see if it is available in any of the predecessor blocks.
1279   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1280     // If we already scanned this predecessor, skip it.
1281     if (!PredsScanned.insert(PredBB).second)
1282       continue;
1283 
1284     BBIt = PredBB->end();
1285     unsigned NumScanedInst = 0;
1286     Value *PredAvailable = nullptr;
1287     // NOTE: We don't CSE load that is volatile or anything stronger than
1288     // unordered, that should have been checked when we entered the function.
1289     assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads");
1290     // If this is a load on a phi pointer, phi-translate it and search
1291     // for available load/store to the pointer in predecessors.
1292     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1293     PredAvailable = FindAvailablePtrLoadStore(
1294         Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1295         AA, &IsLoadCSE, &NumScanedInst);
1296 
1297     // If PredBB has a single predecessor, continue scanning through the
1298     // single precessor.
1299     BasicBlock *SinglePredBB = PredBB;
1300     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1301            NumScanedInst < DefMaxInstsToScan) {
1302       SinglePredBB = SinglePredBB->getSinglePredecessor();
1303       if (SinglePredBB) {
1304         BBIt = SinglePredBB->end();
1305         PredAvailable = FindAvailablePtrLoadStore(
1306             Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt,
1307             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1308             &NumScanedInst);
1309       }
1310     }
1311 
1312     if (!PredAvailable) {
1313       OneUnavailablePred = PredBB;
1314       continue;
1315     }
1316 
1317     if (IsLoadCSE)
1318       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1319 
1320     // If so, this load is partially redundant.  Remember this info so that we
1321     // can create a PHI node.
1322     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1323   }
1324 
1325   // If the loaded value isn't available in any predecessor, it isn't partially
1326   // redundant.
1327   if (AvailablePreds.empty()) return false;
1328 
1329   // Okay, the loaded value is available in at least one (and maybe all!)
1330   // predecessors.  If the value is unavailable in more than one unique
1331   // predecessor, we want to insert a merge block for those common predecessors.
1332   // This ensures that we only have to insert one reload, thus not increasing
1333   // code size.
1334   BasicBlock *UnavailablePred = nullptr;
1335 
1336   // If the value is unavailable in one of predecessors, we will end up
1337   // inserting a new instruction into them. It is only valid if all the
1338   // instructions before LI are guaranteed to pass execution to its successor,
1339   // or if LI is safe to speculate.
1340   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1341   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1342   // It requires domination tree analysis, so for this simple case it is an
1343   // overkill.
1344   if (PredsScanned.size() != AvailablePreds.size() &&
1345       !isSafeToSpeculativelyExecute(LI))
1346     for (auto I = LoadBB->begin(); &*I != LI; ++I)
1347       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1348         return false;
1349 
1350   // If there is exactly one predecessor where the value is unavailable, the
1351   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1352   // unconditional branch, we know that it isn't a critical edge.
1353   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1354       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1355     UnavailablePred = OneUnavailablePred;
1356   } else if (PredsScanned.size() != AvailablePreds.size()) {
1357     // Otherwise, we had multiple unavailable predecessors or we had a critical
1358     // edge from the one.
1359     SmallVector<BasicBlock*, 8> PredsToSplit;
1360     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1361 
1362     for (const auto &AvailablePred : AvailablePreds)
1363       AvailablePredSet.insert(AvailablePred.first);
1364 
1365     // Add all the unavailable predecessors to the PredsToSplit list.
1366     for (BasicBlock *P : predecessors(LoadBB)) {
1367       // If the predecessor is an indirect goto, we can't split the edge.
1368       if (isa<IndirectBrInst>(P->getTerminator()))
1369         return false;
1370 
1371       if (!AvailablePredSet.count(P))
1372         PredsToSplit.push_back(P);
1373     }
1374 
1375     // Split them out to their own block.
1376     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1377   }
1378 
1379   // If the value isn't available in all predecessors, then there will be
1380   // exactly one where it isn't available.  Insert a load on that edge and add
1381   // it to the AvailablePreds list.
1382   if (UnavailablePred) {
1383     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1384            "Can't handle critical edge here!");
1385     LoadInst *NewVal = new LoadInst(
1386         LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1387         LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(),
1388         LI->getSyncScopeID(), UnavailablePred->getTerminator());
1389     NewVal->setDebugLoc(LI->getDebugLoc());
1390     if (AATags)
1391       NewVal->setAAMetadata(AATags);
1392 
1393     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1394   }
1395 
1396   // Now we know that each predecessor of this block has a value in
1397   // AvailablePreds, sort them for efficient access as we're walking the preds.
1398   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1399 
1400   // Create a PHI node at the start of the block for the PRE'd load value.
1401   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1402   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1403                                 &LoadBB->front());
1404   PN->takeName(LI);
1405   PN->setDebugLoc(LI->getDebugLoc());
1406 
1407   // Insert new entries into the PHI for each predecessor.  A single block may
1408   // have multiple entries here.
1409   for (pred_iterator PI = PB; PI != PE; ++PI) {
1410     BasicBlock *P = *PI;
1411     AvailablePredsTy::iterator I =
1412       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1413                        std::make_pair(P, (Value*)nullptr));
1414 
1415     assert(I != AvailablePreds.end() && I->first == P &&
1416            "Didn't find entry for predecessor!");
1417 
1418     // If we have an available predecessor but it requires casting, insert the
1419     // cast in the predecessor and use the cast. Note that we have to update the
1420     // AvailablePreds vector as we go so that all of the PHI entries for this
1421     // predecessor use the same bitcast.
1422     Value *&PredV = I->second;
1423     if (PredV->getType() != LI->getType())
1424       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1425                                                P->getTerminator());
1426 
1427     PN->addIncoming(PredV, I->first);
1428   }
1429 
1430   for (LoadInst *PredLI : CSELoads) {
1431     combineMetadataForCSE(PredLI, LI);
1432   }
1433 
1434   LI->replaceAllUsesWith(PN);
1435   LI->eraseFromParent();
1436 
1437   return true;
1438 }
1439 
1440 /// FindMostPopularDest - The specified list contains multiple possible
1441 /// threadable destinations.  Pick the one that occurs the most frequently in
1442 /// the list.
1443 static BasicBlock *
1444 FindMostPopularDest(BasicBlock *BB,
1445                     const SmallVectorImpl<std::pair<BasicBlock *,
1446                                           BasicBlock *>> &PredToDestList) {
1447   assert(!PredToDestList.empty());
1448 
1449   // Determine popularity.  If there are multiple possible destinations, we
1450   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1451   // blocks with known and real destinations to threading undef.  We'll handle
1452   // them later if interesting.
1453   DenseMap<BasicBlock*, unsigned> DestPopularity;
1454   for (const auto &PredToDest : PredToDestList)
1455     if (PredToDest.second)
1456       DestPopularity[PredToDest.second]++;
1457 
1458   // Find the most popular dest.
1459   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1460   BasicBlock *MostPopularDest = DPI->first;
1461   unsigned Popularity = DPI->second;
1462   SmallVector<BasicBlock*, 4> SamePopularity;
1463 
1464   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1465     // If the popularity of this entry isn't higher than the popularity we've
1466     // seen so far, ignore it.
1467     if (DPI->second < Popularity)
1468       ; // ignore.
1469     else if (DPI->second == Popularity) {
1470       // If it is the same as what we've seen so far, keep track of it.
1471       SamePopularity.push_back(DPI->first);
1472     } else {
1473       // If it is more popular, remember it.
1474       SamePopularity.clear();
1475       MostPopularDest = DPI->first;
1476       Popularity = DPI->second;
1477     }
1478   }
1479 
1480   // Okay, now we know the most popular destination.  If there is more than one
1481   // destination, we need to determine one.  This is arbitrary, but we need
1482   // to make a deterministic decision.  Pick the first one that appears in the
1483   // successor list.
1484   if (!SamePopularity.empty()) {
1485     SamePopularity.push_back(MostPopularDest);
1486     TerminatorInst *TI = BB->getTerminator();
1487     for (unsigned i = 0; ; ++i) {
1488       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1489 
1490       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1491         continue;
1492 
1493       MostPopularDest = TI->getSuccessor(i);
1494       break;
1495     }
1496   }
1497 
1498   // Okay, we have finally picked the most popular destination.
1499   return MostPopularDest;
1500 }
1501 
1502 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1503                                                ConstantPreference Preference,
1504                                                Instruction *CxtI) {
1505   // If threading this would thread across a loop header, don't even try to
1506   // thread the edge.
1507   if (LoopHeaders.count(BB))
1508     return false;
1509 
1510   PredValueInfoTy PredValues;
1511   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1512     return false;
1513 
1514   assert(!PredValues.empty() &&
1515          "ComputeValueKnownInPredecessors returned true with no values");
1516 
1517   DEBUG(dbgs() << "IN BB: " << *BB;
1518         for (const auto &PredValue : PredValues) {
1519           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1520             << *PredValue.first
1521             << " for pred '" << PredValue.second->getName() << "'.\n";
1522         });
1523 
1524   // Decide what we want to thread through.  Convert our list of known values to
1525   // a list of known destinations for each pred.  This also discards duplicate
1526   // predecessors and keeps track of the undefined inputs (which are represented
1527   // as a null dest in the PredToDestList).
1528   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1529   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1530 
1531   BasicBlock *OnlyDest = nullptr;
1532   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1533   Constant *OnlyVal = nullptr;
1534   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1535 
1536   unsigned PredWithKnownDest = 0;
1537   for (const auto &PredValue : PredValues) {
1538     BasicBlock *Pred = PredValue.second;
1539     if (!SeenPreds.insert(Pred).second)
1540       continue;  // Duplicate predecessor entry.
1541 
1542     Constant *Val = PredValue.first;
1543 
1544     BasicBlock *DestBB;
1545     if (isa<UndefValue>(Val))
1546       DestBB = nullptr;
1547     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1548       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1549       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1550     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1551       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1552       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1553     } else {
1554       assert(isa<IndirectBrInst>(BB->getTerminator())
1555               && "Unexpected terminator");
1556       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1557       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1558     }
1559 
1560     // If we have exactly one destination, remember it for efficiency below.
1561     if (PredToDestList.empty()) {
1562       OnlyDest = DestBB;
1563       OnlyVal = Val;
1564     } else {
1565       if (OnlyDest != DestBB)
1566         OnlyDest = MultipleDestSentinel;
1567       // It possible we have same destination, but different value, e.g. default
1568       // case in switchinst.
1569       if (Val != OnlyVal)
1570         OnlyVal = MultipleVal;
1571     }
1572 
1573     // We know where this predecessor is going.
1574     ++PredWithKnownDest;
1575 
1576     // If the predecessor ends with an indirect goto, we can't change its
1577     // destination.
1578     if (isa<IndirectBrInst>(Pred->getTerminator()))
1579       continue;
1580 
1581     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1582   }
1583 
1584   // If all edges were unthreadable, we fail.
1585   if (PredToDestList.empty())
1586     return false;
1587 
1588   // If all the predecessors go to a single known successor, we want to fold,
1589   // not thread. By doing so, we do not need to duplicate the current block and
1590   // also miss potential opportunities in case we dont/cant duplicate.
1591   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1592     if (PredWithKnownDest ==
1593         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1594       bool SeenFirstBranchToOnlyDest = false;
1595       for (BasicBlock *SuccBB : successors(BB)) {
1596         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest)
1597           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1598         else
1599           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1600       }
1601 
1602       // Finally update the terminator.
1603       TerminatorInst *Term = BB->getTerminator();
1604       BranchInst::Create(OnlyDest, Term);
1605       Term->eraseFromParent();
1606 
1607       // If the condition is now dead due to the removal of the old terminator,
1608       // erase it.
1609       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1610         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1611           CondInst->eraseFromParent();
1612         // We can safely replace *some* uses of the CondInst if it has
1613         // exactly one value as returned by LVI. RAUW is incorrect in the
1614         // presence of guards and assumes, that have the `Cond` as the use. This
1615         // is because we use the guards/assume to reason about the `Cond` value
1616         // at the end of block, but RAUW unconditionally replaces all uses
1617         // including the guards/assumes themselves and the uses before the
1618         // guard/assume.
1619         else if (OnlyVal && OnlyVal != MultipleVal &&
1620                  CondInst->getParent() == BB)
1621           ReplaceFoldableUses(CondInst, OnlyVal);
1622       }
1623       return true;
1624     }
1625   }
1626 
1627   // Determine which is the most common successor.  If we have many inputs and
1628   // this block is a switch, we want to start by threading the batch that goes
1629   // to the most popular destination first.  If we only know about one
1630   // threadable destination (the common case) we can avoid this.
1631   BasicBlock *MostPopularDest = OnlyDest;
1632 
1633   if (MostPopularDest == MultipleDestSentinel)
1634     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1635 
1636   // Now that we know what the most popular destination is, factor all
1637   // predecessors that will jump to it into a single predecessor.
1638   SmallVector<BasicBlock*, 16> PredsToFactor;
1639   for (const auto &PredToDest : PredToDestList)
1640     if (PredToDest.second == MostPopularDest) {
1641       BasicBlock *Pred = PredToDest.first;
1642 
1643       // This predecessor may be a switch or something else that has multiple
1644       // edges to the block.  Factor each of these edges by listing them
1645       // according to # occurrences in PredsToFactor.
1646       for (BasicBlock *Succ : successors(Pred))
1647         if (Succ == BB)
1648           PredsToFactor.push_back(Pred);
1649     }
1650 
1651   // If the threadable edges are branching on an undefined value, we get to pick
1652   // the destination that these predecessors should get to.
1653   if (!MostPopularDest)
1654     MostPopularDest = BB->getTerminator()->
1655                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1656 
1657   // Ok, try to thread it!
1658   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1659 }
1660 
1661 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1662 /// a PHI node in the current block.  See if there are any simplifications we
1663 /// can do based on inputs to the phi node.
1664 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1665   BasicBlock *BB = PN->getParent();
1666 
1667   // TODO: We could make use of this to do it once for blocks with common PHI
1668   // values.
1669   SmallVector<BasicBlock*, 1> PredBBs;
1670   PredBBs.resize(1);
1671 
1672   // If any of the predecessor blocks end in an unconditional branch, we can
1673   // *duplicate* the conditional branch into that block in order to further
1674   // encourage jump threading and to eliminate cases where we have branch on a
1675   // phi of an icmp (branch on icmp is much better).
1676   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1677     BasicBlock *PredBB = PN->getIncomingBlock(i);
1678     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1679       if (PredBr->isUnconditional()) {
1680         PredBBs[0] = PredBB;
1681         // Try to duplicate BB into PredBB.
1682         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1683           return true;
1684       }
1685   }
1686 
1687   return false;
1688 }
1689 
1690 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1691 /// a xor instruction in the current block.  See if there are any
1692 /// simplifications we can do based on inputs to the xor.
1693 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1694   BasicBlock *BB = BO->getParent();
1695 
1696   // If either the LHS or RHS of the xor is a constant, don't do this
1697   // optimization.
1698   if (isa<ConstantInt>(BO->getOperand(0)) ||
1699       isa<ConstantInt>(BO->getOperand(1)))
1700     return false;
1701 
1702   // If the first instruction in BB isn't a phi, we won't be able to infer
1703   // anything special about any particular predecessor.
1704   if (!isa<PHINode>(BB->front()))
1705     return false;
1706 
1707   // If this BB is a landing pad, we won't be able to split the edge into it.
1708   if (BB->isEHPad())
1709     return false;
1710 
1711   // If we have a xor as the branch input to this block, and we know that the
1712   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1713   // the condition into the predecessor and fix that value to true, saving some
1714   // logical ops on that path and encouraging other paths to simplify.
1715   //
1716   // This copies something like this:
1717   //
1718   //  BB:
1719   //    %X = phi i1 [1],  [%X']
1720   //    %Y = icmp eq i32 %A, %B
1721   //    %Z = xor i1 %X, %Y
1722   //    br i1 %Z, ...
1723   //
1724   // Into:
1725   //  BB':
1726   //    %Y = icmp ne i32 %A, %B
1727   //    br i1 %Y, ...
1728 
1729   PredValueInfoTy XorOpValues;
1730   bool isLHS = true;
1731   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1732                                        WantInteger, BO)) {
1733     assert(XorOpValues.empty());
1734     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1735                                          WantInteger, BO))
1736       return false;
1737     isLHS = false;
1738   }
1739 
1740   assert(!XorOpValues.empty() &&
1741          "ComputeValueKnownInPredecessors returned true with no values");
1742 
1743   // Scan the information to see which is most popular: true or false.  The
1744   // predecessors can be of the set true, false, or undef.
1745   unsigned NumTrue = 0, NumFalse = 0;
1746   for (const auto &XorOpValue : XorOpValues) {
1747     if (isa<UndefValue>(XorOpValue.first))
1748       // Ignore undefs for the count.
1749       continue;
1750     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1751       ++NumFalse;
1752     else
1753       ++NumTrue;
1754   }
1755 
1756   // Determine which value to split on, true, false, or undef if neither.
1757   ConstantInt *SplitVal = nullptr;
1758   if (NumTrue > NumFalse)
1759     SplitVal = ConstantInt::getTrue(BB->getContext());
1760   else if (NumTrue != 0 || NumFalse != 0)
1761     SplitVal = ConstantInt::getFalse(BB->getContext());
1762 
1763   // Collect all of the blocks that this can be folded into so that we can
1764   // factor this once and clone it once.
1765   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1766   for (const auto &XorOpValue : XorOpValues) {
1767     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1768       continue;
1769 
1770     BlocksToFoldInto.push_back(XorOpValue.second);
1771   }
1772 
1773   // If we inferred a value for all of the predecessors, then duplication won't
1774   // help us.  However, we can just replace the LHS or RHS with the constant.
1775   if (BlocksToFoldInto.size() ==
1776       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1777     if (!SplitVal) {
1778       // If all preds provide undef, just nuke the xor, because it is undef too.
1779       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1780       BO->eraseFromParent();
1781     } else if (SplitVal->isZero()) {
1782       // If all preds provide 0, replace the xor with the other input.
1783       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1784       BO->eraseFromParent();
1785     } else {
1786       // If all preds provide 1, set the computed value to 1.
1787       BO->setOperand(!isLHS, SplitVal);
1788     }
1789 
1790     return true;
1791   }
1792 
1793   // Try to duplicate BB into PredBB.
1794   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1795 }
1796 
1797 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1798 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1799 /// NewPred using the entries from OldPred (suitably mapped).
1800 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1801                                             BasicBlock *OldPred,
1802                                             BasicBlock *NewPred,
1803                                      DenseMap<Instruction*, Value*> &ValueMap) {
1804   for (BasicBlock::iterator PNI = PHIBB->begin();
1805        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1806     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1807     // DestBlock.
1808     Value *IV = PN->getIncomingValueForBlock(OldPred);
1809 
1810     // Remap the value if necessary.
1811     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1812       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1813       if (I != ValueMap.end())
1814         IV = I->second;
1815     }
1816 
1817     PN->addIncoming(IV, NewPred);
1818   }
1819 }
1820 
1821 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1822 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1823 /// across BB.  Transform the IR to reflect this change.
1824 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1825                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1826                                    BasicBlock *SuccBB) {
1827   // If threading to the same block as we come from, we would infinite loop.
1828   if (SuccBB == BB) {
1829     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1830           << "' - would thread to self!\n");
1831     return false;
1832   }
1833 
1834   // If threading this would thread across a loop header, don't thread the edge.
1835   // See the comments above FindLoopHeaders for justifications and caveats.
1836   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1837     DEBUG({
1838       bool BBIsHeader = LoopHeaders.count(BB);
1839       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1840       dbgs() << "  Not threading across "
1841           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1842           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1843           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1844     });
1845     return false;
1846   }
1847 
1848   unsigned JumpThreadCost =
1849       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1850   if (JumpThreadCost > BBDupThreshold) {
1851     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1852           << "' - Cost is too high: " << JumpThreadCost << "\n");
1853     return false;
1854   }
1855 
1856   // And finally, do it!  Start by factoring the predecessors if needed.
1857   BasicBlock *PredBB;
1858   if (PredBBs.size() == 1)
1859     PredBB = PredBBs[0];
1860   else {
1861     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1862           << " common predecessors.\n");
1863     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1864   }
1865 
1866   // And finally, do it!
1867   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1868         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1869         << ", across block:\n    "
1870         << *BB << "\n");
1871 
1872   LVI->threadEdge(PredBB, BB, SuccBB);
1873 
1874   // We are going to have to map operands from the original BB block to the new
1875   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1876   // account for entry from PredBB.
1877   DenseMap<Instruction*, Value*> ValueMapping;
1878 
1879   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1880                                          BB->getName()+".thread",
1881                                          BB->getParent(), BB);
1882   NewBB->moveAfter(PredBB);
1883 
1884   // Set the block frequency of NewBB.
1885   if (HasProfileData) {
1886     auto NewBBFreq =
1887         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1888     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1889   }
1890 
1891   BasicBlock::iterator BI = BB->begin();
1892   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1893     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1894 
1895   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1896   // mapping and using it to remap operands in the cloned instructions.
1897   for (; !isa<TerminatorInst>(BI); ++BI) {
1898     Instruction *New = BI->clone();
1899     New->setName(BI->getName());
1900     NewBB->getInstList().push_back(New);
1901     ValueMapping[&*BI] = New;
1902 
1903     // Remap operands to patch up intra-block references.
1904     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1905       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1906         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1907         if (I != ValueMapping.end())
1908           New->setOperand(i, I->second);
1909       }
1910   }
1911 
1912   // We didn't copy the terminator from BB over to NewBB, because there is now
1913   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1914   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1915   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1916 
1917   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1918   // PHI nodes for NewBB now.
1919   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1920 
1921   // If there were values defined in BB that are used outside the block, then we
1922   // now have to update all uses of the value to use either the original value,
1923   // the cloned value, or some PHI derived value.  This can require arbitrary
1924   // PHI insertion, of which we are prepared to do, clean these up now.
1925   SSAUpdater SSAUpdate;
1926   SmallVector<Use*, 16> UsesToRename;
1927   for (Instruction &I : *BB) {
1928     // Scan all uses of this instruction to see if it is used outside of its
1929     // block, and if so, record them in UsesToRename.
1930     for (Use &U : I.uses()) {
1931       Instruction *User = cast<Instruction>(U.getUser());
1932       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1933         if (UserPN->getIncomingBlock(U) == BB)
1934           continue;
1935       } else if (User->getParent() == BB)
1936         continue;
1937 
1938       UsesToRename.push_back(&U);
1939     }
1940 
1941     // If there are no uses outside the block, we're done with this instruction.
1942     if (UsesToRename.empty())
1943       continue;
1944 
1945     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1946 
1947     // We found a use of I outside of BB.  Rename all uses of I that are outside
1948     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1949     // with the two values we know.
1950     SSAUpdate.Initialize(I.getType(), I.getName());
1951     SSAUpdate.AddAvailableValue(BB, &I);
1952     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1953 
1954     while (!UsesToRename.empty())
1955       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1956     DEBUG(dbgs() << "\n");
1957   }
1958 
1959   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1960   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1961   // us to simplify any PHI nodes in BB.
1962   TerminatorInst *PredTerm = PredBB->getTerminator();
1963   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1964     if (PredTerm->getSuccessor(i) == BB) {
1965       BB->removePredecessor(PredBB, true);
1966       PredTerm->setSuccessor(i, NewBB);
1967     }
1968 
1969   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1970   // over the new instructions and zap any that are constants or dead.  This
1971   // frequently happens because of phi translation.
1972   SimplifyInstructionsInBlock(NewBB, TLI);
1973 
1974   // Update the edge weight from BB to SuccBB, which should be less than before.
1975   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1976 
1977   // Threaded an edge!
1978   ++NumThreads;
1979   return true;
1980 }
1981 
1982 /// Create a new basic block that will be the predecessor of BB and successor of
1983 /// all blocks in Preds. When profile data is available, update the frequency of
1984 /// this new block.
1985 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1986                                                ArrayRef<BasicBlock *> Preds,
1987                                                const char *Suffix) {
1988   // Collect the frequencies of all predecessors of BB, which will be used to
1989   // update the edge weight on BB->SuccBB.
1990   BlockFrequency PredBBFreq(0);
1991   if (HasProfileData)
1992     for (auto Pred : Preds)
1993       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1994 
1995   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1996 
1997   // Set the block frequency of the newly created PredBB, which is the sum of
1998   // frequencies of Preds.
1999   if (HasProfileData)
2000     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
2001   return PredBB;
2002 }
2003 
2004 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2005   const TerminatorInst *TI = BB->getTerminator();
2006   assert(TI->getNumSuccessors() > 1 && "not a split");
2007 
2008   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2009   if (!WeightsNode)
2010     return false;
2011 
2012   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2013   if (MDName->getString() != "branch_weights")
2014     return false;
2015 
2016   // Ensure there are weights for all of the successors. Note that the first
2017   // operand to the metadata node is a name, not a weight.
2018   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2019 }
2020 
2021 /// Update the block frequency of BB and branch weight and the metadata on the
2022 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2023 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2024 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2025                                                      BasicBlock *BB,
2026                                                      BasicBlock *NewBB,
2027                                                      BasicBlock *SuccBB) {
2028   if (!HasProfileData)
2029     return;
2030 
2031   assert(BFI && BPI && "BFI & BPI should have been created here");
2032 
2033   // As the edge from PredBB to BB is deleted, we have to update the block
2034   // frequency of BB.
2035   auto BBOrigFreq = BFI->getBlockFreq(BB);
2036   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2037   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2038   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2039   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2040 
2041   // Collect updated outgoing edges' frequencies from BB and use them to update
2042   // edge probabilities.
2043   SmallVector<uint64_t, 4> BBSuccFreq;
2044   for (BasicBlock *Succ : successors(BB)) {
2045     auto SuccFreq = (Succ == SuccBB)
2046                         ? BB2SuccBBFreq - NewBBFreq
2047                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2048     BBSuccFreq.push_back(SuccFreq.getFrequency());
2049   }
2050 
2051   uint64_t MaxBBSuccFreq =
2052       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2053 
2054   SmallVector<BranchProbability, 4> BBSuccProbs;
2055   if (MaxBBSuccFreq == 0)
2056     BBSuccProbs.assign(BBSuccFreq.size(),
2057                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2058   else {
2059     for (uint64_t Freq : BBSuccFreq)
2060       BBSuccProbs.push_back(
2061           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2062     // Normalize edge probabilities so that they sum up to one.
2063     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2064                                               BBSuccProbs.end());
2065   }
2066 
2067   // Update edge probabilities in BPI.
2068   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2069     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2070 
2071   // Update the profile metadata as well.
2072   //
2073   // Don't do this if the profile of the transformed blocks was statically
2074   // estimated.  (This could occur despite the function having an entry
2075   // frequency in completely cold parts of the CFG.)
2076   //
2077   // In this case we don't want to suggest to subsequent passes that the
2078   // calculated weights are fully consistent.  Consider this graph:
2079   //
2080   //                 check_1
2081   //             50% /  |
2082   //             eq_1   | 50%
2083   //                 \  |
2084   //                 check_2
2085   //             50% /  |
2086   //             eq_2   | 50%
2087   //                 \  |
2088   //                 check_3
2089   //             50% /  |
2090   //             eq_3   | 50%
2091   //                 \  |
2092   //
2093   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2094   // the overall probabilities are inconsistent; the total probability that the
2095   // value is either 1, 2 or 3 is 150%.
2096   //
2097   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2098   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2099   // the loop exit edge.  Then based solely on static estimation we would assume
2100   // the loop was extremely hot.
2101   //
2102   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2103   // shouldn't make edges extremely likely or unlikely based solely on static
2104   // estimation.
2105   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2106     SmallVector<uint32_t, 4> Weights;
2107     for (auto Prob : BBSuccProbs)
2108       Weights.push_back(Prob.getNumerator());
2109 
2110     auto TI = BB->getTerminator();
2111     TI->setMetadata(
2112         LLVMContext::MD_prof,
2113         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2114   }
2115 }
2116 
2117 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2118 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2119 /// If we can duplicate the contents of BB up into PredBB do so now, this
2120 /// improves the odds that the branch will be on an analyzable instruction like
2121 /// a compare.
2122 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2123     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2124   assert(!PredBBs.empty() && "Can't handle an empty set");
2125 
2126   // If BB is a loop header, then duplicating this block outside the loop would
2127   // cause us to transform this into an irreducible loop, don't do this.
2128   // See the comments above FindLoopHeaders for justifications and caveats.
2129   if (LoopHeaders.count(BB)) {
2130     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2131           << "' into predecessor block '" << PredBBs[0]->getName()
2132           << "' - it might create an irreducible loop!\n");
2133     return false;
2134   }
2135 
2136   unsigned DuplicationCost =
2137       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2138   if (DuplicationCost > BBDupThreshold) {
2139     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2140           << "' - Cost is too high: " << DuplicationCost << "\n");
2141     return false;
2142   }
2143 
2144   // And finally, do it!  Start by factoring the predecessors if needed.
2145   BasicBlock *PredBB;
2146   if (PredBBs.size() == 1)
2147     PredBB = PredBBs[0];
2148   else {
2149     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2150           << " common predecessors.\n");
2151     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2152   }
2153 
2154   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2155   // of PredBB.
2156   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
2157         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
2158         << DuplicationCost << " block is:" << *BB << "\n");
2159 
2160   // Unless PredBB ends with an unconditional branch, split the edge so that we
2161   // can just clone the bits from BB into the end of the new PredBB.
2162   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2163 
2164   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2165     PredBB = SplitEdge(PredBB, BB);
2166     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2167   }
2168 
2169   // We are going to have to map operands from the original BB block into the
2170   // PredBB block.  Evaluate PHI nodes in BB.
2171   DenseMap<Instruction*, Value*> ValueMapping;
2172 
2173   BasicBlock::iterator BI = BB->begin();
2174   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2175     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2176   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2177   // mapping and using it to remap operands in the cloned instructions.
2178   for (; BI != BB->end(); ++BI) {
2179     Instruction *New = BI->clone();
2180 
2181     // Remap operands to patch up intra-block references.
2182     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2183       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2184         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2185         if (I != ValueMapping.end())
2186           New->setOperand(i, I->second);
2187       }
2188 
2189     // If this instruction can be simplified after the operands are updated,
2190     // just use the simplified value instead.  This frequently happens due to
2191     // phi translation.
2192     if (Value *IV = SimplifyInstruction(
2193             New,
2194             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2195       ValueMapping[&*BI] = IV;
2196       if (!New->mayHaveSideEffects()) {
2197         New->deleteValue();
2198         New = nullptr;
2199       }
2200     } else {
2201       ValueMapping[&*BI] = New;
2202     }
2203     if (New) {
2204       // Otherwise, insert the new instruction into the block.
2205       New->setName(BI->getName());
2206       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2207     }
2208   }
2209 
2210   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2211   // add entries to the PHI nodes for branch from PredBB now.
2212   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2213   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2214                                   ValueMapping);
2215   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2216                                   ValueMapping);
2217 
2218   // If there were values defined in BB that are used outside the block, then we
2219   // now have to update all uses of the value to use either the original value,
2220   // the cloned value, or some PHI derived value.  This can require arbitrary
2221   // PHI insertion, of which we are prepared to do, clean these up now.
2222   SSAUpdater SSAUpdate;
2223   SmallVector<Use*, 16> UsesToRename;
2224   for (Instruction &I : *BB) {
2225     // Scan all uses of this instruction to see if it is used outside of its
2226     // block, and if so, record them in UsesToRename.
2227     for (Use &U : I.uses()) {
2228       Instruction *User = cast<Instruction>(U.getUser());
2229       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2230         if (UserPN->getIncomingBlock(U) == BB)
2231           continue;
2232       } else if (User->getParent() == BB)
2233         continue;
2234 
2235       UsesToRename.push_back(&U);
2236     }
2237 
2238     // If there are no uses outside the block, we're done with this instruction.
2239     if (UsesToRename.empty())
2240       continue;
2241 
2242     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2243 
2244     // We found a use of I outside of BB.  Rename all uses of I that are outside
2245     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2246     // with the two values we know.
2247     SSAUpdate.Initialize(I.getType(), I.getName());
2248     SSAUpdate.AddAvailableValue(BB, &I);
2249     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2250 
2251     while (!UsesToRename.empty())
2252       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2253     DEBUG(dbgs() << "\n");
2254   }
2255 
2256   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2257   // that we nuked.
2258   BB->removePredecessor(PredBB, true);
2259 
2260   // Remove the unconditional branch at the end of the PredBB block.
2261   OldPredBranch->eraseFromParent();
2262 
2263   ++NumDupes;
2264   return true;
2265 }
2266 
2267 /// TryToUnfoldSelect - Look for blocks of the form
2268 /// bb1:
2269 ///   %a = select
2270 ///   br bb2
2271 ///
2272 /// bb2:
2273 ///   %p = phi [%a, %bb1] ...
2274 ///   %c = icmp %p
2275 ///   br i1 %c
2276 ///
2277 /// And expand the select into a branch structure if one of its arms allows %c
2278 /// to be folded. This later enables threading from bb1 over bb2.
2279 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2280   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2281   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2282   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2283 
2284   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2285       CondLHS->getParent() != BB)
2286     return false;
2287 
2288   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2289     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2290     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2291 
2292     // Look if one of the incoming values is a select in the corresponding
2293     // predecessor.
2294     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2295       continue;
2296 
2297     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2298     if (!PredTerm || !PredTerm->isUnconditional())
2299       continue;
2300 
2301     // Now check if one of the select values would allow us to constant fold the
2302     // terminator in BB. We don't do the transform if both sides fold, those
2303     // cases will be threaded in any case.
2304     LazyValueInfo::Tristate LHSFolds =
2305         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2306                                 CondRHS, Pred, BB, CondCmp);
2307     LazyValueInfo::Tristate RHSFolds =
2308         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2309                                 CondRHS, Pred, BB, CondCmp);
2310     if ((LHSFolds != LazyValueInfo::Unknown ||
2311          RHSFolds != LazyValueInfo::Unknown) &&
2312         LHSFolds != RHSFolds) {
2313       // Expand the select.
2314       //
2315       // Pred --
2316       //  |    v
2317       //  |  NewBB
2318       //  |    |
2319       //  |-----
2320       //  v
2321       // BB
2322       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2323                                              BB->getParent(), BB);
2324       // Move the unconditional branch to NewBB.
2325       PredTerm->removeFromParent();
2326       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2327       // Create a conditional branch and update PHI nodes.
2328       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2329       CondLHS->setIncomingValue(I, SI->getFalseValue());
2330       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2331       // The select is now dead.
2332       SI->eraseFromParent();
2333 
2334       // Update any other PHI nodes in BB.
2335       for (BasicBlock::iterator BI = BB->begin();
2336            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2337         if (Phi != CondLHS)
2338           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2339       return true;
2340     }
2341   }
2342   return false;
2343 }
2344 
2345 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2346 /// same BB in the form
2347 /// bb:
2348 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2349 ///   %s = select %p, trueval, falseval
2350 ///
2351 /// or
2352 ///
2353 /// bb:
2354 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2355 ///   %c = cmp %p, 0
2356 ///   %s = select %c, trueval, falseval
2357 ///
2358 /// And expand the select into a branch structure. This later enables
2359 /// jump-threading over bb in this pass.
2360 ///
2361 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2362 /// select if the associated PHI has at least one constant.  If the unfolded
2363 /// select is not jump-threaded, it will be folded again in the later
2364 /// optimizations.
2365 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2366   // If threading this would thread across a loop header, don't thread the edge.
2367   // See the comments above FindLoopHeaders for justifications and caveats.
2368   if (LoopHeaders.count(BB))
2369     return false;
2370 
2371   for (BasicBlock::iterator BI = BB->begin();
2372        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2373     // Look for a Phi having at least one constant incoming value.
2374     if (llvm::all_of(PN->incoming_values(),
2375                      [](Value *V) { return !isa<ConstantInt>(V); }))
2376       continue;
2377 
2378     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2379       // Check if SI is in BB and use V as condition.
2380       if (SI->getParent() != BB)
2381         return false;
2382       Value *Cond = SI->getCondition();
2383       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2384     };
2385 
2386     SelectInst *SI = nullptr;
2387     for (Use &U : PN->uses()) {
2388       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2389         // Look for a ICmp in BB that compares PN with a constant and is the
2390         // condition of a Select.
2391         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2392             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2393           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2394             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2395               SI = SelectI;
2396               break;
2397             }
2398       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2399         // Look for a Select in BB that uses PN as condtion.
2400         if (isUnfoldCandidate(SelectI, U.get())) {
2401           SI = SelectI;
2402           break;
2403         }
2404       }
2405     }
2406 
2407     if (!SI)
2408       continue;
2409     // Expand the select.
2410     TerminatorInst *Term =
2411         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2412     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2413     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2414     NewPN->addIncoming(SI->getFalseValue(), BB);
2415     SI->replaceAllUsesWith(NewPN);
2416     SI->eraseFromParent();
2417     return true;
2418   }
2419   return false;
2420 }
2421 
2422 /// Try to propagate a guard from the current BB into one of its predecessors
2423 /// in case if another branch of execution implies that the condition of this
2424 /// guard is always true. Currently we only process the simplest case that
2425 /// looks like:
2426 ///
2427 /// Start:
2428 ///   %cond = ...
2429 ///   br i1 %cond, label %T1, label %F1
2430 /// T1:
2431 ///   br label %Merge
2432 /// F1:
2433 ///   br label %Merge
2434 /// Merge:
2435 ///   %condGuard = ...
2436 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2437 ///
2438 /// And cond either implies condGuard or !condGuard. In this case all the
2439 /// instructions before the guard can be duplicated in both branches, and the
2440 /// guard is then threaded to one of them.
2441 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2442   using namespace PatternMatch;
2443 
2444   // We only want to deal with two predecessors.
2445   BasicBlock *Pred1, *Pred2;
2446   auto PI = pred_begin(BB), PE = pred_end(BB);
2447   if (PI == PE)
2448     return false;
2449   Pred1 = *PI++;
2450   if (PI == PE)
2451     return false;
2452   Pred2 = *PI++;
2453   if (PI != PE)
2454     return false;
2455   if (Pred1 == Pred2)
2456     return false;
2457 
2458   // Try to thread one of the guards of the block.
2459   // TODO: Look up deeper than to immediate predecessor?
2460   auto *Parent = Pred1->getSinglePredecessor();
2461   if (!Parent || Parent != Pred2->getSinglePredecessor())
2462     return false;
2463 
2464   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2465     for (auto &I : *BB)
2466       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2467         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2468           return true;
2469 
2470   return false;
2471 }
2472 
2473 /// Try to propagate the guard from BB which is the lower block of a diamond
2474 /// to one of its branches, in case if diamond's condition implies guard's
2475 /// condition.
2476 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2477                                     BranchInst *BI) {
2478   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2479   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2480   Value *GuardCond = Guard->getArgOperand(0);
2481   Value *BranchCond = BI->getCondition();
2482   BasicBlock *TrueDest = BI->getSuccessor(0);
2483   BasicBlock *FalseDest = BI->getSuccessor(1);
2484 
2485   auto &DL = BB->getModule()->getDataLayout();
2486   bool TrueDestIsSafe = false;
2487   bool FalseDestIsSafe = false;
2488 
2489   // True dest is safe if BranchCond => GuardCond.
2490   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2491   if (Impl && *Impl)
2492     TrueDestIsSafe = true;
2493   else {
2494     // False dest is safe if !BranchCond => GuardCond.
2495     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2496     if (Impl && *Impl)
2497       FalseDestIsSafe = true;
2498   }
2499 
2500   if (!TrueDestIsSafe && !FalseDestIsSafe)
2501     return false;
2502 
2503   BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2504   BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2505 
2506   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2507   Instruction *AfterGuard = Guard->getNextNode();
2508   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2509   if (Cost > BBDupThreshold)
2510     return false;
2511   // Duplicate all instructions before the guard and the guard itself to the
2512   // branch where implication is not proved.
2513   GuardedBlock = DuplicateInstructionsInSplitBetween(
2514       BB, GuardedBlock, AfterGuard, GuardedMapping);
2515   assert(GuardedBlock && "Could not create the guarded block?");
2516   // Duplicate all instructions before the guard in the unguarded branch.
2517   // Since we have successfully duplicated the guarded block and this block
2518   // has fewer instructions, we expect it to succeed.
2519   UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock,
2520                                                        Guard, UnguardedMapping);
2521   assert(UnguardedBlock && "Could not create the unguarded block?");
2522   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2523                << GuardedBlock->getName() << "\n");
2524 
2525   // Some instructions before the guard may still have uses. For them, we need
2526   // to create Phi nodes merging their copies in both guarded and unguarded
2527   // branches. Those instructions that have no uses can be just removed.
2528   SmallVector<Instruction *, 4> ToRemove;
2529   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2530     if (!isa<PHINode>(&*BI))
2531       ToRemove.push_back(&*BI);
2532 
2533   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2534   assert(InsertionPoint && "Empty block?");
2535   // Substitute with Phis & remove.
2536   for (auto *Inst : reverse(ToRemove)) {
2537     if (!Inst->use_empty()) {
2538       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2539       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2540       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2541       NewPN->insertBefore(InsertionPoint);
2542       Inst->replaceAllUsesWith(NewPN);
2543     }
2544     Inst->eraseFromParent();
2545   }
2546   return true;
2547 }
2548