1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106 
107 static cl::opt<bool> JumpThreadingFreezeSelectCond(
108     "jump-threading-freeze-select-cond",
109     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
110     cl::Hidden);
111 
112 static cl::opt<bool> ThreadAcrossLoopHeaders(
113     "jump-threading-across-loop-headers",
114     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
115     cl::init(false), cl::Hidden);
116 
117 
118 namespace {
119 
120   /// This pass performs 'jump threading', which looks at blocks that have
121   /// multiple predecessors and multiple successors.  If one or more of the
122   /// predecessors of the block can be proven to always jump to one of the
123   /// successors, we forward the edge from the predecessor to the successor by
124   /// duplicating the contents of this block.
125   ///
126   /// An example of when this can occur is code like this:
127   ///
128   ///   if () { ...
129   ///     X = 4;
130   ///   }
131   ///   if (X < 3) {
132   ///
133   /// In this case, the unconditional branch at the end of the first if can be
134   /// revectored to the false side of the second if.
135   class JumpThreading : public FunctionPass {
136     JumpThreadingPass Impl;
137 
138   public:
139     static char ID; // Pass identification
140 
141     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
142         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
143       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
144     }
145 
146     bool runOnFunction(Function &F) override;
147 
148     void getAnalysisUsage(AnalysisUsage &AU) const override {
149       AU.addRequired<DominatorTreeWrapperPass>();
150       AU.addPreserved<DominatorTreeWrapperPass>();
151       AU.addRequired<AAResultsWrapperPass>();
152       AU.addRequired<LazyValueInfoWrapperPass>();
153       AU.addPreserved<LazyValueInfoWrapperPass>();
154       AU.addPreserved<GlobalsAAWrapperPass>();
155       AU.addRequired<TargetLibraryInfoWrapperPass>();
156       AU.addRequired<TargetTransformInfoWrapperPass>();
157     }
158 
159     void releaseMemory() override { Impl.releaseMemory(); }
160   };
161 
162 } // end anonymous namespace
163 
164 char JumpThreading::ID = 0;
165 
166 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
167                 "Jump Threading", false, false)
168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
172 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
173                 "Jump Threading", false, false)
174 
175 // Public interface to the Jump Threading pass
176 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
177   return new JumpThreading(InsertFr, Threshold);
178 }
179 
180 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
181   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
182   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
183 }
184 
185 // Update branch probability information according to conditional
186 // branch probability. This is usually made possible for cloned branches
187 // in inline instances by the context specific profile in the caller.
188 // For instance,
189 //
190 //  [Block PredBB]
191 //  [Branch PredBr]
192 //  if (t) {
193 //     Block A;
194 //  } else {
195 //     Block B;
196 //  }
197 //
198 //  [Block BB]
199 //  cond = PN([true, %A], [..., %B]); // PHI node
200 //  [Branch CondBr]
201 //  if (cond) {
202 //    ...  // P(cond == true) = 1%
203 //  }
204 //
205 //  Here we know that when block A is taken, cond must be true, which means
206 //      P(cond == true | A) = 1
207 //
208 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
209 //                               P(cond == true | B) * P(B)
210 //  we get:
211 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
212 //
213 //  which gives us:
214 //     P(A) is less than P(cond == true), i.e.
215 //     P(t == true) <= P(cond == true)
216 //
217 //  In other words, if we know P(cond == true) is unlikely, we know
218 //  that P(t == true) is also unlikely.
219 //
220 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
221   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
222   if (!CondBr)
223     return;
224 
225   uint64_t TrueWeight, FalseWeight;
226   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
227     return;
228 
229   if (TrueWeight + FalseWeight == 0)
230     // Zero branch_weights do not give a hint for getting branch probabilities.
231     // Technically it would result in division by zero denominator, which is
232     // TrueWeight + FalseWeight.
233     return;
234 
235   // Returns the outgoing edge of the dominating predecessor block
236   // that leads to the PhiNode's incoming block:
237   auto GetPredOutEdge =
238       [](BasicBlock *IncomingBB,
239          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
240     auto *PredBB = IncomingBB;
241     auto *SuccBB = PhiBB;
242     SmallPtrSet<BasicBlock *, 16> Visited;
243     while (true) {
244       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
245       if (PredBr && PredBr->isConditional())
246         return {PredBB, SuccBB};
247       Visited.insert(PredBB);
248       auto *SinglePredBB = PredBB->getSinglePredecessor();
249       if (!SinglePredBB)
250         return {nullptr, nullptr};
251 
252       // Stop searching when SinglePredBB has been visited. It means we see
253       // an unreachable loop.
254       if (Visited.count(SinglePredBB))
255         return {nullptr, nullptr};
256 
257       SuccBB = PredBB;
258       PredBB = SinglePredBB;
259     }
260   };
261 
262   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263     Value *PhiOpnd = PN->getIncomingValue(i);
264     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
265 
266     if (!CI || !CI->getType()->isIntegerTy(1))
267       continue;
268 
269     BranchProbability BP =
270         (CI->isOne() ? BranchProbability::getBranchProbability(
271                            TrueWeight, TrueWeight + FalseWeight)
272                      : BranchProbability::getBranchProbability(
273                            FalseWeight, TrueWeight + FalseWeight));
274 
275     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
276     if (!PredOutEdge.first)
277       return;
278 
279     BasicBlock *PredBB = PredOutEdge.first;
280     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
281     if (!PredBr)
282       return;
283 
284     uint64_t PredTrueWeight, PredFalseWeight;
285     // FIXME: We currently only set the profile data when it is missing.
286     // With PGO, this can be used to refine even existing profile data with
287     // context information. This needs to be done after more performance
288     // testing.
289     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
290       continue;
291 
292     // We can not infer anything useful when BP >= 50%, because BP is the
293     // upper bound probability value.
294     if (BP >= BranchProbability(50, 100))
295       continue;
296 
297     SmallVector<uint32_t, 2> Weights;
298     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
299       Weights.push_back(BP.getNumerator());
300       Weights.push_back(BP.getCompl().getNumerator());
301     } else {
302       Weights.push_back(BP.getCompl().getNumerator());
303       Weights.push_back(BP.getNumerator());
304     }
305     PredBr->setMetadata(LLVMContext::MD_prof,
306                         MDBuilder(PredBr->getParent()->getContext())
307                             .createBranchWeights(Weights));
308   }
309 }
310 
311 /// runOnFunction - Toplevel algorithm.
312 bool JumpThreading::runOnFunction(Function &F) {
313   if (skipFunction(F))
314     return false;
315   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
316   // Jump Threading has no sense for the targets with divergent CF
317   if (TTI->hasBranchDivergence())
318     return false;
319   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
320   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
321   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
322   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
323   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
324   std::unique_ptr<BlockFrequencyInfo> BFI;
325   std::unique_ptr<BranchProbabilityInfo> BPI;
326   if (F.hasProfileData()) {
327     LoopInfo LI{DominatorTree(F)};
328     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
329     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
330   }
331 
332   bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
333                               std::move(BFI), std::move(BPI));
334   if (PrintLVIAfterJumpThreading) {
335     dbgs() << "LVI for function '" << F.getName() << "':\n";
336     LVI->printLVI(F, DTU.getDomTree(), dbgs());
337   }
338   return Changed;
339 }
340 
341 PreservedAnalyses JumpThreadingPass::run(Function &F,
342                                          FunctionAnalysisManager &AM) {
343   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
344   // Jump Threading has no sense for the targets with divergent CF
345   if (TTI.hasBranchDivergence())
346     return PreservedAnalyses::all();
347   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
348   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
349   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
350   auto &AA = AM.getResult<AAManager>(F);
351   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
352 
353   std::unique_ptr<BlockFrequencyInfo> BFI;
354   std::unique_ptr<BranchProbabilityInfo> BPI;
355   if (F.hasProfileData()) {
356     LoopInfo LI{DominatorTree(F)};
357     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
358     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
359   }
360 
361   bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
362                          std::move(BFI), std::move(BPI));
363 
364   if (PrintLVIAfterJumpThreading) {
365     dbgs() << "LVI for function '" << F.getName() << "':\n";
366     LVI.printLVI(F, DTU.getDomTree(), dbgs());
367   }
368 
369   if (!Changed)
370     return PreservedAnalyses::all();
371   PreservedAnalyses PA;
372   PA.preserve<DominatorTreeAnalysis>();
373   PA.preserve<LazyValueAnalysis>();
374   return PA;
375 }
376 
377 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
378                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
379                                 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
380                                 bool HasProfileData_,
381                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
382                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
383   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
384   TLI = TLI_;
385   TTI = TTI_;
386   LVI = LVI_;
387   AA = AA_;
388   DTU = DTU_;
389   BFI.reset();
390   BPI.reset();
391   // When profile data is available, we need to update edge weights after
392   // successful jump threading, which requires both BPI and BFI being available.
393   HasProfileData = HasProfileData_;
394   auto *GuardDecl = F.getParent()->getFunction(
395       Intrinsic::getName(Intrinsic::experimental_guard));
396   HasGuards = GuardDecl && !GuardDecl->use_empty();
397   if (HasProfileData) {
398     BPI = std::move(BPI_);
399     BFI = std::move(BFI_);
400   }
401 
402   // Reduce the number of instructions duplicated when optimizing strictly for
403   // size.
404   if (BBDuplicateThreshold.getNumOccurrences())
405     BBDupThreshold = BBDuplicateThreshold;
406   else if (F.hasFnAttribute(Attribute::MinSize))
407     BBDupThreshold = 3;
408   else
409     BBDupThreshold = DefaultBBDupThreshold;
410 
411   // JumpThreading must not processes blocks unreachable from entry. It's a
412   // waste of compute time and can potentially lead to hangs.
413   SmallPtrSet<BasicBlock *, 16> Unreachable;
414   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
415   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
416   DominatorTree &DT = DTU->getDomTree();
417   for (auto &BB : F)
418     if (!DT.isReachableFromEntry(&BB))
419       Unreachable.insert(&BB);
420 
421   if (!ThreadAcrossLoopHeaders)
422     findLoopHeaders(F);
423 
424   bool EverChanged = false;
425   bool Changed;
426   do {
427     Changed = false;
428     for (auto &BB : F) {
429       if (Unreachable.count(&BB))
430         continue;
431       while (processBlock(&BB)) // Thread all of the branches we can over BB.
432         Changed = true;
433 
434       // Jump threading may have introduced redundant debug values into BB
435       // which should be removed.
436       if (Changed)
437         RemoveRedundantDbgInstrs(&BB);
438 
439       // Stop processing BB if it's the entry or is now deleted. The following
440       // routines attempt to eliminate BB and locating a suitable replacement
441       // for the entry is non-trivial.
442       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
443         continue;
444 
445       if (pred_empty(&BB)) {
446         // When processBlock makes BB unreachable it doesn't bother to fix up
447         // the instructions in it. We must remove BB to prevent invalid IR.
448         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
449                           << "' with terminator: " << *BB.getTerminator()
450                           << '\n');
451         LoopHeaders.erase(&BB);
452         LVI->eraseBlock(&BB);
453         DeleteDeadBlock(&BB, DTU);
454         Changed = true;
455         continue;
456       }
457 
458       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
459       // is "almost empty", we attempt to merge BB with its sole successor.
460       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
461       if (BI && BI->isUnconditional()) {
462         BasicBlock *Succ = BI->getSuccessor(0);
463         if (
464             // The terminator must be the only non-phi instruction in BB.
465             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
466             // Don't alter Loop headers and latches to ensure another pass can
467             // detect and transform nested loops later.
468             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
469             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
470           RemoveRedundantDbgInstrs(Succ);
471           // BB is valid for cleanup here because we passed in DTU. F remains
472           // BB's parent until a DTU->getDomTree() event.
473           LVI->eraseBlock(&BB);
474           Changed = true;
475         }
476       }
477     }
478     EverChanged |= Changed;
479   } while (Changed);
480 
481   LoopHeaders.clear();
482   return EverChanged;
483 }
484 
485 // Replace uses of Cond with ToVal when safe to do so. If all uses are
486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
487 // because we may incorrectly replace uses when guards/assumes are uses of
488 // of `Cond` and we used the guards/assume to reason about the `Cond` value
489 // at the end of block. RAUW unconditionally replaces all uses
490 // including the guards/assumes themselves and the uses before the
491 // guard/assume.
492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal,
493                                 BasicBlock *KnownAtEndOfBB) {
494   assert(Cond->getType() == ToVal->getType());
495   // We can unconditionally replace all uses in non-local blocks (i.e. uses
496   // strictly dominated by BB), since LVI information is true from the
497   // terminator of BB.
498   if (Cond->getParent() == KnownAtEndOfBB)
499     replaceNonLocalUsesWith(Cond, ToVal);
500   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
501     // Reached the Cond whose uses we are trying to replace, so there are no
502     // more uses.
503     if (&I == Cond)
504       break;
505     // We only replace uses in instructions that are guaranteed to reach the end
506     // of BB, where we know Cond is ToVal.
507     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
508       break;
509     I.replaceUsesOfWith(Cond, ToVal);
510   }
511   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
512     Cond->eraseFromParent();
513 }
514 
515 /// Return the cost of duplicating a piece of this block from first non-phi
516 /// and before StopAt instruction to thread across it. Stop scanning the block
517 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
518 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
519                                              BasicBlock *BB,
520                                              Instruction *StopAt,
521                                              unsigned Threshold) {
522   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
523   /// Ignore PHI nodes, these will be flattened when duplication happens.
524   BasicBlock::const_iterator I(BB->getFirstNonPHI());
525 
526   // FIXME: THREADING will delete values that are just used to compute the
527   // branch, so they shouldn't count against the duplication cost.
528 
529   unsigned Bonus = 0;
530   if (BB->getTerminator() == StopAt) {
531     // Threading through a switch statement is particularly profitable.  If this
532     // block ends in a switch, decrease its cost to make it more likely to
533     // happen.
534     if (isa<SwitchInst>(StopAt))
535       Bonus = 6;
536 
537     // The same holds for indirect branches, but slightly more so.
538     if (isa<IndirectBrInst>(StopAt))
539       Bonus = 8;
540   }
541 
542   // Bump the threshold up so the early exit from the loop doesn't skip the
543   // terminator-based Size adjustment at the end.
544   Threshold += Bonus;
545 
546   // Sum up the cost of each instruction until we get to the terminator.  Don't
547   // include the terminator because the copy won't include it.
548   unsigned Size = 0;
549   for (; &*I != StopAt; ++I) {
550 
551     // Stop scanning the block if we've reached the threshold.
552     if (Size > Threshold)
553       return Size;
554 
555     // Bail out if this instruction gives back a token type, it is not possible
556     // to duplicate it if it is used outside this BB.
557     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
558       return ~0U;
559 
560     // Blocks with NoDuplicate are modelled as having infinite cost, so they
561     // are never duplicated.
562     if (const CallInst *CI = dyn_cast<CallInst>(I))
563       if (CI->cannotDuplicate() || CI->isConvergent())
564         return ~0U;
565 
566     if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
567             == TargetTransformInfo::TCC_Free)
568       continue;
569 
570     // All other instructions count for at least one unit.
571     ++Size;
572 
573     // Calls are more expensive.  If they are non-intrinsic calls, we model them
574     // as having cost of 4.  If they are a non-vector intrinsic, we model them
575     // as having cost of 2 total, and if they are a vector intrinsic, we model
576     // them as having cost 1.
577     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
578       if (!isa<IntrinsicInst>(CI))
579         Size += 3;
580       else if (!CI->getType()->isVectorTy())
581         Size += 1;
582     }
583   }
584 
585   return Size > Bonus ? Size - Bonus : 0;
586 }
587 
588 /// findLoopHeaders - We do not want jump threading to turn proper loop
589 /// structures into irreducible loops.  Doing this breaks up the loop nesting
590 /// hierarchy and pessimizes later transformations.  To prevent this from
591 /// happening, we first have to find the loop headers.  Here we approximate this
592 /// by finding targets of backedges in the CFG.
593 ///
594 /// Note that there definitely are cases when we want to allow threading of
595 /// edges across a loop header.  For example, threading a jump from outside the
596 /// loop (the preheader) to an exit block of the loop is definitely profitable.
597 /// It is also almost always profitable to thread backedges from within the loop
598 /// to exit blocks, and is often profitable to thread backedges to other blocks
599 /// within the loop (forming a nested loop).  This simple analysis is not rich
600 /// enough to track all of these properties and keep it up-to-date as the CFG
601 /// mutates, so we don't allow any of these transformations.
602 void JumpThreadingPass::findLoopHeaders(Function &F) {
603   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
604   FindFunctionBackedges(F, Edges);
605 
606   for (const auto &Edge : Edges)
607     LoopHeaders.insert(Edge.second);
608 }
609 
610 /// getKnownConstant - Helper method to determine if we can thread over a
611 /// terminator with the given value as its condition, and if so what value to
612 /// use for that. What kind of value this is depends on whether we want an
613 /// integer or a block address, but an undef is always accepted.
614 /// Returns null if Val is null or not an appropriate constant.
615 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
616   if (!Val)
617     return nullptr;
618 
619   // Undef is "known" enough.
620   if (UndefValue *U = dyn_cast<UndefValue>(Val))
621     return U;
622 
623   if (Preference == WantBlockAddress)
624     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
625 
626   return dyn_cast<ConstantInt>(Val);
627 }
628 
629 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
630 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
631 /// in any of our predecessors.  If so, return the known list of value and pred
632 /// BB in the result vector.
633 ///
634 /// This returns true if there were any known values.
635 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
636     Value *V, BasicBlock *BB, PredValueInfo &Result,
637     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
638     Instruction *CxtI) {
639   // This method walks up use-def chains recursively.  Because of this, we could
640   // get into an infinite loop going around loops in the use-def chain.  To
641   // prevent this, keep track of what (value, block) pairs we've already visited
642   // and terminate the search if we loop back to them
643   if (!RecursionSet.insert(V).second)
644     return false;
645 
646   // If V is a constant, then it is known in all predecessors.
647   if (Constant *KC = getKnownConstant(V, Preference)) {
648     for (BasicBlock *Pred : predecessors(BB))
649       Result.emplace_back(KC, Pred);
650 
651     return !Result.empty();
652   }
653 
654   // If V is a non-instruction value, or an instruction in a different block,
655   // then it can't be derived from a PHI.
656   Instruction *I = dyn_cast<Instruction>(V);
657   if (!I || I->getParent() != BB) {
658 
659     // Okay, if this is a live-in value, see if it has a known value at the end
660     // of any of our predecessors.
661     //
662     // FIXME: This should be an edge property, not a block end property.
663     /// TODO: Per PR2563, we could infer value range information about a
664     /// predecessor based on its terminator.
665     //
666     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
667     // "I" is a non-local compare-with-a-constant instruction.  This would be
668     // able to handle value inequalities better, for example if the compare is
669     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
670     // Perhaps getConstantOnEdge should be smart enough to do this?
671     for (BasicBlock *P : predecessors(BB)) {
672       // If the value is known by LazyValueInfo to be a constant in a
673       // predecessor, use that information to try to thread this block.
674       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
675       if (Constant *KC = getKnownConstant(PredCst, Preference))
676         Result.emplace_back(KC, P);
677     }
678 
679     return !Result.empty();
680   }
681 
682   /// If I is a PHI node, then we know the incoming values for any constants.
683   if (PHINode *PN = dyn_cast<PHINode>(I)) {
684     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
685       Value *InVal = PN->getIncomingValue(i);
686       if (Constant *KC = getKnownConstant(InVal, Preference)) {
687         Result.emplace_back(KC, PN->getIncomingBlock(i));
688       } else {
689         Constant *CI = LVI->getConstantOnEdge(InVal,
690                                               PN->getIncomingBlock(i),
691                                               BB, CxtI);
692         if (Constant *KC = getKnownConstant(CI, Preference))
693           Result.emplace_back(KC, PN->getIncomingBlock(i));
694       }
695     }
696 
697     return !Result.empty();
698   }
699 
700   // Handle Cast instructions.
701   if (CastInst *CI = dyn_cast<CastInst>(I)) {
702     Value *Source = CI->getOperand(0);
703     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
704                                         RecursionSet, CxtI);
705     if (Result.empty())
706       return false;
707 
708     // Convert the known values.
709     for (auto &R : Result)
710       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
711 
712     return true;
713   }
714 
715   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
716     Value *Source = FI->getOperand(0);
717     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
718                                         RecursionSet, CxtI);
719 
720     erase_if(Result, [](auto &Pair) {
721       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
722     });
723 
724     return !Result.empty();
725   }
726 
727   // Handle some boolean conditions.
728   if (I->getType()->getPrimitiveSizeInBits() == 1) {
729     using namespace PatternMatch;
730     if (Preference != WantInteger)
731       return false;
732     // X | true -> true
733     // X & false -> false
734     Value *Op0, *Op1;
735     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
736         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
737       PredValueInfoTy LHSVals, RHSVals;
738 
739       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
740                                           RecursionSet, CxtI);
741       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
742                                           RecursionSet, CxtI);
743 
744       if (LHSVals.empty() && RHSVals.empty())
745         return false;
746 
747       ConstantInt *InterestingVal;
748       if (match(I, m_LogicalOr()))
749         InterestingVal = ConstantInt::getTrue(I->getContext());
750       else
751         InterestingVal = ConstantInt::getFalse(I->getContext());
752 
753       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
754 
755       // Scan for the sentinel.  If we find an undef, force it to the
756       // interesting value: x|undef -> true and x&undef -> false.
757       for (const auto &LHSVal : LHSVals)
758         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
759           Result.emplace_back(InterestingVal, LHSVal.second);
760           LHSKnownBBs.insert(LHSVal.second);
761         }
762       for (const auto &RHSVal : RHSVals)
763         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
764           // If we already inferred a value for this block on the LHS, don't
765           // re-add it.
766           if (!LHSKnownBBs.count(RHSVal.second))
767             Result.emplace_back(InterestingVal, RHSVal.second);
768         }
769 
770       return !Result.empty();
771     }
772 
773     // Handle the NOT form of XOR.
774     if (I->getOpcode() == Instruction::Xor &&
775         isa<ConstantInt>(I->getOperand(1)) &&
776         cast<ConstantInt>(I->getOperand(1))->isOne()) {
777       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
778                                           WantInteger, RecursionSet, CxtI);
779       if (Result.empty())
780         return false;
781 
782       // Invert the known values.
783       for (auto &R : Result)
784         R.first = ConstantExpr::getNot(R.first);
785 
786       return true;
787     }
788 
789   // Try to simplify some other binary operator values.
790   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
791     if (Preference != WantInteger)
792       return false;
793     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
794       PredValueInfoTy LHSVals;
795       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
796                                           WantInteger, RecursionSet, CxtI);
797 
798       // Try to use constant folding to simplify the binary operator.
799       for (const auto &LHSVal : LHSVals) {
800         Constant *V = LHSVal.first;
801         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
802 
803         if (Constant *KC = getKnownConstant(Folded, WantInteger))
804           Result.emplace_back(KC, LHSVal.second);
805       }
806     }
807 
808     return !Result.empty();
809   }
810 
811   // Handle compare with phi operand, where the PHI is defined in this block.
812   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
813     if (Preference != WantInteger)
814       return false;
815     Type *CmpType = Cmp->getType();
816     Value *CmpLHS = Cmp->getOperand(0);
817     Value *CmpRHS = Cmp->getOperand(1);
818     CmpInst::Predicate Pred = Cmp->getPredicate();
819 
820     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
821     if (!PN)
822       PN = dyn_cast<PHINode>(CmpRHS);
823     if (PN && PN->getParent() == BB) {
824       const DataLayout &DL = PN->getModule()->getDataLayout();
825       // We can do this simplification if any comparisons fold to true or false.
826       // See if any do.
827       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
828         BasicBlock *PredBB = PN->getIncomingBlock(i);
829         Value *LHS, *RHS;
830         if (PN == CmpLHS) {
831           LHS = PN->getIncomingValue(i);
832           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
833         } else {
834           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
835           RHS = PN->getIncomingValue(i);
836         }
837         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
838         if (!Res) {
839           if (!isa<Constant>(RHS))
840             continue;
841 
842           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
843           auto LHSInst = dyn_cast<Instruction>(LHS);
844           if (LHSInst && LHSInst->getParent() == BB)
845             continue;
846 
847           LazyValueInfo::Tristate
848             ResT = LVI->getPredicateOnEdge(Pred, LHS,
849                                            cast<Constant>(RHS), PredBB, BB,
850                                            CxtI ? CxtI : Cmp);
851           if (ResT == LazyValueInfo::Unknown)
852             continue;
853           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
854         }
855 
856         if (Constant *KC = getKnownConstant(Res, WantInteger))
857           Result.emplace_back(KC, PredBB);
858       }
859 
860       return !Result.empty();
861     }
862 
863     // If comparing a live-in value against a constant, see if we know the
864     // live-in value on any predecessors.
865     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
866       Constant *CmpConst = cast<Constant>(CmpRHS);
867 
868       if (!isa<Instruction>(CmpLHS) ||
869           cast<Instruction>(CmpLHS)->getParent() != BB) {
870         for (BasicBlock *P : predecessors(BB)) {
871           // If the value is known by LazyValueInfo to be a constant in a
872           // predecessor, use that information to try to thread this block.
873           LazyValueInfo::Tristate Res =
874             LVI->getPredicateOnEdge(Pred, CmpLHS,
875                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
876           if (Res == LazyValueInfo::Unknown)
877             continue;
878 
879           Constant *ResC = ConstantInt::get(CmpType, Res);
880           Result.emplace_back(ResC, P);
881         }
882 
883         return !Result.empty();
884       }
885 
886       // InstCombine can fold some forms of constant range checks into
887       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
888       // x as a live-in.
889       {
890         using namespace PatternMatch;
891 
892         Value *AddLHS;
893         ConstantInt *AddConst;
894         if (isa<ConstantInt>(CmpConst) &&
895             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
896           if (!isa<Instruction>(AddLHS) ||
897               cast<Instruction>(AddLHS)->getParent() != BB) {
898             for (BasicBlock *P : predecessors(BB)) {
899               // If the value is known by LazyValueInfo to be a ConstantRange in
900               // a predecessor, use that information to try to thread this
901               // block.
902               ConstantRange CR = LVI->getConstantRangeOnEdge(
903                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
904               // Propagate the range through the addition.
905               CR = CR.add(AddConst->getValue());
906 
907               // Get the range where the compare returns true.
908               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
909                   Pred, cast<ConstantInt>(CmpConst)->getValue());
910 
911               Constant *ResC;
912               if (CmpRange.contains(CR))
913                 ResC = ConstantInt::getTrue(CmpType);
914               else if (CmpRange.inverse().contains(CR))
915                 ResC = ConstantInt::getFalse(CmpType);
916               else
917                 continue;
918 
919               Result.emplace_back(ResC, P);
920             }
921 
922             return !Result.empty();
923           }
924         }
925       }
926 
927       // Try to find a constant value for the LHS of a comparison,
928       // and evaluate it statically if we can.
929       PredValueInfoTy LHSVals;
930       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
931                                           WantInteger, RecursionSet, CxtI);
932 
933       for (const auto &LHSVal : LHSVals) {
934         Constant *V = LHSVal.first;
935         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
936         if (Constant *KC = getKnownConstant(Folded, WantInteger))
937           Result.emplace_back(KC, LHSVal.second);
938       }
939 
940       return !Result.empty();
941     }
942   }
943 
944   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
945     // Handle select instructions where at least one operand is a known constant
946     // and we can figure out the condition value for any predecessor block.
947     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
948     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
949     PredValueInfoTy Conds;
950     if ((TrueVal || FalseVal) &&
951         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
952                                             WantInteger, RecursionSet, CxtI)) {
953       for (auto &C : Conds) {
954         Constant *Cond = C.first;
955 
956         // Figure out what value to use for the condition.
957         bool KnownCond;
958         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
959           // A known boolean.
960           KnownCond = CI->isOne();
961         } else {
962           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
963           // Either operand will do, so be sure to pick the one that's a known
964           // constant.
965           // FIXME: Do this more cleverly if both values are known constants?
966           KnownCond = (TrueVal != nullptr);
967         }
968 
969         // See if the select has a known constant value for this predecessor.
970         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
971           Result.emplace_back(Val, C.second);
972       }
973 
974       return !Result.empty();
975     }
976   }
977 
978   // If all else fails, see if LVI can figure out a constant value for us.
979   assert(CxtI->getParent() == BB && "CxtI should be in BB");
980   Constant *CI = LVI->getConstant(V, CxtI);
981   if (Constant *KC = getKnownConstant(CI, Preference)) {
982     for (BasicBlock *Pred : predecessors(BB))
983       Result.emplace_back(KC, Pred);
984   }
985 
986   return !Result.empty();
987 }
988 
989 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
990 /// in an undefined jump, decide which block is best to revector to.
991 ///
992 /// Since we can pick an arbitrary destination, we pick the successor with the
993 /// fewest predecessors.  This should reduce the in-degree of the others.
994 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
995   Instruction *BBTerm = BB->getTerminator();
996   unsigned MinSucc = 0;
997   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
998   // Compute the successor with the minimum number of predecessors.
999   unsigned MinNumPreds = pred_size(TestBB);
1000   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1001     TestBB = BBTerm->getSuccessor(i);
1002     unsigned NumPreds = pred_size(TestBB);
1003     if (NumPreds < MinNumPreds) {
1004       MinSucc = i;
1005       MinNumPreds = NumPreds;
1006     }
1007   }
1008 
1009   return MinSucc;
1010 }
1011 
1012 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1013   if (!BB->hasAddressTaken()) return false;
1014 
1015   // If the block has its address taken, it may be a tree of dead constants
1016   // hanging off of it.  These shouldn't keep the block alive.
1017   BlockAddress *BA = BlockAddress::get(BB);
1018   BA->removeDeadConstantUsers();
1019   return !BA->use_empty();
1020 }
1021 
1022 /// processBlock - If there are any predecessors whose control can be threaded
1023 /// through to a successor, transform them now.
1024 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1025   // If the block is trivially dead, just return and let the caller nuke it.
1026   // This simplifies other transformations.
1027   if (DTU->isBBPendingDeletion(BB) ||
1028       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1029     return false;
1030 
1031   // If this block has a single predecessor, and if that pred has a single
1032   // successor, merge the blocks.  This encourages recursive jump threading
1033   // because now the condition in this block can be threaded through
1034   // predecessors of our predecessor block.
1035   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1036     return true;
1037 
1038   if (tryToUnfoldSelectInCurrBB(BB))
1039     return true;
1040 
1041   // Look if we can propagate guards to predecessors.
1042   if (HasGuards && processGuards(BB))
1043     return true;
1044 
1045   // What kind of constant we're looking for.
1046   ConstantPreference Preference = WantInteger;
1047 
1048   // Look to see if the terminator is a conditional branch, switch or indirect
1049   // branch, if not we can't thread it.
1050   Value *Condition;
1051   Instruction *Terminator = BB->getTerminator();
1052   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1053     // Can't thread an unconditional jump.
1054     if (BI->isUnconditional()) return false;
1055     Condition = BI->getCondition();
1056   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1057     Condition = SI->getCondition();
1058   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1059     // Can't thread indirect branch with no successors.
1060     if (IB->getNumSuccessors() == 0) return false;
1061     Condition = IB->getAddress()->stripPointerCasts();
1062     Preference = WantBlockAddress;
1063   } else {
1064     return false; // Must be an invoke or callbr.
1065   }
1066 
1067   // Keep track if we constant folded the condition in this invocation.
1068   bool ConstantFolded = false;
1069 
1070   // Run constant folding to see if we can reduce the condition to a simple
1071   // constant.
1072   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1073     Value *SimpleVal =
1074         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1075     if (SimpleVal) {
1076       I->replaceAllUsesWith(SimpleVal);
1077       if (isInstructionTriviallyDead(I, TLI))
1078         I->eraseFromParent();
1079       Condition = SimpleVal;
1080       ConstantFolded = true;
1081     }
1082   }
1083 
1084   // If the terminator is branching on an undef or freeze undef, we can pick any
1085   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1086   auto *FI = dyn_cast<FreezeInst>(Condition);
1087   if (isa<UndefValue>(Condition) ||
1088       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1089     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1090     std::vector<DominatorTree::UpdateType> Updates;
1091 
1092     // Fold the branch/switch.
1093     Instruction *BBTerm = BB->getTerminator();
1094     Updates.reserve(BBTerm->getNumSuccessors());
1095     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1096       if (i == BestSucc) continue;
1097       BasicBlock *Succ = BBTerm->getSuccessor(i);
1098       Succ->removePredecessor(BB, true);
1099       Updates.push_back({DominatorTree::Delete, BB, Succ});
1100     }
1101 
1102     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1103                       << "' folding undef terminator: " << *BBTerm << '\n');
1104     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1105     ++NumFolds;
1106     BBTerm->eraseFromParent();
1107     DTU->applyUpdatesPermissive(Updates);
1108     if (FI)
1109       FI->eraseFromParent();
1110     return true;
1111   }
1112 
1113   // If the terminator of this block is branching on a constant, simplify the
1114   // terminator to an unconditional branch.  This can occur due to threading in
1115   // other blocks.
1116   if (getKnownConstant(Condition, Preference)) {
1117     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1118                       << "' folding terminator: " << *BB->getTerminator()
1119                       << '\n');
1120     ++NumFolds;
1121     ConstantFoldTerminator(BB, true, nullptr, DTU);
1122     if (HasProfileData)
1123       BPI->eraseBlock(BB);
1124     return true;
1125   }
1126 
1127   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1128 
1129   // All the rest of our checks depend on the condition being an instruction.
1130   if (!CondInst) {
1131     // FIXME: Unify this with code below.
1132     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1133       return true;
1134     return ConstantFolded;
1135   }
1136 
1137   // Some of the following optimization can safely work on the unfrozen cond.
1138   Value *CondWithoutFreeze = CondInst;
1139   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1140     CondWithoutFreeze = FI->getOperand(0);
1141 
1142   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1143     // If we're branching on a conditional, LVI might be able to determine
1144     // it's value at the branch instruction.  We only handle comparisons
1145     // against a constant at this time.
1146     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1147       LazyValueInfo::Tristate Ret =
1148           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1149                               CondConst, BB->getTerminator(),
1150                               /*UseBlockValue=*/false);
1151       if (Ret != LazyValueInfo::Unknown) {
1152         // We can safely replace *some* uses of the CondInst if it has
1153         // exactly one value as returned by LVI. RAUW is incorrect in the
1154         // presence of guards and assumes, that have the `Cond` as the use. This
1155         // is because we use the guards/assume to reason about the `Cond` value
1156         // at the end of block, but RAUW unconditionally replaces all uses
1157         // including the guards/assumes themselves and the uses before the
1158         // guard/assume.
1159         auto *CI = Ret == LazyValueInfo::True ?
1160           ConstantInt::getTrue(CondCmp->getType()) :
1161           ConstantInt::getFalse(CondCmp->getType());
1162         replaceFoldableUses(CondCmp, CI, BB);
1163         return true;
1164       }
1165 
1166       // We did not manage to simplify this branch, try to see whether
1167       // CondCmp depends on a known phi-select pattern.
1168       if (tryToUnfoldSelect(CondCmp, BB))
1169         return true;
1170     }
1171   }
1172 
1173   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1174     if (tryToUnfoldSelect(SI, BB))
1175       return true;
1176 
1177   // Check for some cases that are worth simplifying.  Right now we want to look
1178   // for loads that are used by a switch or by the condition for the branch.  If
1179   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1180   // which can then be used to thread the values.
1181   Value *SimplifyValue = CondWithoutFreeze;
1182 
1183   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1184     if (isa<Constant>(CondCmp->getOperand(1)))
1185       SimplifyValue = CondCmp->getOperand(0);
1186 
1187   // TODO: There are other places where load PRE would be profitable, such as
1188   // more complex comparisons.
1189   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1190     if (simplifyPartiallyRedundantLoad(LoadI))
1191       return true;
1192 
1193   // Before threading, try to propagate profile data backwards:
1194   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1195     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1196       updatePredecessorProfileMetadata(PN, BB);
1197 
1198   // Handle a variety of cases where we are branching on something derived from
1199   // a PHI node in the current block.  If we can prove that any predecessors
1200   // compute a predictable value based on a PHI node, thread those predecessors.
1201   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1202     return true;
1203 
1204   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1205   // the current block, see if we can simplify.
1206   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1207   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1208     return processBranchOnPHI(PN);
1209 
1210   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1211   if (CondInst->getOpcode() == Instruction::Xor &&
1212       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1213     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1214 
1215   // Search for a stronger dominating condition that can be used to simplify a
1216   // conditional branch leaving BB.
1217   if (processImpliedCondition(BB))
1218     return true;
1219 
1220   return false;
1221 }
1222 
1223 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1224   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1225   if (!BI || !BI->isConditional())
1226     return false;
1227 
1228   Value *Cond = BI->getCondition();
1229   // Assuming that predecessor's branch was taken, if pred's branch condition
1230   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1231   // freeze(Cond) is either true or a nondeterministic value.
1232   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1233   // without affecting other instructions.
1234   auto *FICond = dyn_cast<FreezeInst>(Cond);
1235   if (FICond && FICond->hasOneUse())
1236     Cond = FICond->getOperand(0);
1237   else
1238     FICond = nullptr;
1239 
1240   BasicBlock *CurrentBB = BB;
1241   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1242   unsigned Iter = 0;
1243 
1244   auto &DL = BB->getModule()->getDataLayout();
1245 
1246   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1247     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1248     if (!PBI || !PBI->isConditional())
1249       return false;
1250     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1251       return false;
1252 
1253     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1254     Optional<bool> Implication =
1255         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1256 
1257     // If the branch condition of BB (which is Cond) and CurrentPred are
1258     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1259     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1260       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1261           FICond->getOperand(0))
1262         Implication = CondIsTrue;
1263     }
1264 
1265     if (Implication) {
1266       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1267       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1268       RemoveSucc->removePredecessor(BB);
1269       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1270       UncondBI->setDebugLoc(BI->getDebugLoc());
1271       ++NumFolds;
1272       BI->eraseFromParent();
1273       if (FICond)
1274         FICond->eraseFromParent();
1275 
1276       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1277       if (HasProfileData)
1278         BPI->eraseBlock(BB);
1279       return true;
1280     }
1281     CurrentBB = CurrentPred;
1282     CurrentPred = CurrentBB->getSinglePredecessor();
1283   }
1284 
1285   return false;
1286 }
1287 
1288 /// Return true if Op is an instruction defined in the given block.
1289 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1290   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1291     if (OpInst->getParent() == BB)
1292       return true;
1293   return false;
1294 }
1295 
1296 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1297 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1298 /// This is an important optimization that encourages jump threading, and needs
1299 /// to be run interlaced with other jump threading tasks.
1300 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1301   // Don't hack volatile and ordered loads.
1302   if (!LoadI->isUnordered()) return false;
1303 
1304   // If the load is defined in a block with exactly one predecessor, it can't be
1305   // partially redundant.
1306   BasicBlock *LoadBB = LoadI->getParent();
1307   if (LoadBB->getSinglePredecessor())
1308     return false;
1309 
1310   // If the load is defined in an EH pad, it can't be partially redundant,
1311   // because the edges between the invoke and the EH pad cannot have other
1312   // instructions between them.
1313   if (LoadBB->isEHPad())
1314     return false;
1315 
1316   Value *LoadedPtr = LoadI->getOperand(0);
1317 
1318   // If the loaded operand is defined in the LoadBB and its not a phi,
1319   // it can't be available in predecessors.
1320   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1321     return false;
1322 
1323   // Scan a few instructions up from the load, to see if it is obviously live at
1324   // the entry to its block.
1325   BasicBlock::iterator BBIt(LoadI);
1326   bool IsLoadCSE;
1327   if (Value *AvailableVal = FindAvailableLoadedValue(
1328           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1329     // If the value of the load is locally available within the block, just use
1330     // it.  This frequently occurs for reg2mem'd allocas.
1331 
1332     if (IsLoadCSE) {
1333       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1334       combineMetadataForCSE(NLoadI, LoadI, false);
1335     };
1336 
1337     // If the returned value is the load itself, replace with an undef. This can
1338     // only happen in dead loops.
1339     if (AvailableVal == LoadI)
1340       AvailableVal = UndefValue::get(LoadI->getType());
1341     if (AvailableVal->getType() != LoadI->getType())
1342       AvailableVal = CastInst::CreateBitOrPointerCast(
1343           AvailableVal, LoadI->getType(), "", LoadI);
1344     LoadI->replaceAllUsesWith(AvailableVal);
1345     LoadI->eraseFromParent();
1346     return true;
1347   }
1348 
1349   // Otherwise, if we scanned the whole block and got to the top of the block,
1350   // we know the block is locally transparent to the load.  If not, something
1351   // might clobber its value.
1352   if (BBIt != LoadBB->begin())
1353     return false;
1354 
1355   // If all of the loads and stores that feed the value have the same AA tags,
1356   // then we can propagate them onto any newly inserted loads.
1357   AAMDNodes AATags = LoadI->getAAMetadata();
1358 
1359   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1360 
1361   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1362 
1363   AvailablePredsTy AvailablePreds;
1364   BasicBlock *OneUnavailablePred = nullptr;
1365   SmallVector<LoadInst*, 8> CSELoads;
1366 
1367   // If we got here, the loaded value is transparent through to the start of the
1368   // block.  Check to see if it is available in any of the predecessor blocks.
1369   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1370     // If we already scanned this predecessor, skip it.
1371     if (!PredsScanned.insert(PredBB).second)
1372       continue;
1373 
1374     BBIt = PredBB->end();
1375     unsigned NumScanedInst = 0;
1376     Value *PredAvailable = nullptr;
1377     // NOTE: We don't CSE load that is volatile or anything stronger than
1378     // unordered, that should have been checked when we entered the function.
1379     assert(LoadI->isUnordered() &&
1380            "Attempting to CSE volatile or atomic loads");
1381     // If this is a load on a phi pointer, phi-translate it and search
1382     // for available load/store to the pointer in predecessors.
1383     Type *AccessTy = LoadI->getType();
1384     const auto &DL = LoadI->getModule()->getDataLayout();
1385     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1386                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1387                        AATags);
1388     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1389                                               PredBB, BBIt, DefMaxInstsToScan,
1390                                               AA, &IsLoadCSE, &NumScanedInst);
1391 
1392     // If PredBB has a single predecessor, continue scanning through the
1393     // single predecessor.
1394     BasicBlock *SinglePredBB = PredBB;
1395     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1396            NumScanedInst < DefMaxInstsToScan) {
1397       SinglePredBB = SinglePredBB->getSinglePredecessor();
1398       if (SinglePredBB) {
1399         BBIt = SinglePredBB->end();
1400         PredAvailable = findAvailablePtrLoadStore(
1401             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1402             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1403             &NumScanedInst);
1404       }
1405     }
1406 
1407     if (!PredAvailable) {
1408       OneUnavailablePred = PredBB;
1409       continue;
1410     }
1411 
1412     if (IsLoadCSE)
1413       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1414 
1415     // If so, this load is partially redundant.  Remember this info so that we
1416     // can create a PHI node.
1417     AvailablePreds.emplace_back(PredBB, PredAvailable);
1418   }
1419 
1420   // If the loaded value isn't available in any predecessor, it isn't partially
1421   // redundant.
1422   if (AvailablePreds.empty()) return false;
1423 
1424   // Okay, the loaded value is available in at least one (and maybe all!)
1425   // predecessors.  If the value is unavailable in more than one unique
1426   // predecessor, we want to insert a merge block for those common predecessors.
1427   // This ensures that we only have to insert one reload, thus not increasing
1428   // code size.
1429   BasicBlock *UnavailablePred = nullptr;
1430 
1431   // If the value is unavailable in one of predecessors, we will end up
1432   // inserting a new instruction into them. It is only valid if all the
1433   // instructions before LoadI are guaranteed to pass execution to its
1434   // successor, or if LoadI is safe to speculate.
1435   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1436   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1437   // It requires domination tree analysis, so for this simple case it is an
1438   // overkill.
1439   if (PredsScanned.size() != AvailablePreds.size() &&
1440       !isSafeToSpeculativelyExecute(LoadI))
1441     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1442       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1443         return false;
1444 
1445   // If there is exactly one predecessor where the value is unavailable, the
1446   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1447   // unconditional branch, we know that it isn't a critical edge.
1448   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1449       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1450     UnavailablePred = OneUnavailablePred;
1451   } else if (PredsScanned.size() != AvailablePreds.size()) {
1452     // Otherwise, we had multiple unavailable predecessors or we had a critical
1453     // edge from the one.
1454     SmallVector<BasicBlock*, 8> PredsToSplit;
1455     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1456 
1457     for (const auto &AvailablePred : AvailablePreds)
1458       AvailablePredSet.insert(AvailablePred.first);
1459 
1460     // Add all the unavailable predecessors to the PredsToSplit list.
1461     for (BasicBlock *P : predecessors(LoadBB)) {
1462       // If the predecessor is an indirect goto, we can't split the edge.
1463       // Same for CallBr.
1464       if (isa<IndirectBrInst>(P->getTerminator()) ||
1465           isa<CallBrInst>(P->getTerminator()))
1466         return false;
1467 
1468       if (!AvailablePredSet.count(P))
1469         PredsToSplit.push_back(P);
1470     }
1471 
1472     // Split them out to their own block.
1473     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1474   }
1475 
1476   // If the value isn't available in all predecessors, then there will be
1477   // exactly one where it isn't available.  Insert a load on that edge and add
1478   // it to the AvailablePreds list.
1479   if (UnavailablePred) {
1480     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1481            "Can't handle critical edge here!");
1482     LoadInst *NewVal = new LoadInst(
1483         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1484         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1485         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1486         UnavailablePred->getTerminator());
1487     NewVal->setDebugLoc(LoadI->getDebugLoc());
1488     if (AATags)
1489       NewVal->setAAMetadata(AATags);
1490 
1491     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1492   }
1493 
1494   // Now we know that each predecessor of this block has a value in
1495   // AvailablePreds, sort them for efficient access as we're walking the preds.
1496   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1497 
1498   // Create a PHI node at the start of the block for the PRE'd load value.
1499   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1500   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1501                                 &LoadBB->front());
1502   PN->takeName(LoadI);
1503   PN->setDebugLoc(LoadI->getDebugLoc());
1504 
1505   // Insert new entries into the PHI for each predecessor.  A single block may
1506   // have multiple entries here.
1507   for (pred_iterator PI = PB; PI != PE; ++PI) {
1508     BasicBlock *P = *PI;
1509     AvailablePredsTy::iterator I =
1510         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1511 
1512     assert(I != AvailablePreds.end() && I->first == P &&
1513            "Didn't find entry for predecessor!");
1514 
1515     // If we have an available predecessor but it requires casting, insert the
1516     // cast in the predecessor and use the cast. Note that we have to update the
1517     // AvailablePreds vector as we go so that all of the PHI entries for this
1518     // predecessor use the same bitcast.
1519     Value *&PredV = I->second;
1520     if (PredV->getType() != LoadI->getType())
1521       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1522                                                P->getTerminator());
1523 
1524     PN->addIncoming(PredV, I->first);
1525   }
1526 
1527   for (LoadInst *PredLoadI : CSELoads) {
1528     combineMetadataForCSE(PredLoadI, LoadI, true);
1529   }
1530 
1531   LoadI->replaceAllUsesWith(PN);
1532   LoadI->eraseFromParent();
1533 
1534   return true;
1535 }
1536 
1537 /// findMostPopularDest - The specified list contains multiple possible
1538 /// threadable destinations.  Pick the one that occurs the most frequently in
1539 /// the list.
1540 static BasicBlock *
1541 findMostPopularDest(BasicBlock *BB,
1542                     const SmallVectorImpl<std::pair<BasicBlock *,
1543                                           BasicBlock *>> &PredToDestList) {
1544   assert(!PredToDestList.empty());
1545 
1546   // Determine popularity.  If there are multiple possible destinations, we
1547   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1548   // blocks with known and real destinations to threading undef.  We'll handle
1549   // them later if interesting.
1550   MapVector<BasicBlock *, unsigned> DestPopularity;
1551 
1552   // Populate DestPopularity with the successors in the order they appear in the
1553   // successor list.  This way, we ensure determinism by iterating it in the
1554   // same order in std::max_element below.  We map nullptr to 0 so that we can
1555   // return nullptr when PredToDestList contains nullptr only.
1556   DestPopularity[nullptr] = 0;
1557   for (auto *SuccBB : successors(BB))
1558     DestPopularity[SuccBB] = 0;
1559 
1560   for (const auto &PredToDest : PredToDestList)
1561     if (PredToDest.second)
1562       DestPopularity[PredToDest.second]++;
1563 
1564   // Find the most popular dest.
1565   using VT = decltype(DestPopularity)::value_type;
1566   auto MostPopular = std::max_element(
1567       DestPopularity.begin(), DestPopularity.end(),
1568       [](const VT &L, const VT &R) { return L.second < R.second; });
1569 
1570   // Okay, we have finally picked the most popular destination.
1571   return MostPopular->first;
1572 }
1573 
1574 // Try to evaluate the value of V when the control flows from PredPredBB to
1575 // BB->getSinglePredecessor() and then on to BB.
1576 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1577                                                        BasicBlock *PredPredBB,
1578                                                        Value *V) {
1579   BasicBlock *PredBB = BB->getSinglePredecessor();
1580   assert(PredBB && "Expected a single predecessor");
1581 
1582   if (Constant *Cst = dyn_cast<Constant>(V)) {
1583     return Cst;
1584   }
1585 
1586   // Consult LVI if V is not an instruction in BB or PredBB.
1587   Instruction *I = dyn_cast<Instruction>(V);
1588   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1589     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1590   }
1591 
1592   // Look into a PHI argument.
1593   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1594     if (PHI->getParent() == PredBB)
1595       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1596     return nullptr;
1597   }
1598 
1599   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1600   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1601     if (CondCmp->getParent() == BB) {
1602       Constant *Op0 =
1603           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1604       Constant *Op1 =
1605           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1606       if (Op0 && Op1) {
1607         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1608       }
1609     }
1610     return nullptr;
1611   }
1612 
1613   return nullptr;
1614 }
1615 
1616 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1617                                                ConstantPreference Preference,
1618                                                Instruction *CxtI) {
1619   // If threading this would thread across a loop header, don't even try to
1620   // thread the edge.
1621   if (LoopHeaders.count(BB))
1622     return false;
1623 
1624   PredValueInfoTy PredValues;
1625   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1626                                        CxtI)) {
1627     // We don't have known values in predecessors.  See if we can thread through
1628     // BB and its sole predecessor.
1629     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1630   }
1631 
1632   assert(!PredValues.empty() &&
1633          "computeValueKnownInPredecessors returned true with no values");
1634 
1635   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1636              for (const auto &PredValue : PredValues) {
1637                dbgs() << "  BB '" << BB->getName()
1638                       << "': FOUND condition = " << *PredValue.first
1639                       << " for pred '" << PredValue.second->getName() << "'.\n";
1640   });
1641 
1642   // Decide what we want to thread through.  Convert our list of known values to
1643   // a list of known destinations for each pred.  This also discards duplicate
1644   // predecessors and keeps track of the undefined inputs (which are represented
1645   // as a null dest in the PredToDestList).
1646   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1647   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1648 
1649   BasicBlock *OnlyDest = nullptr;
1650   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1651   Constant *OnlyVal = nullptr;
1652   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1653 
1654   for (const auto &PredValue : PredValues) {
1655     BasicBlock *Pred = PredValue.second;
1656     if (!SeenPreds.insert(Pred).second)
1657       continue;  // Duplicate predecessor entry.
1658 
1659     Constant *Val = PredValue.first;
1660 
1661     BasicBlock *DestBB;
1662     if (isa<UndefValue>(Val))
1663       DestBB = nullptr;
1664     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1665       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1666       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1667     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1668       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1669       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1670     } else {
1671       assert(isa<IndirectBrInst>(BB->getTerminator())
1672               && "Unexpected terminator");
1673       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1674       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1675     }
1676 
1677     // If we have exactly one destination, remember it for efficiency below.
1678     if (PredToDestList.empty()) {
1679       OnlyDest = DestBB;
1680       OnlyVal = Val;
1681     } else {
1682       if (OnlyDest != DestBB)
1683         OnlyDest = MultipleDestSentinel;
1684       // It possible we have same destination, but different value, e.g. default
1685       // case in switchinst.
1686       if (Val != OnlyVal)
1687         OnlyVal = MultipleVal;
1688     }
1689 
1690     // If the predecessor ends with an indirect goto, we can't change its
1691     // destination. Same for CallBr.
1692     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1693         isa<CallBrInst>(Pred->getTerminator()))
1694       continue;
1695 
1696     PredToDestList.emplace_back(Pred, DestBB);
1697   }
1698 
1699   // If all edges were unthreadable, we fail.
1700   if (PredToDestList.empty())
1701     return false;
1702 
1703   // If all the predecessors go to a single known successor, we want to fold,
1704   // not thread. By doing so, we do not need to duplicate the current block and
1705   // also miss potential opportunities in case we dont/cant duplicate.
1706   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1707     if (BB->hasNPredecessors(PredToDestList.size())) {
1708       bool SeenFirstBranchToOnlyDest = false;
1709       std::vector <DominatorTree::UpdateType> Updates;
1710       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1711       for (BasicBlock *SuccBB : successors(BB)) {
1712         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1713           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1714         } else {
1715           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1716           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1717         }
1718       }
1719 
1720       // Finally update the terminator.
1721       Instruction *Term = BB->getTerminator();
1722       BranchInst::Create(OnlyDest, Term);
1723       ++NumFolds;
1724       Term->eraseFromParent();
1725       DTU->applyUpdatesPermissive(Updates);
1726       if (HasProfileData)
1727         BPI->eraseBlock(BB);
1728 
1729       // If the condition is now dead due to the removal of the old terminator,
1730       // erase it.
1731       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1732         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1733           CondInst->eraseFromParent();
1734         // We can safely replace *some* uses of the CondInst if it has
1735         // exactly one value as returned by LVI. RAUW is incorrect in the
1736         // presence of guards and assumes, that have the `Cond` as the use. This
1737         // is because we use the guards/assume to reason about the `Cond` value
1738         // at the end of block, but RAUW unconditionally replaces all uses
1739         // including the guards/assumes themselves and the uses before the
1740         // guard/assume.
1741         else if (OnlyVal && OnlyVal != MultipleVal)
1742           replaceFoldableUses(CondInst, OnlyVal, BB);
1743       }
1744       return true;
1745     }
1746   }
1747 
1748   // Determine which is the most common successor.  If we have many inputs and
1749   // this block is a switch, we want to start by threading the batch that goes
1750   // to the most popular destination first.  If we only know about one
1751   // threadable destination (the common case) we can avoid this.
1752   BasicBlock *MostPopularDest = OnlyDest;
1753 
1754   if (MostPopularDest == MultipleDestSentinel) {
1755     // Remove any loop headers from the Dest list, threadEdge conservatively
1756     // won't process them, but we might have other destination that are eligible
1757     // and we still want to process.
1758     erase_if(PredToDestList,
1759              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1760                return LoopHeaders.contains(PredToDest.second);
1761              });
1762 
1763     if (PredToDestList.empty())
1764       return false;
1765 
1766     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1767   }
1768 
1769   // Now that we know what the most popular destination is, factor all
1770   // predecessors that will jump to it into a single predecessor.
1771   SmallVector<BasicBlock*, 16> PredsToFactor;
1772   for (const auto &PredToDest : PredToDestList)
1773     if (PredToDest.second == MostPopularDest) {
1774       BasicBlock *Pred = PredToDest.first;
1775 
1776       // This predecessor may be a switch or something else that has multiple
1777       // edges to the block.  Factor each of these edges by listing them
1778       // according to # occurrences in PredsToFactor.
1779       for (BasicBlock *Succ : successors(Pred))
1780         if (Succ == BB)
1781           PredsToFactor.push_back(Pred);
1782     }
1783 
1784   // If the threadable edges are branching on an undefined value, we get to pick
1785   // the destination that these predecessors should get to.
1786   if (!MostPopularDest)
1787     MostPopularDest = BB->getTerminator()->
1788                             getSuccessor(getBestDestForJumpOnUndef(BB));
1789 
1790   // Ok, try to thread it!
1791   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1792 }
1793 
1794 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1795 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1796 /// simplifications we can do based on inputs to the phi node.
1797 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1798   BasicBlock *BB = PN->getParent();
1799 
1800   // TODO: We could make use of this to do it once for blocks with common PHI
1801   // values.
1802   SmallVector<BasicBlock*, 1> PredBBs;
1803   PredBBs.resize(1);
1804 
1805   // If any of the predecessor blocks end in an unconditional branch, we can
1806   // *duplicate* the conditional branch into that block in order to further
1807   // encourage jump threading and to eliminate cases where we have branch on a
1808   // phi of an icmp (branch on icmp is much better).
1809   // This is still beneficial when a frozen phi is used as the branch condition
1810   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1811   // to br(icmp(freeze ...)).
1812   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1813     BasicBlock *PredBB = PN->getIncomingBlock(i);
1814     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1815       if (PredBr->isUnconditional()) {
1816         PredBBs[0] = PredBB;
1817         // Try to duplicate BB into PredBB.
1818         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1819           return true;
1820       }
1821   }
1822 
1823   return false;
1824 }
1825 
1826 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1827 /// a xor instruction in the current block.  See if there are any
1828 /// simplifications we can do based on inputs to the xor.
1829 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1830   BasicBlock *BB = BO->getParent();
1831 
1832   // If either the LHS or RHS of the xor is a constant, don't do this
1833   // optimization.
1834   if (isa<ConstantInt>(BO->getOperand(0)) ||
1835       isa<ConstantInt>(BO->getOperand(1)))
1836     return false;
1837 
1838   // If the first instruction in BB isn't a phi, we won't be able to infer
1839   // anything special about any particular predecessor.
1840   if (!isa<PHINode>(BB->front()))
1841     return false;
1842 
1843   // If this BB is a landing pad, we won't be able to split the edge into it.
1844   if (BB->isEHPad())
1845     return false;
1846 
1847   // If we have a xor as the branch input to this block, and we know that the
1848   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1849   // the condition into the predecessor and fix that value to true, saving some
1850   // logical ops on that path and encouraging other paths to simplify.
1851   //
1852   // This copies something like this:
1853   //
1854   //  BB:
1855   //    %X = phi i1 [1],  [%X']
1856   //    %Y = icmp eq i32 %A, %B
1857   //    %Z = xor i1 %X, %Y
1858   //    br i1 %Z, ...
1859   //
1860   // Into:
1861   //  BB':
1862   //    %Y = icmp ne i32 %A, %B
1863   //    br i1 %Y, ...
1864 
1865   PredValueInfoTy XorOpValues;
1866   bool isLHS = true;
1867   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1868                                        WantInteger, BO)) {
1869     assert(XorOpValues.empty());
1870     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1871                                          WantInteger, BO))
1872       return false;
1873     isLHS = false;
1874   }
1875 
1876   assert(!XorOpValues.empty() &&
1877          "computeValueKnownInPredecessors returned true with no values");
1878 
1879   // Scan the information to see which is most popular: true or false.  The
1880   // predecessors can be of the set true, false, or undef.
1881   unsigned NumTrue = 0, NumFalse = 0;
1882   for (const auto &XorOpValue : XorOpValues) {
1883     if (isa<UndefValue>(XorOpValue.first))
1884       // Ignore undefs for the count.
1885       continue;
1886     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1887       ++NumFalse;
1888     else
1889       ++NumTrue;
1890   }
1891 
1892   // Determine which value to split on, true, false, or undef if neither.
1893   ConstantInt *SplitVal = nullptr;
1894   if (NumTrue > NumFalse)
1895     SplitVal = ConstantInt::getTrue(BB->getContext());
1896   else if (NumTrue != 0 || NumFalse != 0)
1897     SplitVal = ConstantInt::getFalse(BB->getContext());
1898 
1899   // Collect all of the blocks that this can be folded into so that we can
1900   // factor this once and clone it once.
1901   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1902   for (const auto &XorOpValue : XorOpValues) {
1903     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1904       continue;
1905 
1906     BlocksToFoldInto.push_back(XorOpValue.second);
1907   }
1908 
1909   // If we inferred a value for all of the predecessors, then duplication won't
1910   // help us.  However, we can just replace the LHS or RHS with the constant.
1911   if (BlocksToFoldInto.size() ==
1912       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1913     if (!SplitVal) {
1914       // If all preds provide undef, just nuke the xor, because it is undef too.
1915       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1916       BO->eraseFromParent();
1917     } else if (SplitVal->isZero()) {
1918       // If all preds provide 0, replace the xor with the other input.
1919       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1920       BO->eraseFromParent();
1921     } else {
1922       // If all preds provide 1, set the computed value to 1.
1923       BO->setOperand(!isLHS, SplitVal);
1924     }
1925 
1926     return true;
1927   }
1928 
1929   // If any of predecessors end with an indirect goto, we can't change its
1930   // destination. Same for CallBr.
1931   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1932         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1933                isa<CallBrInst>(Pred->getTerminator());
1934       }))
1935     return false;
1936 
1937   // Try to duplicate BB into PredBB.
1938   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1939 }
1940 
1941 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1942 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1943 /// NewPred using the entries from OldPred (suitably mapped).
1944 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1945                                             BasicBlock *OldPred,
1946                                             BasicBlock *NewPred,
1947                                      DenseMap<Instruction*, Value*> &ValueMap) {
1948   for (PHINode &PN : PHIBB->phis()) {
1949     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1950     // DestBlock.
1951     Value *IV = PN.getIncomingValueForBlock(OldPred);
1952 
1953     // Remap the value if necessary.
1954     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1955       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1956       if (I != ValueMap.end())
1957         IV = I->second;
1958     }
1959 
1960     PN.addIncoming(IV, NewPred);
1961   }
1962 }
1963 
1964 /// Merge basic block BB into its sole predecessor if possible.
1965 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1966   BasicBlock *SinglePred = BB->getSinglePredecessor();
1967   if (!SinglePred)
1968     return false;
1969 
1970   const Instruction *TI = SinglePred->getTerminator();
1971   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1972       SinglePred == BB || hasAddressTakenAndUsed(BB))
1973     return false;
1974 
1975   // If SinglePred was a loop header, BB becomes one.
1976   if (LoopHeaders.erase(SinglePred))
1977     LoopHeaders.insert(BB);
1978 
1979   LVI->eraseBlock(SinglePred);
1980   MergeBasicBlockIntoOnlyPred(BB, DTU);
1981 
1982   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1983   // BB code within one basic block `BB`), we need to invalidate the LVI
1984   // information associated with BB, because the LVI information need not be
1985   // true for all of BB after the merge. For example,
1986   // Before the merge, LVI info and code is as follows:
1987   // SinglePred: <LVI info1 for %p val>
1988   // %y = use of %p
1989   // call @exit() // need not transfer execution to successor.
1990   // assume(%p) // from this point on %p is true
1991   // br label %BB
1992   // BB: <LVI info2 for %p val, i.e. %p is true>
1993   // %x = use of %p
1994   // br label exit
1995   //
1996   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1997   // (info2 and info1 respectively). After the merge and the deletion of the
1998   // LVI info1 for SinglePred. We have the following code:
1999   // BB: <LVI info2 for %p val>
2000   // %y = use of %p
2001   // call @exit()
2002   // assume(%p)
2003   // %x = use of %p <-- LVI info2 is correct from here onwards.
2004   // br label exit
2005   // LVI info2 for BB is incorrect at the beginning of BB.
2006 
2007   // Invalidate LVI information for BB if the LVI is not provably true for
2008   // all of BB.
2009   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2010     LVI->eraseBlock(BB);
2011   return true;
2012 }
2013 
2014 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2015 /// ValueMapping maps old values in BB to new ones in NewBB.
2016 void JumpThreadingPass::updateSSA(
2017     BasicBlock *BB, BasicBlock *NewBB,
2018     DenseMap<Instruction *, Value *> &ValueMapping) {
2019   // If there were values defined in BB that are used outside the block, then we
2020   // now have to update all uses of the value to use either the original value,
2021   // the cloned value, or some PHI derived value.  This can require arbitrary
2022   // PHI insertion, of which we are prepared to do, clean these up now.
2023   SSAUpdater SSAUpdate;
2024   SmallVector<Use *, 16> UsesToRename;
2025 
2026   for (Instruction &I : *BB) {
2027     // Scan all uses of this instruction to see if it is used outside of its
2028     // block, and if so, record them in UsesToRename.
2029     for (Use &U : I.uses()) {
2030       Instruction *User = cast<Instruction>(U.getUser());
2031       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2032         if (UserPN->getIncomingBlock(U) == BB)
2033           continue;
2034       } else if (User->getParent() == BB)
2035         continue;
2036 
2037       UsesToRename.push_back(&U);
2038     }
2039 
2040     // If there are no uses outside the block, we're done with this instruction.
2041     if (UsesToRename.empty())
2042       continue;
2043     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2044 
2045     // We found a use of I outside of BB.  Rename all uses of I that are outside
2046     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2047     // with the two values we know.
2048     SSAUpdate.Initialize(I.getType(), I.getName());
2049     SSAUpdate.AddAvailableValue(BB, &I);
2050     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2051 
2052     while (!UsesToRename.empty())
2053       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2054     LLVM_DEBUG(dbgs() << "\n");
2055   }
2056 }
2057 
2058 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2059 /// arguments that come from PredBB.  Return the map from the variables in the
2060 /// source basic block to the variables in the newly created basic block.
2061 DenseMap<Instruction *, Value *>
2062 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2063                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2064                                      BasicBlock *PredBB) {
2065   // We are going to have to map operands from the source basic block to the new
2066   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2067   // block, evaluate them to account for entry from PredBB.
2068   DenseMap<Instruction *, Value *> ValueMapping;
2069 
2070   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2071   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2072   // might need to rewrite the operand of the cloned phi.
2073   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2074     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2075     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2076     ValueMapping[PN] = NewPN;
2077   }
2078 
2079   // Clone noalias scope declarations in the threaded block. When threading a
2080   // loop exit, we would otherwise end up with two idential scope declarations
2081   // visible at the same time.
2082   SmallVector<MDNode *> NoAliasScopes;
2083   DenseMap<MDNode *, MDNode *> ClonedScopes;
2084   LLVMContext &Context = PredBB->getContext();
2085   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2086   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2087 
2088   // Clone the non-phi instructions of the source basic block into NewBB,
2089   // keeping track of the mapping and using it to remap operands in the cloned
2090   // instructions.
2091   for (; BI != BE; ++BI) {
2092     Instruction *New = BI->clone();
2093     New->setName(BI->getName());
2094     NewBB->getInstList().push_back(New);
2095     ValueMapping[&*BI] = New;
2096     adaptNoAliasScopes(New, ClonedScopes, Context);
2097 
2098     // Remap operands to patch up intra-block references.
2099     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2100       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2101         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2102         if (I != ValueMapping.end())
2103           New->setOperand(i, I->second);
2104       }
2105   }
2106 
2107   return ValueMapping;
2108 }
2109 
2110 /// Attempt to thread through two successive basic blocks.
2111 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2112                                                          Value *Cond) {
2113   // Consider:
2114   //
2115   // PredBB:
2116   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2117   //   %tobool = icmp eq i32 %cond, 0
2118   //   br i1 %tobool, label %BB, label ...
2119   //
2120   // BB:
2121   //   %cmp = icmp eq i32* %var, null
2122   //   br i1 %cmp, label ..., label ...
2123   //
2124   // We don't know the value of %var at BB even if we know which incoming edge
2125   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2126   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2127   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2128 
2129   // Require that BB end with a Branch for simplicity.
2130   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2131   if (!CondBr)
2132     return false;
2133 
2134   // BB must have exactly one predecessor.
2135   BasicBlock *PredBB = BB->getSinglePredecessor();
2136   if (!PredBB)
2137     return false;
2138 
2139   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2140   // unconditional branch, we should be merging PredBB and BB instead. For
2141   // simplicity, we don't deal with a switch.
2142   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2143   if (!PredBBBranch || PredBBBranch->isUnconditional())
2144     return false;
2145 
2146   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2147   // PredBB.
2148   if (PredBB->getSinglePredecessor())
2149     return false;
2150 
2151   // Don't thread through PredBB if it contains a successor edge to itself, in
2152   // which case we would infinite loop.  Suppose we are threading an edge from
2153   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2154   // successor edge to itself.  If we allowed jump threading in this case, we
2155   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2156   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2157   // with another jump threading opportunity from PredBB.thread through PredBB
2158   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2159   // would keep peeling one iteration from PredBB.
2160   if (llvm::is_contained(successors(PredBB), PredBB))
2161     return false;
2162 
2163   // Don't thread across a loop header.
2164   if (LoopHeaders.count(PredBB))
2165     return false;
2166 
2167   // Avoid complication with duplicating EH pads.
2168   if (PredBB->isEHPad())
2169     return false;
2170 
2171   // Find a predecessor that we can thread.  For simplicity, we only consider a
2172   // successor edge out of BB to which we thread exactly one incoming edge into
2173   // PredBB.
2174   unsigned ZeroCount = 0;
2175   unsigned OneCount = 0;
2176   BasicBlock *ZeroPred = nullptr;
2177   BasicBlock *OnePred = nullptr;
2178   for (BasicBlock *P : predecessors(PredBB)) {
2179     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2180             evaluateOnPredecessorEdge(BB, P, Cond))) {
2181       if (CI->isZero()) {
2182         ZeroCount++;
2183         ZeroPred = P;
2184       } else if (CI->isOne()) {
2185         OneCount++;
2186         OnePred = P;
2187       }
2188     }
2189   }
2190 
2191   // Disregard complicated cases where we have to thread multiple edges.
2192   BasicBlock *PredPredBB;
2193   if (ZeroCount == 1) {
2194     PredPredBB = ZeroPred;
2195   } else if (OneCount == 1) {
2196     PredPredBB = OnePred;
2197   } else {
2198     return false;
2199   }
2200 
2201   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2202 
2203   // If threading to the same block as we come from, we would infinite loop.
2204   if (SuccBB == BB) {
2205     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2206                       << "' - would thread to self!\n");
2207     return false;
2208   }
2209 
2210   // If threading this would thread across a loop header, don't thread the edge.
2211   // See the comments above findLoopHeaders for justifications and caveats.
2212   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2213     LLVM_DEBUG({
2214       bool BBIsHeader = LoopHeaders.count(BB);
2215       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2216       dbgs() << "  Not threading across "
2217              << (BBIsHeader ? "loop header BB '" : "block BB '")
2218              << BB->getName() << "' to dest "
2219              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2220              << SuccBB->getName()
2221              << "' - it might create an irreducible loop!\n";
2222     });
2223     return false;
2224   }
2225 
2226   // Compute the cost of duplicating BB and PredBB.
2227   unsigned BBCost = getJumpThreadDuplicationCost(
2228       TTI, BB, BB->getTerminator(), BBDupThreshold);
2229   unsigned PredBBCost = getJumpThreadDuplicationCost(
2230       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2231 
2232   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2233   // individually before checking their sum because getJumpThreadDuplicationCost
2234   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2235   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2236       BBCost + PredBBCost > BBDupThreshold) {
2237     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2238                       << "' - Cost is too high: " << PredBBCost
2239                       << " for PredBB, " << BBCost << "for BB\n");
2240     return false;
2241   }
2242 
2243   // Now we are ready to duplicate PredBB.
2244   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2245   return true;
2246 }
2247 
2248 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2249                                                     BasicBlock *PredBB,
2250                                                     BasicBlock *BB,
2251                                                     BasicBlock *SuccBB) {
2252   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2253                     << BB->getName() << "'\n");
2254 
2255   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2256   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2257 
2258   BasicBlock *NewBB =
2259       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2260                          PredBB->getParent(), PredBB);
2261   NewBB->moveAfter(PredBB);
2262 
2263   // Set the block frequency of NewBB.
2264   if (HasProfileData) {
2265     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2266                      BPI->getEdgeProbability(PredPredBB, PredBB);
2267     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2268   }
2269 
2270   // We are going to have to map operands from the original BB block to the new
2271   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2272   // to account for entry from PredPredBB.
2273   DenseMap<Instruction *, Value *> ValueMapping =
2274       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2275 
2276   // Copy the edge probabilities from PredBB to NewBB.
2277   if (HasProfileData)
2278     BPI->copyEdgeProbabilities(PredBB, NewBB);
2279 
2280   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2281   // This eliminates predecessors from PredPredBB, which requires us to simplify
2282   // any PHI nodes in PredBB.
2283   Instruction *PredPredTerm = PredPredBB->getTerminator();
2284   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2285     if (PredPredTerm->getSuccessor(i) == PredBB) {
2286       PredBB->removePredecessor(PredPredBB, true);
2287       PredPredTerm->setSuccessor(i, NewBB);
2288     }
2289 
2290   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2291                                   ValueMapping);
2292   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2293                                   ValueMapping);
2294 
2295   DTU->applyUpdatesPermissive(
2296       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2297        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2298        {DominatorTree::Insert, PredPredBB, NewBB},
2299        {DominatorTree::Delete, PredPredBB, PredBB}});
2300 
2301   updateSSA(PredBB, NewBB, ValueMapping);
2302 
2303   // Clean up things like PHI nodes with single operands, dead instructions,
2304   // etc.
2305   SimplifyInstructionsInBlock(NewBB, TLI);
2306   SimplifyInstructionsInBlock(PredBB, TLI);
2307 
2308   SmallVector<BasicBlock *, 1> PredsToFactor;
2309   PredsToFactor.push_back(NewBB);
2310   threadEdge(BB, PredsToFactor, SuccBB);
2311 }
2312 
2313 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2314 bool JumpThreadingPass::tryThreadEdge(
2315     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2316     BasicBlock *SuccBB) {
2317   // If threading to the same block as we come from, we would infinite loop.
2318   if (SuccBB == BB) {
2319     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2320                       << "' - would thread to self!\n");
2321     return false;
2322   }
2323 
2324   // If threading this would thread across a loop header, don't thread the edge.
2325   // See the comments above findLoopHeaders for justifications and caveats.
2326   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2327     LLVM_DEBUG({
2328       bool BBIsHeader = LoopHeaders.count(BB);
2329       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2330       dbgs() << "  Not threading across "
2331           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2332           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2333           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2334     });
2335     return false;
2336   }
2337 
2338   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2339       TTI, BB, BB->getTerminator(), BBDupThreshold);
2340   if (JumpThreadCost > BBDupThreshold) {
2341     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2342                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2343     return false;
2344   }
2345 
2346   threadEdge(BB, PredBBs, SuccBB);
2347   return true;
2348 }
2349 
2350 /// threadEdge - We have decided that it is safe and profitable to factor the
2351 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2352 /// across BB.  Transform the IR to reflect this change.
2353 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2354                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2355                                    BasicBlock *SuccBB) {
2356   assert(SuccBB != BB && "Don't create an infinite loop");
2357 
2358   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2359          "Don't thread across loop headers");
2360 
2361   // And finally, do it!  Start by factoring the predecessors if needed.
2362   BasicBlock *PredBB;
2363   if (PredBBs.size() == 1)
2364     PredBB = PredBBs[0];
2365   else {
2366     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2367                       << " common predecessors.\n");
2368     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2369   }
2370 
2371   // And finally, do it!
2372   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2373                     << "' to '" << SuccBB->getName()
2374                     << ", across block:\n    " << *BB << "\n");
2375 
2376   LVI->threadEdge(PredBB, BB, SuccBB);
2377 
2378   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2379                                          BB->getName()+".thread",
2380                                          BB->getParent(), BB);
2381   NewBB->moveAfter(PredBB);
2382 
2383   // Set the block frequency of NewBB.
2384   if (HasProfileData) {
2385     auto NewBBFreq =
2386         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2387     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2388   }
2389 
2390   // Copy all the instructions from BB to NewBB except the terminator.
2391   DenseMap<Instruction *, Value *> ValueMapping =
2392       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2393 
2394   // We didn't copy the terminator from BB over to NewBB, because there is now
2395   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2396   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2397   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2398 
2399   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2400   // PHI nodes for NewBB now.
2401   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2402 
2403   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2404   // eliminates predecessors from BB, which requires us to simplify any PHI
2405   // nodes in BB.
2406   Instruction *PredTerm = PredBB->getTerminator();
2407   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2408     if (PredTerm->getSuccessor(i) == BB) {
2409       BB->removePredecessor(PredBB, true);
2410       PredTerm->setSuccessor(i, NewBB);
2411     }
2412 
2413   // Enqueue required DT updates.
2414   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2415                                {DominatorTree::Insert, PredBB, NewBB},
2416                                {DominatorTree::Delete, PredBB, BB}});
2417 
2418   updateSSA(BB, NewBB, ValueMapping);
2419 
2420   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2421   // over the new instructions and zap any that are constants or dead.  This
2422   // frequently happens because of phi translation.
2423   SimplifyInstructionsInBlock(NewBB, TLI);
2424 
2425   // Update the edge weight from BB to SuccBB, which should be less than before.
2426   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2427 
2428   // Threaded an edge!
2429   ++NumThreads;
2430 }
2431 
2432 /// Create a new basic block that will be the predecessor of BB and successor of
2433 /// all blocks in Preds. When profile data is available, update the frequency of
2434 /// this new block.
2435 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2436                                                ArrayRef<BasicBlock *> Preds,
2437                                                const char *Suffix) {
2438   SmallVector<BasicBlock *, 2> NewBBs;
2439 
2440   // Collect the frequencies of all predecessors of BB, which will be used to
2441   // update the edge weight of the result of splitting predecessors.
2442   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2443   if (HasProfileData)
2444     for (auto Pred : Preds)
2445       FreqMap.insert(std::make_pair(
2446           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2447 
2448   // In the case when BB is a LandingPad block we create 2 new predecessors
2449   // instead of just one.
2450   if (BB->isLandingPad()) {
2451     std::string NewName = std::string(Suffix) + ".split-lp";
2452     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2453   } else {
2454     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2455   }
2456 
2457   std::vector<DominatorTree::UpdateType> Updates;
2458   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2459   for (auto NewBB : NewBBs) {
2460     BlockFrequency NewBBFreq(0);
2461     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2462     for (auto Pred : predecessors(NewBB)) {
2463       Updates.push_back({DominatorTree::Delete, Pred, BB});
2464       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2465       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2466         NewBBFreq += FreqMap.lookup(Pred);
2467     }
2468     if (HasProfileData) // Apply the summed frequency to NewBB.
2469       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2470   }
2471 
2472   DTU->applyUpdatesPermissive(Updates);
2473   return NewBBs[0];
2474 }
2475 
2476 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2477   const Instruction *TI = BB->getTerminator();
2478   assert(TI->getNumSuccessors() > 1 && "not a split");
2479 
2480   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2481   if (!WeightsNode)
2482     return false;
2483 
2484   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2485   if (MDName->getString() != "branch_weights")
2486     return false;
2487 
2488   // Ensure there are weights for all of the successors. Note that the first
2489   // operand to the metadata node is a name, not a weight.
2490   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2491 }
2492 
2493 /// Update the block frequency of BB and branch weight and the metadata on the
2494 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2495 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2496 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2497                                                      BasicBlock *BB,
2498                                                      BasicBlock *NewBB,
2499                                                      BasicBlock *SuccBB) {
2500   if (!HasProfileData)
2501     return;
2502 
2503   assert(BFI && BPI && "BFI & BPI should have been created here");
2504 
2505   // As the edge from PredBB to BB is deleted, we have to update the block
2506   // frequency of BB.
2507   auto BBOrigFreq = BFI->getBlockFreq(BB);
2508   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2509   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2510   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2511   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2512 
2513   // Collect updated outgoing edges' frequencies from BB and use them to update
2514   // edge probabilities.
2515   SmallVector<uint64_t, 4> BBSuccFreq;
2516   for (BasicBlock *Succ : successors(BB)) {
2517     auto SuccFreq = (Succ == SuccBB)
2518                         ? BB2SuccBBFreq - NewBBFreq
2519                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2520     BBSuccFreq.push_back(SuccFreq.getFrequency());
2521   }
2522 
2523   uint64_t MaxBBSuccFreq =
2524       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2525 
2526   SmallVector<BranchProbability, 4> BBSuccProbs;
2527   if (MaxBBSuccFreq == 0)
2528     BBSuccProbs.assign(BBSuccFreq.size(),
2529                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2530   else {
2531     for (uint64_t Freq : BBSuccFreq)
2532       BBSuccProbs.push_back(
2533           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2534     // Normalize edge probabilities so that they sum up to one.
2535     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2536                                               BBSuccProbs.end());
2537   }
2538 
2539   // Update edge probabilities in BPI.
2540   BPI->setEdgeProbability(BB, BBSuccProbs);
2541 
2542   // Update the profile metadata as well.
2543   //
2544   // Don't do this if the profile of the transformed blocks was statically
2545   // estimated.  (This could occur despite the function having an entry
2546   // frequency in completely cold parts of the CFG.)
2547   //
2548   // In this case we don't want to suggest to subsequent passes that the
2549   // calculated weights are fully consistent.  Consider this graph:
2550   //
2551   //                 check_1
2552   //             50% /  |
2553   //             eq_1   | 50%
2554   //                 \  |
2555   //                 check_2
2556   //             50% /  |
2557   //             eq_2   | 50%
2558   //                 \  |
2559   //                 check_3
2560   //             50% /  |
2561   //             eq_3   | 50%
2562   //                 \  |
2563   //
2564   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2565   // the overall probabilities are inconsistent; the total probability that the
2566   // value is either 1, 2 or 3 is 150%.
2567   //
2568   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2569   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2570   // the loop exit edge.  Then based solely on static estimation we would assume
2571   // the loop was extremely hot.
2572   //
2573   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2574   // shouldn't make edges extremely likely or unlikely based solely on static
2575   // estimation.
2576   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2577     SmallVector<uint32_t, 4> Weights;
2578     for (auto Prob : BBSuccProbs)
2579       Weights.push_back(Prob.getNumerator());
2580 
2581     auto TI = BB->getTerminator();
2582     TI->setMetadata(
2583         LLVMContext::MD_prof,
2584         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2585   }
2586 }
2587 
2588 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2589 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2590 /// If we can duplicate the contents of BB up into PredBB do so now, this
2591 /// improves the odds that the branch will be on an analyzable instruction like
2592 /// a compare.
2593 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2594     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2595   assert(!PredBBs.empty() && "Can't handle an empty set");
2596 
2597   // If BB is a loop header, then duplicating this block outside the loop would
2598   // cause us to transform this into an irreducible loop, don't do this.
2599   // See the comments above findLoopHeaders for justifications and caveats.
2600   if (LoopHeaders.count(BB)) {
2601     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2602                       << "' into predecessor block '" << PredBBs[0]->getName()
2603                       << "' - it might create an irreducible loop!\n");
2604     return false;
2605   }
2606 
2607   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2608       TTI, BB, BB->getTerminator(), BBDupThreshold);
2609   if (DuplicationCost > BBDupThreshold) {
2610     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2611                       << "' - Cost is too high: " << DuplicationCost << "\n");
2612     return false;
2613   }
2614 
2615   // And finally, do it!  Start by factoring the predecessors if needed.
2616   std::vector<DominatorTree::UpdateType> Updates;
2617   BasicBlock *PredBB;
2618   if (PredBBs.size() == 1)
2619     PredBB = PredBBs[0];
2620   else {
2621     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2622                       << " common predecessors.\n");
2623     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2624   }
2625   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2626 
2627   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2628   // of PredBB.
2629   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2630                     << "' into end of '" << PredBB->getName()
2631                     << "' to eliminate branch on phi.  Cost: "
2632                     << DuplicationCost << " block is:" << *BB << "\n");
2633 
2634   // Unless PredBB ends with an unconditional branch, split the edge so that we
2635   // can just clone the bits from BB into the end of the new PredBB.
2636   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2637 
2638   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2639     BasicBlock *OldPredBB = PredBB;
2640     PredBB = SplitEdge(OldPredBB, BB);
2641     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2642     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2643     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2644     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2645   }
2646 
2647   // We are going to have to map operands from the original BB block into the
2648   // PredBB block.  Evaluate PHI nodes in BB.
2649   DenseMap<Instruction*, Value*> ValueMapping;
2650 
2651   BasicBlock::iterator BI = BB->begin();
2652   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2653     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2654   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2655   // mapping and using it to remap operands in the cloned instructions.
2656   for (; BI != BB->end(); ++BI) {
2657     Instruction *New = BI->clone();
2658 
2659     // Remap operands to patch up intra-block references.
2660     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2661       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2662         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2663         if (I != ValueMapping.end())
2664           New->setOperand(i, I->second);
2665       }
2666 
2667     // If this instruction can be simplified after the operands are updated,
2668     // just use the simplified value instead.  This frequently happens due to
2669     // phi translation.
2670     if (Value *IV = SimplifyInstruction(
2671             New,
2672             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2673       ValueMapping[&*BI] = IV;
2674       if (!New->mayHaveSideEffects()) {
2675         New->deleteValue();
2676         New = nullptr;
2677       }
2678     } else {
2679       ValueMapping[&*BI] = New;
2680     }
2681     if (New) {
2682       // Otherwise, insert the new instruction into the block.
2683       New->setName(BI->getName());
2684       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2685       // Update Dominance from simplified New instruction operands.
2686       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2687         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2688           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2689     }
2690   }
2691 
2692   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2693   // add entries to the PHI nodes for branch from PredBB now.
2694   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2695   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2696                                   ValueMapping);
2697   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2698                                   ValueMapping);
2699 
2700   updateSSA(BB, PredBB, ValueMapping);
2701 
2702   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2703   // that we nuked.
2704   BB->removePredecessor(PredBB, true);
2705 
2706   // Remove the unconditional branch at the end of the PredBB block.
2707   OldPredBranch->eraseFromParent();
2708   if (HasProfileData)
2709     BPI->copyEdgeProbabilities(BB, PredBB);
2710   DTU->applyUpdatesPermissive(Updates);
2711 
2712   ++NumDupes;
2713   return true;
2714 }
2715 
2716 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2717 // a Select instruction in Pred. BB has other predecessors and SI is used in
2718 // a PHI node in BB. SI has no other use.
2719 // A new basic block, NewBB, is created and SI is converted to compare and
2720 // conditional branch. SI is erased from parent.
2721 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2722                                           SelectInst *SI, PHINode *SIUse,
2723                                           unsigned Idx) {
2724   // Expand the select.
2725   //
2726   // Pred --
2727   //  |    v
2728   //  |  NewBB
2729   //  |    |
2730   //  |-----
2731   //  v
2732   // BB
2733   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2734   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2735                                          BB->getParent(), BB);
2736   // Move the unconditional branch to NewBB.
2737   PredTerm->removeFromParent();
2738   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2739   // Create a conditional branch and update PHI nodes.
2740   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2741   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2742   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2743   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2744 
2745   // The select is now dead.
2746   SI->eraseFromParent();
2747   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2748                                {DominatorTree::Insert, Pred, NewBB}});
2749 
2750   // Update any other PHI nodes in BB.
2751   for (BasicBlock::iterator BI = BB->begin();
2752        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2753     if (Phi != SIUse)
2754       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2755 }
2756 
2757 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2758   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2759 
2760   if (!CondPHI || CondPHI->getParent() != BB)
2761     return false;
2762 
2763   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2764     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2765     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2766 
2767     // The second and third condition can be potentially relaxed. Currently
2768     // the conditions help to simplify the code and allow us to reuse existing
2769     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2770     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2771       continue;
2772 
2773     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2774     if (!PredTerm || !PredTerm->isUnconditional())
2775       continue;
2776 
2777     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2778     return true;
2779   }
2780   return false;
2781 }
2782 
2783 /// tryToUnfoldSelect - Look for blocks of the form
2784 /// bb1:
2785 ///   %a = select
2786 ///   br bb2
2787 ///
2788 /// bb2:
2789 ///   %p = phi [%a, %bb1] ...
2790 ///   %c = icmp %p
2791 ///   br i1 %c
2792 ///
2793 /// And expand the select into a branch structure if one of its arms allows %c
2794 /// to be folded. This later enables threading from bb1 over bb2.
2795 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2796   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2797   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2798   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2799 
2800   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2801       CondLHS->getParent() != BB)
2802     return false;
2803 
2804   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2805     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2806     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2807 
2808     // Look if one of the incoming values is a select in the corresponding
2809     // predecessor.
2810     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2811       continue;
2812 
2813     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2814     if (!PredTerm || !PredTerm->isUnconditional())
2815       continue;
2816 
2817     // Now check if one of the select values would allow us to constant fold the
2818     // terminator in BB. We don't do the transform if both sides fold, those
2819     // cases will be threaded in any case.
2820     LazyValueInfo::Tristate LHSFolds =
2821         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2822                                 CondRHS, Pred, BB, CondCmp);
2823     LazyValueInfo::Tristate RHSFolds =
2824         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2825                                 CondRHS, Pred, BB, CondCmp);
2826     if ((LHSFolds != LazyValueInfo::Unknown ||
2827          RHSFolds != LazyValueInfo::Unknown) &&
2828         LHSFolds != RHSFolds) {
2829       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2830       return true;
2831     }
2832   }
2833   return false;
2834 }
2835 
2836 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2837 /// same BB in the form
2838 /// bb:
2839 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2840 ///   %s = select %p, trueval, falseval
2841 ///
2842 /// or
2843 ///
2844 /// bb:
2845 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2846 ///   %c = cmp %p, 0
2847 ///   %s = select %c, trueval, falseval
2848 ///
2849 /// And expand the select into a branch structure. This later enables
2850 /// jump-threading over bb in this pass.
2851 ///
2852 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2853 /// select if the associated PHI has at least one constant.  If the unfolded
2854 /// select is not jump-threaded, it will be folded again in the later
2855 /// optimizations.
2856 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2857   // This transform would reduce the quality of msan diagnostics.
2858   // Disable this transform under MemorySanitizer.
2859   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2860     return false;
2861 
2862   // If threading this would thread across a loop header, don't thread the edge.
2863   // See the comments above findLoopHeaders for justifications and caveats.
2864   if (LoopHeaders.count(BB))
2865     return false;
2866 
2867   for (BasicBlock::iterator BI = BB->begin();
2868        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2869     // Look for a Phi having at least one constant incoming value.
2870     if (llvm::all_of(PN->incoming_values(),
2871                      [](Value *V) { return !isa<ConstantInt>(V); }))
2872       continue;
2873 
2874     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2875       using namespace PatternMatch;
2876 
2877       // Check if SI is in BB and use V as condition.
2878       if (SI->getParent() != BB)
2879         return false;
2880       Value *Cond = SI->getCondition();
2881       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2882       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2883     };
2884 
2885     SelectInst *SI = nullptr;
2886     for (Use &U : PN->uses()) {
2887       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2888         // Look for a ICmp in BB that compares PN with a constant and is the
2889         // condition of a Select.
2890         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2891             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2892           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2893             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2894               SI = SelectI;
2895               break;
2896             }
2897       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2898         // Look for a Select in BB that uses PN as condition.
2899         if (isUnfoldCandidate(SelectI, U.get())) {
2900           SI = SelectI;
2901           break;
2902         }
2903       }
2904     }
2905 
2906     if (!SI)
2907       continue;
2908     // Expand the select.
2909     Value *Cond = SI->getCondition();
2910     if (InsertFreezeWhenUnfoldingSelect &&
2911         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2912       Cond = new FreezeInst(Cond, "cond.fr", SI);
2913     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2914     BasicBlock *SplitBB = SI->getParent();
2915     BasicBlock *NewBB = Term->getParent();
2916     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2917     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2918     NewPN->addIncoming(SI->getFalseValue(), BB);
2919     SI->replaceAllUsesWith(NewPN);
2920     SI->eraseFromParent();
2921     // NewBB and SplitBB are newly created blocks which require insertion.
2922     std::vector<DominatorTree::UpdateType> Updates;
2923     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2924     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2925     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2926     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2927     // BB's successors were moved to SplitBB, update DTU accordingly.
2928     for (auto *Succ : successors(SplitBB)) {
2929       Updates.push_back({DominatorTree::Delete, BB, Succ});
2930       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2931     }
2932     DTU->applyUpdatesPermissive(Updates);
2933     return true;
2934   }
2935   return false;
2936 }
2937 
2938 /// Try to propagate a guard from the current BB into one of its predecessors
2939 /// in case if another branch of execution implies that the condition of this
2940 /// guard is always true. Currently we only process the simplest case that
2941 /// looks like:
2942 ///
2943 /// Start:
2944 ///   %cond = ...
2945 ///   br i1 %cond, label %T1, label %F1
2946 /// T1:
2947 ///   br label %Merge
2948 /// F1:
2949 ///   br label %Merge
2950 /// Merge:
2951 ///   %condGuard = ...
2952 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2953 ///
2954 /// And cond either implies condGuard or !condGuard. In this case all the
2955 /// instructions before the guard can be duplicated in both branches, and the
2956 /// guard is then threaded to one of them.
2957 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2958   using namespace PatternMatch;
2959 
2960   // We only want to deal with two predecessors.
2961   BasicBlock *Pred1, *Pred2;
2962   auto PI = pred_begin(BB), PE = pred_end(BB);
2963   if (PI == PE)
2964     return false;
2965   Pred1 = *PI++;
2966   if (PI == PE)
2967     return false;
2968   Pred2 = *PI++;
2969   if (PI != PE)
2970     return false;
2971   if (Pred1 == Pred2)
2972     return false;
2973 
2974   // Try to thread one of the guards of the block.
2975   // TODO: Look up deeper than to immediate predecessor?
2976   auto *Parent = Pred1->getSinglePredecessor();
2977   if (!Parent || Parent != Pred2->getSinglePredecessor())
2978     return false;
2979 
2980   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2981     for (auto &I : *BB)
2982       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2983         return true;
2984 
2985   return false;
2986 }
2987 
2988 /// Try to propagate the guard from BB which is the lower block of a diamond
2989 /// to one of its branches, in case if diamond's condition implies guard's
2990 /// condition.
2991 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2992                                     BranchInst *BI) {
2993   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2994   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2995   Value *GuardCond = Guard->getArgOperand(0);
2996   Value *BranchCond = BI->getCondition();
2997   BasicBlock *TrueDest = BI->getSuccessor(0);
2998   BasicBlock *FalseDest = BI->getSuccessor(1);
2999 
3000   auto &DL = BB->getModule()->getDataLayout();
3001   bool TrueDestIsSafe = false;
3002   bool FalseDestIsSafe = false;
3003 
3004   // True dest is safe if BranchCond => GuardCond.
3005   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3006   if (Impl && *Impl)
3007     TrueDestIsSafe = true;
3008   else {
3009     // False dest is safe if !BranchCond => GuardCond.
3010     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3011     if (Impl && *Impl)
3012       FalseDestIsSafe = true;
3013   }
3014 
3015   if (!TrueDestIsSafe && !FalseDestIsSafe)
3016     return false;
3017 
3018   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3019   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3020 
3021   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3022   Instruction *AfterGuard = Guard->getNextNode();
3023   unsigned Cost =
3024       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3025   if (Cost > BBDupThreshold)
3026     return false;
3027   // Duplicate all instructions before the guard and the guard itself to the
3028   // branch where implication is not proved.
3029   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3030       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3031   assert(GuardedBlock && "Could not create the guarded block?");
3032   // Duplicate all instructions before the guard in the unguarded branch.
3033   // Since we have successfully duplicated the guarded block and this block
3034   // has fewer instructions, we expect it to succeed.
3035   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3036       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3037   assert(UnguardedBlock && "Could not create the unguarded block?");
3038   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3039                     << GuardedBlock->getName() << "\n");
3040   // Some instructions before the guard may still have uses. For them, we need
3041   // to create Phi nodes merging their copies in both guarded and unguarded
3042   // branches. Those instructions that have no uses can be just removed.
3043   SmallVector<Instruction *, 4> ToRemove;
3044   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3045     if (!isa<PHINode>(&*BI))
3046       ToRemove.push_back(&*BI);
3047 
3048   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3049   assert(InsertionPoint && "Empty block?");
3050   // Substitute with Phis & remove.
3051   for (auto *Inst : reverse(ToRemove)) {
3052     if (!Inst->use_empty()) {
3053       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3054       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3055       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3056       NewPN->insertBefore(InsertionPoint);
3057       Inst->replaceAllUsesWith(NewPN);
3058     }
3059     Inst->eraseFromParent();
3060   }
3061   return true;
3062 }
3063