1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/SSAUpdater.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <memory> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace jumpthreading; 80 81 #define DEBUG_TYPE "jump-threading" 82 83 STATISTIC(NumThreads, "Number of jumps threaded"); 84 STATISTIC(NumFolds, "Number of terminators folded"); 85 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 86 87 static cl::opt<unsigned> 88 BBDuplicateThreshold("jump-threading-threshold", 89 cl::desc("Max block size to duplicate for jump threading"), 90 cl::init(6), cl::Hidden); 91 92 static cl::opt<unsigned> 93 ImplicationSearchThreshold( 94 "jump-threading-implication-search-threshold", 95 cl::desc("The number of predecessors to search for a stronger " 96 "condition to use to thread over a weaker condition"), 97 cl::init(3), cl::Hidden); 98 99 static cl::opt<bool> PrintLVIAfterJumpThreading( 100 "print-lvi-after-jump-threading", 101 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 102 cl::Hidden); 103 104 namespace { 105 106 /// This pass performs 'jump threading', which looks at blocks that have 107 /// multiple predecessors and multiple successors. If one or more of the 108 /// predecessors of the block can be proven to always jump to one of the 109 /// successors, we forward the edge from the predecessor to the successor by 110 /// duplicating the contents of this block. 111 /// 112 /// An example of when this can occur is code like this: 113 /// 114 /// if () { ... 115 /// X = 4; 116 /// } 117 /// if (X < 3) { 118 /// 119 /// In this case, the unconditional branch at the end of the first if can be 120 /// revectored to the false side of the second if. 121 class JumpThreading : public FunctionPass { 122 JumpThreadingPass Impl; 123 124 public: 125 static char ID; // Pass identification 126 127 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<DominatorTreeWrapperPass>(); 135 AU.addPreserved<DominatorTreeWrapperPass>(); 136 AU.addRequired<AAResultsWrapperPass>(); 137 AU.addRequired<LazyValueInfoWrapperPass>(); 138 AU.addPreserved<LazyValueInfoWrapperPass>(); 139 AU.addPreserved<GlobalsAAWrapperPass>(); 140 AU.addRequired<TargetLibraryInfoWrapperPass>(); 141 } 142 143 void releaseMemory() override { Impl.releaseMemory(); } 144 }; 145 146 } // end anonymous namespace 147 148 char JumpThreading::ID = 0; 149 150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 151 "Jump Threading", false, false) 152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 156 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 157 "Jump Threading", false, false) 158 159 // Public interface to the Jump Threading pass 160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 161 return new JumpThreading(Threshold); 162 } 163 164 JumpThreadingPass::JumpThreadingPass(int T) { 165 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 166 } 167 168 // Update branch probability information according to conditional 169 // branch probablity. This is usually made possible for cloned branches 170 // in inline instances by the context specific profile in the caller. 171 // For instance, 172 // 173 // [Block PredBB] 174 // [Branch PredBr] 175 // if (t) { 176 // Block A; 177 // } else { 178 // Block B; 179 // } 180 // 181 // [Block BB] 182 // cond = PN([true, %A], [..., %B]); // PHI node 183 // [Branch CondBr] 184 // if (cond) { 185 // ... // P(cond == true) = 1% 186 // } 187 // 188 // Here we know that when block A is taken, cond must be true, which means 189 // P(cond == true | A) = 1 190 // 191 // Given that P(cond == true) = P(cond == true | A) * P(A) + 192 // P(cond == true | B) * P(B) 193 // we get: 194 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 195 // 196 // which gives us: 197 // P(A) is less than P(cond == true), i.e. 198 // P(t == true) <= P(cond == true) 199 // 200 // In other words, if we know P(cond == true) is unlikely, we know 201 // that P(t == true) is also unlikely. 202 // 203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 204 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 205 if (!CondBr) 206 return; 207 208 BranchProbability BP; 209 uint64_t TrueWeight, FalseWeight; 210 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 211 return; 212 213 // Returns the outgoing edge of the dominating predecessor block 214 // that leads to the PhiNode's incoming block: 215 auto GetPredOutEdge = 216 [](BasicBlock *IncomingBB, 217 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 218 auto *PredBB = IncomingBB; 219 auto *SuccBB = PhiBB; 220 while (true) { 221 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 222 if (PredBr && PredBr->isConditional()) 223 return {PredBB, SuccBB}; 224 auto *SinglePredBB = PredBB->getSinglePredecessor(); 225 if (!SinglePredBB) 226 return {nullptr, nullptr}; 227 SuccBB = PredBB; 228 PredBB = SinglePredBB; 229 } 230 }; 231 232 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 233 Value *PhiOpnd = PN->getIncomingValue(i); 234 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 235 236 if (!CI || !CI->getType()->isIntegerTy(1)) 237 continue; 238 239 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 240 TrueWeight, TrueWeight + FalseWeight) 241 : BranchProbability::getBranchProbability( 242 FalseWeight, TrueWeight + FalseWeight)); 243 244 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 245 if (!PredOutEdge.first) 246 return; 247 248 BasicBlock *PredBB = PredOutEdge.first; 249 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 250 251 uint64_t PredTrueWeight, PredFalseWeight; 252 // FIXME: We currently only set the profile data when it is missing. 253 // With PGO, this can be used to refine even existing profile data with 254 // context information. This needs to be done after more performance 255 // testing. 256 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 257 continue; 258 259 // We can not infer anything useful when BP >= 50%, because BP is the 260 // upper bound probability value. 261 if (BP >= BranchProbability(50, 100)) 262 continue; 263 264 SmallVector<uint32_t, 2> Weights; 265 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 266 Weights.push_back(BP.getNumerator()); 267 Weights.push_back(BP.getCompl().getNumerator()); 268 } else { 269 Weights.push_back(BP.getCompl().getNumerator()); 270 Weights.push_back(BP.getNumerator()); 271 } 272 PredBr->setMetadata(LLVMContext::MD_prof, 273 MDBuilder(PredBr->getParent()->getContext()) 274 .createBranchWeights(Weights)); 275 } 276 } 277 278 /// runOnFunction - Toplevel algorithm. 279 bool JumpThreading::runOnFunction(Function &F) { 280 if (skipFunction(F)) 281 return false; 282 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 283 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 284 // DT if it's available. 285 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 286 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 287 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 288 DeferredDominance DDT(*DT); 289 std::unique_ptr<BlockFrequencyInfo> BFI; 290 std::unique_ptr<BranchProbabilityInfo> BPI; 291 bool HasProfileData = F.hasProfileData(); 292 if (HasProfileData) { 293 LoopInfo LI{DominatorTree(F)}; 294 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 295 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 296 } 297 298 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData, 299 std::move(BFI), std::move(BPI)); 300 if (PrintLVIAfterJumpThreading) { 301 dbgs() << "LVI for function '" << F.getName() << "':\n"; 302 LVI->printLVI(F, *DT, dbgs()); 303 } 304 return Changed; 305 } 306 307 PreservedAnalyses JumpThreadingPass::run(Function &F, 308 FunctionAnalysisManager &AM) { 309 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 310 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 311 // DT if it's available. 312 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 313 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 314 auto &AA = AM.getResult<AAManager>(F); 315 DeferredDominance DDT(DT); 316 317 std::unique_ptr<BlockFrequencyInfo> BFI; 318 std::unique_ptr<BranchProbabilityInfo> BPI; 319 if (F.hasProfileData()) { 320 LoopInfo LI{DominatorTree(F)}; 321 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 322 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 323 } 324 325 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData, 326 std::move(BFI), std::move(BPI)); 327 328 if (!Changed) 329 return PreservedAnalyses::all(); 330 PreservedAnalyses PA; 331 PA.preserve<GlobalsAA>(); 332 PA.preserve<DominatorTreeAnalysis>(); 333 PA.preserve<LazyValueAnalysis>(); 334 return PA; 335 } 336 337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 338 LazyValueInfo *LVI_, AliasAnalysis *AA_, 339 DeferredDominance *DDT_, bool HasProfileData_, 340 std::unique_ptr<BlockFrequencyInfo> BFI_, 341 std::unique_ptr<BranchProbabilityInfo> BPI_) { 342 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 343 TLI = TLI_; 344 LVI = LVI_; 345 AA = AA_; 346 DDT = DDT_; 347 BFI.reset(); 348 BPI.reset(); 349 // When profile data is available, we need to update edge weights after 350 // successful jump threading, which requires both BPI and BFI being available. 351 HasProfileData = HasProfileData_; 352 auto *GuardDecl = F.getParent()->getFunction( 353 Intrinsic::getName(Intrinsic::experimental_guard)); 354 HasGuards = GuardDecl && !GuardDecl->use_empty(); 355 if (HasProfileData) { 356 BPI = std::move(BPI_); 357 BFI = std::move(BFI_); 358 } 359 360 // Remove unreachable blocks from function as they may result in infinite 361 // loop. We do threading if we found something profitable. Jump threading a 362 // branch can create other opportunities. If these opportunities form a cycle 363 // i.e. if any jump threading is undoing previous threading in the path, then 364 // we will loop forever. We take care of this issue by not jump threading for 365 // back edges. This works for normal cases but not for unreachable blocks as 366 // they may have cycle with no back edge. 367 bool EverChanged = false; 368 EverChanged |= removeUnreachableBlocks(F, LVI, DDT); 369 370 FindLoopHeaders(F); 371 372 bool Changed; 373 do { 374 Changed = false; 375 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 376 BasicBlock *BB = &*I; 377 // Thread all of the branches we can over this block. 378 while (ProcessBlock(BB)) 379 Changed = true; 380 381 ++I; 382 383 // Don't thread branches over a block that's slated for deletion. 384 if (DDT->pendingDeletedBB(BB)) 385 continue; 386 387 // If the block is trivially dead, zap it. This eliminates the successor 388 // edges which simplifies the CFG. 389 if (pred_empty(BB) && 390 BB != &BB->getParent()->getEntryBlock()) { 391 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 392 << "' with terminator: " << *BB->getTerminator() << '\n'); 393 LoopHeaders.erase(BB); 394 LVI->eraseBlock(BB); 395 DeleteDeadBlock(BB, DDT); 396 Changed = true; 397 continue; 398 } 399 400 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 401 402 // Can't thread an unconditional jump, but if the block is "almost 403 // empty", we can replace uses of it with uses of the successor and make 404 // this dead. 405 // We should not eliminate the loop header or latch either, because 406 // eliminating a loop header or latch might later prevent LoopSimplify 407 // from transforming nested loops into simplified form. We will rely on 408 // later passes in backend to clean up empty blocks. 409 if (BI && BI->isUnconditional() && 410 BB != &BB->getParent()->getEntryBlock() && 411 // If the terminator is the only non-phi instruction, try to nuke it. 412 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) && 413 !LoopHeaders.count(BI->getSuccessor(0))) { 414 // FIXME: It is always conservatively correct to drop the info 415 // for a block even if it doesn't get erased. This isn't totally 416 // awesome, but it allows us to use AssertingVH to prevent nasty 417 // dangling pointer issues within LazyValueInfo. 418 LVI->eraseBlock(BB); 419 if (TryToSimplifyUncondBranchFromEmptyBlock(BB, DDT)) 420 Changed = true; 421 } 422 } 423 EverChanged |= Changed; 424 } while (Changed); 425 426 LoopHeaders.clear(); 427 DDT->flush(); 428 LVI->enableDT(); 429 return EverChanged; 430 } 431 432 // Replace uses of Cond with ToVal when safe to do so. If all uses are 433 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 434 // because we may incorrectly replace uses when guards/assumes are uses of 435 // of `Cond` and we used the guards/assume to reason about the `Cond` value 436 // at the end of block. RAUW unconditionally replaces all uses 437 // including the guards/assumes themselves and the uses before the 438 // guard/assume. 439 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 440 assert(Cond->getType() == ToVal->getType()); 441 auto *BB = Cond->getParent(); 442 // We can unconditionally replace all uses in non-local blocks (i.e. uses 443 // strictly dominated by BB), since LVI information is true from the 444 // terminator of BB. 445 replaceNonLocalUsesWith(Cond, ToVal); 446 for (Instruction &I : reverse(*BB)) { 447 // Reached the Cond whose uses we are trying to replace, so there are no 448 // more uses. 449 if (&I == Cond) 450 break; 451 // We only replace uses in instructions that are guaranteed to reach the end 452 // of BB, where we know Cond is ToVal. 453 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 454 break; 455 I.replaceUsesOfWith(Cond, ToVal); 456 } 457 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 458 Cond->eraseFromParent(); 459 } 460 461 /// Return the cost of duplicating a piece of this block from first non-phi 462 /// and before StopAt instruction to thread across it. Stop scanning the block 463 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 464 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 465 Instruction *StopAt, 466 unsigned Threshold) { 467 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 468 /// Ignore PHI nodes, these will be flattened when duplication happens. 469 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 470 471 // FIXME: THREADING will delete values that are just used to compute the 472 // branch, so they shouldn't count against the duplication cost. 473 474 unsigned Bonus = 0; 475 if (BB->getTerminator() == StopAt) { 476 // Threading through a switch statement is particularly profitable. If this 477 // block ends in a switch, decrease its cost to make it more likely to 478 // happen. 479 if (isa<SwitchInst>(StopAt)) 480 Bonus = 6; 481 482 // The same holds for indirect branches, but slightly more so. 483 if (isa<IndirectBrInst>(StopAt)) 484 Bonus = 8; 485 } 486 487 // Bump the threshold up so the early exit from the loop doesn't skip the 488 // terminator-based Size adjustment at the end. 489 Threshold += Bonus; 490 491 // Sum up the cost of each instruction until we get to the terminator. Don't 492 // include the terminator because the copy won't include it. 493 unsigned Size = 0; 494 for (; &*I != StopAt; ++I) { 495 496 // Stop scanning the block if we've reached the threshold. 497 if (Size > Threshold) 498 return Size; 499 500 // Debugger intrinsics don't incur code size. 501 if (isa<DbgInfoIntrinsic>(I)) continue; 502 503 // If this is a pointer->pointer bitcast, it is free. 504 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 505 continue; 506 507 // Bail out if this instruction gives back a token type, it is not possible 508 // to duplicate it if it is used outside this BB. 509 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 510 return ~0U; 511 512 // All other instructions count for at least one unit. 513 ++Size; 514 515 // Calls are more expensive. If they are non-intrinsic calls, we model them 516 // as having cost of 4. If they are a non-vector intrinsic, we model them 517 // as having cost of 2 total, and if they are a vector intrinsic, we model 518 // them as having cost 1. 519 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 520 if (CI->cannotDuplicate() || CI->isConvergent()) 521 // Blocks with NoDuplicate are modelled as having infinite cost, so they 522 // are never duplicated. 523 return ~0U; 524 else if (!isa<IntrinsicInst>(CI)) 525 Size += 3; 526 else if (!CI->getType()->isVectorTy()) 527 Size += 1; 528 } 529 } 530 531 return Size > Bonus ? Size - Bonus : 0; 532 } 533 534 /// FindLoopHeaders - We do not want jump threading to turn proper loop 535 /// structures into irreducible loops. Doing this breaks up the loop nesting 536 /// hierarchy and pessimizes later transformations. To prevent this from 537 /// happening, we first have to find the loop headers. Here we approximate this 538 /// by finding targets of backedges in the CFG. 539 /// 540 /// Note that there definitely are cases when we want to allow threading of 541 /// edges across a loop header. For example, threading a jump from outside the 542 /// loop (the preheader) to an exit block of the loop is definitely profitable. 543 /// It is also almost always profitable to thread backedges from within the loop 544 /// to exit blocks, and is often profitable to thread backedges to other blocks 545 /// within the loop (forming a nested loop). This simple analysis is not rich 546 /// enough to track all of these properties and keep it up-to-date as the CFG 547 /// mutates, so we don't allow any of these transformations. 548 void JumpThreadingPass::FindLoopHeaders(Function &F) { 549 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 550 FindFunctionBackedges(F, Edges); 551 552 for (const auto &Edge : Edges) 553 LoopHeaders.insert(Edge.second); 554 } 555 556 /// getKnownConstant - Helper method to determine if we can thread over a 557 /// terminator with the given value as its condition, and if so what value to 558 /// use for that. What kind of value this is depends on whether we want an 559 /// integer or a block address, but an undef is always accepted. 560 /// Returns null if Val is null or not an appropriate constant. 561 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 562 if (!Val) 563 return nullptr; 564 565 // Undef is "known" enough. 566 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 567 return U; 568 569 if (Preference == WantBlockAddress) 570 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 571 572 return dyn_cast<ConstantInt>(Val); 573 } 574 575 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 576 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 577 /// in any of our predecessors. If so, return the known list of value and pred 578 /// BB in the result vector. 579 /// 580 /// This returns true if there were any known values. 581 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 582 Value *V, BasicBlock *BB, PredValueInfo &Result, 583 ConstantPreference Preference, Instruction *CxtI) { 584 // This method walks up use-def chains recursively. Because of this, we could 585 // get into an infinite loop going around loops in the use-def chain. To 586 // prevent this, keep track of what (value, block) pairs we've already visited 587 // and terminate the search if we loop back to them 588 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 589 return false; 590 591 // An RAII help to remove this pair from the recursion set once the recursion 592 // stack pops back out again. 593 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 594 595 // If V is a constant, then it is known in all predecessors. 596 if (Constant *KC = getKnownConstant(V, Preference)) { 597 for (BasicBlock *Pred : predecessors(BB)) 598 Result.push_back(std::make_pair(KC, Pred)); 599 600 return !Result.empty(); 601 } 602 603 // If V is a non-instruction value, or an instruction in a different block, 604 // then it can't be derived from a PHI. 605 Instruction *I = dyn_cast<Instruction>(V); 606 if (!I || I->getParent() != BB) { 607 608 // Okay, if this is a live-in value, see if it has a known value at the end 609 // of any of our predecessors. 610 // 611 // FIXME: This should be an edge property, not a block end property. 612 /// TODO: Per PR2563, we could infer value range information about a 613 /// predecessor based on its terminator. 614 // 615 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 616 // "I" is a non-local compare-with-a-constant instruction. This would be 617 // able to handle value inequalities better, for example if the compare is 618 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 619 // Perhaps getConstantOnEdge should be smart enough to do this? 620 621 if (DDT->pending()) 622 LVI->disableDT(); 623 else 624 LVI->enableDT(); 625 for (BasicBlock *P : predecessors(BB)) { 626 // If the value is known by LazyValueInfo to be a constant in a 627 // predecessor, use that information to try to thread this block. 628 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 629 if (Constant *KC = getKnownConstant(PredCst, Preference)) 630 Result.push_back(std::make_pair(KC, P)); 631 } 632 633 return !Result.empty(); 634 } 635 636 /// If I is a PHI node, then we know the incoming values for any constants. 637 if (PHINode *PN = dyn_cast<PHINode>(I)) { 638 if (DDT->pending()) 639 LVI->disableDT(); 640 else 641 LVI->enableDT(); 642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 643 Value *InVal = PN->getIncomingValue(i); 644 if (Constant *KC = getKnownConstant(InVal, Preference)) { 645 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 646 } else { 647 Constant *CI = LVI->getConstantOnEdge(InVal, 648 PN->getIncomingBlock(i), 649 BB, CxtI); 650 if (Constant *KC = getKnownConstant(CI, Preference)) 651 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 652 } 653 } 654 655 return !Result.empty(); 656 } 657 658 // Handle Cast instructions. Only see through Cast when the source operand is 659 // PHI or Cmp and the source type is i1 to save the compilation time. 660 if (CastInst *CI = dyn_cast<CastInst>(I)) { 661 Value *Source = CI->getOperand(0); 662 if (!Source->getType()->isIntegerTy(1)) 663 return false; 664 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 665 return false; 666 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 667 if (Result.empty()) 668 return false; 669 670 // Convert the known values. 671 for (auto &R : Result) 672 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 673 674 return true; 675 } 676 677 // Handle some boolean conditions. 678 if (I->getType()->getPrimitiveSizeInBits() == 1) { 679 assert(Preference == WantInteger && "One-bit non-integer type?"); 680 // X | true -> true 681 // X & false -> false 682 if (I->getOpcode() == Instruction::Or || 683 I->getOpcode() == Instruction::And) { 684 PredValueInfoTy LHSVals, RHSVals; 685 686 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 687 WantInteger, CxtI); 688 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 689 WantInteger, CxtI); 690 691 if (LHSVals.empty() && RHSVals.empty()) 692 return false; 693 694 ConstantInt *InterestingVal; 695 if (I->getOpcode() == Instruction::Or) 696 InterestingVal = ConstantInt::getTrue(I->getContext()); 697 else 698 InterestingVal = ConstantInt::getFalse(I->getContext()); 699 700 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 701 702 // Scan for the sentinel. If we find an undef, force it to the 703 // interesting value: x|undef -> true and x&undef -> false. 704 for (const auto &LHSVal : LHSVals) 705 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 706 Result.emplace_back(InterestingVal, LHSVal.second); 707 LHSKnownBBs.insert(LHSVal.second); 708 } 709 for (const auto &RHSVal : RHSVals) 710 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 711 // If we already inferred a value for this block on the LHS, don't 712 // re-add it. 713 if (!LHSKnownBBs.count(RHSVal.second)) 714 Result.emplace_back(InterestingVal, RHSVal.second); 715 } 716 717 return !Result.empty(); 718 } 719 720 // Handle the NOT form of XOR. 721 if (I->getOpcode() == Instruction::Xor && 722 isa<ConstantInt>(I->getOperand(1)) && 723 cast<ConstantInt>(I->getOperand(1))->isOne()) { 724 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 725 WantInteger, CxtI); 726 if (Result.empty()) 727 return false; 728 729 // Invert the known values. 730 for (auto &R : Result) 731 R.first = ConstantExpr::getNot(R.first); 732 733 return true; 734 } 735 736 // Try to simplify some other binary operator values. 737 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 738 assert(Preference != WantBlockAddress 739 && "A binary operator creating a block address?"); 740 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 741 PredValueInfoTy LHSVals; 742 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 743 WantInteger, CxtI); 744 745 // Try to use constant folding to simplify the binary operator. 746 for (const auto &LHSVal : LHSVals) { 747 Constant *V = LHSVal.first; 748 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 749 750 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 751 Result.push_back(std::make_pair(KC, LHSVal.second)); 752 } 753 } 754 755 return !Result.empty(); 756 } 757 758 // Handle compare with phi operand, where the PHI is defined in this block. 759 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 760 assert(Preference == WantInteger && "Compares only produce integers"); 761 Type *CmpType = Cmp->getType(); 762 Value *CmpLHS = Cmp->getOperand(0); 763 Value *CmpRHS = Cmp->getOperand(1); 764 CmpInst::Predicate Pred = Cmp->getPredicate(); 765 766 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 767 if (PN && PN->getParent() == BB) { 768 const DataLayout &DL = PN->getModule()->getDataLayout(); 769 // We can do this simplification if any comparisons fold to true or false. 770 // See if any do. 771 if (DDT->pending()) 772 LVI->disableDT(); 773 else 774 LVI->enableDT(); 775 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 776 BasicBlock *PredBB = PN->getIncomingBlock(i); 777 Value *LHS = PN->getIncomingValue(i); 778 Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB); 779 780 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 781 if (!Res) { 782 if (!isa<Constant>(RHS)) 783 continue; 784 785 LazyValueInfo::Tristate 786 ResT = LVI->getPredicateOnEdge(Pred, LHS, 787 cast<Constant>(RHS), PredBB, BB, 788 CxtI ? CxtI : Cmp); 789 if (ResT == LazyValueInfo::Unknown) 790 continue; 791 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 792 } 793 794 if (Constant *KC = getKnownConstant(Res, WantInteger)) 795 Result.push_back(std::make_pair(KC, PredBB)); 796 } 797 798 return !Result.empty(); 799 } 800 801 // If comparing a live-in value against a constant, see if we know the 802 // live-in value on any predecessors. 803 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 804 Constant *CmpConst = cast<Constant>(CmpRHS); 805 806 if (!isa<Instruction>(CmpLHS) || 807 cast<Instruction>(CmpLHS)->getParent() != BB) { 808 if (DDT->pending()) 809 LVI->disableDT(); 810 else 811 LVI->enableDT(); 812 for (BasicBlock *P : predecessors(BB)) { 813 // If the value is known by LazyValueInfo to be a constant in a 814 // predecessor, use that information to try to thread this block. 815 LazyValueInfo::Tristate Res = 816 LVI->getPredicateOnEdge(Pred, CmpLHS, 817 CmpConst, P, BB, CxtI ? CxtI : Cmp); 818 if (Res == LazyValueInfo::Unknown) 819 continue; 820 821 Constant *ResC = ConstantInt::get(CmpType, Res); 822 Result.push_back(std::make_pair(ResC, P)); 823 } 824 825 return !Result.empty(); 826 } 827 828 // InstCombine can fold some forms of constant range checks into 829 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 830 // x as a live-in. 831 { 832 using namespace PatternMatch; 833 834 Value *AddLHS; 835 ConstantInt *AddConst; 836 if (isa<ConstantInt>(CmpConst) && 837 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 838 if (!isa<Instruction>(AddLHS) || 839 cast<Instruction>(AddLHS)->getParent() != BB) { 840 if (DDT->pending()) 841 LVI->disableDT(); 842 else 843 LVI->enableDT(); 844 for (BasicBlock *P : predecessors(BB)) { 845 // If the value is known by LazyValueInfo to be a ConstantRange in 846 // a predecessor, use that information to try to thread this 847 // block. 848 ConstantRange CR = LVI->getConstantRangeOnEdge( 849 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 850 // Propagate the range through the addition. 851 CR = CR.add(AddConst->getValue()); 852 853 // Get the range where the compare returns true. 854 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 855 Pred, cast<ConstantInt>(CmpConst)->getValue()); 856 857 Constant *ResC; 858 if (CmpRange.contains(CR)) 859 ResC = ConstantInt::getTrue(CmpType); 860 else if (CmpRange.inverse().contains(CR)) 861 ResC = ConstantInt::getFalse(CmpType); 862 else 863 continue; 864 865 Result.push_back(std::make_pair(ResC, P)); 866 } 867 868 return !Result.empty(); 869 } 870 } 871 } 872 873 // Try to find a constant value for the LHS of a comparison, 874 // and evaluate it statically if we can. 875 PredValueInfoTy LHSVals; 876 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 877 WantInteger, CxtI); 878 879 for (const auto &LHSVal : LHSVals) { 880 Constant *V = LHSVal.first; 881 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 882 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 883 Result.push_back(std::make_pair(KC, LHSVal.second)); 884 } 885 886 return !Result.empty(); 887 } 888 } 889 890 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 891 // Handle select instructions where at least one operand is a known constant 892 // and we can figure out the condition value for any predecessor block. 893 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 894 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 895 PredValueInfoTy Conds; 896 if ((TrueVal || FalseVal) && 897 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 898 WantInteger, CxtI)) { 899 for (auto &C : Conds) { 900 Constant *Cond = C.first; 901 902 // Figure out what value to use for the condition. 903 bool KnownCond; 904 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 905 // A known boolean. 906 KnownCond = CI->isOne(); 907 } else { 908 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 909 // Either operand will do, so be sure to pick the one that's a known 910 // constant. 911 // FIXME: Do this more cleverly if both values are known constants? 912 KnownCond = (TrueVal != nullptr); 913 } 914 915 // See if the select has a known constant value for this predecessor. 916 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 917 Result.push_back(std::make_pair(Val, C.second)); 918 } 919 920 return !Result.empty(); 921 } 922 } 923 924 // If all else fails, see if LVI can figure out a constant value for us. 925 if (DDT->pending()) 926 LVI->disableDT(); 927 else 928 LVI->enableDT(); 929 Constant *CI = LVI->getConstant(V, BB, CxtI); 930 if (Constant *KC = getKnownConstant(CI, Preference)) { 931 for (BasicBlock *Pred : predecessors(BB)) 932 Result.push_back(std::make_pair(KC, Pred)); 933 } 934 935 return !Result.empty(); 936 } 937 938 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 939 /// in an undefined jump, decide which block is best to revector to. 940 /// 941 /// Since we can pick an arbitrary destination, we pick the successor with the 942 /// fewest predecessors. This should reduce the in-degree of the others. 943 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 944 TerminatorInst *BBTerm = BB->getTerminator(); 945 unsigned MinSucc = 0; 946 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 947 // Compute the successor with the minimum number of predecessors. 948 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 949 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 950 TestBB = BBTerm->getSuccessor(i); 951 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 952 if (NumPreds < MinNumPreds) { 953 MinSucc = i; 954 MinNumPreds = NumPreds; 955 } 956 } 957 958 return MinSucc; 959 } 960 961 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 962 if (!BB->hasAddressTaken()) return false; 963 964 // If the block has its address taken, it may be a tree of dead constants 965 // hanging off of it. These shouldn't keep the block alive. 966 BlockAddress *BA = BlockAddress::get(BB); 967 BA->removeDeadConstantUsers(); 968 return !BA->use_empty(); 969 } 970 971 /// ProcessBlock - If there are any predecessors whose control can be threaded 972 /// through to a successor, transform them now. 973 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 974 // If the block is trivially dead, just return and let the caller nuke it. 975 // This simplifies other transformations. 976 if (DDT->pendingDeletedBB(BB) || 977 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 978 return false; 979 980 // If this block has a single predecessor, and if that pred has a single 981 // successor, merge the blocks. This encourages recursive jump threading 982 // because now the condition in this block can be threaded through 983 // predecessors of our predecessor block. 984 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 985 const TerminatorInst *TI = SinglePred->getTerminator(); 986 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 987 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 988 // If SinglePred was a loop header, BB becomes one. 989 if (LoopHeaders.erase(SinglePred)) 990 LoopHeaders.insert(BB); 991 992 LVI->eraseBlock(SinglePred); 993 MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT); 994 995 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 996 // BB code within one basic block `BB`), we need to invalidate the LVI 997 // information associated with BB, because the LVI information need not be 998 // true for all of BB after the merge. For example, 999 // Before the merge, LVI info and code is as follows: 1000 // SinglePred: <LVI info1 for %p val> 1001 // %y = use of %p 1002 // call @exit() // need not transfer execution to successor. 1003 // assume(%p) // from this point on %p is true 1004 // br label %BB 1005 // BB: <LVI info2 for %p val, i.e. %p is true> 1006 // %x = use of %p 1007 // br label exit 1008 // 1009 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1010 // (info2 and info1 respectively). After the merge and the deletion of the 1011 // LVI info1 for SinglePred. We have the following code: 1012 // BB: <LVI info2 for %p val> 1013 // %y = use of %p 1014 // call @exit() 1015 // assume(%p) 1016 // %x = use of %p <-- LVI info2 is correct from here onwards. 1017 // br label exit 1018 // LVI info2 for BB is incorrect at the beginning of BB. 1019 1020 // Invalidate LVI information for BB if the LVI is not provably true for 1021 // all of BB. 1022 if (any_of(*BB, [](Instruction &I) { 1023 return !isGuaranteedToTransferExecutionToSuccessor(&I); 1024 })) 1025 LVI->eraseBlock(BB); 1026 return true; 1027 } 1028 } 1029 1030 if (TryToUnfoldSelectInCurrBB(BB)) 1031 return true; 1032 1033 // Look if we can propagate guards to predecessors. 1034 if (HasGuards && ProcessGuards(BB)) 1035 return true; 1036 1037 // What kind of constant we're looking for. 1038 ConstantPreference Preference = WantInteger; 1039 1040 // Look to see if the terminator is a conditional branch, switch or indirect 1041 // branch, if not we can't thread it. 1042 Value *Condition; 1043 Instruction *Terminator = BB->getTerminator(); 1044 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1045 // Can't thread an unconditional jump. 1046 if (BI->isUnconditional()) return false; 1047 Condition = BI->getCondition(); 1048 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1049 Condition = SI->getCondition(); 1050 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1051 // Can't thread indirect branch with no successors. 1052 if (IB->getNumSuccessors() == 0) return false; 1053 Condition = IB->getAddress()->stripPointerCasts(); 1054 Preference = WantBlockAddress; 1055 } else { 1056 return false; // Must be an invoke. 1057 } 1058 1059 // Run constant folding to see if we can reduce the condition to a simple 1060 // constant. 1061 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1062 Value *SimpleVal = 1063 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1064 if (SimpleVal) { 1065 I->replaceAllUsesWith(SimpleVal); 1066 if (isInstructionTriviallyDead(I, TLI)) 1067 I->eraseFromParent(); 1068 Condition = SimpleVal; 1069 } 1070 } 1071 1072 // If the terminator is branching on an undef, we can pick any of the 1073 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1074 if (isa<UndefValue>(Condition)) { 1075 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1076 std::vector<DominatorTree::UpdateType> Updates; 1077 1078 // Fold the branch/switch. 1079 TerminatorInst *BBTerm = BB->getTerminator(); 1080 Updates.reserve(BBTerm->getNumSuccessors()); 1081 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1082 if (i == BestSucc) continue; 1083 BasicBlock *Succ = BBTerm->getSuccessor(i); 1084 Succ->removePredecessor(BB, true); 1085 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1086 } 1087 1088 DEBUG(dbgs() << " In block '" << BB->getName() 1089 << "' folding undef terminator: " << *BBTerm << '\n'); 1090 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1091 BBTerm->eraseFromParent(); 1092 DDT->applyUpdates(Updates); 1093 return true; 1094 } 1095 1096 // If the terminator of this block is branching on a constant, simplify the 1097 // terminator to an unconditional branch. This can occur due to threading in 1098 // other blocks. 1099 if (getKnownConstant(Condition, Preference)) { 1100 DEBUG(dbgs() << " In block '" << BB->getName() 1101 << "' folding terminator: " << *BB->getTerminator() << '\n'); 1102 ++NumFolds; 1103 ConstantFoldTerminator(BB, true, nullptr, DDT); 1104 return true; 1105 } 1106 1107 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1108 1109 // All the rest of our checks depend on the condition being an instruction. 1110 if (!CondInst) { 1111 // FIXME: Unify this with code below. 1112 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1113 return true; 1114 return false; 1115 } 1116 1117 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1118 // If we're branching on a conditional, LVI might be able to determine 1119 // it's value at the branch instruction. We only handle comparisons 1120 // against a constant at this time. 1121 // TODO: This should be extended to handle switches as well. 1122 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1123 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1124 if (CondBr && CondConst) { 1125 // We should have returned as soon as we turn a conditional branch to 1126 // unconditional. Because its no longer interesting as far as jump 1127 // threading is concerned. 1128 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1129 1130 if (DDT->pending()) 1131 LVI->disableDT(); 1132 else 1133 LVI->enableDT(); 1134 LazyValueInfo::Tristate Ret = 1135 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1136 CondConst, CondBr); 1137 if (Ret != LazyValueInfo::Unknown) { 1138 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1139 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1140 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1141 ToRemoveSucc->removePredecessor(BB, true); 1142 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1143 CondBr->eraseFromParent(); 1144 if (CondCmp->use_empty()) 1145 CondCmp->eraseFromParent(); 1146 // We can safely replace *some* uses of the CondInst if it has 1147 // exactly one value as returned by LVI. RAUW is incorrect in the 1148 // presence of guards and assumes, that have the `Cond` as the use. This 1149 // is because we use the guards/assume to reason about the `Cond` value 1150 // at the end of block, but RAUW unconditionally replaces all uses 1151 // including the guards/assumes themselves and the uses before the 1152 // guard/assume. 1153 else if (CondCmp->getParent() == BB) { 1154 auto *CI = Ret == LazyValueInfo::True ? 1155 ConstantInt::getTrue(CondCmp->getType()) : 1156 ConstantInt::getFalse(CondCmp->getType()); 1157 ReplaceFoldableUses(CondCmp, CI); 1158 } 1159 DDT->deleteEdge(BB, ToRemoveSucc); 1160 return true; 1161 } 1162 1163 // We did not manage to simplify this branch, try to see whether 1164 // CondCmp depends on a known phi-select pattern. 1165 if (TryToUnfoldSelect(CondCmp, BB)) 1166 return true; 1167 } 1168 } 1169 1170 // Check for some cases that are worth simplifying. Right now we want to look 1171 // for loads that are used by a switch or by the condition for the branch. If 1172 // we see one, check to see if it's partially redundant. If so, insert a PHI 1173 // which can then be used to thread the values. 1174 Value *SimplifyValue = CondInst; 1175 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1176 if (isa<Constant>(CondCmp->getOperand(1))) 1177 SimplifyValue = CondCmp->getOperand(0); 1178 1179 // TODO: There are other places where load PRE would be profitable, such as 1180 // more complex comparisons. 1181 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1182 if (SimplifyPartiallyRedundantLoad(LoadI)) 1183 return true; 1184 1185 // Before threading, try to propagate profile data backwards: 1186 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1187 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1188 updatePredecessorProfileMetadata(PN, BB); 1189 1190 // Handle a variety of cases where we are branching on something derived from 1191 // a PHI node in the current block. If we can prove that any predecessors 1192 // compute a predictable value based on a PHI node, thread those predecessors. 1193 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1194 return true; 1195 1196 // If this is an otherwise-unfoldable branch on a phi node in the current 1197 // block, see if we can simplify. 1198 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1199 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1200 return ProcessBranchOnPHI(PN); 1201 1202 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1203 if (CondInst->getOpcode() == Instruction::Xor && 1204 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1205 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1206 1207 // Search for a stronger dominating condition that can be used to simplify a 1208 // conditional branch leaving BB. 1209 if (ProcessImpliedCondition(BB)) 1210 return true; 1211 1212 return false; 1213 } 1214 1215 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1216 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1217 if (!BI || !BI->isConditional()) 1218 return false; 1219 1220 Value *Cond = BI->getCondition(); 1221 BasicBlock *CurrentBB = BB; 1222 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1223 unsigned Iter = 0; 1224 1225 auto &DL = BB->getModule()->getDataLayout(); 1226 1227 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1228 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1229 if (!PBI || !PBI->isConditional()) 1230 return false; 1231 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1232 return false; 1233 1234 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1235 Optional<bool> Implication = 1236 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1237 if (Implication) { 1238 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1239 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1240 RemoveSucc->removePredecessor(BB); 1241 BranchInst::Create(KeepSucc, BI); 1242 BI->eraseFromParent(); 1243 DDT->deleteEdge(BB, RemoveSucc); 1244 return true; 1245 } 1246 CurrentBB = CurrentPred; 1247 CurrentPred = CurrentBB->getSinglePredecessor(); 1248 } 1249 1250 return false; 1251 } 1252 1253 /// Return true if Op is an instruction defined in the given block. 1254 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1255 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1256 if (OpInst->getParent() == BB) 1257 return true; 1258 return false; 1259 } 1260 1261 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1262 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1263 /// This is an important optimization that encourages jump threading, and needs 1264 /// to be run interlaced with other jump threading tasks. 1265 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1266 // Don't hack volatile and ordered loads. 1267 if (!LoadI->isUnordered()) return false; 1268 1269 // If the load is defined in a block with exactly one predecessor, it can't be 1270 // partially redundant. 1271 BasicBlock *LoadBB = LoadI->getParent(); 1272 if (LoadBB->getSinglePredecessor()) 1273 return false; 1274 1275 // If the load is defined in an EH pad, it can't be partially redundant, 1276 // because the edges between the invoke and the EH pad cannot have other 1277 // instructions between them. 1278 if (LoadBB->isEHPad()) 1279 return false; 1280 1281 Value *LoadedPtr = LoadI->getOperand(0); 1282 1283 // If the loaded operand is defined in the LoadBB and its not a phi, 1284 // it can't be available in predecessors. 1285 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1286 return false; 1287 1288 // Scan a few instructions up from the load, to see if it is obviously live at 1289 // the entry to its block. 1290 BasicBlock::iterator BBIt(LoadI); 1291 bool IsLoadCSE; 1292 if (Value *AvailableVal = FindAvailableLoadedValue( 1293 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1294 // If the value of the load is locally available within the block, just use 1295 // it. This frequently occurs for reg2mem'd allocas. 1296 1297 if (IsLoadCSE) { 1298 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1299 combineMetadataForCSE(NLoadI, LoadI); 1300 }; 1301 1302 // If the returned value is the load itself, replace with an undef. This can 1303 // only happen in dead loops. 1304 if (AvailableVal == LoadI) 1305 AvailableVal = UndefValue::get(LoadI->getType()); 1306 if (AvailableVal->getType() != LoadI->getType()) 1307 AvailableVal = CastInst::CreateBitOrPointerCast( 1308 AvailableVal, LoadI->getType(), "", LoadI); 1309 LoadI->replaceAllUsesWith(AvailableVal); 1310 LoadI->eraseFromParent(); 1311 return true; 1312 } 1313 1314 // Otherwise, if we scanned the whole block and got to the top of the block, 1315 // we know the block is locally transparent to the load. If not, something 1316 // might clobber its value. 1317 if (BBIt != LoadBB->begin()) 1318 return false; 1319 1320 // If all of the loads and stores that feed the value have the same AA tags, 1321 // then we can propagate them onto any newly inserted loads. 1322 AAMDNodes AATags; 1323 LoadI->getAAMetadata(AATags); 1324 1325 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1326 1327 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1328 1329 AvailablePredsTy AvailablePreds; 1330 BasicBlock *OneUnavailablePred = nullptr; 1331 SmallVector<LoadInst*, 8> CSELoads; 1332 1333 // If we got here, the loaded value is transparent through to the start of the 1334 // block. Check to see if it is available in any of the predecessor blocks. 1335 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1336 // If we already scanned this predecessor, skip it. 1337 if (!PredsScanned.insert(PredBB).second) 1338 continue; 1339 1340 BBIt = PredBB->end(); 1341 unsigned NumScanedInst = 0; 1342 Value *PredAvailable = nullptr; 1343 // NOTE: We don't CSE load that is volatile or anything stronger than 1344 // unordered, that should have been checked when we entered the function. 1345 assert(LoadI->isUnordered() && 1346 "Attempting to CSE volatile or atomic loads"); 1347 // If this is a load on a phi pointer, phi-translate it and search 1348 // for available load/store to the pointer in predecessors. 1349 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1350 PredAvailable = FindAvailablePtrLoadStore( 1351 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1352 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1353 1354 // If PredBB has a single predecessor, continue scanning through the 1355 // single precessor. 1356 BasicBlock *SinglePredBB = PredBB; 1357 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1358 NumScanedInst < DefMaxInstsToScan) { 1359 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1360 if (SinglePredBB) { 1361 BBIt = SinglePredBB->end(); 1362 PredAvailable = FindAvailablePtrLoadStore( 1363 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1364 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1365 &NumScanedInst); 1366 } 1367 } 1368 1369 if (!PredAvailable) { 1370 OneUnavailablePred = PredBB; 1371 continue; 1372 } 1373 1374 if (IsLoadCSE) 1375 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1376 1377 // If so, this load is partially redundant. Remember this info so that we 1378 // can create a PHI node. 1379 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1380 } 1381 1382 // If the loaded value isn't available in any predecessor, it isn't partially 1383 // redundant. 1384 if (AvailablePreds.empty()) return false; 1385 1386 // Okay, the loaded value is available in at least one (and maybe all!) 1387 // predecessors. If the value is unavailable in more than one unique 1388 // predecessor, we want to insert a merge block for those common predecessors. 1389 // This ensures that we only have to insert one reload, thus not increasing 1390 // code size. 1391 BasicBlock *UnavailablePred = nullptr; 1392 1393 // If the value is unavailable in one of predecessors, we will end up 1394 // inserting a new instruction into them. It is only valid if all the 1395 // instructions before LoadI are guaranteed to pass execution to its 1396 // successor, or if LoadI is safe to speculate. 1397 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1398 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1399 // It requires domination tree analysis, so for this simple case it is an 1400 // overkill. 1401 if (PredsScanned.size() != AvailablePreds.size() && 1402 !isSafeToSpeculativelyExecute(LoadI)) 1403 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1404 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1405 return false; 1406 1407 // If there is exactly one predecessor where the value is unavailable, the 1408 // already computed 'OneUnavailablePred' block is it. If it ends in an 1409 // unconditional branch, we know that it isn't a critical edge. 1410 if (PredsScanned.size() == AvailablePreds.size()+1 && 1411 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1412 UnavailablePred = OneUnavailablePred; 1413 } else if (PredsScanned.size() != AvailablePreds.size()) { 1414 // Otherwise, we had multiple unavailable predecessors or we had a critical 1415 // edge from the one. 1416 SmallVector<BasicBlock*, 8> PredsToSplit; 1417 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1418 1419 for (const auto &AvailablePred : AvailablePreds) 1420 AvailablePredSet.insert(AvailablePred.first); 1421 1422 // Add all the unavailable predecessors to the PredsToSplit list. 1423 for (BasicBlock *P : predecessors(LoadBB)) { 1424 // If the predecessor is an indirect goto, we can't split the edge. 1425 if (isa<IndirectBrInst>(P->getTerminator())) 1426 return false; 1427 1428 if (!AvailablePredSet.count(P)) 1429 PredsToSplit.push_back(P); 1430 } 1431 1432 // Split them out to their own block. 1433 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1434 } 1435 1436 // If the value isn't available in all predecessors, then there will be 1437 // exactly one where it isn't available. Insert a load on that edge and add 1438 // it to the AvailablePreds list. 1439 if (UnavailablePred) { 1440 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1441 "Can't handle critical edge here!"); 1442 LoadInst *NewVal = 1443 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1444 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1445 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1446 UnavailablePred->getTerminator()); 1447 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1448 if (AATags) 1449 NewVal->setAAMetadata(AATags); 1450 1451 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1452 } 1453 1454 // Now we know that each predecessor of this block has a value in 1455 // AvailablePreds, sort them for efficient access as we're walking the preds. 1456 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1457 1458 // Create a PHI node at the start of the block for the PRE'd load value. 1459 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1460 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1461 &LoadBB->front()); 1462 PN->takeName(LoadI); 1463 PN->setDebugLoc(LoadI->getDebugLoc()); 1464 1465 // Insert new entries into the PHI for each predecessor. A single block may 1466 // have multiple entries here. 1467 for (pred_iterator PI = PB; PI != PE; ++PI) { 1468 BasicBlock *P = *PI; 1469 AvailablePredsTy::iterator I = 1470 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1471 std::make_pair(P, (Value*)nullptr)); 1472 1473 assert(I != AvailablePreds.end() && I->first == P && 1474 "Didn't find entry for predecessor!"); 1475 1476 // If we have an available predecessor but it requires casting, insert the 1477 // cast in the predecessor and use the cast. Note that we have to update the 1478 // AvailablePreds vector as we go so that all of the PHI entries for this 1479 // predecessor use the same bitcast. 1480 Value *&PredV = I->second; 1481 if (PredV->getType() != LoadI->getType()) 1482 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1483 P->getTerminator()); 1484 1485 PN->addIncoming(PredV, I->first); 1486 } 1487 1488 for (LoadInst *PredLoadI : CSELoads) { 1489 combineMetadataForCSE(PredLoadI, LoadI); 1490 } 1491 1492 LoadI->replaceAllUsesWith(PN); 1493 LoadI->eraseFromParent(); 1494 1495 return true; 1496 } 1497 1498 /// FindMostPopularDest - The specified list contains multiple possible 1499 /// threadable destinations. Pick the one that occurs the most frequently in 1500 /// the list. 1501 static BasicBlock * 1502 FindMostPopularDest(BasicBlock *BB, 1503 const SmallVectorImpl<std::pair<BasicBlock *, 1504 BasicBlock *>> &PredToDestList) { 1505 assert(!PredToDestList.empty()); 1506 1507 // Determine popularity. If there are multiple possible destinations, we 1508 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1509 // blocks with known and real destinations to threading undef. We'll handle 1510 // them later if interesting. 1511 DenseMap<BasicBlock*, unsigned> DestPopularity; 1512 for (const auto &PredToDest : PredToDestList) 1513 if (PredToDest.second) 1514 DestPopularity[PredToDest.second]++; 1515 1516 // Find the most popular dest. 1517 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1518 BasicBlock *MostPopularDest = DPI->first; 1519 unsigned Popularity = DPI->second; 1520 SmallVector<BasicBlock*, 4> SamePopularity; 1521 1522 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1523 // If the popularity of this entry isn't higher than the popularity we've 1524 // seen so far, ignore it. 1525 if (DPI->second < Popularity) 1526 ; // ignore. 1527 else if (DPI->second == Popularity) { 1528 // If it is the same as what we've seen so far, keep track of it. 1529 SamePopularity.push_back(DPI->first); 1530 } else { 1531 // If it is more popular, remember it. 1532 SamePopularity.clear(); 1533 MostPopularDest = DPI->first; 1534 Popularity = DPI->second; 1535 } 1536 } 1537 1538 // Okay, now we know the most popular destination. If there is more than one 1539 // destination, we need to determine one. This is arbitrary, but we need 1540 // to make a deterministic decision. Pick the first one that appears in the 1541 // successor list. 1542 if (!SamePopularity.empty()) { 1543 SamePopularity.push_back(MostPopularDest); 1544 TerminatorInst *TI = BB->getTerminator(); 1545 for (unsigned i = 0; ; ++i) { 1546 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1547 1548 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1549 continue; 1550 1551 MostPopularDest = TI->getSuccessor(i); 1552 break; 1553 } 1554 } 1555 1556 // Okay, we have finally picked the most popular destination. 1557 return MostPopularDest; 1558 } 1559 1560 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1561 ConstantPreference Preference, 1562 Instruction *CxtI) { 1563 // If threading this would thread across a loop header, don't even try to 1564 // thread the edge. 1565 if (LoopHeaders.count(BB)) 1566 return false; 1567 1568 PredValueInfoTy PredValues; 1569 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1570 return false; 1571 1572 assert(!PredValues.empty() && 1573 "ComputeValueKnownInPredecessors returned true with no values"); 1574 1575 DEBUG(dbgs() << "IN BB: " << *BB; 1576 for (const auto &PredValue : PredValues) { 1577 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1578 << *PredValue.first 1579 << " for pred '" << PredValue.second->getName() << "'.\n"; 1580 }); 1581 1582 // Decide what we want to thread through. Convert our list of known values to 1583 // a list of known destinations for each pred. This also discards duplicate 1584 // predecessors and keeps track of the undefined inputs (which are represented 1585 // as a null dest in the PredToDestList). 1586 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1587 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1588 1589 BasicBlock *OnlyDest = nullptr; 1590 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1591 Constant *OnlyVal = nullptr; 1592 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1593 1594 unsigned PredWithKnownDest = 0; 1595 for (const auto &PredValue : PredValues) { 1596 BasicBlock *Pred = PredValue.second; 1597 if (!SeenPreds.insert(Pred).second) 1598 continue; // Duplicate predecessor entry. 1599 1600 Constant *Val = PredValue.first; 1601 1602 BasicBlock *DestBB; 1603 if (isa<UndefValue>(Val)) 1604 DestBB = nullptr; 1605 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1606 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1607 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1608 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1609 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1610 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1611 } else { 1612 assert(isa<IndirectBrInst>(BB->getTerminator()) 1613 && "Unexpected terminator"); 1614 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1615 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1616 } 1617 1618 // If we have exactly one destination, remember it for efficiency below. 1619 if (PredToDestList.empty()) { 1620 OnlyDest = DestBB; 1621 OnlyVal = Val; 1622 } else { 1623 if (OnlyDest != DestBB) 1624 OnlyDest = MultipleDestSentinel; 1625 // It possible we have same destination, but different value, e.g. default 1626 // case in switchinst. 1627 if (Val != OnlyVal) 1628 OnlyVal = MultipleVal; 1629 } 1630 1631 // We know where this predecessor is going. 1632 ++PredWithKnownDest; 1633 1634 // If the predecessor ends with an indirect goto, we can't change its 1635 // destination. 1636 if (isa<IndirectBrInst>(Pred->getTerminator())) 1637 continue; 1638 1639 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1640 } 1641 1642 // If all edges were unthreadable, we fail. 1643 if (PredToDestList.empty()) 1644 return false; 1645 1646 // If all the predecessors go to a single known successor, we want to fold, 1647 // not thread. By doing so, we do not need to duplicate the current block and 1648 // also miss potential opportunities in case we dont/cant duplicate. 1649 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1650 if (PredWithKnownDest == 1651 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1652 bool SeenFirstBranchToOnlyDest = false; 1653 std::vector <DominatorTree::UpdateType> Updates; 1654 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1655 for (BasicBlock *SuccBB : successors(BB)) { 1656 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1657 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1658 } else { 1659 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1660 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1661 } 1662 } 1663 1664 // Finally update the terminator. 1665 TerminatorInst *Term = BB->getTerminator(); 1666 BranchInst::Create(OnlyDest, Term); 1667 Term->eraseFromParent(); 1668 DDT->applyUpdates(Updates); 1669 1670 // If the condition is now dead due to the removal of the old terminator, 1671 // erase it. 1672 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1673 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1674 CondInst->eraseFromParent(); 1675 // We can safely replace *some* uses of the CondInst if it has 1676 // exactly one value as returned by LVI. RAUW is incorrect in the 1677 // presence of guards and assumes, that have the `Cond` as the use. This 1678 // is because we use the guards/assume to reason about the `Cond` value 1679 // at the end of block, but RAUW unconditionally replaces all uses 1680 // including the guards/assumes themselves and the uses before the 1681 // guard/assume. 1682 else if (OnlyVal && OnlyVal != MultipleVal && 1683 CondInst->getParent() == BB) 1684 ReplaceFoldableUses(CondInst, OnlyVal); 1685 } 1686 return true; 1687 } 1688 } 1689 1690 // Determine which is the most common successor. If we have many inputs and 1691 // this block is a switch, we want to start by threading the batch that goes 1692 // to the most popular destination first. If we only know about one 1693 // threadable destination (the common case) we can avoid this. 1694 BasicBlock *MostPopularDest = OnlyDest; 1695 1696 if (MostPopularDest == MultipleDestSentinel) 1697 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1698 1699 // Now that we know what the most popular destination is, factor all 1700 // predecessors that will jump to it into a single predecessor. 1701 SmallVector<BasicBlock*, 16> PredsToFactor; 1702 for (const auto &PredToDest : PredToDestList) 1703 if (PredToDest.second == MostPopularDest) { 1704 BasicBlock *Pred = PredToDest.first; 1705 1706 // This predecessor may be a switch or something else that has multiple 1707 // edges to the block. Factor each of these edges by listing them 1708 // according to # occurrences in PredsToFactor. 1709 for (BasicBlock *Succ : successors(Pred)) 1710 if (Succ == BB) 1711 PredsToFactor.push_back(Pred); 1712 } 1713 1714 // If the threadable edges are branching on an undefined value, we get to pick 1715 // the destination that these predecessors should get to. 1716 if (!MostPopularDest) 1717 MostPopularDest = BB->getTerminator()-> 1718 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1719 1720 // Ok, try to thread it! 1721 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1722 } 1723 1724 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1725 /// a PHI node in the current block. See if there are any simplifications we 1726 /// can do based on inputs to the phi node. 1727 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1728 BasicBlock *BB = PN->getParent(); 1729 1730 // TODO: We could make use of this to do it once for blocks with common PHI 1731 // values. 1732 SmallVector<BasicBlock*, 1> PredBBs; 1733 PredBBs.resize(1); 1734 1735 // If any of the predecessor blocks end in an unconditional branch, we can 1736 // *duplicate* the conditional branch into that block in order to further 1737 // encourage jump threading and to eliminate cases where we have branch on a 1738 // phi of an icmp (branch on icmp is much better). 1739 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1740 BasicBlock *PredBB = PN->getIncomingBlock(i); 1741 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1742 if (PredBr->isUnconditional()) { 1743 PredBBs[0] = PredBB; 1744 // Try to duplicate BB into PredBB. 1745 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1746 return true; 1747 } 1748 } 1749 1750 return false; 1751 } 1752 1753 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1754 /// a xor instruction in the current block. See if there are any 1755 /// simplifications we can do based on inputs to the xor. 1756 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1757 BasicBlock *BB = BO->getParent(); 1758 1759 // If either the LHS or RHS of the xor is a constant, don't do this 1760 // optimization. 1761 if (isa<ConstantInt>(BO->getOperand(0)) || 1762 isa<ConstantInt>(BO->getOperand(1))) 1763 return false; 1764 1765 // If the first instruction in BB isn't a phi, we won't be able to infer 1766 // anything special about any particular predecessor. 1767 if (!isa<PHINode>(BB->front())) 1768 return false; 1769 1770 // If this BB is a landing pad, we won't be able to split the edge into it. 1771 if (BB->isEHPad()) 1772 return false; 1773 1774 // If we have a xor as the branch input to this block, and we know that the 1775 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1776 // the condition into the predecessor and fix that value to true, saving some 1777 // logical ops on that path and encouraging other paths to simplify. 1778 // 1779 // This copies something like this: 1780 // 1781 // BB: 1782 // %X = phi i1 [1], [%X'] 1783 // %Y = icmp eq i32 %A, %B 1784 // %Z = xor i1 %X, %Y 1785 // br i1 %Z, ... 1786 // 1787 // Into: 1788 // BB': 1789 // %Y = icmp ne i32 %A, %B 1790 // br i1 %Y, ... 1791 1792 PredValueInfoTy XorOpValues; 1793 bool isLHS = true; 1794 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1795 WantInteger, BO)) { 1796 assert(XorOpValues.empty()); 1797 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1798 WantInteger, BO)) 1799 return false; 1800 isLHS = false; 1801 } 1802 1803 assert(!XorOpValues.empty() && 1804 "ComputeValueKnownInPredecessors returned true with no values"); 1805 1806 // Scan the information to see which is most popular: true or false. The 1807 // predecessors can be of the set true, false, or undef. 1808 unsigned NumTrue = 0, NumFalse = 0; 1809 for (const auto &XorOpValue : XorOpValues) { 1810 if (isa<UndefValue>(XorOpValue.first)) 1811 // Ignore undefs for the count. 1812 continue; 1813 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1814 ++NumFalse; 1815 else 1816 ++NumTrue; 1817 } 1818 1819 // Determine which value to split on, true, false, or undef if neither. 1820 ConstantInt *SplitVal = nullptr; 1821 if (NumTrue > NumFalse) 1822 SplitVal = ConstantInt::getTrue(BB->getContext()); 1823 else if (NumTrue != 0 || NumFalse != 0) 1824 SplitVal = ConstantInt::getFalse(BB->getContext()); 1825 1826 // Collect all of the blocks that this can be folded into so that we can 1827 // factor this once and clone it once. 1828 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1829 for (const auto &XorOpValue : XorOpValues) { 1830 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1831 continue; 1832 1833 BlocksToFoldInto.push_back(XorOpValue.second); 1834 } 1835 1836 // If we inferred a value for all of the predecessors, then duplication won't 1837 // help us. However, we can just replace the LHS or RHS with the constant. 1838 if (BlocksToFoldInto.size() == 1839 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1840 if (!SplitVal) { 1841 // If all preds provide undef, just nuke the xor, because it is undef too. 1842 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1843 BO->eraseFromParent(); 1844 } else if (SplitVal->isZero()) { 1845 // If all preds provide 0, replace the xor with the other input. 1846 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1847 BO->eraseFromParent(); 1848 } else { 1849 // If all preds provide 1, set the computed value to 1. 1850 BO->setOperand(!isLHS, SplitVal); 1851 } 1852 1853 return true; 1854 } 1855 1856 // Try to duplicate BB into PredBB. 1857 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1858 } 1859 1860 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1861 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1862 /// NewPred using the entries from OldPred (suitably mapped). 1863 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1864 BasicBlock *OldPred, 1865 BasicBlock *NewPred, 1866 DenseMap<Instruction*, Value*> &ValueMap) { 1867 for (PHINode &PN : PHIBB->phis()) { 1868 // Ok, we have a PHI node. Figure out what the incoming value was for the 1869 // DestBlock. 1870 Value *IV = PN.getIncomingValueForBlock(OldPred); 1871 1872 // Remap the value if necessary. 1873 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1874 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1875 if (I != ValueMap.end()) 1876 IV = I->second; 1877 } 1878 1879 PN.addIncoming(IV, NewPred); 1880 } 1881 } 1882 1883 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1884 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1885 /// across BB. Transform the IR to reflect this change. 1886 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1887 const SmallVectorImpl<BasicBlock *> &PredBBs, 1888 BasicBlock *SuccBB) { 1889 // If threading to the same block as we come from, we would infinite loop. 1890 if (SuccBB == BB) { 1891 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1892 << "' - would thread to self!\n"); 1893 return false; 1894 } 1895 1896 // If threading this would thread across a loop header, don't thread the edge. 1897 // See the comments above FindLoopHeaders for justifications and caveats. 1898 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1899 DEBUG({ 1900 bool BBIsHeader = LoopHeaders.count(BB); 1901 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1902 dbgs() << " Not threading across " 1903 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1904 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1905 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1906 }); 1907 return false; 1908 } 1909 1910 unsigned JumpThreadCost = 1911 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1912 if (JumpThreadCost > BBDupThreshold) { 1913 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1914 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1915 return false; 1916 } 1917 1918 // And finally, do it! Start by factoring the predecessors if needed. 1919 BasicBlock *PredBB; 1920 if (PredBBs.size() == 1) 1921 PredBB = PredBBs[0]; 1922 else { 1923 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1924 << " common predecessors.\n"); 1925 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1926 } 1927 1928 // And finally, do it! 1929 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1930 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1931 << ", across block:\n " 1932 << *BB << "\n"); 1933 1934 if (DDT->pending()) 1935 LVI->disableDT(); 1936 else 1937 LVI->enableDT(); 1938 LVI->threadEdge(PredBB, BB, SuccBB); 1939 1940 // We are going to have to map operands from the original BB block to the new 1941 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1942 // account for entry from PredBB. 1943 DenseMap<Instruction*, Value*> ValueMapping; 1944 1945 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1946 BB->getName()+".thread", 1947 BB->getParent(), BB); 1948 NewBB->moveAfter(PredBB); 1949 1950 // Set the block frequency of NewBB. 1951 if (HasProfileData) { 1952 auto NewBBFreq = 1953 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1954 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1955 } 1956 1957 BasicBlock::iterator BI = BB->begin(); 1958 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1959 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1960 1961 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1962 // mapping and using it to remap operands in the cloned instructions. 1963 for (; !isa<TerminatorInst>(BI); ++BI) { 1964 Instruction *New = BI->clone(); 1965 New->setName(BI->getName()); 1966 NewBB->getInstList().push_back(New); 1967 ValueMapping[&*BI] = New; 1968 1969 // Remap operands to patch up intra-block references. 1970 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1971 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1972 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1973 if (I != ValueMapping.end()) 1974 New->setOperand(i, I->second); 1975 } 1976 } 1977 1978 // We didn't copy the terminator from BB over to NewBB, because there is now 1979 // an unconditional jump to SuccBB. Insert the unconditional jump. 1980 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1981 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1982 1983 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1984 // PHI nodes for NewBB now. 1985 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1986 1987 // If there were values defined in BB that are used outside the block, then we 1988 // now have to update all uses of the value to use either the original value, 1989 // the cloned value, or some PHI derived value. This can require arbitrary 1990 // PHI insertion, of which we are prepared to do, clean these up now. 1991 SSAUpdater SSAUpdate; 1992 SmallVector<Use*, 16> UsesToRename; 1993 for (Instruction &I : *BB) { 1994 // Scan all uses of this instruction to see if it is used outside of its 1995 // block, and if so, record them in UsesToRename. 1996 for (Use &U : I.uses()) { 1997 Instruction *User = cast<Instruction>(U.getUser()); 1998 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1999 if (UserPN->getIncomingBlock(U) == BB) 2000 continue; 2001 } else if (User->getParent() == BB) 2002 continue; 2003 2004 UsesToRename.push_back(&U); 2005 } 2006 2007 // If there are no uses outside the block, we're done with this instruction. 2008 if (UsesToRename.empty()) 2009 continue; 2010 2011 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2012 2013 // We found a use of I outside of BB. Rename all uses of I that are outside 2014 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2015 // with the two values we know. 2016 SSAUpdate.Initialize(I.getType(), I.getName()); 2017 SSAUpdate.AddAvailableValue(BB, &I); 2018 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2019 2020 while (!UsesToRename.empty()) 2021 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2022 DEBUG(dbgs() << "\n"); 2023 } 2024 2025 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 2026 // NewBB instead of BB. This eliminates predecessors from BB, which requires 2027 // us to simplify any PHI nodes in BB. 2028 TerminatorInst *PredTerm = PredBB->getTerminator(); 2029 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2030 if (PredTerm->getSuccessor(i) == BB) { 2031 BB->removePredecessor(PredBB, true); 2032 PredTerm->setSuccessor(i, NewBB); 2033 } 2034 2035 DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2036 {DominatorTree::Insert, PredBB, NewBB}, 2037 {DominatorTree::Delete, PredBB, BB}}); 2038 2039 // At this point, the IR is fully up to date and consistent. Do a quick scan 2040 // over the new instructions and zap any that are constants or dead. This 2041 // frequently happens because of phi translation. 2042 SimplifyInstructionsInBlock(NewBB, TLI); 2043 2044 // Update the edge weight from BB to SuccBB, which should be less than before. 2045 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2046 2047 // Threaded an edge! 2048 ++NumThreads; 2049 return true; 2050 } 2051 2052 /// Create a new basic block that will be the predecessor of BB and successor of 2053 /// all blocks in Preds. When profile data is available, update the frequency of 2054 /// this new block. 2055 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2056 ArrayRef<BasicBlock *> Preds, 2057 const char *Suffix) { 2058 SmallVector<BasicBlock *, 2> NewBBs; 2059 2060 // Collect the frequencies of all predecessors of BB, which will be used to 2061 // update the edge weight of the result of splitting predecessors. 2062 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2063 if (HasProfileData) 2064 for (auto Pred : Preds) 2065 FreqMap.insert(std::make_pair( 2066 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2067 2068 // In the case when BB is a LandingPad block we create 2 new predecessors 2069 // instead of just one. 2070 if (BB->isLandingPad()) { 2071 std::string NewName = std::string(Suffix) + ".split-lp"; 2072 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2073 } else { 2074 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2075 } 2076 2077 std::vector<DominatorTree::UpdateType> Updates; 2078 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2079 for (auto NewBB : NewBBs) { 2080 BlockFrequency NewBBFreq(0); 2081 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2082 for (auto Pred : predecessors(NewBB)) { 2083 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2084 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2085 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2086 NewBBFreq += FreqMap.lookup(Pred); 2087 } 2088 if (HasProfileData) // Apply the summed frequency to NewBB. 2089 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2090 } 2091 2092 DDT->applyUpdates(Updates); 2093 return NewBBs[0]; 2094 } 2095 2096 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2097 const TerminatorInst *TI = BB->getTerminator(); 2098 assert(TI->getNumSuccessors() > 1 && "not a split"); 2099 2100 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2101 if (!WeightsNode) 2102 return false; 2103 2104 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2105 if (MDName->getString() != "branch_weights") 2106 return false; 2107 2108 // Ensure there are weights for all of the successors. Note that the first 2109 // operand to the metadata node is a name, not a weight. 2110 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2111 } 2112 2113 /// Update the block frequency of BB and branch weight and the metadata on the 2114 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2115 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2116 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2117 BasicBlock *BB, 2118 BasicBlock *NewBB, 2119 BasicBlock *SuccBB) { 2120 if (!HasProfileData) 2121 return; 2122 2123 assert(BFI && BPI && "BFI & BPI should have been created here"); 2124 2125 // As the edge from PredBB to BB is deleted, we have to update the block 2126 // frequency of BB. 2127 auto BBOrigFreq = BFI->getBlockFreq(BB); 2128 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2129 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2130 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2131 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2132 2133 // Collect updated outgoing edges' frequencies from BB and use them to update 2134 // edge probabilities. 2135 SmallVector<uint64_t, 4> BBSuccFreq; 2136 for (BasicBlock *Succ : successors(BB)) { 2137 auto SuccFreq = (Succ == SuccBB) 2138 ? BB2SuccBBFreq - NewBBFreq 2139 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2140 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2141 } 2142 2143 uint64_t MaxBBSuccFreq = 2144 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2145 2146 SmallVector<BranchProbability, 4> BBSuccProbs; 2147 if (MaxBBSuccFreq == 0) 2148 BBSuccProbs.assign(BBSuccFreq.size(), 2149 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2150 else { 2151 for (uint64_t Freq : BBSuccFreq) 2152 BBSuccProbs.push_back( 2153 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2154 // Normalize edge probabilities so that they sum up to one. 2155 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2156 BBSuccProbs.end()); 2157 } 2158 2159 // Update edge probabilities in BPI. 2160 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2161 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2162 2163 // Update the profile metadata as well. 2164 // 2165 // Don't do this if the profile of the transformed blocks was statically 2166 // estimated. (This could occur despite the function having an entry 2167 // frequency in completely cold parts of the CFG.) 2168 // 2169 // In this case we don't want to suggest to subsequent passes that the 2170 // calculated weights are fully consistent. Consider this graph: 2171 // 2172 // check_1 2173 // 50% / | 2174 // eq_1 | 50% 2175 // \ | 2176 // check_2 2177 // 50% / | 2178 // eq_2 | 50% 2179 // \ | 2180 // check_3 2181 // 50% / | 2182 // eq_3 | 50% 2183 // \ | 2184 // 2185 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2186 // the overall probabilities are inconsistent; the total probability that the 2187 // value is either 1, 2 or 3 is 150%. 2188 // 2189 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2190 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2191 // the loop exit edge. Then based solely on static estimation we would assume 2192 // the loop was extremely hot. 2193 // 2194 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2195 // shouldn't make edges extremely likely or unlikely based solely on static 2196 // estimation. 2197 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2198 SmallVector<uint32_t, 4> Weights; 2199 for (auto Prob : BBSuccProbs) 2200 Weights.push_back(Prob.getNumerator()); 2201 2202 auto TI = BB->getTerminator(); 2203 TI->setMetadata( 2204 LLVMContext::MD_prof, 2205 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2206 } 2207 } 2208 2209 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2210 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2211 /// If we can duplicate the contents of BB up into PredBB do so now, this 2212 /// improves the odds that the branch will be on an analyzable instruction like 2213 /// a compare. 2214 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2215 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2216 assert(!PredBBs.empty() && "Can't handle an empty set"); 2217 2218 // If BB is a loop header, then duplicating this block outside the loop would 2219 // cause us to transform this into an irreducible loop, don't do this. 2220 // See the comments above FindLoopHeaders for justifications and caveats. 2221 if (LoopHeaders.count(BB)) { 2222 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2223 << "' into predecessor block '" << PredBBs[0]->getName() 2224 << "' - it might create an irreducible loop!\n"); 2225 return false; 2226 } 2227 2228 unsigned DuplicationCost = 2229 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2230 if (DuplicationCost > BBDupThreshold) { 2231 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2232 << "' - Cost is too high: " << DuplicationCost << "\n"); 2233 return false; 2234 } 2235 2236 // And finally, do it! Start by factoring the predecessors if needed. 2237 std::vector<DominatorTree::UpdateType> Updates; 2238 BasicBlock *PredBB; 2239 if (PredBBs.size() == 1) 2240 PredBB = PredBBs[0]; 2241 else { 2242 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2243 << " common predecessors.\n"); 2244 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2245 } 2246 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2247 2248 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2249 // of PredBB. 2250 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 2251 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 2252 << DuplicationCost << " block is:" << *BB << "\n"); 2253 2254 // Unless PredBB ends with an unconditional branch, split the edge so that we 2255 // can just clone the bits from BB into the end of the new PredBB. 2256 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2257 2258 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2259 BasicBlock *OldPredBB = PredBB; 2260 PredBB = SplitEdge(OldPredBB, BB); 2261 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2262 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2263 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2264 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2265 } 2266 2267 // We are going to have to map operands from the original BB block into the 2268 // PredBB block. Evaluate PHI nodes in BB. 2269 DenseMap<Instruction*, Value*> ValueMapping; 2270 2271 BasicBlock::iterator BI = BB->begin(); 2272 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2273 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2274 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2275 // mapping and using it to remap operands in the cloned instructions. 2276 for (; BI != BB->end(); ++BI) { 2277 Instruction *New = BI->clone(); 2278 2279 // Remap operands to patch up intra-block references. 2280 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2281 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2282 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2283 if (I != ValueMapping.end()) 2284 New->setOperand(i, I->second); 2285 } 2286 2287 // If this instruction can be simplified after the operands are updated, 2288 // just use the simplified value instead. This frequently happens due to 2289 // phi translation. 2290 if (Value *IV = SimplifyInstruction( 2291 New, 2292 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2293 ValueMapping[&*BI] = IV; 2294 if (!New->mayHaveSideEffects()) { 2295 New->deleteValue(); 2296 New = nullptr; 2297 } 2298 } else { 2299 ValueMapping[&*BI] = New; 2300 } 2301 if (New) { 2302 // Otherwise, insert the new instruction into the block. 2303 New->setName(BI->getName()); 2304 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2305 // Update Dominance from simplified New instruction operands. 2306 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2307 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2308 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2309 } 2310 } 2311 2312 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2313 // add entries to the PHI nodes for branch from PredBB now. 2314 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2315 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2316 ValueMapping); 2317 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2318 ValueMapping); 2319 2320 // If there were values defined in BB that are used outside the block, then we 2321 // now have to update all uses of the value to use either the original value, 2322 // the cloned value, or some PHI derived value. This can require arbitrary 2323 // PHI insertion, of which we are prepared to do, clean these up now. 2324 SSAUpdater SSAUpdate; 2325 SmallVector<Use*, 16> UsesToRename; 2326 for (Instruction &I : *BB) { 2327 // Scan all uses of this instruction to see if it is used outside of its 2328 // block, and if so, record them in UsesToRename. 2329 for (Use &U : I.uses()) { 2330 Instruction *User = cast<Instruction>(U.getUser()); 2331 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2332 if (UserPN->getIncomingBlock(U) == BB) 2333 continue; 2334 } else if (User->getParent() == BB) 2335 continue; 2336 2337 UsesToRename.push_back(&U); 2338 } 2339 2340 // If there are no uses outside the block, we're done with this instruction. 2341 if (UsesToRename.empty()) 2342 continue; 2343 2344 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2345 2346 // We found a use of I outside of BB. Rename all uses of I that are outside 2347 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2348 // with the two values we know. 2349 SSAUpdate.Initialize(I.getType(), I.getName()); 2350 SSAUpdate.AddAvailableValue(BB, &I); 2351 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2352 2353 while (!UsesToRename.empty()) 2354 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2355 DEBUG(dbgs() << "\n"); 2356 } 2357 2358 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2359 // that we nuked. 2360 BB->removePredecessor(PredBB, true); 2361 2362 // Remove the unconditional branch at the end of the PredBB block. 2363 OldPredBranch->eraseFromParent(); 2364 DDT->applyUpdates(Updates); 2365 2366 ++NumDupes; 2367 return true; 2368 } 2369 2370 /// TryToUnfoldSelect - Look for blocks of the form 2371 /// bb1: 2372 /// %a = select 2373 /// br bb2 2374 /// 2375 /// bb2: 2376 /// %p = phi [%a, %bb1] ... 2377 /// %c = icmp %p 2378 /// br i1 %c 2379 /// 2380 /// And expand the select into a branch structure if one of its arms allows %c 2381 /// to be folded. This later enables threading from bb1 over bb2. 2382 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2383 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2384 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2385 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2386 2387 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2388 CondLHS->getParent() != BB) 2389 return false; 2390 2391 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2392 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2393 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2394 2395 // Look if one of the incoming values is a select in the corresponding 2396 // predecessor. 2397 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2398 continue; 2399 2400 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2401 if (!PredTerm || !PredTerm->isUnconditional()) 2402 continue; 2403 2404 // Now check if one of the select values would allow us to constant fold the 2405 // terminator in BB. We don't do the transform if both sides fold, those 2406 // cases will be threaded in any case. 2407 if (DDT->pending()) 2408 LVI->disableDT(); 2409 else 2410 LVI->enableDT(); 2411 LazyValueInfo::Tristate LHSFolds = 2412 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2413 CondRHS, Pred, BB, CondCmp); 2414 LazyValueInfo::Tristate RHSFolds = 2415 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2416 CondRHS, Pred, BB, CondCmp); 2417 if ((LHSFolds != LazyValueInfo::Unknown || 2418 RHSFolds != LazyValueInfo::Unknown) && 2419 LHSFolds != RHSFolds) { 2420 // Expand the select. 2421 // 2422 // Pred -- 2423 // | v 2424 // | NewBB 2425 // | | 2426 // |----- 2427 // v 2428 // BB 2429 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2430 BB->getParent(), BB); 2431 // Move the unconditional branch to NewBB. 2432 PredTerm->removeFromParent(); 2433 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2434 // Create a conditional branch and update PHI nodes. 2435 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2436 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2437 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2438 // The select is now dead. 2439 SI->eraseFromParent(); 2440 2441 DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2442 {DominatorTree::Insert, Pred, NewBB}}); 2443 // Update any other PHI nodes in BB. 2444 for (BasicBlock::iterator BI = BB->begin(); 2445 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2446 if (Phi != CondLHS) 2447 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2448 return true; 2449 } 2450 } 2451 return false; 2452 } 2453 2454 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2455 /// same BB in the form 2456 /// bb: 2457 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2458 /// %s = select %p, trueval, falseval 2459 /// 2460 /// or 2461 /// 2462 /// bb: 2463 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2464 /// %c = cmp %p, 0 2465 /// %s = select %c, trueval, falseval 2466 /// 2467 /// And expand the select into a branch structure. This later enables 2468 /// jump-threading over bb in this pass. 2469 /// 2470 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2471 /// select if the associated PHI has at least one constant. If the unfolded 2472 /// select is not jump-threaded, it will be folded again in the later 2473 /// optimizations. 2474 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2475 // If threading this would thread across a loop header, don't thread the edge. 2476 // See the comments above FindLoopHeaders for justifications and caveats. 2477 if (LoopHeaders.count(BB)) 2478 return false; 2479 2480 for (BasicBlock::iterator BI = BB->begin(); 2481 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2482 // Look for a Phi having at least one constant incoming value. 2483 if (llvm::all_of(PN->incoming_values(), 2484 [](Value *V) { return !isa<ConstantInt>(V); })) 2485 continue; 2486 2487 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2488 // Check if SI is in BB and use V as condition. 2489 if (SI->getParent() != BB) 2490 return false; 2491 Value *Cond = SI->getCondition(); 2492 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2493 }; 2494 2495 SelectInst *SI = nullptr; 2496 for (Use &U : PN->uses()) { 2497 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2498 // Look for a ICmp in BB that compares PN with a constant and is the 2499 // condition of a Select. 2500 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2501 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2502 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2503 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2504 SI = SelectI; 2505 break; 2506 } 2507 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2508 // Look for a Select in BB that uses PN as condtion. 2509 if (isUnfoldCandidate(SelectI, U.get())) { 2510 SI = SelectI; 2511 break; 2512 } 2513 } 2514 } 2515 2516 if (!SI) 2517 continue; 2518 // Expand the select. 2519 TerminatorInst *Term = 2520 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2521 BasicBlock *SplitBB = SI->getParent(); 2522 BasicBlock *NewBB = Term->getParent(); 2523 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2524 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2525 NewPN->addIncoming(SI->getFalseValue(), BB); 2526 SI->replaceAllUsesWith(NewPN); 2527 SI->eraseFromParent(); 2528 // NewBB and SplitBB are newly created blocks which require insertion. 2529 std::vector<DominatorTree::UpdateType> Updates; 2530 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2531 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2532 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2533 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2534 // BB's successors were moved to SplitBB, update DDT accordingly. 2535 for (auto *Succ : successors(SplitBB)) { 2536 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2537 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2538 } 2539 DDT->applyUpdates(Updates); 2540 return true; 2541 } 2542 return false; 2543 } 2544 2545 /// Try to propagate a guard from the current BB into one of its predecessors 2546 /// in case if another branch of execution implies that the condition of this 2547 /// guard is always true. Currently we only process the simplest case that 2548 /// looks like: 2549 /// 2550 /// Start: 2551 /// %cond = ... 2552 /// br i1 %cond, label %T1, label %F1 2553 /// T1: 2554 /// br label %Merge 2555 /// F1: 2556 /// br label %Merge 2557 /// Merge: 2558 /// %condGuard = ... 2559 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2560 /// 2561 /// And cond either implies condGuard or !condGuard. In this case all the 2562 /// instructions before the guard can be duplicated in both branches, and the 2563 /// guard is then threaded to one of them. 2564 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2565 using namespace PatternMatch; 2566 2567 // We only want to deal with two predecessors. 2568 BasicBlock *Pred1, *Pred2; 2569 auto PI = pred_begin(BB), PE = pred_end(BB); 2570 if (PI == PE) 2571 return false; 2572 Pred1 = *PI++; 2573 if (PI == PE) 2574 return false; 2575 Pred2 = *PI++; 2576 if (PI != PE) 2577 return false; 2578 if (Pred1 == Pred2) 2579 return false; 2580 2581 // Try to thread one of the guards of the block. 2582 // TODO: Look up deeper than to immediate predecessor? 2583 auto *Parent = Pred1->getSinglePredecessor(); 2584 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2585 return false; 2586 2587 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2588 for (auto &I : *BB) 2589 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2590 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2591 return true; 2592 2593 return false; 2594 } 2595 2596 /// Try to propagate the guard from BB which is the lower block of a diamond 2597 /// to one of its branches, in case if diamond's condition implies guard's 2598 /// condition. 2599 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2600 BranchInst *BI) { 2601 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2602 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2603 Value *GuardCond = Guard->getArgOperand(0); 2604 Value *BranchCond = BI->getCondition(); 2605 BasicBlock *TrueDest = BI->getSuccessor(0); 2606 BasicBlock *FalseDest = BI->getSuccessor(1); 2607 2608 auto &DL = BB->getModule()->getDataLayout(); 2609 bool TrueDestIsSafe = false; 2610 bool FalseDestIsSafe = false; 2611 2612 // True dest is safe if BranchCond => GuardCond. 2613 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2614 if (Impl && *Impl) 2615 TrueDestIsSafe = true; 2616 else { 2617 // False dest is safe if !BranchCond => GuardCond. 2618 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2619 if (Impl && *Impl) 2620 FalseDestIsSafe = true; 2621 } 2622 2623 if (!TrueDestIsSafe && !FalseDestIsSafe) 2624 return false; 2625 2626 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2627 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2628 2629 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2630 Instruction *AfterGuard = Guard->getNextNode(); 2631 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2632 if (Cost > BBDupThreshold) 2633 return false; 2634 // Duplicate all instructions before the guard and the guard itself to the 2635 // branch where implication is not proved. 2636 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2637 BB, PredGuardedBlock, AfterGuard, GuardedMapping); 2638 assert(GuardedBlock && "Could not create the guarded block?"); 2639 // Duplicate all instructions before the guard in the unguarded branch. 2640 // Since we have successfully duplicated the guarded block and this block 2641 // has fewer instructions, we expect it to succeed. 2642 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2643 BB, PredUnguardedBlock, Guard, UnguardedMapping); 2644 assert(UnguardedBlock && "Could not create the unguarded block?"); 2645 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2646 << GuardedBlock->getName() << "\n"); 2647 // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between 2648 // PredBB and BB. We need to perform two inserts and one delete for each of 2649 // the above calls to update Dominators. 2650 DDT->applyUpdates( 2651 {// Guarded block split. 2652 {DominatorTree::Delete, PredGuardedBlock, BB}, 2653 {DominatorTree::Insert, PredGuardedBlock, GuardedBlock}, 2654 {DominatorTree::Insert, GuardedBlock, BB}, 2655 // Unguarded block split. 2656 {DominatorTree::Delete, PredUnguardedBlock, BB}, 2657 {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock}, 2658 {DominatorTree::Insert, UnguardedBlock, BB}}); 2659 // Some instructions before the guard may still have uses. For them, we need 2660 // to create Phi nodes merging their copies in both guarded and unguarded 2661 // branches. Those instructions that have no uses can be just removed. 2662 SmallVector<Instruction *, 4> ToRemove; 2663 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2664 if (!isa<PHINode>(&*BI)) 2665 ToRemove.push_back(&*BI); 2666 2667 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2668 assert(InsertionPoint && "Empty block?"); 2669 // Substitute with Phis & remove. 2670 for (auto *Inst : reverse(ToRemove)) { 2671 if (!Inst->use_empty()) { 2672 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2673 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2674 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2675 NewPN->insertBefore(InsertionPoint); 2676 Inst->replaceAllUsesWith(NewPN); 2677 } 2678 Inst->eraseFromParent(); 2679 } 2680 return true; 2681 } 2682