1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/BranchProbability.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <memory>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace jumpthreading;
80 
81 #define DEBUG_TYPE "jump-threading"
82 
83 STATISTIC(NumThreads, "Number of jumps threaded");
84 STATISTIC(NumFolds,   "Number of terminators folded");
85 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
86 
87 static cl::opt<unsigned>
88 BBDuplicateThreshold("jump-threading-threshold",
89           cl::desc("Max block size to duplicate for jump threading"),
90           cl::init(6), cl::Hidden);
91 
92 static cl::opt<unsigned>
93 ImplicationSearchThreshold(
94   "jump-threading-implication-search-threshold",
95   cl::desc("The number of predecessors to search for a stronger "
96            "condition to use to thread over a weaker condition"),
97   cl::init(3), cl::Hidden);
98 
99 static cl::opt<bool> PrintLVIAfterJumpThreading(
100     "print-lvi-after-jump-threading",
101     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
102     cl::Hidden);
103 
104 namespace {
105 
106   /// This pass performs 'jump threading', which looks at blocks that have
107   /// multiple predecessors and multiple successors.  If one or more of the
108   /// predecessors of the block can be proven to always jump to one of the
109   /// successors, we forward the edge from the predecessor to the successor by
110   /// duplicating the contents of this block.
111   ///
112   /// An example of when this can occur is code like this:
113   ///
114   ///   if () { ...
115   ///     X = 4;
116   ///   }
117   ///   if (X < 3) {
118   ///
119   /// In this case, the unconditional branch at the end of the first if can be
120   /// revectored to the false side of the second if.
121   class JumpThreading : public FunctionPass {
122     JumpThreadingPass Impl;
123 
124   public:
125     static char ID; // Pass identification
126 
127     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<DominatorTreeWrapperPass>();
135       AU.addPreserved<DominatorTreeWrapperPass>();
136       AU.addRequired<AAResultsWrapperPass>();
137       AU.addRequired<LazyValueInfoWrapperPass>();
138       AU.addPreserved<LazyValueInfoWrapperPass>();
139       AU.addPreserved<GlobalsAAWrapperPass>();
140       AU.addRequired<TargetLibraryInfoWrapperPass>();
141     }
142 
143     void releaseMemory() override { Impl.releaseMemory(); }
144   };
145 
146 } // end anonymous namespace
147 
148 char JumpThreading::ID = 0;
149 
150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
151                 "Jump Threading", false, false)
152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
156 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
157                 "Jump Threading", false, false)
158 
159 // Public interface to the Jump Threading pass
160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
161   return new JumpThreading(Threshold);
162 }
163 
164 JumpThreadingPass::JumpThreadingPass(int T) {
165   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
166 }
167 
168 // Update branch probability information according to conditional
169 // branch probablity. This is usually made possible for cloned branches
170 // in inline instances by the context specific profile in the caller.
171 // For instance,
172 //
173 //  [Block PredBB]
174 //  [Branch PredBr]
175 //  if (t) {
176 //     Block A;
177 //  } else {
178 //     Block B;
179 //  }
180 //
181 //  [Block BB]
182 //  cond = PN([true, %A], [..., %B]); // PHI node
183 //  [Branch CondBr]
184 //  if (cond) {
185 //    ...  // P(cond == true) = 1%
186 //  }
187 //
188 //  Here we know that when block A is taken, cond must be true, which means
189 //      P(cond == true | A) = 1
190 //
191 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
192 //                               P(cond == true | B) * P(B)
193 //  we get:
194 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
195 //
196 //  which gives us:
197 //     P(A) is less than P(cond == true), i.e.
198 //     P(t == true) <= P(cond == true)
199 //
200 //  In other words, if we know P(cond == true) is unlikely, we know
201 //  that P(t == true) is also unlikely.
202 //
203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
204   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
205   if (!CondBr)
206     return;
207 
208   BranchProbability BP;
209   uint64_t TrueWeight, FalseWeight;
210   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
211     return;
212 
213   // Returns the outgoing edge of the dominating predecessor block
214   // that leads to the PhiNode's incoming block:
215   auto GetPredOutEdge =
216       [](BasicBlock *IncomingBB,
217          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
218     auto *PredBB = IncomingBB;
219     auto *SuccBB = PhiBB;
220     while (true) {
221       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
222       if (PredBr && PredBr->isConditional())
223         return {PredBB, SuccBB};
224       auto *SinglePredBB = PredBB->getSinglePredecessor();
225       if (!SinglePredBB)
226         return {nullptr, nullptr};
227       SuccBB = PredBB;
228       PredBB = SinglePredBB;
229     }
230   };
231 
232   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
233     Value *PhiOpnd = PN->getIncomingValue(i);
234     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
235 
236     if (!CI || !CI->getType()->isIntegerTy(1))
237       continue;
238 
239     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
240                             TrueWeight, TrueWeight + FalseWeight)
241                       : BranchProbability::getBranchProbability(
242                             FalseWeight, TrueWeight + FalseWeight));
243 
244     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
245     if (!PredOutEdge.first)
246       return;
247 
248     BasicBlock *PredBB = PredOutEdge.first;
249     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
250 
251     uint64_t PredTrueWeight, PredFalseWeight;
252     // FIXME: We currently only set the profile data when it is missing.
253     // With PGO, this can be used to refine even existing profile data with
254     // context information. This needs to be done after more performance
255     // testing.
256     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
257       continue;
258 
259     // We can not infer anything useful when BP >= 50%, because BP is the
260     // upper bound probability value.
261     if (BP >= BranchProbability(50, 100))
262       continue;
263 
264     SmallVector<uint32_t, 2> Weights;
265     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
266       Weights.push_back(BP.getNumerator());
267       Weights.push_back(BP.getCompl().getNumerator());
268     } else {
269       Weights.push_back(BP.getCompl().getNumerator());
270       Weights.push_back(BP.getNumerator());
271     }
272     PredBr->setMetadata(LLVMContext::MD_prof,
273                         MDBuilder(PredBr->getParent()->getContext())
274                             .createBranchWeights(Weights));
275   }
276 }
277 
278 /// runOnFunction - Toplevel algorithm.
279 bool JumpThreading::runOnFunction(Function &F) {
280   if (skipFunction(F))
281     return false;
282   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
283   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
284   // DT if it's available.
285   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
286   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
287   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
288   DeferredDominance DDT(*DT);
289   std::unique_ptr<BlockFrequencyInfo> BFI;
290   std::unique_ptr<BranchProbabilityInfo> BPI;
291   bool HasProfileData = F.hasProfileData();
292   if (HasProfileData) {
293     LoopInfo LI{DominatorTree(F)};
294     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
295     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
296   }
297 
298   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData,
299                               std::move(BFI), std::move(BPI));
300   if (PrintLVIAfterJumpThreading) {
301     dbgs() << "LVI for function '" << F.getName() << "':\n";
302     LVI->printLVI(F, *DT, dbgs());
303   }
304   return Changed;
305 }
306 
307 PreservedAnalyses JumpThreadingPass::run(Function &F,
308                                          FunctionAnalysisManager &AM) {
309   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
310   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
311   // DT if it's available.
312   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
313   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
314   auto &AA = AM.getResult<AAManager>(F);
315   DeferredDominance DDT(DT);
316 
317   std::unique_ptr<BlockFrequencyInfo> BFI;
318   std::unique_ptr<BranchProbabilityInfo> BPI;
319   if (F.hasProfileData()) {
320     LoopInfo LI{DominatorTree(F)};
321     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
322     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
323   }
324 
325   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData,
326                          std::move(BFI), std::move(BPI));
327 
328   if (!Changed)
329     return PreservedAnalyses::all();
330   PreservedAnalyses PA;
331   PA.preserve<GlobalsAA>();
332   PA.preserve<DominatorTreeAnalysis>();
333   PA.preserve<LazyValueAnalysis>();
334   return PA;
335 }
336 
337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
338                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
339                                 DeferredDominance *DDT_, bool HasProfileData_,
340                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
341                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
342   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
343   TLI = TLI_;
344   LVI = LVI_;
345   AA = AA_;
346   DDT = DDT_;
347   BFI.reset();
348   BPI.reset();
349   // When profile data is available, we need to update edge weights after
350   // successful jump threading, which requires both BPI and BFI being available.
351   HasProfileData = HasProfileData_;
352   auto *GuardDecl = F.getParent()->getFunction(
353       Intrinsic::getName(Intrinsic::experimental_guard));
354   HasGuards = GuardDecl && !GuardDecl->use_empty();
355   if (HasProfileData) {
356     BPI = std::move(BPI_);
357     BFI = std::move(BFI_);
358   }
359 
360   // Remove unreachable blocks from function as they may result in infinite
361   // loop. We do threading if we found something profitable. Jump threading a
362   // branch can create other opportunities. If these opportunities form a cycle
363   // i.e. if any jump threading is undoing previous threading in the path, then
364   // we will loop forever. We take care of this issue by not jump threading for
365   // back edges. This works for normal cases but not for unreachable blocks as
366   // they may have cycle with no back edge.
367   bool EverChanged = false;
368   EverChanged |= removeUnreachableBlocks(F, LVI, DDT);
369 
370   FindLoopHeaders(F);
371 
372   bool Changed;
373   do {
374     Changed = false;
375     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
376       BasicBlock *BB = &*I;
377       // Thread all of the branches we can over this block.
378       while (ProcessBlock(BB))
379         Changed = true;
380 
381       ++I;
382 
383       // Don't thread branches over a block that's slated for deletion.
384       if (DDT->pendingDeletedBB(BB))
385         continue;
386 
387       // If the block is trivially dead, zap it.  This eliminates the successor
388       // edges which simplifies the CFG.
389       if (pred_empty(BB) &&
390           BB != &BB->getParent()->getEntryBlock()) {
391         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
392               << "' with terminator: " << *BB->getTerminator() << '\n');
393         LoopHeaders.erase(BB);
394         LVI->eraseBlock(BB);
395         DeleteDeadBlock(BB, DDT);
396         Changed = true;
397         continue;
398       }
399 
400       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
401 
402       // Can't thread an unconditional jump, but if the block is "almost
403       // empty", we can replace uses of it with uses of the successor and make
404       // this dead.
405       // We should not eliminate the loop header or latch either, because
406       // eliminating a loop header or latch might later prevent LoopSimplify
407       // from transforming nested loops into simplified form. We will rely on
408       // later passes in backend to clean up empty blocks.
409       if (BI && BI->isUnconditional() &&
410           BB != &BB->getParent()->getEntryBlock() &&
411           // If the terminator is the only non-phi instruction, try to nuke it.
412           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) &&
413           !LoopHeaders.count(BI->getSuccessor(0))) {
414         // FIXME: It is always conservatively correct to drop the info
415         // for a block even if it doesn't get erased.  This isn't totally
416         // awesome, but it allows us to use AssertingVH to prevent nasty
417         // dangling pointer issues within LazyValueInfo.
418         LVI->eraseBlock(BB);
419         if (TryToSimplifyUncondBranchFromEmptyBlock(BB, DDT))
420           Changed = true;
421       }
422     }
423     EverChanged |= Changed;
424   } while (Changed);
425 
426   LoopHeaders.clear();
427   DDT->flush();
428   LVI->enableDT();
429   return EverChanged;
430 }
431 
432 // Replace uses of Cond with ToVal when safe to do so. If all uses are
433 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
434 // because we may incorrectly replace uses when guards/assumes are uses of
435 // of `Cond` and we used the guards/assume to reason about the `Cond` value
436 // at the end of block. RAUW unconditionally replaces all uses
437 // including the guards/assumes themselves and the uses before the
438 // guard/assume.
439 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
440   assert(Cond->getType() == ToVal->getType());
441   auto *BB = Cond->getParent();
442   // We can unconditionally replace all uses in non-local blocks (i.e. uses
443   // strictly dominated by BB), since LVI information is true from the
444   // terminator of BB.
445   replaceNonLocalUsesWith(Cond, ToVal);
446   for (Instruction &I : reverse(*BB)) {
447     // Reached the Cond whose uses we are trying to replace, so there are no
448     // more uses.
449     if (&I == Cond)
450       break;
451     // We only replace uses in instructions that are guaranteed to reach the end
452     // of BB, where we know Cond is ToVal.
453     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
454       break;
455     I.replaceUsesOfWith(Cond, ToVal);
456   }
457   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
458     Cond->eraseFromParent();
459 }
460 
461 /// Return the cost of duplicating a piece of this block from first non-phi
462 /// and before StopAt instruction to thread across it. Stop scanning the block
463 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
464 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
465                                              Instruction *StopAt,
466                                              unsigned Threshold) {
467   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
468   /// Ignore PHI nodes, these will be flattened when duplication happens.
469   BasicBlock::const_iterator I(BB->getFirstNonPHI());
470 
471   // FIXME: THREADING will delete values that are just used to compute the
472   // branch, so they shouldn't count against the duplication cost.
473 
474   unsigned Bonus = 0;
475   if (BB->getTerminator() == StopAt) {
476     // Threading through a switch statement is particularly profitable.  If this
477     // block ends in a switch, decrease its cost to make it more likely to
478     // happen.
479     if (isa<SwitchInst>(StopAt))
480       Bonus = 6;
481 
482     // The same holds for indirect branches, but slightly more so.
483     if (isa<IndirectBrInst>(StopAt))
484       Bonus = 8;
485   }
486 
487   // Bump the threshold up so the early exit from the loop doesn't skip the
488   // terminator-based Size adjustment at the end.
489   Threshold += Bonus;
490 
491   // Sum up the cost of each instruction until we get to the terminator.  Don't
492   // include the terminator because the copy won't include it.
493   unsigned Size = 0;
494   for (; &*I != StopAt; ++I) {
495 
496     // Stop scanning the block if we've reached the threshold.
497     if (Size > Threshold)
498       return Size;
499 
500     // Debugger intrinsics don't incur code size.
501     if (isa<DbgInfoIntrinsic>(I)) continue;
502 
503     // If this is a pointer->pointer bitcast, it is free.
504     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
505       continue;
506 
507     // Bail out if this instruction gives back a token type, it is not possible
508     // to duplicate it if it is used outside this BB.
509     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
510       return ~0U;
511 
512     // All other instructions count for at least one unit.
513     ++Size;
514 
515     // Calls are more expensive.  If they are non-intrinsic calls, we model them
516     // as having cost of 4.  If they are a non-vector intrinsic, we model them
517     // as having cost of 2 total, and if they are a vector intrinsic, we model
518     // them as having cost 1.
519     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
520       if (CI->cannotDuplicate() || CI->isConvergent())
521         // Blocks with NoDuplicate are modelled as having infinite cost, so they
522         // are never duplicated.
523         return ~0U;
524       else if (!isa<IntrinsicInst>(CI))
525         Size += 3;
526       else if (!CI->getType()->isVectorTy())
527         Size += 1;
528     }
529   }
530 
531   return Size > Bonus ? Size - Bonus : 0;
532 }
533 
534 /// FindLoopHeaders - We do not want jump threading to turn proper loop
535 /// structures into irreducible loops.  Doing this breaks up the loop nesting
536 /// hierarchy and pessimizes later transformations.  To prevent this from
537 /// happening, we first have to find the loop headers.  Here we approximate this
538 /// by finding targets of backedges in the CFG.
539 ///
540 /// Note that there definitely are cases when we want to allow threading of
541 /// edges across a loop header.  For example, threading a jump from outside the
542 /// loop (the preheader) to an exit block of the loop is definitely profitable.
543 /// It is also almost always profitable to thread backedges from within the loop
544 /// to exit blocks, and is often profitable to thread backedges to other blocks
545 /// within the loop (forming a nested loop).  This simple analysis is not rich
546 /// enough to track all of these properties and keep it up-to-date as the CFG
547 /// mutates, so we don't allow any of these transformations.
548 void JumpThreadingPass::FindLoopHeaders(Function &F) {
549   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
550   FindFunctionBackedges(F, Edges);
551 
552   for (const auto &Edge : Edges)
553     LoopHeaders.insert(Edge.second);
554 }
555 
556 /// getKnownConstant - Helper method to determine if we can thread over a
557 /// terminator with the given value as its condition, and if so what value to
558 /// use for that. What kind of value this is depends on whether we want an
559 /// integer or a block address, but an undef is always accepted.
560 /// Returns null if Val is null or not an appropriate constant.
561 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
562   if (!Val)
563     return nullptr;
564 
565   // Undef is "known" enough.
566   if (UndefValue *U = dyn_cast<UndefValue>(Val))
567     return U;
568 
569   if (Preference == WantBlockAddress)
570     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
571 
572   return dyn_cast<ConstantInt>(Val);
573 }
574 
575 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
576 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
577 /// in any of our predecessors.  If so, return the known list of value and pred
578 /// BB in the result vector.
579 ///
580 /// This returns true if there were any known values.
581 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
582     Value *V, BasicBlock *BB, PredValueInfo &Result,
583     ConstantPreference Preference, Instruction *CxtI) {
584   // This method walks up use-def chains recursively.  Because of this, we could
585   // get into an infinite loop going around loops in the use-def chain.  To
586   // prevent this, keep track of what (value, block) pairs we've already visited
587   // and terminate the search if we loop back to them
588   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
589     return false;
590 
591   // An RAII help to remove this pair from the recursion set once the recursion
592   // stack pops back out again.
593   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
594 
595   // If V is a constant, then it is known in all predecessors.
596   if (Constant *KC = getKnownConstant(V, Preference)) {
597     for (BasicBlock *Pred : predecessors(BB))
598       Result.push_back(std::make_pair(KC, Pred));
599 
600     return !Result.empty();
601   }
602 
603   // If V is a non-instruction value, or an instruction in a different block,
604   // then it can't be derived from a PHI.
605   Instruction *I = dyn_cast<Instruction>(V);
606   if (!I || I->getParent() != BB) {
607 
608     // Okay, if this is a live-in value, see if it has a known value at the end
609     // of any of our predecessors.
610     //
611     // FIXME: This should be an edge property, not a block end property.
612     /// TODO: Per PR2563, we could infer value range information about a
613     /// predecessor based on its terminator.
614     //
615     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
616     // "I" is a non-local compare-with-a-constant instruction.  This would be
617     // able to handle value inequalities better, for example if the compare is
618     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
619     // Perhaps getConstantOnEdge should be smart enough to do this?
620 
621     if (DDT->pending())
622       LVI->disableDT();
623     else
624       LVI->enableDT();
625     for (BasicBlock *P : predecessors(BB)) {
626       // If the value is known by LazyValueInfo to be a constant in a
627       // predecessor, use that information to try to thread this block.
628       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
629       if (Constant *KC = getKnownConstant(PredCst, Preference))
630         Result.push_back(std::make_pair(KC, P));
631     }
632 
633     return !Result.empty();
634   }
635 
636   /// If I is a PHI node, then we know the incoming values for any constants.
637   if (PHINode *PN = dyn_cast<PHINode>(I)) {
638     if (DDT->pending())
639       LVI->disableDT();
640     else
641       LVI->enableDT();
642     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
643       Value *InVal = PN->getIncomingValue(i);
644       if (Constant *KC = getKnownConstant(InVal, Preference)) {
645         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
646       } else {
647         Constant *CI = LVI->getConstantOnEdge(InVal,
648                                               PN->getIncomingBlock(i),
649                                               BB, CxtI);
650         if (Constant *KC = getKnownConstant(CI, Preference))
651           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
652       }
653     }
654 
655     return !Result.empty();
656   }
657 
658   // Handle Cast instructions.  Only see through Cast when the source operand is
659   // PHI or Cmp and the source type is i1 to save the compilation time.
660   if (CastInst *CI = dyn_cast<CastInst>(I)) {
661     Value *Source = CI->getOperand(0);
662     if (!Source->getType()->isIntegerTy(1))
663       return false;
664     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
665       return false;
666     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
667     if (Result.empty())
668       return false;
669 
670     // Convert the known values.
671     for (auto &R : Result)
672       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
673 
674     return true;
675   }
676 
677   // Handle some boolean conditions.
678   if (I->getType()->getPrimitiveSizeInBits() == 1) {
679     assert(Preference == WantInteger && "One-bit non-integer type?");
680     // X | true -> true
681     // X & false -> false
682     if (I->getOpcode() == Instruction::Or ||
683         I->getOpcode() == Instruction::And) {
684       PredValueInfoTy LHSVals, RHSVals;
685 
686       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
687                                       WantInteger, CxtI);
688       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
689                                       WantInteger, CxtI);
690 
691       if (LHSVals.empty() && RHSVals.empty())
692         return false;
693 
694       ConstantInt *InterestingVal;
695       if (I->getOpcode() == Instruction::Or)
696         InterestingVal = ConstantInt::getTrue(I->getContext());
697       else
698         InterestingVal = ConstantInt::getFalse(I->getContext());
699 
700       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
701 
702       // Scan for the sentinel.  If we find an undef, force it to the
703       // interesting value: x|undef -> true and x&undef -> false.
704       for (const auto &LHSVal : LHSVals)
705         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
706           Result.emplace_back(InterestingVal, LHSVal.second);
707           LHSKnownBBs.insert(LHSVal.second);
708         }
709       for (const auto &RHSVal : RHSVals)
710         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
711           // If we already inferred a value for this block on the LHS, don't
712           // re-add it.
713           if (!LHSKnownBBs.count(RHSVal.second))
714             Result.emplace_back(InterestingVal, RHSVal.second);
715         }
716 
717       return !Result.empty();
718     }
719 
720     // Handle the NOT form of XOR.
721     if (I->getOpcode() == Instruction::Xor &&
722         isa<ConstantInt>(I->getOperand(1)) &&
723         cast<ConstantInt>(I->getOperand(1))->isOne()) {
724       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
725                                       WantInteger, CxtI);
726       if (Result.empty())
727         return false;
728 
729       // Invert the known values.
730       for (auto &R : Result)
731         R.first = ConstantExpr::getNot(R.first);
732 
733       return true;
734     }
735 
736   // Try to simplify some other binary operator values.
737   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
738     assert(Preference != WantBlockAddress
739             && "A binary operator creating a block address?");
740     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
741       PredValueInfoTy LHSVals;
742       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
743                                       WantInteger, CxtI);
744 
745       // Try to use constant folding to simplify the binary operator.
746       for (const auto &LHSVal : LHSVals) {
747         Constant *V = LHSVal.first;
748         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
749 
750         if (Constant *KC = getKnownConstant(Folded, WantInteger))
751           Result.push_back(std::make_pair(KC, LHSVal.second));
752       }
753     }
754 
755     return !Result.empty();
756   }
757 
758   // Handle compare with phi operand, where the PHI is defined in this block.
759   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
760     assert(Preference == WantInteger && "Compares only produce integers");
761     Type *CmpType = Cmp->getType();
762     Value *CmpLHS = Cmp->getOperand(0);
763     Value *CmpRHS = Cmp->getOperand(1);
764     CmpInst::Predicate Pred = Cmp->getPredicate();
765 
766     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
767     if (PN && PN->getParent() == BB) {
768       const DataLayout &DL = PN->getModule()->getDataLayout();
769       // We can do this simplification if any comparisons fold to true or false.
770       // See if any do.
771       if (DDT->pending())
772         LVI->disableDT();
773       else
774         LVI->enableDT();
775       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
776         BasicBlock *PredBB = PN->getIncomingBlock(i);
777         Value *LHS = PN->getIncomingValue(i);
778         Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB);
779 
780         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
781         if (!Res) {
782           if (!isa<Constant>(RHS))
783             continue;
784 
785           LazyValueInfo::Tristate
786             ResT = LVI->getPredicateOnEdge(Pred, LHS,
787                                            cast<Constant>(RHS), PredBB, BB,
788                                            CxtI ? CxtI : Cmp);
789           if (ResT == LazyValueInfo::Unknown)
790             continue;
791           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
792         }
793 
794         if (Constant *KC = getKnownConstant(Res, WantInteger))
795           Result.push_back(std::make_pair(KC, PredBB));
796       }
797 
798       return !Result.empty();
799     }
800 
801     // If comparing a live-in value against a constant, see if we know the
802     // live-in value on any predecessors.
803     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
804       Constant *CmpConst = cast<Constant>(CmpRHS);
805 
806       if (!isa<Instruction>(CmpLHS) ||
807           cast<Instruction>(CmpLHS)->getParent() != BB) {
808         if (DDT->pending())
809           LVI->disableDT();
810         else
811           LVI->enableDT();
812         for (BasicBlock *P : predecessors(BB)) {
813           // If the value is known by LazyValueInfo to be a constant in a
814           // predecessor, use that information to try to thread this block.
815           LazyValueInfo::Tristate Res =
816             LVI->getPredicateOnEdge(Pred, CmpLHS,
817                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
818           if (Res == LazyValueInfo::Unknown)
819             continue;
820 
821           Constant *ResC = ConstantInt::get(CmpType, Res);
822           Result.push_back(std::make_pair(ResC, P));
823         }
824 
825         return !Result.empty();
826       }
827 
828       // InstCombine can fold some forms of constant range checks into
829       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
830       // x as a live-in.
831       {
832         using namespace PatternMatch;
833 
834         Value *AddLHS;
835         ConstantInt *AddConst;
836         if (isa<ConstantInt>(CmpConst) &&
837             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
838           if (!isa<Instruction>(AddLHS) ||
839               cast<Instruction>(AddLHS)->getParent() != BB) {
840             if (DDT->pending())
841               LVI->disableDT();
842             else
843               LVI->enableDT();
844             for (BasicBlock *P : predecessors(BB)) {
845               // If the value is known by LazyValueInfo to be a ConstantRange in
846               // a predecessor, use that information to try to thread this
847               // block.
848               ConstantRange CR = LVI->getConstantRangeOnEdge(
849                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
850               // Propagate the range through the addition.
851               CR = CR.add(AddConst->getValue());
852 
853               // Get the range where the compare returns true.
854               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
855                   Pred, cast<ConstantInt>(CmpConst)->getValue());
856 
857               Constant *ResC;
858               if (CmpRange.contains(CR))
859                 ResC = ConstantInt::getTrue(CmpType);
860               else if (CmpRange.inverse().contains(CR))
861                 ResC = ConstantInt::getFalse(CmpType);
862               else
863                 continue;
864 
865               Result.push_back(std::make_pair(ResC, P));
866             }
867 
868             return !Result.empty();
869           }
870         }
871       }
872 
873       // Try to find a constant value for the LHS of a comparison,
874       // and evaluate it statically if we can.
875       PredValueInfoTy LHSVals;
876       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
877                                       WantInteger, CxtI);
878 
879       for (const auto &LHSVal : LHSVals) {
880         Constant *V = LHSVal.first;
881         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
882         if (Constant *KC = getKnownConstant(Folded, WantInteger))
883           Result.push_back(std::make_pair(KC, LHSVal.second));
884       }
885 
886       return !Result.empty();
887     }
888   }
889 
890   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
891     // Handle select instructions where at least one operand is a known constant
892     // and we can figure out the condition value for any predecessor block.
893     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
894     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
895     PredValueInfoTy Conds;
896     if ((TrueVal || FalseVal) &&
897         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
898                                         WantInteger, CxtI)) {
899       for (auto &C : Conds) {
900         Constant *Cond = C.first;
901 
902         // Figure out what value to use for the condition.
903         bool KnownCond;
904         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
905           // A known boolean.
906           KnownCond = CI->isOne();
907         } else {
908           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
909           // Either operand will do, so be sure to pick the one that's a known
910           // constant.
911           // FIXME: Do this more cleverly if both values are known constants?
912           KnownCond = (TrueVal != nullptr);
913         }
914 
915         // See if the select has a known constant value for this predecessor.
916         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
917           Result.push_back(std::make_pair(Val, C.second));
918       }
919 
920       return !Result.empty();
921     }
922   }
923 
924   // If all else fails, see if LVI can figure out a constant value for us.
925   if (DDT->pending())
926     LVI->disableDT();
927   else
928     LVI->enableDT();
929   Constant *CI = LVI->getConstant(V, BB, CxtI);
930   if (Constant *KC = getKnownConstant(CI, Preference)) {
931     for (BasicBlock *Pred : predecessors(BB))
932       Result.push_back(std::make_pair(KC, Pred));
933   }
934 
935   return !Result.empty();
936 }
937 
938 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
939 /// in an undefined jump, decide which block is best to revector to.
940 ///
941 /// Since we can pick an arbitrary destination, we pick the successor with the
942 /// fewest predecessors.  This should reduce the in-degree of the others.
943 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
944   TerminatorInst *BBTerm = BB->getTerminator();
945   unsigned MinSucc = 0;
946   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
947   // Compute the successor with the minimum number of predecessors.
948   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
949   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
950     TestBB = BBTerm->getSuccessor(i);
951     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
952     if (NumPreds < MinNumPreds) {
953       MinSucc = i;
954       MinNumPreds = NumPreds;
955     }
956   }
957 
958   return MinSucc;
959 }
960 
961 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
962   if (!BB->hasAddressTaken()) return false;
963 
964   // If the block has its address taken, it may be a tree of dead constants
965   // hanging off of it.  These shouldn't keep the block alive.
966   BlockAddress *BA = BlockAddress::get(BB);
967   BA->removeDeadConstantUsers();
968   return !BA->use_empty();
969 }
970 
971 /// ProcessBlock - If there are any predecessors whose control can be threaded
972 /// through to a successor, transform them now.
973 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
974   // If the block is trivially dead, just return and let the caller nuke it.
975   // This simplifies other transformations.
976   if (DDT->pendingDeletedBB(BB) ||
977       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
978     return false;
979 
980   // If this block has a single predecessor, and if that pred has a single
981   // successor, merge the blocks.  This encourages recursive jump threading
982   // because now the condition in this block can be threaded through
983   // predecessors of our predecessor block.
984   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
985     const TerminatorInst *TI = SinglePred->getTerminator();
986     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
987         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
988       // If SinglePred was a loop header, BB becomes one.
989       if (LoopHeaders.erase(SinglePred))
990         LoopHeaders.insert(BB);
991 
992       LVI->eraseBlock(SinglePred);
993       MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT);
994 
995       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
996       // BB code within one basic block `BB`), we need to invalidate the LVI
997       // information associated with BB, because the LVI information need not be
998       // true for all of BB after the merge. For example,
999       // Before the merge, LVI info and code is as follows:
1000       // SinglePred: <LVI info1 for %p val>
1001       // %y = use of %p
1002       // call @exit() // need not transfer execution to successor.
1003       // assume(%p) // from this point on %p is true
1004       // br label %BB
1005       // BB: <LVI info2 for %p val, i.e. %p is true>
1006       // %x = use of %p
1007       // br label exit
1008       //
1009       // Note that this LVI info for blocks BB and SinglPred is correct for %p
1010       // (info2 and info1 respectively). After the merge and the deletion of the
1011       // LVI info1 for SinglePred. We have the following code:
1012       // BB: <LVI info2 for %p val>
1013       // %y = use of %p
1014       // call @exit()
1015       // assume(%p)
1016       // %x = use of %p <-- LVI info2 is correct from here onwards.
1017       // br label exit
1018       // LVI info2 for BB is incorrect at the beginning of BB.
1019 
1020       // Invalidate LVI information for BB if the LVI is not provably true for
1021       // all of BB.
1022       if (any_of(*BB, [](Instruction &I) {
1023             return !isGuaranteedToTransferExecutionToSuccessor(&I);
1024           }))
1025         LVI->eraseBlock(BB);
1026       return true;
1027     }
1028   }
1029 
1030   if (TryToUnfoldSelectInCurrBB(BB))
1031     return true;
1032 
1033   // Look if we can propagate guards to predecessors.
1034   if (HasGuards && ProcessGuards(BB))
1035     return true;
1036 
1037   // What kind of constant we're looking for.
1038   ConstantPreference Preference = WantInteger;
1039 
1040   // Look to see if the terminator is a conditional branch, switch or indirect
1041   // branch, if not we can't thread it.
1042   Value *Condition;
1043   Instruction *Terminator = BB->getTerminator();
1044   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1045     // Can't thread an unconditional jump.
1046     if (BI->isUnconditional()) return false;
1047     Condition = BI->getCondition();
1048   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1049     Condition = SI->getCondition();
1050   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1051     // Can't thread indirect branch with no successors.
1052     if (IB->getNumSuccessors() == 0) return false;
1053     Condition = IB->getAddress()->stripPointerCasts();
1054     Preference = WantBlockAddress;
1055   } else {
1056     return false; // Must be an invoke.
1057   }
1058 
1059   // Run constant folding to see if we can reduce the condition to a simple
1060   // constant.
1061   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1062     Value *SimpleVal =
1063         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1064     if (SimpleVal) {
1065       I->replaceAllUsesWith(SimpleVal);
1066       if (isInstructionTriviallyDead(I, TLI))
1067         I->eraseFromParent();
1068       Condition = SimpleVal;
1069     }
1070   }
1071 
1072   // If the terminator is branching on an undef, we can pick any of the
1073   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1074   if (isa<UndefValue>(Condition)) {
1075     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1076     std::vector<DominatorTree::UpdateType> Updates;
1077 
1078     // Fold the branch/switch.
1079     TerminatorInst *BBTerm = BB->getTerminator();
1080     Updates.reserve(BBTerm->getNumSuccessors());
1081     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1082       if (i == BestSucc) continue;
1083       BasicBlock *Succ = BBTerm->getSuccessor(i);
1084       Succ->removePredecessor(BB, true);
1085       Updates.push_back({DominatorTree::Delete, BB, Succ});
1086     }
1087 
1088     DEBUG(dbgs() << "  In block '" << BB->getName()
1089           << "' folding undef terminator: " << *BBTerm << '\n');
1090     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1091     BBTerm->eraseFromParent();
1092     DDT->applyUpdates(Updates);
1093     return true;
1094   }
1095 
1096   // If the terminator of this block is branching on a constant, simplify the
1097   // terminator to an unconditional branch.  This can occur due to threading in
1098   // other blocks.
1099   if (getKnownConstant(Condition, Preference)) {
1100     DEBUG(dbgs() << "  In block '" << BB->getName()
1101           << "' folding terminator: " << *BB->getTerminator() << '\n');
1102     ++NumFolds;
1103     ConstantFoldTerminator(BB, true, nullptr, DDT);
1104     return true;
1105   }
1106 
1107   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1108 
1109   // All the rest of our checks depend on the condition being an instruction.
1110   if (!CondInst) {
1111     // FIXME: Unify this with code below.
1112     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1113       return true;
1114     return false;
1115   }
1116 
1117   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1118     // If we're branching on a conditional, LVI might be able to determine
1119     // it's value at the branch instruction.  We only handle comparisons
1120     // against a constant at this time.
1121     // TODO: This should be extended to handle switches as well.
1122     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1123     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1124     if (CondBr && CondConst) {
1125       // We should have returned as soon as we turn a conditional branch to
1126       // unconditional. Because its no longer interesting as far as jump
1127       // threading is concerned.
1128       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1129 
1130       if (DDT->pending())
1131         LVI->disableDT();
1132       else
1133         LVI->enableDT();
1134       LazyValueInfo::Tristate Ret =
1135         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1136                             CondConst, CondBr);
1137       if (Ret != LazyValueInfo::Unknown) {
1138         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1139         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1140         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1141         ToRemoveSucc->removePredecessor(BB, true);
1142         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1143         CondBr->eraseFromParent();
1144         if (CondCmp->use_empty())
1145           CondCmp->eraseFromParent();
1146         // We can safely replace *some* uses of the CondInst if it has
1147         // exactly one value as returned by LVI. RAUW is incorrect in the
1148         // presence of guards and assumes, that have the `Cond` as the use. This
1149         // is because we use the guards/assume to reason about the `Cond` value
1150         // at the end of block, but RAUW unconditionally replaces all uses
1151         // including the guards/assumes themselves and the uses before the
1152         // guard/assume.
1153         else if (CondCmp->getParent() == BB) {
1154           auto *CI = Ret == LazyValueInfo::True ?
1155             ConstantInt::getTrue(CondCmp->getType()) :
1156             ConstantInt::getFalse(CondCmp->getType());
1157           ReplaceFoldableUses(CondCmp, CI);
1158         }
1159         DDT->deleteEdge(BB, ToRemoveSucc);
1160         return true;
1161       }
1162 
1163       // We did not manage to simplify this branch, try to see whether
1164       // CondCmp depends on a known phi-select pattern.
1165       if (TryToUnfoldSelect(CondCmp, BB))
1166         return true;
1167     }
1168   }
1169 
1170   // Check for some cases that are worth simplifying.  Right now we want to look
1171   // for loads that are used by a switch or by the condition for the branch.  If
1172   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1173   // which can then be used to thread the values.
1174   Value *SimplifyValue = CondInst;
1175   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1176     if (isa<Constant>(CondCmp->getOperand(1)))
1177       SimplifyValue = CondCmp->getOperand(0);
1178 
1179   // TODO: There are other places where load PRE would be profitable, such as
1180   // more complex comparisons.
1181   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1182     if (SimplifyPartiallyRedundantLoad(LoadI))
1183       return true;
1184 
1185   // Before threading, try to propagate profile data backwards:
1186   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1187     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1188       updatePredecessorProfileMetadata(PN, BB);
1189 
1190   // Handle a variety of cases where we are branching on something derived from
1191   // a PHI node in the current block.  If we can prove that any predecessors
1192   // compute a predictable value based on a PHI node, thread those predecessors.
1193   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1194     return true;
1195 
1196   // If this is an otherwise-unfoldable branch on a phi node in the current
1197   // block, see if we can simplify.
1198   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1199     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1200       return ProcessBranchOnPHI(PN);
1201 
1202   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1203   if (CondInst->getOpcode() == Instruction::Xor &&
1204       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1205     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1206 
1207   // Search for a stronger dominating condition that can be used to simplify a
1208   // conditional branch leaving BB.
1209   if (ProcessImpliedCondition(BB))
1210     return true;
1211 
1212   return false;
1213 }
1214 
1215 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1216   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1217   if (!BI || !BI->isConditional())
1218     return false;
1219 
1220   Value *Cond = BI->getCondition();
1221   BasicBlock *CurrentBB = BB;
1222   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1223   unsigned Iter = 0;
1224 
1225   auto &DL = BB->getModule()->getDataLayout();
1226 
1227   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1228     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1229     if (!PBI || !PBI->isConditional())
1230       return false;
1231     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1232       return false;
1233 
1234     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1235     Optional<bool> Implication =
1236         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1237     if (Implication) {
1238       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1239       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1240       RemoveSucc->removePredecessor(BB);
1241       BranchInst::Create(KeepSucc, BI);
1242       BI->eraseFromParent();
1243       DDT->deleteEdge(BB, RemoveSucc);
1244       return true;
1245     }
1246     CurrentBB = CurrentPred;
1247     CurrentPred = CurrentBB->getSinglePredecessor();
1248   }
1249 
1250   return false;
1251 }
1252 
1253 /// Return true if Op is an instruction defined in the given block.
1254 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1255   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1256     if (OpInst->getParent() == BB)
1257       return true;
1258   return false;
1259 }
1260 
1261 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1262 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1263 /// This is an important optimization that encourages jump threading, and needs
1264 /// to be run interlaced with other jump threading tasks.
1265 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1266   // Don't hack volatile and ordered loads.
1267   if (!LoadI->isUnordered()) return false;
1268 
1269   // If the load is defined in a block with exactly one predecessor, it can't be
1270   // partially redundant.
1271   BasicBlock *LoadBB = LoadI->getParent();
1272   if (LoadBB->getSinglePredecessor())
1273     return false;
1274 
1275   // If the load is defined in an EH pad, it can't be partially redundant,
1276   // because the edges between the invoke and the EH pad cannot have other
1277   // instructions between them.
1278   if (LoadBB->isEHPad())
1279     return false;
1280 
1281   Value *LoadedPtr = LoadI->getOperand(0);
1282 
1283   // If the loaded operand is defined in the LoadBB and its not a phi,
1284   // it can't be available in predecessors.
1285   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1286     return false;
1287 
1288   // Scan a few instructions up from the load, to see if it is obviously live at
1289   // the entry to its block.
1290   BasicBlock::iterator BBIt(LoadI);
1291   bool IsLoadCSE;
1292   if (Value *AvailableVal = FindAvailableLoadedValue(
1293           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1294     // If the value of the load is locally available within the block, just use
1295     // it.  This frequently occurs for reg2mem'd allocas.
1296 
1297     if (IsLoadCSE) {
1298       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1299       combineMetadataForCSE(NLoadI, LoadI);
1300     };
1301 
1302     // If the returned value is the load itself, replace with an undef. This can
1303     // only happen in dead loops.
1304     if (AvailableVal == LoadI)
1305       AvailableVal = UndefValue::get(LoadI->getType());
1306     if (AvailableVal->getType() != LoadI->getType())
1307       AvailableVal = CastInst::CreateBitOrPointerCast(
1308           AvailableVal, LoadI->getType(), "", LoadI);
1309     LoadI->replaceAllUsesWith(AvailableVal);
1310     LoadI->eraseFromParent();
1311     return true;
1312   }
1313 
1314   // Otherwise, if we scanned the whole block and got to the top of the block,
1315   // we know the block is locally transparent to the load.  If not, something
1316   // might clobber its value.
1317   if (BBIt != LoadBB->begin())
1318     return false;
1319 
1320   // If all of the loads and stores that feed the value have the same AA tags,
1321   // then we can propagate them onto any newly inserted loads.
1322   AAMDNodes AATags;
1323   LoadI->getAAMetadata(AATags);
1324 
1325   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1326 
1327   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1328 
1329   AvailablePredsTy AvailablePreds;
1330   BasicBlock *OneUnavailablePred = nullptr;
1331   SmallVector<LoadInst*, 8> CSELoads;
1332 
1333   // If we got here, the loaded value is transparent through to the start of the
1334   // block.  Check to see if it is available in any of the predecessor blocks.
1335   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1336     // If we already scanned this predecessor, skip it.
1337     if (!PredsScanned.insert(PredBB).second)
1338       continue;
1339 
1340     BBIt = PredBB->end();
1341     unsigned NumScanedInst = 0;
1342     Value *PredAvailable = nullptr;
1343     // NOTE: We don't CSE load that is volatile or anything stronger than
1344     // unordered, that should have been checked when we entered the function.
1345     assert(LoadI->isUnordered() &&
1346            "Attempting to CSE volatile or atomic loads");
1347     // If this is a load on a phi pointer, phi-translate it and search
1348     // for available load/store to the pointer in predecessors.
1349     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1350     PredAvailable = FindAvailablePtrLoadStore(
1351         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1352         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1353 
1354     // If PredBB has a single predecessor, continue scanning through the
1355     // single precessor.
1356     BasicBlock *SinglePredBB = PredBB;
1357     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1358            NumScanedInst < DefMaxInstsToScan) {
1359       SinglePredBB = SinglePredBB->getSinglePredecessor();
1360       if (SinglePredBB) {
1361         BBIt = SinglePredBB->end();
1362         PredAvailable = FindAvailablePtrLoadStore(
1363             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1364             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1365             &NumScanedInst);
1366       }
1367     }
1368 
1369     if (!PredAvailable) {
1370       OneUnavailablePred = PredBB;
1371       continue;
1372     }
1373 
1374     if (IsLoadCSE)
1375       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1376 
1377     // If so, this load is partially redundant.  Remember this info so that we
1378     // can create a PHI node.
1379     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1380   }
1381 
1382   // If the loaded value isn't available in any predecessor, it isn't partially
1383   // redundant.
1384   if (AvailablePreds.empty()) return false;
1385 
1386   // Okay, the loaded value is available in at least one (and maybe all!)
1387   // predecessors.  If the value is unavailable in more than one unique
1388   // predecessor, we want to insert a merge block for those common predecessors.
1389   // This ensures that we only have to insert one reload, thus not increasing
1390   // code size.
1391   BasicBlock *UnavailablePred = nullptr;
1392 
1393   // If the value is unavailable in one of predecessors, we will end up
1394   // inserting a new instruction into them. It is only valid if all the
1395   // instructions before LoadI are guaranteed to pass execution to its
1396   // successor, or if LoadI is safe to speculate.
1397   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1398   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1399   // It requires domination tree analysis, so for this simple case it is an
1400   // overkill.
1401   if (PredsScanned.size() != AvailablePreds.size() &&
1402       !isSafeToSpeculativelyExecute(LoadI))
1403     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1404       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1405         return false;
1406 
1407   // If there is exactly one predecessor where the value is unavailable, the
1408   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1409   // unconditional branch, we know that it isn't a critical edge.
1410   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1411       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1412     UnavailablePred = OneUnavailablePred;
1413   } else if (PredsScanned.size() != AvailablePreds.size()) {
1414     // Otherwise, we had multiple unavailable predecessors or we had a critical
1415     // edge from the one.
1416     SmallVector<BasicBlock*, 8> PredsToSplit;
1417     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1418 
1419     for (const auto &AvailablePred : AvailablePreds)
1420       AvailablePredSet.insert(AvailablePred.first);
1421 
1422     // Add all the unavailable predecessors to the PredsToSplit list.
1423     for (BasicBlock *P : predecessors(LoadBB)) {
1424       // If the predecessor is an indirect goto, we can't split the edge.
1425       if (isa<IndirectBrInst>(P->getTerminator()))
1426         return false;
1427 
1428       if (!AvailablePredSet.count(P))
1429         PredsToSplit.push_back(P);
1430     }
1431 
1432     // Split them out to their own block.
1433     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1434   }
1435 
1436   // If the value isn't available in all predecessors, then there will be
1437   // exactly one where it isn't available.  Insert a load on that edge and add
1438   // it to the AvailablePreds list.
1439   if (UnavailablePred) {
1440     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1441            "Can't handle critical edge here!");
1442     LoadInst *NewVal =
1443         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1444                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1445                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
1446                      UnavailablePred->getTerminator());
1447     NewVal->setDebugLoc(LoadI->getDebugLoc());
1448     if (AATags)
1449       NewVal->setAAMetadata(AATags);
1450 
1451     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1452   }
1453 
1454   // Now we know that each predecessor of this block has a value in
1455   // AvailablePreds, sort them for efficient access as we're walking the preds.
1456   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1457 
1458   // Create a PHI node at the start of the block for the PRE'd load value.
1459   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1460   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1461                                 &LoadBB->front());
1462   PN->takeName(LoadI);
1463   PN->setDebugLoc(LoadI->getDebugLoc());
1464 
1465   // Insert new entries into the PHI for each predecessor.  A single block may
1466   // have multiple entries here.
1467   for (pred_iterator PI = PB; PI != PE; ++PI) {
1468     BasicBlock *P = *PI;
1469     AvailablePredsTy::iterator I =
1470       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1471                        std::make_pair(P, (Value*)nullptr));
1472 
1473     assert(I != AvailablePreds.end() && I->first == P &&
1474            "Didn't find entry for predecessor!");
1475 
1476     // If we have an available predecessor but it requires casting, insert the
1477     // cast in the predecessor and use the cast. Note that we have to update the
1478     // AvailablePreds vector as we go so that all of the PHI entries for this
1479     // predecessor use the same bitcast.
1480     Value *&PredV = I->second;
1481     if (PredV->getType() != LoadI->getType())
1482       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1483                                                P->getTerminator());
1484 
1485     PN->addIncoming(PredV, I->first);
1486   }
1487 
1488   for (LoadInst *PredLoadI : CSELoads) {
1489     combineMetadataForCSE(PredLoadI, LoadI);
1490   }
1491 
1492   LoadI->replaceAllUsesWith(PN);
1493   LoadI->eraseFromParent();
1494 
1495   return true;
1496 }
1497 
1498 /// FindMostPopularDest - The specified list contains multiple possible
1499 /// threadable destinations.  Pick the one that occurs the most frequently in
1500 /// the list.
1501 static BasicBlock *
1502 FindMostPopularDest(BasicBlock *BB,
1503                     const SmallVectorImpl<std::pair<BasicBlock *,
1504                                           BasicBlock *>> &PredToDestList) {
1505   assert(!PredToDestList.empty());
1506 
1507   // Determine popularity.  If there are multiple possible destinations, we
1508   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1509   // blocks with known and real destinations to threading undef.  We'll handle
1510   // them later if interesting.
1511   DenseMap<BasicBlock*, unsigned> DestPopularity;
1512   for (const auto &PredToDest : PredToDestList)
1513     if (PredToDest.second)
1514       DestPopularity[PredToDest.second]++;
1515 
1516   // Find the most popular dest.
1517   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1518   BasicBlock *MostPopularDest = DPI->first;
1519   unsigned Popularity = DPI->second;
1520   SmallVector<BasicBlock*, 4> SamePopularity;
1521 
1522   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1523     // If the popularity of this entry isn't higher than the popularity we've
1524     // seen so far, ignore it.
1525     if (DPI->second < Popularity)
1526       ; // ignore.
1527     else if (DPI->second == Popularity) {
1528       // If it is the same as what we've seen so far, keep track of it.
1529       SamePopularity.push_back(DPI->first);
1530     } else {
1531       // If it is more popular, remember it.
1532       SamePopularity.clear();
1533       MostPopularDest = DPI->first;
1534       Popularity = DPI->second;
1535     }
1536   }
1537 
1538   // Okay, now we know the most popular destination.  If there is more than one
1539   // destination, we need to determine one.  This is arbitrary, but we need
1540   // to make a deterministic decision.  Pick the first one that appears in the
1541   // successor list.
1542   if (!SamePopularity.empty()) {
1543     SamePopularity.push_back(MostPopularDest);
1544     TerminatorInst *TI = BB->getTerminator();
1545     for (unsigned i = 0; ; ++i) {
1546       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1547 
1548       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1549         continue;
1550 
1551       MostPopularDest = TI->getSuccessor(i);
1552       break;
1553     }
1554   }
1555 
1556   // Okay, we have finally picked the most popular destination.
1557   return MostPopularDest;
1558 }
1559 
1560 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1561                                                ConstantPreference Preference,
1562                                                Instruction *CxtI) {
1563   // If threading this would thread across a loop header, don't even try to
1564   // thread the edge.
1565   if (LoopHeaders.count(BB))
1566     return false;
1567 
1568   PredValueInfoTy PredValues;
1569   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1570     return false;
1571 
1572   assert(!PredValues.empty() &&
1573          "ComputeValueKnownInPredecessors returned true with no values");
1574 
1575   DEBUG(dbgs() << "IN BB: " << *BB;
1576         for (const auto &PredValue : PredValues) {
1577           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1578             << *PredValue.first
1579             << " for pred '" << PredValue.second->getName() << "'.\n";
1580         });
1581 
1582   // Decide what we want to thread through.  Convert our list of known values to
1583   // a list of known destinations for each pred.  This also discards duplicate
1584   // predecessors and keeps track of the undefined inputs (which are represented
1585   // as a null dest in the PredToDestList).
1586   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1587   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1588 
1589   BasicBlock *OnlyDest = nullptr;
1590   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1591   Constant *OnlyVal = nullptr;
1592   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1593 
1594   unsigned PredWithKnownDest = 0;
1595   for (const auto &PredValue : PredValues) {
1596     BasicBlock *Pred = PredValue.second;
1597     if (!SeenPreds.insert(Pred).second)
1598       continue;  // Duplicate predecessor entry.
1599 
1600     Constant *Val = PredValue.first;
1601 
1602     BasicBlock *DestBB;
1603     if (isa<UndefValue>(Val))
1604       DestBB = nullptr;
1605     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1606       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1607       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1608     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1609       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1610       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1611     } else {
1612       assert(isa<IndirectBrInst>(BB->getTerminator())
1613               && "Unexpected terminator");
1614       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1615       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1616     }
1617 
1618     // If we have exactly one destination, remember it for efficiency below.
1619     if (PredToDestList.empty()) {
1620       OnlyDest = DestBB;
1621       OnlyVal = Val;
1622     } else {
1623       if (OnlyDest != DestBB)
1624         OnlyDest = MultipleDestSentinel;
1625       // It possible we have same destination, but different value, e.g. default
1626       // case in switchinst.
1627       if (Val != OnlyVal)
1628         OnlyVal = MultipleVal;
1629     }
1630 
1631     // We know where this predecessor is going.
1632     ++PredWithKnownDest;
1633 
1634     // If the predecessor ends with an indirect goto, we can't change its
1635     // destination.
1636     if (isa<IndirectBrInst>(Pred->getTerminator()))
1637       continue;
1638 
1639     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1640   }
1641 
1642   // If all edges were unthreadable, we fail.
1643   if (PredToDestList.empty())
1644     return false;
1645 
1646   // If all the predecessors go to a single known successor, we want to fold,
1647   // not thread. By doing so, we do not need to duplicate the current block and
1648   // also miss potential opportunities in case we dont/cant duplicate.
1649   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1650     if (PredWithKnownDest ==
1651         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1652       bool SeenFirstBranchToOnlyDest = false;
1653       std::vector <DominatorTree::UpdateType> Updates;
1654       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1655       for (BasicBlock *SuccBB : successors(BB)) {
1656         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1657           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1658         } else {
1659           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1660           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1661         }
1662       }
1663 
1664       // Finally update the terminator.
1665       TerminatorInst *Term = BB->getTerminator();
1666       BranchInst::Create(OnlyDest, Term);
1667       Term->eraseFromParent();
1668       DDT->applyUpdates(Updates);
1669 
1670       // If the condition is now dead due to the removal of the old terminator,
1671       // erase it.
1672       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1673         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1674           CondInst->eraseFromParent();
1675         // We can safely replace *some* uses of the CondInst if it has
1676         // exactly one value as returned by LVI. RAUW is incorrect in the
1677         // presence of guards and assumes, that have the `Cond` as the use. This
1678         // is because we use the guards/assume to reason about the `Cond` value
1679         // at the end of block, but RAUW unconditionally replaces all uses
1680         // including the guards/assumes themselves and the uses before the
1681         // guard/assume.
1682         else if (OnlyVal && OnlyVal != MultipleVal &&
1683                  CondInst->getParent() == BB)
1684           ReplaceFoldableUses(CondInst, OnlyVal);
1685       }
1686       return true;
1687     }
1688   }
1689 
1690   // Determine which is the most common successor.  If we have many inputs and
1691   // this block is a switch, we want to start by threading the batch that goes
1692   // to the most popular destination first.  If we only know about one
1693   // threadable destination (the common case) we can avoid this.
1694   BasicBlock *MostPopularDest = OnlyDest;
1695 
1696   if (MostPopularDest == MultipleDestSentinel)
1697     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1698 
1699   // Now that we know what the most popular destination is, factor all
1700   // predecessors that will jump to it into a single predecessor.
1701   SmallVector<BasicBlock*, 16> PredsToFactor;
1702   for (const auto &PredToDest : PredToDestList)
1703     if (PredToDest.second == MostPopularDest) {
1704       BasicBlock *Pred = PredToDest.first;
1705 
1706       // This predecessor may be a switch or something else that has multiple
1707       // edges to the block.  Factor each of these edges by listing them
1708       // according to # occurrences in PredsToFactor.
1709       for (BasicBlock *Succ : successors(Pred))
1710         if (Succ == BB)
1711           PredsToFactor.push_back(Pred);
1712     }
1713 
1714   // If the threadable edges are branching on an undefined value, we get to pick
1715   // the destination that these predecessors should get to.
1716   if (!MostPopularDest)
1717     MostPopularDest = BB->getTerminator()->
1718                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1719 
1720   // Ok, try to thread it!
1721   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1722 }
1723 
1724 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1725 /// a PHI node in the current block.  See if there are any simplifications we
1726 /// can do based on inputs to the phi node.
1727 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1728   BasicBlock *BB = PN->getParent();
1729 
1730   // TODO: We could make use of this to do it once for blocks with common PHI
1731   // values.
1732   SmallVector<BasicBlock*, 1> PredBBs;
1733   PredBBs.resize(1);
1734 
1735   // If any of the predecessor blocks end in an unconditional branch, we can
1736   // *duplicate* the conditional branch into that block in order to further
1737   // encourage jump threading and to eliminate cases where we have branch on a
1738   // phi of an icmp (branch on icmp is much better).
1739   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1740     BasicBlock *PredBB = PN->getIncomingBlock(i);
1741     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1742       if (PredBr->isUnconditional()) {
1743         PredBBs[0] = PredBB;
1744         // Try to duplicate BB into PredBB.
1745         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1746           return true;
1747       }
1748   }
1749 
1750   return false;
1751 }
1752 
1753 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1754 /// a xor instruction in the current block.  See if there are any
1755 /// simplifications we can do based on inputs to the xor.
1756 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1757   BasicBlock *BB = BO->getParent();
1758 
1759   // If either the LHS or RHS of the xor is a constant, don't do this
1760   // optimization.
1761   if (isa<ConstantInt>(BO->getOperand(0)) ||
1762       isa<ConstantInt>(BO->getOperand(1)))
1763     return false;
1764 
1765   // If the first instruction in BB isn't a phi, we won't be able to infer
1766   // anything special about any particular predecessor.
1767   if (!isa<PHINode>(BB->front()))
1768     return false;
1769 
1770   // If this BB is a landing pad, we won't be able to split the edge into it.
1771   if (BB->isEHPad())
1772     return false;
1773 
1774   // If we have a xor as the branch input to this block, and we know that the
1775   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1776   // the condition into the predecessor and fix that value to true, saving some
1777   // logical ops on that path and encouraging other paths to simplify.
1778   //
1779   // This copies something like this:
1780   //
1781   //  BB:
1782   //    %X = phi i1 [1],  [%X']
1783   //    %Y = icmp eq i32 %A, %B
1784   //    %Z = xor i1 %X, %Y
1785   //    br i1 %Z, ...
1786   //
1787   // Into:
1788   //  BB':
1789   //    %Y = icmp ne i32 %A, %B
1790   //    br i1 %Y, ...
1791 
1792   PredValueInfoTy XorOpValues;
1793   bool isLHS = true;
1794   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1795                                        WantInteger, BO)) {
1796     assert(XorOpValues.empty());
1797     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1798                                          WantInteger, BO))
1799       return false;
1800     isLHS = false;
1801   }
1802 
1803   assert(!XorOpValues.empty() &&
1804          "ComputeValueKnownInPredecessors returned true with no values");
1805 
1806   // Scan the information to see which is most popular: true or false.  The
1807   // predecessors can be of the set true, false, or undef.
1808   unsigned NumTrue = 0, NumFalse = 0;
1809   for (const auto &XorOpValue : XorOpValues) {
1810     if (isa<UndefValue>(XorOpValue.first))
1811       // Ignore undefs for the count.
1812       continue;
1813     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1814       ++NumFalse;
1815     else
1816       ++NumTrue;
1817   }
1818 
1819   // Determine which value to split on, true, false, or undef if neither.
1820   ConstantInt *SplitVal = nullptr;
1821   if (NumTrue > NumFalse)
1822     SplitVal = ConstantInt::getTrue(BB->getContext());
1823   else if (NumTrue != 0 || NumFalse != 0)
1824     SplitVal = ConstantInt::getFalse(BB->getContext());
1825 
1826   // Collect all of the blocks that this can be folded into so that we can
1827   // factor this once and clone it once.
1828   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1829   for (const auto &XorOpValue : XorOpValues) {
1830     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1831       continue;
1832 
1833     BlocksToFoldInto.push_back(XorOpValue.second);
1834   }
1835 
1836   // If we inferred a value for all of the predecessors, then duplication won't
1837   // help us.  However, we can just replace the LHS or RHS with the constant.
1838   if (BlocksToFoldInto.size() ==
1839       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1840     if (!SplitVal) {
1841       // If all preds provide undef, just nuke the xor, because it is undef too.
1842       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1843       BO->eraseFromParent();
1844     } else if (SplitVal->isZero()) {
1845       // If all preds provide 0, replace the xor with the other input.
1846       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1847       BO->eraseFromParent();
1848     } else {
1849       // If all preds provide 1, set the computed value to 1.
1850       BO->setOperand(!isLHS, SplitVal);
1851     }
1852 
1853     return true;
1854   }
1855 
1856   // Try to duplicate BB into PredBB.
1857   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1858 }
1859 
1860 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1861 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1862 /// NewPred using the entries from OldPred (suitably mapped).
1863 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1864                                             BasicBlock *OldPred,
1865                                             BasicBlock *NewPred,
1866                                      DenseMap<Instruction*, Value*> &ValueMap) {
1867   for (PHINode &PN : PHIBB->phis()) {
1868     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1869     // DestBlock.
1870     Value *IV = PN.getIncomingValueForBlock(OldPred);
1871 
1872     // Remap the value if necessary.
1873     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1874       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1875       if (I != ValueMap.end())
1876         IV = I->second;
1877     }
1878 
1879     PN.addIncoming(IV, NewPred);
1880   }
1881 }
1882 
1883 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1884 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1885 /// across BB.  Transform the IR to reflect this change.
1886 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1887                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1888                                    BasicBlock *SuccBB) {
1889   // If threading to the same block as we come from, we would infinite loop.
1890   if (SuccBB == BB) {
1891     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1892           << "' - would thread to self!\n");
1893     return false;
1894   }
1895 
1896   // If threading this would thread across a loop header, don't thread the edge.
1897   // See the comments above FindLoopHeaders for justifications and caveats.
1898   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1899     DEBUG({
1900       bool BBIsHeader = LoopHeaders.count(BB);
1901       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1902       dbgs() << "  Not threading across "
1903           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1904           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1905           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1906     });
1907     return false;
1908   }
1909 
1910   unsigned JumpThreadCost =
1911       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1912   if (JumpThreadCost > BBDupThreshold) {
1913     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1914           << "' - Cost is too high: " << JumpThreadCost << "\n");
1915     return false;
1916   }
1917 
1918   // And finally, do it!  Start by factoring the predecessors if needed.
1919   BasicBlock *PredBB;
1920   if (PredBBs.size() == 1)
1921     PredBB = PredBBs[0];
1922   else {
1923     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1924           << " common predecessors.\n");
1925     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1926   }
1927 
1928   // And finally, do it!
1929   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1930         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1931         << ", across block:\n    "
1932         << *BB << "\n");
1933 
1934   if (DDT->pending())
1935     LVI->disableDT();
1936   else
1937     LVI->enableDT();
1938   LVI->threadEdge(PredBB, BB, SuccBB);
1939 
1940   // We are going to have to map operands from the original BB block to the new
1941   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1942   // account for entry from PredBB.
1943   DenseMap<Instruction*, Value*> ValueMapping;
1944 
1945   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1946                                          BB->getName()+".thread",
1947                                          BB->getParent(), BB);
1948   NewBB->moveAfter(PredBB);
1949 
1950   // Set the block frequency of NewBB.
1951   if (HasProfileData) {
1952     auto NewBBFreq =
1953         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1954     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1955   }
1956 
1957   BasicBlock::iterator BI = BB->begin();
1958   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1959     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1960 
1961   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1962   // mapping and using it to remap operands in the cloned instructions.
1963   for (; !isa<TerminatorInst>(BI); ++BI) {
1964     Instruction *New = BI->clone();
1965     New->setName(BI->getName());
1966     NewBB->getInstList().push_back(New);
1967     ValueMapping[&*BI] = New;
1968 
1969     // Remap operands to patch up intra-block references.
1970     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1971       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1972         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1973         if (I != ValueMapping.end())
1974           New->setOperand(i, I->second);
1975       }
1976   }
1977 
1978   // We didn't copy the terminator from BB over to NewBB, because there is now
1979   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1980   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1981   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1982 
1983   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1984   // PHI nodes for NewBB now.
1985   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1986 
1987   // If there were values defined in BB that are used outside the block, then we
1988   // now have to update all uses of the value to use either the original value,
1989   // the cloned value, or some PHI derived value.  This can require arbitrary
1990   // PHI insertion, of which we are prepared to do, clean these up now.
1991   SSAUpdater SSAUpdate;
1992   SmallVector<Use*, 16> UsesToRename;
1993   for (Instruction &I : *BB) {
1994     // Scan all uses of this instruction to see if it is used outside of its
1995     // block, and if so, record them in UsesToRename.
1996     for (Use &U : I.uses()) {
1997       Instruction *User = cast<Instruction>(U.getUser());
1998       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1999         if (UserPN->getIncomingBlock(U) == BB)
2000           continue;
2001       } else if (User->getParent() == BB)
2002         continue;
2003 
2004       UsesToRename.push_back(&U);
2005     }
2006 
2007     // If there are no uses outside the block, we're done with this instruction.
2008     if (UsesToRename.empty())
2009       continue;
2010 
2011     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2012 
2013     // We found a use of I outside of BB.  Rename all uses of I that are outside
2014     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2015     // with the two values we know.
2016     SSAUpdate.Initialize(I.getType(), I.getName());
2017     SSAUpdate.AddAvailableValue(BB, &I);
2018     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2019 
2020     while (!UsesToRename.empty())
2021       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2022     DEBUG(dbgs() << "\n");
2023   }
2024 
2025   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
2026   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
2027   // us to simplify any PHI nodes in BB.
2028   TerminatorInst *PredTerm = PredBB->getTerminator();
2029   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2030     if (PredTerm->getSuccessor(i) == BB) {
2031       BB->removePredecessor(PredBB, true);
2032       PredTerm->setSuccessor(i, NewBB);
2033     }
2034 
2035   DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2036                      {DominatorTree::Insert, PredBB, NewBB},
2037                      {DominatorTree::Delete, PredBB, BB}});
2038 
2039   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2040   // over the new instructions and zap any that are constants or dead.  This
2041   // frequently happens because of phi translation.
2042   SimplifyInstructionsInBlock(NewBB, TLI);
2043 
2044   // Update the edge weight from BB to SuccBB, which should be less than before.
2045   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2046 
2047   // Threaded an edge!
2048   ++NumThreads;
2049   return true;
2050 }
2051 
2052 /// Create a new basic block that will be the predecessor of BB and successor of
2053 /// all blocks in Preds. When profile data is available, update the frequency of
2054 /// this new block.
2055 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2056                                                ArrayRef<BasicBlock *> Preds,
2057                                                const char *Suffix) {
2058   SmallVector<BasicBlock *, 2> NewBBs;
2059 
2060   // Collect the frequencies of all predecessors of BB, which will be used to
2061   // update the edge weight of the result of splitting predecessors.
2062   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2063   if (HasProfileData)
2064     for (auto Pred : Preds)
2065       FreqMap.insert(std::make_pair(
2066           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2067 
2068   // In the case when BB is a LandingPad block we create 2 new predecessors
2069   // instead of just one.
2070   if (BB->isLandingPad()) {
2071     std::string NewName = std::string(Suffix) + ".split-lp";
2072     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2073   } else {
2074     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2075   }
2076 
2077   std::vector<DominatorTree::UpdateType> Updates;
2078   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2079   for (auto NewBB : NewBBs) {
2080     BlockFrequency NewBBFreq(0);
2081     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2082     for (auto Pred : predecessors(NewBB)) {
2083       Updates.push_back({DominatorTree::Delete, Pred, BB});
2084       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2085       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2086         NewBBFreq += FreqMap.lookup(Pred);
2087     }
2088     if (HasProfileData) // Apply the summed frequency to NewBB.
2089       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2090   }
2091 
2092   DDT->applyUpdates(Updates);
2093   return NewBBs[0];
2094 }
2095 
2096 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2097   const TerminatorInst *TI = BB->getTerminator();
2098   assert(TI->getNumSuccessors() > 1 && "not a split");
2099 
2100   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2101   if (!WeightsNode)
2102     return false;
2103 
2104   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2105   if (MDName->getString() != "branch_weights")
2106     return false;
2107 
2108   // Ensure there are weights for all of the successors. Note that the first
2109   // operand to the metadata node is a name, not a weight.
2110   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2111 }
2112 
2113 /// Update the block frequency of BB and branch weight and the metadata on the
2114 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2115 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2116 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2117                                                      BasicBlock *BB,
2118                                                      BasicBlock *NewBB,
2119                                                      BasicBlock *SuccBB) {
2120   if (!HasProfileData)
2121     return;
2122 
2123   assert(BFI && BPI && "BFI & BPI should have been created here");
2124 
2125   // As the edge from PredBB to BB is deleted, we have to update the block
2126   // frequency of BB.
2127   auto BBOrigFreq = BFI->getBlockFreq(BB);
2128   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2129   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2130   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2131   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2132 
2133   // Collect updated outgoing edges' frequencies from BB and use them to update
2134   // edge probabilities.
2135   SmallVector<uint64_t, 4> BBSuccFreq;
2136   for (BasicBlock *Succ : successors(BB)) {
2137     auto SuccFreq = (Succ == SuccBB)
2138                         ? BB2SuccBBFreq - NewBBFreq
2139                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2140     BBSuccFreq.push_back(SuccFreq.getFrequency());
2141   }
2142 
2143   uint64_t MaxBBSuccFreq =
2144       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2145 
2146   SmallVector<BranchProbability, 4> BBSuccProbs;
2147   if (MaxBBSuccFreq == 0)
2148     BBSuccProbs.assign(BBSuccFreq.size(),
2149                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2150   else {
2151     for (uint64_t Freq : BBSuccFreq)
2152       BBSuccProbs.push_back(
2153           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2154     // Normalize edge probabilities so that they sum up to one.
2155     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2156                                               BBSuccProbs.end());
2157   }
2158 
2159   // Update edge probabilities in BPI.
2160   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2161     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2162 
2163   // Update the profile metadata as well.
2164   //
2165   // Don't do this if the profile of the transformed blocks was statically
2166   // estimated.  (This could occur despite the function having an entry
2167   // frequency in completely cold parts of the CFG.)
2168   //
2169   // In this case we don't want to suggest to subsequent passes that the
2170   // calculated weights are fully consistent.  Consider this graph:
2171   //
2172   //                 check_1
2173   //             50% /  |
2174   //             eq_1   | 50%
2175   //                 \  |
2176   //                 check_2
2177   //             50% /  |
2178   //             eq_2   | 50%
2179   //                 \  |
2180   //                 check_3
2181   //             50% /  |
2182   //             eq_3   | 50%
2183   //                 \  |
2184   //
2185   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2186   // the overall probabilities are inconsistent; the total probability that the
2187   // value is either 1, 2 or 3 is 150%.
2188   //
2189   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2190   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2191   // the loop exit edge.  Then based solely on static estimation we would assume
2192   // the loop was extremely hot.
2193   //
2194   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2195   // shouldn't make edges extremely likely or unlikely based solely on static
2196   // estimation.
2197   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2198     SmallVector<uint32_t, 4> Weights;
2199     for (auto Prob : BBSuccProbs)
2200       Weights.push_back(Prob.getNumerator());
2201 
2202     auto TI = BB->getTerminator();
2203     TI->setMetadata(
2204         LLVMContext::MD_prof,
2205         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2206   }
2207 }
2208 
2209 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2210 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2211 /// If we can duplicate the contents of BB up into PredBB do so now, this
2212 /// improves the odds that the branch will be on an analyzable instruction like
2213 /// a compare.
2214 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2215     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2216   assert(!PredBBs.empty() && "Can't handle an empty set");
2217 
2218   // If BB is a loop header, then duplicating this block outside the loop would
2219   // cause us to transform this into an irreducible loop, don't do this.
2220   // See the comments above FindLoopHeaders for justifications and caveats.
2221   if (LoopHeaders.count(BB)) {
2222     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2223           << "' into predecessor block '" << PredBBs[0]->getName()
2224           << "' - it might create an irreducible loop!\n");
2225     return false;
2226   }
2227 
2228   unsigned DuplicationCost =
2229       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2230   if (DuplicationCost > BBDupThreshold) {
2231     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2232           << "' - Cost is too high: " << DuplicationCost << "\n");
2233     return false;
2234   }
2235 
2236   // And finally, do it!  Start by factoring the predecessors if needed.
2237   std::vector<DominatorTree::UpdateType> Updates;
2238   BasicBlock *PredBB;
2239   if (PredBBs.size() == 1)
2240     PredBB = PredBBs[0];
2241   else {
2242     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2243           << " common predecessors.\n");
2244     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2245   }
2246   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2247 
2248   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2249   // of PredBB.
2250   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
2251         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
2252         << DuplicationCost << " block is:" << *BB << "\n");
2253 
2254   // Unless PredBB ends with an unconditional branch, split the edge so that we
2255   // can just clone the bits from BB into the end of the new PredBB.
2256   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2257 
2258   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2259     BasicBlock *OldPredBB = PredBB;
2260     PredBB = SplitEdge(OldPredBB, BB);
2261     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2262     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2263     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2264     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2265   }
2266 
2267   // We are going to have to map operands from the original BB block into the
2268   // PredBB block.  Evaluate PHI nodes in BB.
2269   DenseMap<Instruction*, Value*> ValueMapping;
2270 
2271   BasicBlock::iterator BI = BB->begin();
2272   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2273     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2274   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2275   // mapping and using it to remap operands in the cloned instructions.
2276   for (; BI != BB->end(); ++BI) {
2277     Instruction *New = BI->clone();
2278 
2279     // Remap operands to patch up intra-block references.
2280     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2281       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2282         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2283         if (I != ValueMapping.end())
2284           New->setOperand(i, I->second);
2285       }
2286 
2287     // If this instruction can be simplified after the operands are updated,
2288     // just use the simplified value instead.  This frequently happens due to
2289     // phi translation.
2290     if (Value *IV = SimplifyInstruction(
2291             New,
2292             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2293       ValueMapping[&*BI] = IV;
2294       if (!New->mayHaveSideEffects()) {
2295         New->deleteValue();
2296         New = nullptr;
2297       }
2298     } else {
2299       ValueMapping[&*BI] = New;
2300     }
2301     if (New) {
2302       // Otherwise, insert the new instruction into the block.
2303       New->setName(BI->getName());
2304       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2305       // Update Dominance from simplified New instruction operands.
2306       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2307         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2308           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2309     }
2310   }
2311 
2312   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2313   // add entries to the PHI nodes for branch from PredBB now.
2314   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2315   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2316                                   ValueMapping);
2317   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2318                                   ValueMapping);
2319 
2320   // If there were values defined in BB that are used outside the block, then we
2321   // now have to update all uses of the value to use either the original value,
2322   // the cloned value, or some PHI derived value.  This can require arbitrary
2323   // PHI insertion, of which we are prepared to do, clean these up now.
2324   SSAUpdater SSAUpdate;
2325   SmallVector<Use*, 16> UsesToRename;
2326   for (Instruction &I : *BB) {
2327     // Scan all uses of this instruction to see if it is used outside of its
2328     // block, and if so, record them in UsesToRename.
2329     for (Use &U : I.uses()) {
2330       Instruction *User = cast<Instruction>(U.getUser());
2331       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2332         if (UserPN->getIncomingBlock(U) == BB)
2333           continue;
2334       } else if (User->getParent() == BB)
2335         continue;
2336 
2337       UsesToRename.push_back(&U);
2338     }
2339 
2340     // If there are no uses outside the block, we're done with this instruction.
2341     if (UsesToRename.empty())
2342       continue;
2343 
2344     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2345 
2346     // We found a use of I outside of BB.  Rename all uses of I that are outside
2347     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2348     // with the two values we know.
2349     SSAUpdate.Initialize(I.getType(), I.getName());
2350     SSAUpdate.AddAvailableValue(BB, &I);
2351     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2352 
2353     while (!UsesToRename.empty())
2354       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2355     DEBUG(dbgs() << "\n");
2356   }
2357 
2358   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2359   // that we nuked.
2360   BB->removePredecessor(PredBB, true);
2361 
2362   // Remove the unconditional branch at the end of the PredBB block.
2363   OldPredBranch->eraseFromParent();
2364   DDT->applyUpdates(Updates);
2365 
2366   ++NumDupes;
2367   return true;
2368 }
2369 
2370 /// TryToUnfoldSelect - Look for blocks of the form
2371 /// bb1:
2372 ///   %a = select
2373 ///   br bb2
2374 ///
2375 /// bb2:
2376 ///   %p = phi [%a, %bb1] ...
2377 ///   %c = icmp %p
2378 ///   br i1 %c
2379 ///
2380 /// And expand the select into a branch structure if one of its arms allows %c
2381 /// to be folded. This later enables threading from bb1 over bb2.
2382 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2383   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2384   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2385   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2386 
2387   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2388       CondLHS->getParent() != BB)
2389     return false;
2390 
2391   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2392     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2393     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2394 
2395     // Look if one of the incoming values is a select in the corresponding
2396     // predecessor.
2397     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2398       continue;
2399 
2400     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2401     if (!PredTerm || !PredTerm->isUnconditional())
2402       continue;
2403 
2404     // Now check if one of the select values would allow us to constant fold the
2405     // terminator in BB. We don't do the transform if both sides fold, those
2406     // cases will be threaded in any case.
2407     if (DDT->pending())
2408       LVI->disableDT();
2409     else
2410       LVI->enableDT();
2411     LazyValueInfo::Tristate LHSFolds =
2412         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2413                                 CondRHS, Pred, BB, CondCmp);
2414     LazyValueInfo::Tristate RHSFolds =
2415         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2416                                 CondRHS, Pred, BB, CondCmp);
2417     if ((LHSFolds != LazyValueInfo::Unknown ||
2418          RHSFolds != LazyValueInfo::Unknown) &&
2419         LHSFolds != RHSFolds) {
2420       // Expand the select.
2421       //
2422       // Pred --
2423       //  |    v
2424       //  |  NewBB
2425       //  |    |
2426       //  |-----
2427       //  v
2428       // BB
2429       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2430                                              BB->getParent(), BB);
2431       // Move the unconditional branch to NewBB.
2432       PredTerm->removeFromParent();
2433       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2434       // Create a conditional branch and update PHI nodes.
2435       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2436       CondLHS->setIncomingValue(I, SI->getFalseValue());
2437       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2438       // The select is now dead.
2439       SI->eraseFromParent();
2440 
2441       DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2442                          {DominatorTree::Insert, Pred, NewBB}});
2443       // Update any other PHI nodes in BB.
2444       for (BasicBlock::iterator BI = BB->begin();
2445            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2446         if (Phi != CondLHS)
2447           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2448       return true;
2449     }
2450   }
2451   return false;
2452 }
2453 
2454 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2455 /// same BB in the form
2456 /// bb:
2457 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2458 ///   %s = select %p, trueval, falseval
2459 ///
2460 /// or
2461 ///
2462 /// bb:
2463 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2464 ///   %c = cmp %p, 0
2465 ///   %s = select %c, trueval, falseval
2466 ///
2467 /// And expand the select into a branch structure. This later enables
2468 /// jump-threading over bb in this pass.
2469 ///
2470 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2471 /// select if the associated PHI has at least one constant.  If the unfolded
2472 /// select is not jump-threaded, it will be folded again in the later
2473 /// optimizations.
2474 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2475   // If threading this would thread across a loop header, don't thread the edge.
2476   // See the comments above FindLoopHeaders for justifications and caveats.
2477   if (LoopHeaders.count(BB))
2478     return false;
2479 
2480   for (BasicBlock::iterator BI = BB->begin();
2481        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2482     // Look for a Phi having at least one constant incoming value.
2483     if (llvm::all_of(PN->incoming_values(),
2484                      [](Value *V) { return !isa<ConstantInt>(V); }))
2485       continue;
2486 
2487     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2488       // Check if SI is in BB and use V as condition.
2489       if (SI->getParent() != BB)
2490         return false;
2491       Value *Cond = SI->getCondition();
2492       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2493     };
2494 
2495     SelectInst *SI = nullptr;
2496     for (Use &U : PN->uses()) {
2497       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2498         // Look for a ICmp in BB that compares PN with a constant and is the
2499         // condition of a Select.
2500         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2501             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2502           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2503             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2504               SI = SelectI;
2505               break;
2506             }
2507       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2508         // Look for a Select in BB that uses PN as condtion.
2509         if (isUnfoldCandidate(SelectI, U.get())) {
2510           SI = SelectI;
2511           break;
2512         }
2513       }
2514     }
2515 
2516     if (!SI)
2517       continue;
2518     // Expand the select.
2519     TerminatorInst *Term =
2520         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2521     BasicBlock *SplitBB = SI->getParent();
2522     BasicBlock *NewBB = Term->getParent();
2523     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2524     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2525     NewPN->addIncoming(SI->getFalseValue(), BB);
2526     SI->replaceAllUsesWith(NewPN);
2527     SI->eraseFromParent();
2528     // NewBB and SplitBB are newly created blocks which require insertion.
2529     std::vector<DominatorTree::UpdateType> Updates;
2530     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2531     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2532     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2533     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2534     // BB's successors were moved to SplitBB, update DDT accordingly.
2535     for (auto *Succ : successors(SplitBB)) {
2536       Updates.push_back({DominatorTree::Delete, BB, Succ});
2537       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2538     }
2539     DDT->applyUpdates(Updates);
2540     return true;
2541   }
2542   return false;
2543 }
2544 
2545 /// Try to propagate a guard from the current BB into one of its predecessors
2546 /// in case if another branch of execution implies that the condition of this
2547 /// guard is always true. Currently we only process the simplest case that
2548 /// looks like:
2549 ///
2550 /// Start:
2551 ///   %cond = ...
2552 ///   br i1 %cond, label %T1, label %F1
2553 /// T1:
2554 ///   br label %Merge
2555 /// F1:
2556 ///   br label %Merge
2557 /// Merge:
2558 ///   %condGuard = ...
2559 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2560 ///
2561 /// And cond either implies condGuard or !condGuard. In this case all the
2562 /// instructions before the guard can be duplicated in both branches, and the
2563 /// guard is then threaded to one of them.
2564 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2565   using namespace PatternMatch;
2566 
2567   // We only want to deal with two predecessors.
2568   BasicBlock *Pred1, *Pred2;
2569   auto PI = pred_begin(BB), PE = pred_end(BB);
2570   if (PI == PE)
2571     return false;
2572   Pred1 = *PI++;
2573   if (PI == PE)
2574     return false;
2575   Pred2 = *PI++;
2576   if (PI != PE)
2577     return false;
2578   if (Pred1 == Pred2)
2579     return false;
2580 
2581   // Try to thread one of the guards of the block.
2582   // TODO: Look up deeper than to immediate predecessor?
2583   auto *Parent = Pred1->getSinglePredecessor();
2584   if (!Parent || Parent != Pred2->getSinglePredecessor())
2585     return false;
2586 
2587   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2588     for (auto &I : *BB)
2589       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2590         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2591           return true;
2592 
2593   return false;
2594 }
2595 
2596 /// Try to propagate the guard from BB which is the lower block of a diamond
2597 /// to one of its branches, in case if diamond's condition implies guard's
2598 /// condition.
2599 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2600                                     BranchInst *BI) {
2601   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2602   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2603   Value *GuardCond = Guard->getArgOperand(0);
2604   Value *BranchCond = BI->getCondition();
2605   BasicBlock *TrueDest = BI->getSuccessor(0);
2606   BasicBlock *FalseDest = BI->getSuccessor(1);
2607 
2608   auto &DL = BB->getModule()->getDataLayout();
2609   bool TrueDestIsSafe = false;
2610   bool FalseDestIsSafe = false;
2611 
2612   // True dest is safe if BranchCond => GuardCond.
2613   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2614   if (Impl && *Impl)
2615     TrueDestIsSafe = true;
2616   else {
2617     // False dest is safe if !BranchCond => GuardCond.
2618     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2619     if (Impl && *Impl)
2620       FalseDestIsSafe = true;
2621   }
2622 
2623   if (!TrueDestIsSafe && !FalseDestIsSafe)
2624     return false;
2625 
2626   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2627   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2628 
2629   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2630   Instruction *AfterGuard = Guard->getNextNode();
2631   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2632   if (Cost > BBDupThreshold)
2633     return false;
2634   // Duplicate all instructions before the guard and the guard itself to the
2635   // branch where implication is not proved.
2636   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2637       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
2638   assert(GuardedBlock && "Could not create the guarded block?");
2639   // Duplicate all instructions before the guard in the unguarded branch.
2640   // Since we have successfully duplicated the guarded block and this block
2641   // has fewer instructions, we expect it to succeed.
2642   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2643       BB, PredUnguardedBlock, Guard, UnguardedMapping);
2644   assert(UnguardedBlock && "Could not create the unguarded block?");
2645   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2646                << GuardedBlock->getName() << "\n");
2647   // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
2648   // PredBB and BB. We need to perform two inserts and one delete for each of
2649   // the above calls to update Dominators.
2650   DDT->applyUpdates(
2651       {// Guarded block split.
2652        {DominatorTree::Delete, PredGuardedBlock, BB},
2653        {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
2654        {DominatorTree::Insert, GuardedBlock, BB},
2655        // Unguarded block split.
2656        {DominatorTree::Delete, PredUnguardedBlock, BB},
2657        {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
2658        {DominatorTree::Insert, UnguardedBlock, BB}});
2659   // Some instructions before the guard may still have uses. For them, we need
2660   // to create Phi nodes merging their copies in both guarded and unguarded
2661   // branches. Those instructions that have no uses can be just removed.
2662   SmallVector<Instruction *, 4> ToRemove;
2663   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2664     if (!isa<PHINode>(&*BI))
2665       ToRemove.push_back(&*BI);
2666 
2667   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2668   assert(InsertionPoint && "Empty block?");
2669   // Substitute with Phis & remove.
2670   for (auto *Inst : reverse(ToRemove)) {
2671     if (!Inst->use_empty()) {
2672       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2673       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2674       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2675       NewPN->insertBefore(InsertionPoint);
2676       Inst->replaceAllUsesWith(NewPN);
2677     }
2678     Inst->eraseFromParent();
2679   }
2680   return true;
2681 }
2682