1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/PriorityWorklist.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringRef.h"
54 #include "llvm/ADT/Twine.h"
55 #include "llvm/Analysis/BlockFrequencyInfo.h"
56 #include "llvm/Analysis/BranchProbabilityInfo.h"
57 #include "llvm/Analysis/LoopAnalysisManager.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/LoopPass.h"
60 #include "llvm/Analysis/PostDominators.h"
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/IRBuilder.h"
70 #include "llvm/IR/InstrTypes.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/Metadata.h"
73 #include "llvm/IR/Module.h"
74 #include "llvm/IR/PatternMatch.h"
75 #include "llvm/IR/Type.h"
76 #include "llvm/IR/Use.h"
77 #include "llvm/IR/User.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Scalar.h"
89 #include "llvm/Transforms/Utils/Cloning.h"
90 #include "llvm/Transforms/Utils/LoopSimplify.h"
91 #include "llvm/Transforms/Utils/LoopUtils.h"
92 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
93 #include "llvm/Transforms/Utils/ValueMapper.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <iterator>
97 #include <limits>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 
104 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
105                                         cl::init(64));
106 
107 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
108                                        cl::init(false));
109 
110 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
111                                       cl::init(false));
112 
113 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
114                                           cl::Hidden, cl::init(10));
115 
116 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
117                                              cl::Hidden, cl::init(false));
118 
119 static cl::opt<unsigned> MinRuntimeIterations("min-runtime-iterations",
120                                               cl::Hidden, cl::init(3));
121 
122 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
123                                                  cl::Hidden, cl::init(true));
124 
125 static cl::opt<bool> AllowNarrowLatchCondition(
126     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
127     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
128              "with narrow latch condition."));
129 
130 static const char *ClonedLoopTag = "irce.loop.clone";
131 
132 #define DEBUG_TYPE "irce"
133 
134 namespace {
135 
136 /// An inductive range check is conditional branch in a loop with
137 ///
138 ///  1. a very cold successor (i.e. the branch jumps to that successor very
139 ///     rarely)
140 ///
141 ///  and
142 ///
143 ///  2. a condition that is provably true for some contiguous range of values
144 ///     taken by the containing loop's induction variable.
145 ///
146 class InductiveRangeCheck {
147 
148   const SCEV *Begin = nullptr;
149   const SCEV *Step = nullptr;
150   const SCEV *End = nullptr;
151   Use *CheckUse = nullptr;
152   bool IsSigned = true;
153 
154   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
155                                   Value *&Index, Value *&Length,
156                                   bool &IsSigned);
157 
158   static void
159   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
160                              SmallVectorImpl<InductiveRangeCheck> &Checks,
161                              SmallPtrSetImpl<Value *> &Visited);
162 
163 public:
164   const SCEV *getBegin() const { return Begin; }
165   const SCEV *getStep() const { return Step; }
166   const SCEV *getEnd() const { return End; }
167   bool isSigned() const { return IsSigned; }
168 
169   void print(raw_ostream &OS) const {
170     OS << "InductiveRangeCheck:\n";
171     OS << "  Begin: ";
172     Begin->print(OS);
173     OS << "  Step: ";
174     Step->print(OS);
175     OS << "  End: ";
176     End->print(OS);
177     OS << "\n  CheckUse: ";
178     getCheckUse()->getUser()->print(OS);
179     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
180   }
181 
182   LLVM_DUMP_METHOD
183   void dump() {
184     print(dbgs());
185   }
186 
187   Use *getCheckUse() const { return CheckUse; }
188 
189   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
190   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
191 
192   class Range {
193     const SCEV *Begin;
194     const SCEV *End;
195 
196   public:
197     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
198       assert(Begin->getType() == End->getType() && "ill-typed range!");
199     }
200 
201     Type *getType() const { return Begin->getType(); }
202     const SCEV *getBegin() const { return Begin; }
203     const SCEV *getEnd() const { return End; }
204     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
205       if (Begin == End)
206         return true;
207       if (IsSigned)
208         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
209       else
210         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
211     }
212   };
213 
214   /// This is the value the condition of the branch needs to evaluate to for the
215   /// branch to take the hot successor (see (1) above).
216   bool getPassingDirection() { return true; }
217 
218   /// Computes a range for the induction variable (IndVar) in which the range
219   /// check is redundant and can be constant-folded away.  The induction
220   /// variable is not required to be the canonical {0,+,1} induction variable.
221   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
222                                             const SCEVAddRecExpr *IndVar,
223                                             bool IsLatchSigned) const;
224 
225   /// Parse out a set of inductive range checks from \p BI and append them to \p
226   /// Checks.
227   ///
228   /// NB! There may be conditions feeding into \p BI that aren't inductive range
229   /// checks, and hence don't end up in \p Checks.
230   static void
231   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
232                                BranchProbabilityInfo *BPI,
233                                SmallVectorImpl<InductiveRangeCheck> &Checks);
234 };
235 
236 class InductiveRangeCheckElimination {
237   ScalarEvolution &SE;
238   BranchProbabilityInfo *BPI;
239   DominatorTree &DT;
240   LoopInfo &LI;
241 
242   using GetBFIFunc =
243       llvm::Optional<llvm::function_ref<llvm::BlockFrequencyInfo &()> >;
244   GetBFIFunc GetBFI;
245 
246 public:
247   InductiveRangeCheckElimination(ScalarEvolution &SE,
248                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
249                                  LoopInfo &LI, GetBFIFunc GetBFI = None)
250       : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
251 
252   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
253 };
254 
255 class IRCELegacyPass : public FunctionPass {
256 public:
257   static char ID;
258 
259   IRCELegacyPass() : FunctionPass(ID) {
260     initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
261   }
262 
263   void getAnalysisUsage(AnalysisUsage &AU) const override {
264     AU.addRequired<BranchProbabilityInfoWrapperPass>();
265     AU.addRequired<DominatorTreeWrapperPass>();
266     AU.addPreserved<DominatorTreeWrapperPass>();
267     AU.addRequired<LoopInfoWrapperPass>();
268     AU.addPreserved<LoopInfoWrapperPass>();
269     AU.addRequired<ScalarEvolutionWrapperPass>();
270     AU.addPreserved<ScalarEvolutionWrapperPass>();
271   }
272 
273   bool runOnFunction(Function &F) override;
274 };
275 
276 } // end anonymous namespace
277 
278 char IRCELegacyPass::ID = 0;
279 
280 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
281                       "Inductive range check elimination", false, false)
282 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
283 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
284 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
285 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
286 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
287                     false, false)
288 
289 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
290 /// be interpreted as a range check, return false and set `Index` and `Length`
291 /// to `nullptr`.  Otherwise set `Index` to the value being range checked, and
292 /// set `Length` to the upper limit `Index` is being range checked.
293 bool
294 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
295                                          ScalarEvolution &SE, Value *&Index,
296                                          Value *&Length, bool &IsSigned) {
297   auto IsLoopInvariant = [&SE, L](Value *V) {
298     return SE.isLoopInvariant(SE.getSCEV(V), L);
299   };
300 
301   ICmpInst::Predicate Pred = ICI->getPredicate();
302   Value *LHS = ICI->getOperand(0);
303   Value *RHS = ICI->getOperand(1);
304 
305   switch (Pred) {
306   default:
307     return false;
308 
309   case ICmpInst::ICMP_SLE:
310     std::swap(LHS, RHS);
311     LLVM_FALLTHROUGH;
312   case ICmpInst::ICMP_SGE:
313     IsSigned = true;
314     if (match(RHS, m_ConstantInt<0>())) {
315       Index = LHS;
316       return true; // Lower.
317     }
318     return false;
319 
320   case ICmpInst::ICMP_SLT:
321     std::swap(LHS, RHS);
322     LLVM_FALLTHROUGH;
323   case ICmpInst::ICMP_SGT:
324     IsSigned = true;
325     if (match(RHS, m_ConstantInt<-1>())) {
326       Index = LHS;
327       return true; // Lower.
328     }
329 
330     if (IsLoopInvariant(LHS)) {
331       Index = RHS;
332       Length = LHS;
333       return true; // Upper.
334     }
335     return false;
336 
337   case ICmpInst::ICMP_ULT:
338     std::swap(LHS, RHS);
339     LLVM_FALLTHROUGH;
340   case ICmpInst::ICMP_UGT:
341     IsSigned = false;
342     if (IsLoopInvariant(LHS)) {
343       Index = RHS;
344       Length = LHS;
345       return true; // Both lower and upper.
346     }
347     return false;
348   }
349 
350   llvm_unreachable("default clause returns!");
351 }
352 
353 void InductiveRangeCheck::extractRangeChecksFromCond(
354     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
355     SmallVectorImpl<InductiveRangeCheck> &Checks,
356     SmallPtrSetImpl<Value *> &Visited) {
357   Value *Condition = ConditionUse.get();
358   if (!Visited.insert(Condition).second)
359     return;
360 
361   // TODO: Do the same for OR, XOR, NOT etc?
362   if (match(Condition, m_And(m_Value(), m_Value()))) {
363     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
364                                Checks, Visited);
365     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
366                                Checks, Visited);
367     return;
368   }
369 
370   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
371   if (!ICI)
372     return;
373 
374   Value *Length = nullptr, *Index;
375   bool IsSigned;
376   if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
377     return;
378 
379   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
380   bool IsAffineIndex =
381       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
382 
383   if (!IsAffineIndex)
384     return;
385 
386   const SCEV *End = nullptr;
387   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
388   // We can potentially do much better here.
389   if (Length)
390     End = SE.getSCEV(Length);
391   else {
392     // So far we can only reach this point for Signed range check. This may
393     // change in future. In this case we will need to pick Unsigned max for the
394     // unsigned range check.
395     unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
396     const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
397     End = SIntMax;
398   }
399 
400   InductiveRangeCheck IRC;
401   IRC.End = End;
402   IRC.Begin = IndexAddRec->getStart();
403   IRC.Step = IndexAddRec->getStepRecurrence(SE);
404   IRC.CheckUse = &ConditionUse;
405   IRC.IsSigned = IsSigned;
406   Checks.push_back(IRC);
407 }
408 
409 void InductiveRangeCheck::extractRangeChecksFromBranch(
410     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
411     SmallVectorImpl<InductiveRangeCheck> &Checks) {
412   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
413     return;
414 
415   BranchProbability LikelyTaken(15, 16);
416 
417   if (!SkipProfitabilityChecks && BPI &&
418       BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
419     return;
420 
421   SmallPtrSet<Value *, 8> Visited;
422   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
423                                                   Checks, Visited);
424 }
425 
426 // Add metadata to the loop L to disable loop optimizations. Callers need to
427 // confirm that optimizing loop L is not beneficial.
428 static void DisableAllLoopOptsOnLoop(Loop &L) {
429   // We do not care about any existing loopID related metadata for L, since we
430   // are setting all loop metadata to false.
431   LLVMContext &Context = L.getHeader()->getContext();
432   // Reserve first location for self reference to the LoopID metadata node.
433   MDNode *Dummy = MDNode::get(Context, {});
434   MDNode *DisableUnroll = MDNode::get(
435       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
436   Metadata *FalseVal =
437       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
438   MDNode *DisableVectorize = MDNode::get(
439       Context,
440       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
441   MDNode *DisableLICMVersioning = MDNode::get(
442       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
443   MDNode *DisableDistribution= MDNode::get(
444       Context,
445       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
446   MDNode *NewLoopID =
447       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
448                             DisableLICMVersioning, DisableDistribution});
449   // Set operand 0 to refer to the loop id itself.
450   NewLoopID->replaceOperandWith(0, NewLoopID);
451   L.setLoopID(NewLoopID);
452 }
453 
454 namespace {
455 
456 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
457 // except that it is more lightweight and can track the state of a loop through
458 // changing and potentially invalid IR.  This structure also formalizes the
459 // kinds of loops we can deal with -- ones that have a single latch that is also
460 // an exiting block *and* have a canonical induction variable.
461 struct LoopStructure {
462   const char *Tag = "";
463 
464   BasicBlock *Header = nullptr;
465   BasicBlock *Latch = nullptr;
466 
467   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
468   // successor is `LatchExit', the exit block of the loop.
469   BranchInst *LatchBr = nullptr;
470   BasicBlock *LatchExit = nullptr;
471   unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
472 
473   // The loop represented by this instance of LoopStructure is semantically
474   // equivalent to:
475   //
476   // intN_ty inc = IndVarIncreasing ? 1 : -1;
477   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
478   //
479   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
480   //   ... body ...
481 
482   Value *IndVarBase = nullptr;
483   Value *IndVarStart = nullptr;
484   Value *IndVarStep = nullptr;
485   Value *LoopExitAt = nullptr;
486   bool IndVarIncreasing = false;
487   bool IsSignedPredicate = true;
488 
489   LoopStructure() = default;
490 
491   template <typename M> LoopStructure map(M Map) const {
492     LoopStructure Result;
493     Result.Tag = Tag;
494     Result.Header = cast<BasicBlock>(Map(Header));
495     Result.Latch = cast<BasicBlock>(Map(Latch));
496     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
497     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
498     Result.LatchBrExitIdx = LatchBrExitIdx;
499     Result.IndVarBase = Map(IndVarBase);
500     Result.IndVarStart = Map(IndVarStart);
501     Result.IndVarStep = Map(IndVarStep);
502     Result.LoopExitAt = Map(LoopExitAt);
503     Result.IndVarIncreasing = IndVarIncreasing;
504     Result.IsSignedPredicate = IsSignedPredicate;
505     return Result;
506   }
507 
508   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
509                                                     BranchProbabilityInfo *BPI,
510                                                     Loop &, const char *&);
511 };
512 
513 /// This class is used to constrain loops to run within a given iteration space.
514 /// The algorithm this class implements is given a Loop and a range [Begin,
515 /// End).  The algorithm then tries to break out a "main loop" out of the loop
516 /// it is given in a way that the "main loop" runs with the induction variable
517 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
518 /// loops to run any remaining iterations.  The pre loop runs any iterations in
519 /// which the induction variable is < Begin, and the post loop runs any
520 /// iterations in which the induction variable is >= End.
521 class LoopConstrainer {
522   // The representation of a clone of the original loop we started out with.
523   struct ClonedLoop {
524     // The cloned blocks
525     std::vector<BasicBlock *> Blocks;
526 
527     // `Map` maps values in the clonee into values in the cloned version
528     ValueToValueMapTy Map;
529 
530     // An instance of `LoopStructure` for the cloned loop
531     LoopStructure Structure;
532   };
533 
534   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
535   // more details on what these fields mean.
536   struct RewrittenRangeInfo {
537     BasicBlock *PseudoExit = nullptr;
538     BasicBlock *ExitSelector = nullptr;
539     std::vector<PHINode *> PHIValuesAtPseudoExit;
540     PHINode *IndVarEnd = nullptr;
541 
542     RewrittenRangeInfo() = default;
543   };
544 
545   // Calculated subranges we restrict the iteration space of the main loop to.
546   // See the implementation of `calculateSubRanges' for more details on how
547   // these fields are computed.  `LowLimit` is None if there is no restriction
548   // on low end of the restricted iteration space of the main loop.  `HighLimit`
549   // is None if there is no restriction on high end of the restricted iteration
550   // space of the main loop.
551 
552   struct SubRanges {
553     Optional<const SCEV *> LowLimit;
554     Optional<const SCEV *> HighLimit;
555   };
556 
557   // Compute a safe set of limits for the main loop to run in -- effectively the
558   // intersection of `Range' and the iteration space of the original loop.
559   // Return None if unable to compute the set of subranges.
560   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
561 
562   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
563   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
564   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
565   // but there is no such edge.
566   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
567 
568   // Create the appropriate loop structure needed to describe a cloned copy of
569   // `Original`.  The clone is described by `VM`.
570   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
571                                   ValueToValueMapTy &VM, bool IsSubloop);
572 
573   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
574   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
575   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
576   // `OriginalHeaderCount'.
577   //
578   // If there are iterations left to execute, control is made to jump to
579   // `ContinuationBlock', otherwise they take the normal loop exit.  The
580   // returned `RewrittenRangeInfo' object is populated as follows:
581   //
582   //  .PseudoExit is a basic block that unconditionally branches to
583   //      `ContinuationBlock'.
584   //
585   //  .ExitSelector is a basic block that decides, on exit from the loop,
586   //      whether to branch to the "true" exit or to `PseudoExit'.
587   //
588   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
589   //      for each PHINode in the loop header on taking the pseudo exit.
590   //
591   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
592   // preheader because it is made to branch to the loop header only
593   // conditionally.
594   RewrittenRangeInfo
595   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
596                           Value *ExitLoopAt,
597                           BasicBlock *ContinuationBlock) const;
598 
599   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
600   // function creates a new preheader for `LS' and returns it.
601   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
602                               const char *Tag) const;
603 
604   // `ContinuationBlockAndPreheader' was the continuation block for some call to
605   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
606   // This function rewrites the PHI nodes in `LS.Header' to start with the
607   // correct value.
608   void rewriteIncomingValuesForPHIs(
609       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
610       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
611 
612   // Even though we do not preserve any passes at this time, we at least need to
613   // keep the parent loop structure consistent.  The `LPPassManager' seems to
614   // verify this after running a loop pass.  This function adds the list of
615   // blocks denoted by BBs to this loops parent loop if required.
616   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
617 
618   // Some global state.
619   Function &F;
620   LLVMContext &Ctx;
621   ScalarEvolution &SE;
622   DominatorTree &DT;
623   LoopInfo &LI;
624   function_ref<void(Loop *, bool)> LPMAddNewLoop;
625 
626   // Information about the original loop we started out with.
627   Loop &OriginalLoop;
628 
629   const SCEV *LatchTakenCount = nullptr;
630   BasicBlock *OriginalPreheader = nullptr;
631 
632   // The preheader of the main loop.  This may or may not be different from
633   // `OriginalPreheader'.
634   BasicBlock *MainLoopPreheader = nullptr;
635 
636   // The range we need to run the main loop in.
637   InductiveRangeCheck::Range Range;
638 
639   // The structure of the main loop (see comment at the beginning of this class
640   // for a definition)
641   LoopStructure MainLoopStructure;
642 
643 public:
644   LoopConstrainer(Loop &L, LoopInfo &LI,
645                   function_ref<void(Loop *, bool)> LPMAddNewLoop,
646                   const LoopStructure &LS, ScalarEvolution &SE,
647                   DominatorTree &DT, InductiveRangeCheck::Range R)
648       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
649         SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
650         Range(R), MainLoopStructure(LS) {}
651 
652   // Entry point for the algorithm.  Returns true on success.
653   bool run();
654 };
655 
656 } // end anonymous namespace
657 
658 /// Given a loop with an deccreasing induction variable, is it possible to
659 /// safely calculate the bounds of a new loop using the given Predicate.
660 static bool isSafeDecreasingBound(const SCEV *Start,
661                                   const SCEV *BoundSCEV, const SCEV *Step,
662                                   ICmpInst::Predicate Pred,
663                                   unsigned LatchBrExitIdx,
664                                   Loop *L, ScalarEvolution &SE) {
665   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
666       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
667     return false;
668 
669   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
670     return false;
671 
672   assert(SE.isKnownNegative(Step) && "expecting negative step");
673 
674   LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
675   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
676   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
677   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
678   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
679                     << "\n");
680   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
681 
682   bool IsSigned = ICmpInst::isSigned(Pred);
683   // The predicate that we need to check that the induction variable lies
684   // within bounds.
685   ICmpInst::Predicate BoundPred =
686     IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
687 
688   if (LatchBrExitIdx == 1)
689     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
690 
691   assert(LatchBrExitIdx == 0 &&
692          "LatchBrExitIdx should be either 0 or 1");
693 
694   const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
695   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
696   APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
697     APInt::getMinValue(BitWidth);
698   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
699 
700   const SCEV *MinusOne =
701     SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
702 
703   return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
704          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
705 
706 }
707 
708 /// Given a loop with an increasing induction variable, is it possible to
709 /// safely calculate the bounds of a new loop using the given Predicate.
710 static bool isSafeIncreasingBound(const SCEV *Start,
711                                   const SCEV *BoundSCEV, const SCEV *Step,
712                                   ICmpInst::Predicate Pred,
713                                   unsigned LatchBrExitIdx,
714                                   Loop *L, ScalarEvolution &SE) {
715   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
716       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
717     return false;
718 
719   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
720     return false;
721 
722   LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
723   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
724   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
725   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
726   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
727                     << "\n");
728   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
729 
730   bool IsSigned = ICmpInst::isSigned(Pred);
731   // The predicate that we need to check that the induction variable lies
732   // within bounds.
733   ICmpInst::Predicate BoundPred =
734       IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
735 
736   if (LatchBrExitIdx == 1)
737     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
738 
739   assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
740 
741   const SCEV *StepMinusOne =
742     SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
743   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
744   APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
745     APInt::getMaxValue(BitWidth);
746   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
747 
748   return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
749                                       SE.getAddExpr(BoundSCEV, Step)) &&
750           SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
751 }
752 
753 Optional<LoopStructure>
754 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
755                                   BranchProbabilityInfo *BPI, Loop &L,
756                                   const char *&FailureReason) {
757   if (!L.isLoopSimplifyForm()) {
758     FailureReason = "loop not in LoopSimplify form";
759     return None;
760   }
761 
762   BasicBlock *Latch = L.getLoopLatch();
763   assert(Latch && "Simplified loops only have one latch!");
764 
765   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
766     FailureReason = "loop has already been cloned";
767     return None;
768   }
769 
770   if (!L.isLoopExiting(Latch)) {
771     FailureReason = "no loop latch";
772     return None;
773   }
774 
775   BasicBlock *Header = L.getHeader();
776   BasicBlock *Preheader = L.getLoopPreheader();
777   if (!Preheader) {
778     FailureReason = "no preheader";
779     return None;
780   }
781 
782   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
783   if (!LatchBr || LatchBr->isUnconditional()) {
784     FailureReason = "latch terminator not conditional branch";
785     return None;
786   }
787 
788   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
789 
790   BranchProbability ExitProbability =
791       BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
792           : BranchProbability::getZero();
793 
794   if (!SkipProfitabilityChecks &&
795       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
796     FailureReason = "short running loop, not profitable";
797     return None;
798   }
799 
800   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
801   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
802     FailureReason = "latch terminator branch not conditional on integral icmp";
803     return None;
804   }
805 
806   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
807   if (isa<SCEVCouldNotCompute>(LatchCount)) {
808     FailureReason = "could not compute latch count";
809     return None;
810   }
811 
812   ICmpInst::Predicate Pred = ICI->getPredicate();
813   Value *LeftValue = ICI->getOperand(0);
814   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
815   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
816 
817   Value *RightValue = ICI->getOperand(1);
818   const SCEV *RightSCEV = SE.getSCEV(RightValue);
819 
820   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
821   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
822     if (isa<SCEVAddRecExpr>(RightSCEV)) {
823       std::swap(LeftSCEV, RightSCEV);
824       std::swap(LeftValue, RightValue);
825       Pred = ICmpInst::getSwappedPredicate(Pred);
826     } else {
827       FailureReason = "no add recurrences in the icmp";
828       return None;
829     }
830   }
831 
832   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
833     if (AR->getNoWrapFlags(SCEV::FlagNSW))
834       return true;
835 
836     IntegerType *Ty = cast<IntegerType>(AR->getType());
837     IntegerType *WideTy =
838         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
839 
840     const SCEVAddRecExpr *ExtendAfterOp =
841         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
842     if (ExtendAfterOp) {
843       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
844       const SCEV *ExtendedStep =
845           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
846 
847       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
848                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
849 
850       if (NoSignedWrap)
851         return true;
852     }
853 
854     // We may have proved this when computing the sign extension above.
855     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
856   };
857 
858   // `ICI` is interpreted as taking the backedge if the *next* value of the
859   // induction variable satisfies some constraint.
860 
861   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
862   if (!IndVarBase->isAffine()) {
863     FailureReason = "LHS in icmp not induction variable";
864     return None;
865   }
866   const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
867   if (!isa<SCEVConstant>(StepRec)) {
868     FailureReason = "LHS in icmp not induction variable";
869     return None;
870   }
871   ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
872 
873   if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
874     FailureReason = "LHS in icmp needs nsw for equality predicates";
875     return None;
876   }
877 
878   assert(!StepCI->isZero() && "Zero step?");
879   bool IsIncreasing = !StepCI->isNegative();
880   bool IsSignedPredicate;
881   const SCEV *StartNext = IndVarBase->getStart();
882   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
883   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
884   const SCEV *Step = SE.getSCEV(StepCI);
885 
886   const SCEV *FixedRightSCEV = nullptr;
887 
888   // If RightValue resides within loop (but still being loop invariant),
889   // regenerate it as preheader.
890   if (auto *I = dyn_cast<Instruction>(RightValue))
891     if (L.contains(I->getParent()))
892       FixedRightSCEV = RightSCEV;
893 
894   if (IsIncreasing) {
895     bool DecreasedRightValueByOne = false;
896     if (StepCI->isOne()) {
897       // Try to turn eq/ne predicates to those we can work with.
898       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
899         // while (++i != len) {         while (++i < len) {
900         //   ...                 --->     ...
901         // }                            }
902         // If both parts are known non-negative, it is profitable to use
903         // unsigned comparison in increasing loop. This allows us to make the
904         // comparison check against "RightSCEV + 1" more optimistic.
905         if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
906             isKnownNonNegativeInLoop(RightSCEV, &L, SE))
907           Pred = ICmpInst::ICMP_ULT;
908         else
909           Pred = ICmpInst::ICMP_SLT;
910       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
911         // while (true) {               while (true) {
912         //   if (++i == len)     --->     if (++i > len - 1)
913         //     break;                       break;
914         //   ...                          ...
915         // }                            }
916         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
917             cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
918           Pred = ICmpInst::ICMP_UGT;
919           RightSCEV = SE.getMinusSCEV(RightSCEV,
920                                       SE.getOne(RightSCEV->getType()));
921           DecreasedRightValueByOne = true;
922         } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
923           Pred = ICmpInst::ICMP_SGT;
924           RightSCEV = SE.getMinusSCEV(RightSCEV,
925                                       SE.getOne(RightSCEV->getType()));
926           DecreasedRightValueByOne = true;
927         }
928       }
929     }
930 
931     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
932     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
933     bool FoundExpectedPred =
934         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
935 
936     if (!FoundExpectedPred) {
937       FailureReason = "expected icmp slt semantically, found something else";
938       return None;
939     }
940 
941     IsSignedPredicate = ICmpInst::isSigned(Pred);
942     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
943       FailureReason = "unsigned latch conditions are explicitly prohibited";
944       return None;
945     }
946 
947     if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
948                                LatchBrExitIdx, &L, SE)) {
949       FailureReason = "Unsafe loop bounds";
950       return None;
951     }
952     if (LatchBrExitIdx == 0) {
953       // We need to increase the right value unless we have already decreased
954       // it virtually when we replaced EQ with SGT.
955       if (!DecreasedRightValueByOne)
956         FixedRightSCEV =
957             SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
958     } else {
959       assert(!DecreasedRightValueByOne &&
960              "Right value can be decreased only for LatchBrExitIdx == 0!");
961     }
962   } else {
963     bool IncreasedRightValueByOne = false;
964     if (StepCI->isMinusOne()) {
965       // Try to turn eq/ne predicates to those we can work with.
966       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
967         // while (--i != len) {         while (--i > len) {
968         //   ...                 --->     ...
969         // }                            }
970         // We intentionally don't turn the predicate into UGT even if we know
971         // that both operands are non-negative, because it will only pessimize
972         // our check against "RightSCEV - 1".
973         Pred = ICmpInst::ICMP_SGT;
974       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
975         // while (true) {               while (true) {
976         //   if (--i == len)     --->     if (--i < len + 1)
977         //     break;                       break;
978         //   ...                          ...
979         // }                            }
980         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
981             cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
982           Pred = ICmpInst::ICMP_ULT;
983           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
984           IncreasedRightValueByOne = true;
985         } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
986           Pred = ICmpInst::ICMP_SLT;
987           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
988           IncreasedRightValueByOne = true;
989         }
990       }
991     }
992 
993     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
994     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
995 
996     bool FoundExpectedPred =
997         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
998 
999     if (!FoundExpectedPred) {
1000       FailureReason = "expected icmp sgt semantically, found something else";
1001       return None;
1002     }
1003 
1004     IsSignedPredicate =
1005         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
1006 
1007     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
1008       FailureReason = "unsigned latch conditions are explicitly prohibited";
1009       return None;
1010     }
1011 
1012     if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1013                                LatchBrExitIdx, &L, SE)) {
1014       FailureReason = "Unsafe bounds";
1015       return None;
1016     }
1017 
1018     if (LatchBrExitIdx == 0) {
1019       // We need to decrease the right value unless we have already increased
1020       // it virtually when we replaced EQ with SLT.
1021       if (!IncreasedRightValueByOne)
1022         FixedRightSCEV =
1023             SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1024     } else {
1025       assert(!IncreasedRightValueByOne &&
1026              "Right value can be increased only for LatchBrExitIdx == 0!");
1027     }
1028   }
1029   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1030 
1031   assert(SE.getLoopDisposition(LatchCount, &L) ==
1032              ScalarEvolution::LoopInvariant &&
1033          "loop variant exit count doesn't make sense!");
1034 
1035   assert(!L.contains(LatchExit) && "expected an exit block!");
1036   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1037   SCEVExpander Expander(SE, DL, "irce");
1038   Instruction *Ins = Preheader->getTerminator();
1039 
1040   if (FixedRightSCEV)
1041     RightValue =
1042         Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1043 
1044   Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1045   IndVarStartV->setName("indvar.start");
1046 
1047   LoopStructure Result;
1048 
1049   Result.Tag = "main";
1050   Result.Header = Header;
1051   Result.Latch = Latch;
1052   Result.LatchBr = LatchBr;
1053   Result.LatchExit = LatchExit;
1054   Result.LatchBrExitIdx = LatchBrExitIdx;
1055   Result.IndVarStart = IndVarStartV;
1056   Result.IndVarStep = StepCI;
1057   Result.IndVarBase = LeftValue;
1058   Result.IndVarIncreasing = IsIncreasing;
1059   Result.LoopExitAt = RightValue;
1060   Result.IsSignedPredicate = IsSignedPredicate;
1061 
1062   FailureReason = nullptr;
1063 
1064   return Result;
1065 }
1066 
1067 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1068 /// signed or unsigned extension of \p S to type \p Ty.
1069 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1070                                 bool Signed) {
1071   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1072 }
1073 
1074 Optional<LoopConstrainer::SubRanges>
1075 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1076   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1077 
1078   auto *RTy = cast<IntegerType>(Range.getType());
1079 
1080   // We only support wide range checks and narrow latches.
1081   if (!AllowNarrowLatchCondition && RTy != Ty)
1082     return None;
1083   if (RTy->getBitWidth() < Ty->getBitWidth())
1084     return None;
1085 
1086   LoopConstrainer::SubRanges Result;
1087 
1088   // I think we can be more aggressive here and make this nuw / nsw if the
1089   // addition that feeds into the icmp for the latch's terminating branch is nuw
1090   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1091   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1092                                    RTy, SE, IsSignedPredicate);
1093   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1094                                  SE, IsSignedPredicate);
1095 
1096   bool Increasing = MainLoopStructure.IndVarIncreasing;
1097 
1098   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1099   // [Smallest, GreatestSeen] is the range of values the induction variable
1100   // takes.
1101 
1102   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1103 
1104   const SCEV *One = SE.getOne(RTy);
1105   if (Increasing) {
1106     Smallest = Start;
1107     Greatest = End;
1108     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1109     GreatestSeen = SE.getMinusSCEV(End, One);
1110   } else {
1111     // These two computations may sign-overflow.  Here is why that is okay:
1112     //
1113     // We know that the induction variable does not sign-overflow on any
1114     // iteration except the last one, and it starts at `Start` and ends at
1115     // `End`, decrementing by one every time.
1116     //
1117     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1118     //    induction variable is decreasing we know that that the smallest value
1119     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1120     //
1121     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1122     //    that case, `Clamp` will always return `Smallest` and
1123     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1124     //    will be an empty range.  Returning an empty range is always safe.
1125 
1126     Smallest = SE.getAddExpr(End, One);
1127     Greatest = SE.getAddExpr(Start, One);
1128     GreatestSeen = Start;
1129   }
1130 
1131   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1132     return IsSignedPredicate
1133                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1134                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1135   };
1136 
1137   // In some cases we can prove that we don't need a pre or post loop.
1138   ICmpInst::Predicate PredLE =
1139       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1140   ICmpInst::Predicate PredLT =
1141       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1142 
1143   bool ProvablyNoPreloop =
1144       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1145   if (!ProvablyNoPreloop)
1146     Result.LowLimit = Clamp(Range.getBegin());
1147 
1148   bool ProvablyNoPostLoop =
1149       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1150   if (!ProvablyNoPostLoop)
1151     Result.HighLimit = Clamp(Range.getEnd());
1152 
1153   return Result;
1154 }
1155 
1156 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1157                                 const char *Tag) const {
1158   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1159     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1160     Result.Blocks.push_back(Clone);
1161     Result.Map[BB] = Clone;
1162   }
1163 
1164   auto GetClonedValue = [&Result](Value *V) {
1165     assert(V && "null values not in domain!");
1166     auto It = Result.Map.find(V);
1167     if (It == Result.Map.end())
1168       return V;
1169     return static_cast<Value *>(It->second);
1170   };
1171 
1172   auto *ClonedLatch =
1173       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1174   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1175                                             MDNode::get(Ctx, {}));
1176 
1177   Result.Structure = MainLoopStructure.map(GetClonedValue);
1178   Result.Structure.Tag = Tag;
1179 
1180   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1181     BasicBlock *ClonedBB = Result.Blocks[i];
1182     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1183 
1184     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1185 
1186     for (Instruction &I : *ClonedBB)
1187       RemapInstruction(&I, Result.Map,
1188                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1189 
1190     // Exit blocks will now have one more predecessor and their PHI nodes need
1191     // to be edited to reflect that.  No phi nodes need to be introduced because
1192     // the loop is in LCSSA.
1193 
1194     for (auto *SBB : successors(OriginalBB)) {
1195       if (OriginalLoop.contains(SBB))
1196         continue; // not an exit block
1197 
1198       for (PHINode &PN : SBB->phis()) {
1199         Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1200         PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1201       }
1202     }
1203   }
1204 }
1205 
1206 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1207     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1208     BasicBlock *ContinuationBlock) const {
1209   // We start with a loop with a single latch:
1210   //
1211   //    +--------------------+
1212   //    |                    |
1213   //    |     preheader      |
1214   //    |                    |
1215   //    +--------+-----------+
1216   //             |      ----------------\
1217   //             |     /                |
1218   //    +--------v----v------+          |
1219   //    |                    |          |
1220   //    |      header        |          |
1221   //    |                    |          |
1222   //    +--------------------+          |
1223   //                                    |
1224   //            .....                   |
1225   //                                    |
1226   //    +--------------------+          |
1227   //    |                    |          |
1228   //    |       latch        >----------/
1229   //    |                    |
1230   //    +-------v------------+
1231   //            |
1232   //            |
1233   //            |   +--------------------+
1234   //            |   |                    |
1235   //            +--->   original exit    |
1236   //                |                    |
1237   //                +--------------------+
1238   //
1239   // We change the control flow to look like
1240   //
1241   //
1242   //    +--------------------+
1243   //    |                    |
1244   //    |     preheader      >-------------------------+
1245   //    |                    |                         |
1246   //    +--------v-----------+                         |
1247   //             |    /-------------+                  |
1248   //             |   /              |                  |
1249   //    +--------v--v--------+      |                  |
1250   //    |                    |      |                  |
1251   //    |      header        |      |   +--------+     |
1252   //    |                    |      |   |        |     |
1253   //    +--------------------+      |   |  +-----v-----v-----------+
1254   //                                |   |  |                       |
1255   //                                |   |  |     .pseudo.exit      |
1256   //                                |   |  |                       |
1257   //                                |   |  +-----------v-----------+
1258   //                                |   |              |
1259   //            .....               |   |              |
1260   //                                |   |     +--------v-------------+
1261   //    +--------------------+      |   |     |                      |
1262   //    |                    |      |   |     |   ContinuationBlock  |
1263   //    |       latch        >------+   |     |                      |
1264   //    |                    |          |     +----------------------+
1265   //    +---------v----------+          |
1266   //              |                     |
1267   //              |                     |
1268   //              |     +---------------^-----+
1269   //              |     |                     |
1270   //              +----->    .exit.selector   |
1271   //                    |                     |
1272   //                    +----------v----------+
1273   //                               |
1274   //     +--------------------+    |
1275   //     |                    |    |
1276   //     |   original exit    <----+
1277   //     |                    |
1278   //     +--------------------+
1279 
1280   RewrittenRangeInfo RRI;
1281 
1282   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1283   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1284                                         &F, BBInsertLocation);
1285   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1286                                       BBInsertLocation);
1287 
1288   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1289   bool Increasing = LS.IndVarIncreasing;
1290   bool IsSignedPredicate = LS.IsSignedPredicate;
1291 
1292   IRBuilder<> B(PreheaderJump);
1293   auto *RangeTy = Range.getBegin()->getType();
1294   auto NoopOrExt = [&](Value *V) {
1295     if (V->getType() == RangeTy)
1296       return V;
1297     return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1298                              : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1299   };
1300 
1301   // EnterLoopCond - is it okay to start executing this `LS'?
1302   Value *EnterLoopCond = nullptr;
1303   auto Pred =
1304       Increasing
1305           ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1306           : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1307   Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1308   EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1309 
1310   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1311   PreheaderJump->eraseFromParent();
1312 
1313   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1314   B.SetInsertPoint(LS.LatchBr);
1315   Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1316   Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1317 
1318   Value *CondForBranch = LS.LatchBrExitIdx == 1
1319                              ? TakeBackedgeLoopCond
1320                              : B.CreateNot(TakeBackedgeLoopCond);
1321 
1322   LS.LatchBr->setCondition(CondForBranch);
1323 
1324   B.SetInsertPoint(RRI.ExitSelector);
1325 
1326   // IterationsLeft - are there any more iterations left, given the original
1327   // upper bound on the induction variable?  If not, we branch to the "real"
1328   // exit.
1329   Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1330   Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1331   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1332 
1333   BranchInst *BranchToContinuation =
1334       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1335 
1336   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1337   // each of the PHI nodes in the loop header.  This feeds into the initial
1338   // value of the same PHI nodes if/when we continue execution.
1339   for (PHINode &PN : LS.Header->phis()) {
1340     PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1341                                       BranchToContinuation);
1342 
1343     NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1344     NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1345                         RRI.ExitSelector);
1346     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1347   }
1348 
1349   RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1350                                   BranchToContinuation);
1351   RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1352   RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1353 
1354   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1355   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1356   LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1357 
1358   return RRI;
1359 }
1360 
1361 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1362     LoopStructure &LS, BasicBlock *ContinuationBlock,
1363     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1364   unsigned PHIIndex = 0;
1365   for (PHINode &PN : LS.Header->phis())
1366     PN.setIncomingValueForBlock(ContinuationBlock,
1367                                 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1368 
1369   LS.IndVarStart = RRI.IndVarEnd;
1370 }
1371 
1372 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1373                                              BasicBlock *OldPreheader,
1374                                              const char *Tag) const {
1375   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1376   BranchInst::Create(LS.Header, Preheader);
1377 
1378   LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1379 
1380   return Preheader;
1381 }
1382 
1383 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1384   Loop *ParentLoop = OriginalLoop.getParentLoop();
1385   if (!ParentLoop)
1386     return;
1387 
1388   for (BasicBlock *BB : BBs)
1389     ParentLoop->addBasicBlockToLoop(BB, LI);
1390 }
1391 
1392 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1393                                                  ValueToValueMapTy &VM,
1394                                                  bool IsSubloop) {
1395   Loop &New = *LI.AllocateLoop();
1396   if (Parent)
1397     Parent->addChildLoop(&New);
1398   else
1399     LI.addTopLevelLoop(&New);
1400   LPMAddNewLoop(&New, IsSubloop);
1401 
1402   // Add all of the blocks in Original to the new loop.
1403   for (auto *BB : Original->blocks())
1404     if (LI.getLoopFor(BB) == Original)
1405       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1406 
1407   // Add all of the subloops to the new loop.
1408   for (Loop *SubLoop : *Original)
1409     createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1410 
1411   return &New;
1412 }
1413 
1414 bool LoopConstrainer::run() {
1415   BasicBlock *Preheader = nullptr;
1416   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1417   Preheader = OriginalLoop.getLoopPreheader();
1418   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1419          "preconditions!");
1420 
1421   OriginalPreheader = Preheader;
1422   MainLoopPreheader = Preheader;
1423 
1424   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1425   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1426   if (!MaybeSR.hasValue()) {
1427     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1428     return false;
1429   }
1430 
1431   SubRanges SR = MaybeSR.getValue();
1432   bool Increasing = MainLoopStructure.IndVarIncreasing;
1433   IntegerType *IVTy =
1434       cast<IntegerType>(Range.getBegin()->getType());
1435 
1436   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1437   Instruction *InsertPt = OriginalPreheader->getTerminator();
1438 
1439   // It would have been better to make `PreLoop' and `PostLoop'
1440   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1441   // constructor.
1442   ClonedLoop PreLoop, PostLoop;
1443   bool NeedsPreLoop =
1444       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1445   bool NeedsPostLoop =
1446       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1447 
1448   Value *ExitPreLoopAt = nullptr;
1449   Value *ExitMainLoopAt = nullptr;
1450   const SCEVConstant *MinusOneS =
1451       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1452 
1453   if (NeedsPreLoop) {
1454     const SCEV *ExitPreLoopAtSCEV = nullptr;
1455 
1456     if (Increasing)
1457       ExitPreLoopAtSCEV = *SR.LowLimit;
1458     else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1459                                IsSignedPredicate))
1460       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1461     else {
1462       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1463                         << "preloop exit limit.  HighLimit = "
1464                         << *(*SR.HighLimit) << "\n");
1465       return false;
1466     }
1467 
1468     if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1469       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1470                         << " preloop exit limit " << *ExitPreLoopAtSCEV
1471                         << " at block " << InsertPt->getParent()->getName()
1472                         << "\n");
1473       return false;
1474     }
1475 
1476     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1477     ExitPreLoopAt->setName("exit.preloop.at");
1478   }
1479 
1480   if (NeedsPostLoop) {
1481     const SCEV *ExitMainLoopAtSCEV = nullptr;
1482 
1483     if (Increasing)
1484       ExitMainLoopAtSCEV = *SR.HighLimit;
1485     else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1486                                IsSignedPredicate))
1487       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1488     else {
1489       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1490                         << "mainloop exit limit.  LowLimit = "
1491                         << *(*SR.LowLimit) << "\n");
1492       return false;
1493     }
1494 
1495     if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1496       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1497                         << " main loop exit limit " << *ExitMainLoopAtSCEV
1498                         << " at block " << InsertPt->getParent()->getName()
1499                         << "\n");
1500       return false;
1501     }
1502 
1503     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1504     ExitMainLoopAt->setName("exit.mainloop.at");
1505   }
1506 
1507   // We clone these ahead of time so that we don't have to deal with changing
1508   // and temporarily invalid IR as we transform the loops.
1509   if (NeedsPreLoop)
1510     cloneLoop(PreLoop, "preloop");
1511   if (NeedsPostLoop)
1512     cloneLoop(PostLoop, "postloop");
1513 
1514   RewrittenRangeInfo PreLoopRRI;
1515 
1516   if (NeedsPreLoop) {
1517     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1518                                                   PreLoop.Structure.Header);
1519 
1520     MainLoopPreheader =
1521         createPreheader(MainLoopStructure, Preheader, "mainloop");
1522     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1523                                          ExitPreLoopAt, MainLoopPreheader);
1524     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1525                                  PreLoopRRI);
1526   }
1527 
1528   BasicBlock *PostLoopPreheader = nullptr;
1529   RewrittenRangeInfo PostLoopRRI;
1530 
1531   if (NeedsPostLoop) {
1532     PostLoopPreheader =
1533         createPreheader(PostLoop.Structure, Preheader, "postloop");
1534     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1535                                           ExitMainLoopAt, PostLoopPreheader);
1536     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1537                                  PostLoopRRI);
1538   }
1539 
1540   BasicBlock *NewMainLoopPreheader =
1541       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1542   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1543                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1544                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1545 
1546   // Some of the above may be nullptr, filter them out before passing to
1547   // addToParentLoopIfNeeded.
1548   auto NewBlocksEnd =
1549       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1550 
1551   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1552 
1553   DT.recalculate(F);
1554 
1555   // We need to first add all the pre and post loop blocks into the loop
1556   // structures (as part of createClonedLoopStructure), and then update the
1557   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1558   // LI when LoopSimplifyForm is generated.
1559   Loop *PreL = nullptr, *PostL = nullptr;
1560   if (!PreLoop.Blocks.empty()) {
1561     PreL = createClonedLoopStructure(&OriginalLoop,
1562                                      OriginalLoop.getParentLoop(), PreLoop.Map,
1563                                      /* IsSubLoop */ false);
1564   }
1565 
1566   if (!PostLoop.Blocks.empty()) {
1567     PostL =
1568         createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1569                                   PostLoop.Map, /* IsSubLoop */ false);
1570   }
1571 
1572   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1573   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1574     formLCSSARecursively(*L, DT, &LI, &SE);
1575     simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1576     // Pre/post loops are slow paths, we do not need to perform any loop
1577     // optimizations on them.
1578     if (!IsOriginalLoop)
1579       DisableAllLoopOptsOnLoop(*L);
1580   };
1581   if (PreL)
1582     CanonicalizeLoop(PreL, false);
1583   if (PostL)
1584     CanonicalizeLoop(PostL, false);
1585   CanonicalizeLoop(&OriginalLoop, true);
1586 
1587   return true;
1588 }
1589 
1590 /// Computes and returns a range of values for the induction variable (IndVar)
1591 /// in which the range check can be safely elided.  If it cannot compute such a
1592 /// range, returns None.
1593 Optional<InductiveRangeCheck::Range>
1594 InductiveRangeCheck::computeSafeIterationSpace(
1595     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1596     bool IsLatchSigned) const {
1597   // We can deal when types of latch check and range checks don't match in case
1598   // if latch check is more narrow.
1599   auto *IVType = cast<IntegerType>(IndVar->getType());
1600   auto *RCType = cast<IntegerType>(getBegin()->getType());
1601   if (IVType->getBitWidth() > RCType->getBitWidth())
1602     return None;
1603   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1604   // variable, that may or may not exist as a real llvm::Value in the loop) and
1605   // this inductive range check is a range check on the "C + D * I" ("C" is
1606   // getBegin() and "D" is getStep()).  We rewrite the value being range
1607   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1608   //
1609   // The actual inequalities we solve are of the form
1610   //
1611   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1612   //
1613   // Here L stands for upper limit of the safe iteration space.
1614   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1615   // overflows when calculating (0 - M) and (L - M) we, depending on type of
1616   // IV's iteration space, limit the calculations by borders of the iteration
1617   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1618   // If we figured out that "anything greater than (-M) is safe", we strengthen
1619   // this to "everything greater than 0 is safe", assuming that values between
1620   // -M and 0 just do not exist in unsigned iteration space, and we don't want
1621   // to deal with overflown values.
1622 
1623   if (!IndVar->isAffine())
1624     return None;
1625 
1626   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1627   const SCEVConstant *B = dyn_cast<SCEVConstant>(
1628       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1629   if (!B)
1630     return None;
1631   assert(!B->isZero() && "Recurrence with zero step?");
1632 
1633   const SCEV *C = getBegin();
1634   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1635   if (D != B)
1636     return None;
1637 
1638   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1639   unsigned BitWidth = RCType->getBitWidth();
1640   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1641 
1642   // Subtract Y from X so that it does not go through border of the IV
1643   // iteration space. Mathematically, it is equivalent to:
1644   //
1645   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
1646   //
1647   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1648   // any width of bit grid). But after we take min/max, the result is
1649   // guaranteed to be within [INT_MIN, INT_MAX].
1650   //
1651   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1652   // values, depending on type of latch condition that defines IV iteration
1653   // space.
1654   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1655     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1656     // This is required to ensure that SINT_MAX - X does not overflow signed and
1657     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1658     // restriction and make it work for negative X either?
1659     if (IsLatchSigned) {
1660       // X is a number from signed range, Y is interpreted as signed.
1661       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1662       // thing we should care about is that we didn't cross SINT_MAX.
1663       // So, if Y is positive, we subtract Y safely.
1664       //   Rule 1: Y > 0 ---> Y.
1665       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1666       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1667       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1668       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1669       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1670       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1671       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1672                              SCEV::FlagNSW);
1673     } else
1674       // X is a number from unsigned range, Y is interpreted as signed.
1675       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1676       // thing we should care about is that we didn't cross zero.
1677       // So, if Y is negative, we subtract Y safely.
1678       //   Rule 1: Y <s 0 ---> Y.
1679       // If 0 <= Y <= X, we subtract Y safely.
1680       //   Rule 2: Y <=s X ---> Y.
1681       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1682       //   Rule 3: Y >s X ---> X.
1683       // It gives us smin(X, Y) to subtract in all cases.
1684       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1685   };
1686   const SCEV *M = SE.getMinusSCEV(C, A);
1687   const SCEV *Zero = SE.getZero(M->getType());
1688 
1689   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1690   auto SCEVCheckNonNegative = [&](const SCEV *X) {
1691     const Loop *L = IndVar->getLoop();
1692     const SCEV *One = SE.getOne(X->getType());
1693     // Can we trivially prove that X is a non-negative or negative value?
1694     if (isKnownNonNegativeInLoop(X, L, SE))
1695       return One;
1696     else if (isKnownNegativeInLoop(X, L, SE))
1697       return Zero;
1698     // If not, we will have to figure it out during the execution.
1699     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1700     const SCEV *NegOne = SE.getNegativeSCEV(One);
1701     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1702   };
1703   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1704   // X is non-negative (in sense of a signed value). We need to re-implement
1705   // this function in a way that it will correctly handle negative X as well.
1706   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1707   // end up with a negative X and produce wrong results. So currently we ensure
1708   // that if getEnd() is negative then both ends of the safe range are zero.
1709   // Note that this may pessimize elimination of unsigned range checks against
1710   // negative values.
1711   const SCEV *REnd = getEnd();
1712   const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1713 
1714   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1715   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1716   return InductiveRangeCheck::Range(Begin, End);
1717 }
1718 
1719 static Optional<InductiveRangeCheck::Range>
1720 IntersectSignedRange(ScalarEvolution &SE,
1721                      const Optional<InductiveRangeCheck::Range> &R1,
1722                      const InductiveRangeCheck::Range &R2) {
1723   if (R2.isEmpty(SE, /* IsSigned */ true))
1724     return None;
1725   if (!R1.hasValue())
1726     return R2;
1727   auto &R1Value = R1.getValue();
1728   // We never return empty ranges from this function, and R1 is supposed to be
1729   // a result of intersection. Thus, R1 is never empty.
1730   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1731          "We should never have empty R1!");
1732 
1733   // TODO: we could widen the smaller range and have this work; but for now we
1734   // bail out to keep things simple.
1735   if (R1Value.getType() != R2.getType())
1736     return None;
1737 
1738   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1739   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1740 
1741   // If the resulting range is empty, just return None.
1742   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1743   if (Ret.isEmpty(SE, /* IsSigned */ true))
1744     return None;
1745   return Ret;
1746 }
1747 
1748 static Optional<InductiveRangeCheck::Range>
1749 IntersectUnsignedRange(ScalarEvolution &SE,
1750                        const Optional<InductiveRangeCheck::Range> &R1,
1751                        const InductiveRangeCheck::Range &R2) {
1752   if (R2.isEmpty(SE, /* IsSigned */ false))
1753     return None;
1754   if (!R1.hasValue())
1755     return R2;
1756   auto &R1Value = R1.getValue();
1757   // We never return empty ranges from this function, and R1 is supposed to be
1758   // a result of intersection. Thus, R1 is never empty.
1759   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1760          "We should never have empty R1!");
1761 
1762   // TODO: we could widen the smaller range and have this work; but for now we
1763   // bail out to keep things simple.
1764   if (R1Value.getType() != R2.getType())
1765     return None;
1766 
1767   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1768   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1769 
1770   // If the resulting range is empty, just return None.
1771   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1772   if (Ret.isEmpty(SE, /* IsSigned */ false))
1773     return None;
1774   return Ret;
1775 }
1776 
1777 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1778   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1779   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1780   auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
1781   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1782 
1783   // Get BFI analysis result on demand. Please note that modification of
1784   // CFG invalidates this analysis and we should handle it.
1785   auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
1786     return AM.getResult<BlockFrequencyAnalysis>(F);
1787   };
1788   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
1789 
1790   bool Changed = false;
1791   {
1792     bool CFGChanged = false;
1793     for (const auto &L : LI) {
1794       CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1795                                  /*PreserveLCSSA=*/false);
1796       Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1797     }
1798     Changed |= CFGChanged;
1799 
1800     if (CFGChanged && !SkipProfitabilityChecks)
1801       AM.invalidate<BlockFrequencyAnalysis>(F);
1802   }
1803 
1804   SmallPriorityWorklist<Loop *, 4> Worklist;
1805   appendLoopsToWorklist(LI, Worklist);
1806   auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1807     if (!IsSubloop)
1808       appendLoopsToWorklist(*NL, Worklist);
1809   };
1810 
1811   while (!Worklist.empty()) {
1812     Loop *L = Worklist.pop_back_val();
1813     if (IRCE.run(L, LPMAddNewLoop)) {
1814       Changed = true;
1815       if (!SkipProfitabilityChecks)
1816         AM.invalidate<BlockFrequencyAnalysis>(F);
1817     }
1818   }
1819 
1820   if (!Changed)
1821     return PreservedAnalyses::all();
1822   return getLoopPassPreservedAnalyses();
1823 }
1824 
1825 bool IRCELegacyPass::runOnFunction(Function &F) {
1826   if (skipFunction(F))
1827     return false;
1828 
1829   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1830   BranchProbabilityInfo &BPI =
1831       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1832   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1833   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1834   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1835 
1836   bool Changed = false;
1837 
1838   for (const auto &L : LI) {
1839     Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1840                             /*PreserveLCSSA=*/false);
1841     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1842   }
1843 
1844   SmallPriorityWorklist<Loop *, 4> Worklist;
1845   appendLoopsToWorklist(LI, Worklist);
1846   auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1847     if (!IsSubloop)
1848       appendLoopsToWorklist(*NL, Worklist);
1849   };
1850 
1851   while (!Worklist.empty()) {
1852     Loop *L = Worklist.pop_back_val();
1853     Changed |= IRCE.run(L, LPMAddNewLoop);
1854   }
1855   return Changed;
1856 }
1857 
1858 bool InductiveRangeCheckElimination::run(
1859     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1860   if (L->getBlocks().size() >= LoopSizeCutoff) {
1861     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1862     return false;
1863   }
1864 
1865   BasicBlock *Preheader = L->getLoopPreheader();
1866   if (!Preheader) {
1867     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1868     return false;
1869   }
1870 
1871   LLVMContext &Context = Preheader->getContext();
1872   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1873 
1874   for (auto BBI : L->getBlocks())
1875     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1876       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1877                                                         RangeChecks);
1878 
1879   if (RangeChecks.empty())
1880     return false;
1881 
1882   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1883     OS << "irce: looking at loop "; L->print(OS);
1884     OS << "irce: loop has " << RangeChecks.size()
1885        << " inductive range checks: \n";
1886     for (InductiveRangeCheck &IRC : RangeChecks)
1887       IRC.print(OS);
1888   };
1889 
1890   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1891 
1892   if (PrintRangeChecks)
1893     PrintRecognizedRangeChecks(errs());
1894 
1895   const char *FailureReason = nullptr;
1896   Optional<LoopStructure> MaybeLoopStructure =
1897       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1898   if (!MaybeLoopStructure.hasValue()) {
1899     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1900                       << FailureReason << "\n";);
1901     return false;
1902   }
1903   LoopStructure LS = MaybeLoopStructure.getValue();
1904   // Profitability check.
1905   if (!SkipProfitabilityChecks && GetBFI.hasValue()) {
1906     BlockFrequencyInfo &BFI = (*GetBFI)();
1907     uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
1908     uint64_t phFreq = BFI.getBlockFreq(Preheader).getFrequency();
1909     if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
1910       LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1911                         << "the estimated number of iterations basing on "
1912                            "frequency info is " << (hFreq / phFreq) << "\n";);
1913       return false;
1914     }
1915   }
1916   const SCEVAddRecExpr *IndVar =
1917       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1918 
1919   Optional<InductiveRangeCheck::Range> SafeIterRange;
1920   Instruction *ExprInsertPt = Preheader->getTerminator();
1921 
1922   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1923   // Basing on the type of latch predicate, we interpret the IV iteration range
1924   // as signed or unsigned range. We use different min/max functions (signed or
1925   // unsigned) when intersecting this range with safe iteration ranges implied
1926   // by range checks.
1927   auto IntersectRange =
1928       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1929 
1930   IRBuilder<> B(ExprInsertPt);
1931   for (InductiveRangeCheck &IRC : RangeChecks) {
1932     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1933                                                 LS.IsSignedPredicate);
1934     if (Result.hasValue()) {
1935       auto MaybeSafeIterRange =
1936           IntersectRange(SE, SafeIterRange, Result.getValue());
1937       if (MaybeSafeIterRange.hasValue()) {
1938         assert(
1939             !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1940             "We should never return empty ranges!");
1941         RangeChecksToEliminate.push_back(IRC);
1942         SafeIterRange = MaybeSafeIterRange.getValue();
1943       }
1944     }
1945   }
1946 
1947   if (!SafeIterRange.hasValue())
1948     return false;
1949 
1950   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1951                      SafeIterRange.getValue());
1952   bool Changed = LC.run();
1953 
1954   if (Changed) {
1955     auto PrintConstrainedLoopInfo = [L]() {
1956       dbgs() << "irce: in function ";
1957       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1958       dbgs() << "constrained ";
1959       L->print(dbgs());
1960     };
1961 
1962     LLVM_DEBUG(PrintConstrainedLoopInfo());
1963 
1964     if (PrintChangedLoops)
1965       PrintConstrainedLoopInfo();
1966 
1967     // Optimize away the now-redundant range checks.
1968 
1969     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1970       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1971                                           ? ConstantInt::getTrue(Context)
1972                                           : ConstantInt::getFalse(Context);
1973       IRC.getCheckUse()->set(FoldedRangeCheck);
1974     }
1975   }
1976 
1977   return Changed;
1978 }
1979 
1980 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1981   return new IRCELegacyPass();
1982 }
1983