1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges. It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 // len = < known positive >
15 // for (i = 0; i < n; i++) {
16 // if (0 <= i && i < len) {
17 // do_something();
18 // } else {
19 // throw_out_of_bounds();
20 // }
21 // }
22 //
23 // to
24 //
25 // len = < known positive >
26 // limit = smin(n, len)
27 // // no first segment
28 // for (i = 0; i < limit; i++) {
29 // if (0 <= i && i < len) { // this check is fully redundant
30 // do_something();
31 // } else {
32 // throw_out_of_bounds();
33 // }
34 // }
35 // for (i = limit; i < n; i++) {
36 // if (0 <= i && i < len) {
37 // do_something();
38 // } else {
39 // throw_out_of_bounds();
40 // }
41 // }
42 //
43 //===----------------------------------------------------------------------===//
44
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/PriorityWorklist.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringRef.h"
54 #include "llvm/ADT/Twine.h"
55 #include "llvm/Analysis/BlockFrequencyInfo.h"
56 #include "llvm/Analysis/BranchProbabilityInfo.h"
57 #include "llvm/Analysis/LoopAnalysisManager.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/PatternMatch.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Use.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Scalar.h"
87 #include "llvm/Transforms/Utils/Cloning.h"
88 #include "llvm/Transforms/Utils/LoopSimplify.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
91 #include "llvm/Transforms/Utils/ValueMapper.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <iterator>
95 #include <limits>
96 #include <utility>
97 #include <vector>
98
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101
102 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
103 cl::init(64));
104
105 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
106 cl::init(false));
107
108 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
109 cl::init(false));
110
111 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
112 cl::Hidden, cl::init(false));
113
114 static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations",
115 cl::Hidden, cl::init(10));
116
117 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
118 cl::Hidden, cl::init(true));
119
120 static cl::opt<bool> AllowNarrowLatchCondition(
121 "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
122 cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
123 "with narrow latch condition."));
124
125 static const char *ClonedLoopTag = "irce.loop.clone";
126
127 #define DEBUG_TYPE "irce"
128
129 namespace {
130
131 /// An inductive range check is conditional branch in a loop with
132 ///
133 /// 1. a very cold successor (i.e. the branch jumps to that successor very
134 /// rarely)
135 ///
136 /// and
137 ///
138 /// 2. a condition that is provably true for some contiguous range of values
139 /// taken by the containing loop's induction variable.
140 ///
141 class InductiveRangeCheck {
142
143 const SCEV *Begin = nullptr;
144 const SCEV *Step = nullptr;
145 const SCEV *End = nullptr;
146 Use *CheckUse = nullptr;
147
148 static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
149 Value *&Index, Value *&Length,
150 bool &IsSigned);
151
152 static void
153 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
154 SmallVectorImpl<InductiveRangeCheck> &Checks,
155 SmallPtrSetImpl<Value *> &Visited);
156
157 public:
getBegin() const158 const SCEV *getBegin() const { return Begin; }
getStep() const159 const SCEV *getStep() const { return Step; }
getEnd() const160 const SCEV *getEnd() const { return End; }
161
print(raw_ostream & OS) const162 void print(raw_ostream &OS) const {
163 OS << "InductiveRangeCheck:\n";
164 OS << " Begin: ";
165 Begin->print(OS);
166 OS << " Step: ";
167 Step->print(OS);
168 OS << " End: ";
169 End->print(OS);
170 OS << "\n CheckUse: ";
171 getCheckUse()->getUser()->print(OS);
172 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
173 }
174
175 LLVM_DUMP_METHOD
dump()176 void dump() {
177 print(dbgs());
178 }
179
getCheckUse() const180 Use *getCheckUse() const { return CheckUse; }
181
182 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
183 /// R.getEnd() le R.getBegin(), then R denotes the empty range.
184
185 class Range {
186 const SCEV *Begin;
187 const SCEV *End;
188
189 public:
Range(const SCEV * Begin,const SCEV * End)190 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
191 assert(Begin->getType() == End->getType() && "ill-typed range!");
192 }
193
getType() const194 Type *getType() const { return Begin->getType(); }
getBegin() const195 const SCEV *getBegin() const { return Begin; }
getEnd() const196 const SCEV *getEnd() const { return End; }
isEmpty(ScalarEvolution & SE,bool IsSigned) const197 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
198 if (Begin == End)
199 return true;
200 if (IsSigned)
201 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
202 else
203 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
204 }
205 };
206
207 /// This is the value the condition of the branch needs to evaluate to for the
208 /// branch to take the hot successor (see (1) above).
getPassingDirection()209 bool getPassingDirection() { return true; }
210
211 /// Computes a range for the induction variable (IndVar) in which the range
212 /// check is redundant and can be constant-folded away. The induction
213 /// variable is not required to be the canonical {0,+,1} induction variable.
214 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
215 const SCEVAddRecExpr *IndVar,
216 bool IsLatchSigned) const;
217
218 /// Parse out a set of inductive range checks from \p BI and append them to \p
219 /// Checks.
220 ///
221 /// NB! There may be conditions feeding into \p BI that aren't inductive range
222 /// checks, and hence don't end up in \p Checks.
223 static void
224 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
225 BranchProbabilityInfo *BPI,
226 SmallVectorImpl<InductiveRangeCheck> &Checks);
227 };
228
229 struct LoopStructure;
230
231 class InductiveRangeCheckElimination {
232 ScalarEvolution &SE;
233 BranchProbabilityInfo *BPI;
234 DominatorTree &DT;
235 LoopInfo &LI;
236
237 using GetBFIFunc =
238 llvm::Optional<llvm::function_ref<llvm::BlockFrequencyInfo &()> >;
239 GetBFIFunc GetBFI;
240
241 // Returns true if it is profitable to do a transform basing on estimation of
242 // number of iterations.
243 bool isProfitableToTransform(const Loop &L, LoopStructure &LS);
244
245 public:
InductiveRangeCheckElimination(ScalarEvolution & SE,BranchProbabilityInfo * BPI,DominatorTree & DT,LoopInfo & LI,GetBFIFunc GetBFI=None)246 InductiveRangeCheckElimination(ScalarEvolution &SE,
247 BranchProbabilityInfo *BPI, DominatorTree &DT,
248 LoopInfo &LI, GetBFIFunc GetBFI = None)
249 : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
250
251 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
252 };
253
254 class IRCELegacyPass : public FunctionPass {
255 public:
256 static char ID;
257
IRCELegacyPass()258 IRCELegacyPass() : FunctionPass(ID) {
259 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
260 }
261
getAnalysisUsage(AnalysisUsage & AU) const262 void getAnalysisUsage(AnalysisUsage &AU) const override {
263 AU.addRequired<BranchProbabilityInfoWrapperPass>();
264 AU.addRequired<DominatorTreeWrapperPass>();
265 AU.addPreserved<DominatorTreeWrapperPass>();
266 AU.addRequired<LoopInfoWrapperPass>();
267 AU.addPreserved<LoopInfoWrapperPass>();
268 AU.addRequired<ScalarEvolutionWrapperPass>();
269 AU.addPreserved<ScalarEvolutionWrapperPass>();
270 }
271
272 bool runOnFunction(Function &F) override;
273 };
274
275 } // end anonymous namespace
276
277 char IRCELegacyPass::ID = 0;
278
279 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
280 "Inductive range check elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)281 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
282 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
283 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
284 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
285 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
286 false, false)
287
288 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
289 /// be interpreted as a range check, return false and set `Index` and `Length`
290 /// to `nullptr`. Otherwise set `Index` to the value being range checked, and
291 /// set `Length` to the upper limit `Index` is being range checked.
292 bool
293 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
294 ScalarEvolution &SE, Value *&Index,
295 Value *&Length, bool &IsSigned) {
296 auto IsLoopInvariant = [&SE, L](Value *V) {
297 return SE.isLoopInvariant(SE.getSCEV(V), L);
298 };
299
300 ICmpInst::Predicate Pred = ICI->getPredicate();
301 Value *LHS = ICI->getOperand(0);
302 Value *RHS = ICI->getOperand(1);
303
304 switch (Pred) {
305 default:
306 return false;
307
308 case ICmpInst::ICMP_SLE:
309 std::swap(LHS, RHS);
310 LLVM_FALLTHROUGH;
311 case ICmpInst::ICMP_SGE:
312 IsSigned = true;
313 if (match(RHS, m_ConstantInt<0>())) {
314 Index = LHS;
315 return true; // Lower.
316 }
317 return false;
318
319 case ICmpInst::ICMP_SLT:
320 std::swap(LHS, RHS);
321 LLVM_FALLTHROUGH;
322 case ICmpInst::ICMP_SGT:
323 IsSigned = true;
324 if (match(RHS, m_ConstantInt<-1>())) {
325 Index = LHS;
326 return true; // Lower.
327 }
328
329 if (IsLoopInvariant(LHS)) {
330 Index = RHS;
331 Length = LHS;
332 return true; // Upper.
333 }
334 return false;
335
336 case ICmpInst::ICMP_ULT:
337 std::swap(LHS, RHS);
338 LLVM_FALLTHROUGH;
339 case ICmpInst::ICMP_UGT:
340 IsSigned = false;
341 if (IsLoopInvariant(LHS)) {
342 Index = RHS;
343 Length = LHS;
344 return true; // Both lower and upper.
345 }
346 return false;
347 }
348
349 llvm_unreachable("default clause returns!");
350 }
351
extractRangeChecksFromCond(Loop * L,ScalarEvolution & SE,Use & ConditionUse,SmallVectorImpl<InductiveRangeCheck> & Checks,SmallPtrSetImpl<Value * > & Visited)352 void InductiveRangeCheck::extractRangeChecksFromCond(
353 Loop *L, ScalarEvolution &SE, Use &ConditionUse,
354 SmallVectorImpl<InductiveRangeCheck> &Checks,
355 SmallPtrSetImpl<Value *> &Visited) {
356 Value *Condition = ConditionUse.get();
357 if (!Visited.insert(Condition).second)
358 return;
359
360 // TODO: Do the same for OR, XOR, NOT etc?
361 if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
362 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
363 Checks, Visited);
364 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
365 Checks, Visited);
366 return;
367 }
368
369 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
370 if (!ICI)
371 return;
372
373 Value *Length = nullptr, *Index;
374 bool IsSigned;
375 if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
376 return;
377
378 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
379 bool IsAffineIndex =
380 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
381
382 if (!IsAffineIndex)
383 return;
384
385 const SCEV *End = nullptr;
386 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
387 // We can potentially do much better here.
388 if (Length)
389 End = SE.getSCEV(Length);
390 else {
391 // So far we can only reach this point for Signed range check. This may
392 // change in future. In this case we will need to pick Unsigned max for the
393 // unsigned range check.
394 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
395 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
396 End = SIntMax;
397 }
398
399 InductiveRangeCheck IRC;
400 IRC.End = End;
401 IRC.Begin = IndexAddRec->getStart();
402 IRC.Step = IndexAddRec->getStepRecurrence(SE);
403 IRC.CheckUse = &ConditionUse;
404 Checks.push_back(IRC);
405 }
406
extractRangeChecksFromBranch(BranchInst * BI,Loop * L,ScalarEvolution & SE,BranchProbabilityInfo * BPI,SmallVectorImpl<InductiveRangeCheck> & Checks)407 void InductiveRangeCheck::extractRangeChecksFromBranch(
408 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
409 SmallVectorImpl<InductiveRangeCheck> &Checks) {
410 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
411 return;
412
413 BranchProbability LikelyTaken(15, 16);
414
415 if (!SkipProfitabilityChecks && BPI &&
416 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
417 return;
418
419 SmallPtrSet<Value *, 8> Visited;
420 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
421 Checks, Visited);
422 }
423
424 // Add metadata to the loop L to disable loop optimizations. Callers need to
425 // confirm that optimizing loop L is not beneficial.
DisableAllLoopOptsOnLoop(Loop & L)426 static void DisableAllLoopOptsOnLoop(Loop &L) {
427 // We do not care about any existing loopID related metadata for L, since we
428 // are setting all loop metadata to false.
429 LLVMContext &Context = L.getHeader()->getContext();
430 // Reserve first location for self reference to the LoopID metadata node.
431 MDNode *Dummy = MDNode::get(Context, {});
432 MDNode *DisableUnroll = MDNode::get(
433 Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
434 Metadata *FalseVal =
435 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
436 MDNode *DisableVectorize = MDNode::get(
437 Context,
438 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
439 MDNode *DisableLICMVersioning = MDNode::get(
440 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
441 MDNode *DisableDistribution= MDNode::get(
442 Context,
443 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
444 MDNode *NewLoopID =
445 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
446 DisableLICMVersioning, DisableDistribution});
447 // Set operand 0 to refer to the loop id itself.
448 NewLoopID->replaceOperandWith(0, NewLoopID);
449 L.setLoopID(NewLoopID);
450 }
451
452 namespace {
453
454 // Keeps track of the structure of a loop. This is similar to llvm::Loop,
455 // except that it is more lightweight and can track the state of a loop through
456 // changing and potentially invalid IR. This structure also formalizes the
457 // kinds of loops we can deal with -- ones that have a single latch that is also
458 // an exiting block *and* have a canonical induction variable.
459 struct LoopStructure {
460 const char *Tag = "";
461
462 BasicBlock *Header = nullptr;
463 BasicBlock *Latch = nullptr;
464
465 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
466 // successor is `LatchExit', the exit block of the loop.
467 BranchInst *LatchBr = nullptr;
468 BasicBlock *LatchExit = nullptr;
469 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
470
471 // The loop represented by this instance of LoopStructure is semantically
472 // equivalent to:
473 //
474 // intN_ty inc = IndVarIncreasing ? 1 : -1;
475 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
476 //
477 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
478 // ... body ...
479
480 Value *IndVarBase = nullptr;
481 Value *IndVarStart = nullptr;
482 Value *IndVarStep = nullptr;
483 Value *LoopExitAt = nullptr;
484 bool IndVarIncreasing = false;
485 bool IsSignedPredicate = true;
486
487 LoopStructure() = default;
488
map__anonfaeb45920311::LoopStructure489 template <typename M> LoopStructure map(M Map) const {
490 LoopStructure Result;
491 Result.Tag = Tag;
492 Result.Header = cast<BasicBlock>(Map(Header));
493 Result.Latch = cast<BasicBlock>(Map(Latch));
494 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
495 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
496 Result.LatchBrExitIdx = LatchBrExitIdx;
497 Result.IndVarBase = Map(IndVarBase);
498 Result.IndVarStart = Map(IndVarStart);
499 Result.IndVarStep = Map(IndVarStep);
500 Result.LoopExitAt = Map(LoopExitAt);
501 Result.IndVarIncreasing = IndVarIncreasing;
502 Result.IsSignedPredicate = IsSignedPredicate;
503 return Result;
504 }
505
506 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, Loop &,
507 const char *&);
508 };
509
510 /// This class is used to constrain loops to run within a given iteration space.
511 /// The algorithm this class implements is given a Loop and a range [Begin,
512 /// End). The algorithm then tries to break out a "main loop" out of the loop
513 /// it is given in a way that the "main loop" runs with the induction variable
514 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post
515 /// loops to run any remaining iterations. The pre loop runs any iterations in
516 /// which the induction variable is < Begin, and the post loop runs any
517 /// iterations in which the induction variable is >= End.
518 class LoopConstrainer {
519 // The representation of a clone of the original loop we started out with.
520 struct ClonedLoop {
521 // The cloned blocks
522 std::vector<BasicBlock *> Blocks;
523
524 // `Map` maps values in the clonee into values in the cloned version
525 ValueToValueMapTy Map;
526
527 // An instance of `LoopStructure` for the cloned loop
528 LoopStructure Structure;
529 };
530
531 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
532 // more details on what these fields mean.
533 struct RewrittenRangeInfo {
534 BasicBlock *PseudoExit = nullptr;
535 BasicBlock *ExitSelector = nullptr;
536 std::vector<PHINode *> PHIValuesAtPseudoExit;
537 PHINode *IndVarEnd = nullptr;
538
539 RewrittenRangeInfo() = default;
540 };
541
542 // Calculated subranges we restrict the iteration space of the main loop to.
543 // See the implementation of `calculateSubRanges' for more details on how
544 // these fields are computed. `LowLimit` is None if there is no restriction
545 // on low end of the restricted iteration space of the main loop. `HighLimit`
546 // is None if there is no restriction on high end of the restricted iteration
547 // space of the main loop.
548
549 struct SubRanges {
550 Optional<const SCEV *> LowLimit;
551 Optional<const SCEV *> HighLimit;
552 };
553
554 // Compute a safe set of limits for the main loop to run in -- effectively the
555 // intersection of `Range' and the iteration space of the original loop.
556 // Return None if unable to compute the set of subranges.
557 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
558
559 // Clone `OriginalLoop' and return the result in CLResult. The IR after
560 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
561 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
562 // but there is no such edge.
563 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
564
565 // Create the appropriate loop structure needed to describe a cloned copy of
566 // `Original`. The clone is described by `VM`.
567 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
568 ValueToValueMapTy &VM, bool IsSubloop);
569
570 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
571 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
572 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
573 // `OriginalHeaderCount'.
574 //
575 // If there are iterations left to execute, control is made to jump to
576 // `ContinuationBlock', otherwise they take the normal loop exit. The
577 // returned `RewrittenRangeInfo' object is populated as follows:
578 //
579 // .PseudoExit is a basic block that unconditionally branches to
580 // `ContinuationBlock'.
581 //
582 // .ExitSelector is a basic block that decides, on exit from the loop,
583 // whether to branch to the "true" exit or to `PseudoExit'.
584 //
585 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
586 // for each PHINode in the loop header on taking the pseudo exit.
587 //
588 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
589 // preheader because it is made to branch to the loop header only
590 // conditionally.
591 RewrittenRangeInfo
592 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
593 Value *ExitLoopAt,
594 BasicBlock *ContinuationBlock) const;
595
596 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
597 // function creates a new preheader for `LS' and returns it.
598 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
599 const char *Tag) const;
600
601 // `ContinuationBlockAndPreheader' was the continuation block for some call to
602 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
603 // This function rewrites the PHI nodes in `LS.Header' to start with the
604 // correct value.
605 void rewriteIncomingValuesForPHIs(
606 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
607 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
608
609 // Even though we do not preserve any passes at this time, we at least need to
610 // keep the parent loop structure consistent. The `LPPassManager' seems to
611 // verify this after running a loop pass. This function adds the list of
612 // blocks denoted by BBs to this loops parent loop if required.
613 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
614
615 // Some global state.
616 Function &F;
617 LLVMContext &Ctx;
618 ScalarEvolution &SE;
619 DominatorTree &DT;
620 LoopInfo &LI;
621 function_ref<void(Loop *, bool)> LPMAddNewLoop;
622
623 // Information about the original loop we started out with.
624 Loop &OriginalLoop;
625
626 const SCEV *LatchTakenCount = nullptr;
627 BasicBlock *OriginalPreheader = nullptr;
628
629 // The preheader of the main loop. This may or may not be different from
630 // `OriginalPreheader'.
631 BasicBlock *MainLoopPreheader = nullptr;
632
633 // The range we need to run the main loop in.
634 InductiveRangeCheck::Range Range;
635
636 // The structure of the main loop (see comment at the beginning of this class
637 // for a definition)
638 LoopStructure MainLoopStructure;
639
640 public:
LoopConstrainer(Loop & L,LoopInfo & LI,function_ref<void (Loop *,bool)> LPMAddNewLoop,const LoopStructure & LS,ScalarEvolution & SE,DominatorTree & DT,InductiveRangeCheck::Range R)641 LoopConstrainer(Loop &L, LoopInfo &LI,
642 function_ref<void(Loop *, bool)> LPMAddNewLoop,
643 const LoopStructure &LS, ScalarEvolution &SE,
644 DominatorTree &DT, InductiveRangeCheck::Range R)
645 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
646 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
647 Range(R), MainLoopStructure(LS) {}
648
649 // Entry point for the algorithm. Returns true on success.
650 bool run();
651 };
652
653 } // end anonymous namespace
654
655 /// Given a loop with an deccreasing induction variable, is it possible to
656 /// safely calculate the bounds of a new loop using the given Predicate.
isSafeDecreasingBound(const SCEV * Start,const SCEV * BoundSCEV,const SCEV * Step,ICmpInst::Predicate Pred,unsigned LatchBrExitIdx,Loop * L,ScalarEvolution & SE)657 static bool isSafeDecreasingBound(const SCEV *Start,
658 const SCEV *BoundSCEV, const SCEV *Step,
659 ICmpInst::Predicate Pred,
660 unsigned LatchBrExitIdx,
661 Loop *L, ScalarEvolution &SE) {
662 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
663 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
664 return false;
665
666 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
667 return false;
668
669 assert(SE.isKnownNegative(Step) && "expecting negative step");
670
671 LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
672 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
673 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
674 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
675 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
676 << "\n");
677 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
678
679 bool IsSigned = ICmpInst::isSigned(Pred);
680 // The predicate that we need to check that the induction variable lies
681 // within bounds.
682 ICmpInst::Predicate BoundPred =
683 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
684
685 if (LatchBrExitIdx == 1)
686 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
687
688 assert(LatchBrExitIdx == 0 &&
689 "LatchBrExitIdx should be either 0 or 1");
690
691 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
692 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
693 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
694 APInt::getMinValue(BitWidth);
695 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
696
697 const SCEV *MinusOne =
698 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
699
700 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
701 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
702
703 }
704
705 /// Given a loop with an increasing induction variable, is it possible to
706 /// safely calculate the bounds of a new loop using the given Predicate.
isSafeIncreasingBound(const SCEV * Start,const SCEV * BoundSCEV,const SCEV * Step,ICmpInst::Predicate Pred,unsigned LatchBrExitIdx,Loop * L,ScalarEvolution & SE)707 static bool isSafeIncreasingBound(const SCEV *Start,
708 const SCEV *BoundSCEV, const SCEV *Step,
709 ICmpInst::Predicate Pred,
710 unsigned LatchBrExitIdx,
711 Loop *L, ScalarEvolution &SE) {
712 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
713 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
714 return false;
715
716 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
717 return false;
718
719 LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
720 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
721 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
722 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
723 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
724 << "\n");
725 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
726
727 bool IsSigned = ICmpInst::isSigned(Pred);
728 // The predicate that we need to check that the induction variable lies
729 // within bounds.
730 ICmpInst::Predicate BoundPred =
731 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
732
733 if (LatchBrExitIdx == 1)
734 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
735
736 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
737
738 const SCEV *StepMinusOne =
739 SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
740 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
741 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
742 APInt::getMaxValue(BitWidth);
743 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
744
745 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
746 SE.getAddExpr(BoundSCEV, Step)) &&
747 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
748 }
749
750 Optional<LoopStructure>
parseLoopStructure(ScalarEvolution & SE,Loop & L,const char * & FailureReason)751 LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L,
752 const char *&FailureReason) {
753 if (!L.isLoopSimplifyForm()) {
754 FailureReason = "loop not in LoopSimplify form";
755 return None;
756 }
757
758 BasicBlock *Latch = L.getLoopLatch();
759 assert(Latch && "Simplified loops only have one latch!");
760
761 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
762 FailureReason = "loop has already been cloned";
763 return None;
764 }
765
766 if (!L.isLoopExiting(Latch)) {
767 FailureReason = "no loop latch";
768 return None;
769 }
770
771 BasicBlock *Header = L.getHeader();
772 BasicBlock *Preheader = L.getLoopPreheader();
773 if (!Preheader) {
774 FailureReason = "no preheader";
775 return None;
776 }
777
778 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
779 if (!LatchBr || LatchBr->isUnconditional()) {
780 FailureReason = "latch terminator not conditional branch";
781 return None;
782 }
783
784 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
785
786 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
787 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
788 FailureReason = "latch terminator branch not conditional on integral icmp";
789 return None;
790 }
791
792 const SCEV *LatchCount = SE.getExitCount(&L, Latch);
793 if (isa<SCEVCouldNotCompute>(LatchCount)) {
794 FailureReason = "could not compute latch count";
795 return None;
796 }
797
798 ICmpInst::Predicate Pred = ICI->getPredicate();
799 Value *LeftValue = ICI->getOperand(0);
800 const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
801 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
802
803 Value *RightValue = ICI->getOperand(1);
804 const SCEV *RightSCEV = SE.getSCEV(RightValue);
805
806 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
807 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
808 if (isa<SCEVAddRecExpr>(RightSCEV)) {
809 std::swap(LeftSCEV, RightSCEV);
810 std::swap(LeftValue, RightValue);
811 Pred = ICmpInst::getSwappedPredicate(Pred);
812 } else {
813 FailureReason = "no add recurrences in the icmp";
814 return None;
815 }
816 }
817
818 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
819 if (AR->getNoWrapFlags(SCEV::FlagNSW))
820 return true;
821
822 IntegerType *Ty = cast<IntegerType>(AR->getType());
823 IntegerType *WideTy =
824 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
825
826 const SCEVAddRecExpr *ExtendAfterOp =
827 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
828 if (ExtendAfterOp) {
829 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
830 const SCEV *ExtendedStep =
831 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
832
833 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
834 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
835
836 if (NoSignedWrap)
837 return true;
838 }
839
840 // We may have proved this when computing the sign extension above.
841 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
842 };
843
844 // `ICI` is interpreted as taking the backedge if the *next* value of the
845 // induction variable satisfies some constraint.
846
847 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
848 if (!IndVarBase->isAffine()) {
849 FailureReason = "LHS in icmp not induction variable";
850 return None;
851 }
852 const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
853 if (!isa<SCEVConstant>(StepRec)) {
854 FailureReason = "LHS in icmp not induction variable";
855 return None;
856 }
857 ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
858
859 if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
860 FailureReason = "LHS in icmp needs nsw for equality predicates";
861 return None;
862 }
863
864 assert(!StepCI->isZero() && "Zero step?");
865 bool IsIncreasing = !StepCI->isNegative();
866 bool IsSignedPredicate;
867 const SCEV *StartNext = IndVarBase->getStart();
868 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
869 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
870 const SCEV *Step = SE.getSCEV(StepCI);
871
872 const SCEV *FixedRightSCEV = nullptr;
873
874 // If RightValue resides within loop (but still being loop invariant),
875 // regenerate it as preheader.
876 if (auto *I = dyn_cast<Instruction>(RightValue))
877 if (L.contains(I->getParent()))
878 FixedRightSCEV = RightSCEV;
879
880 if (IsIncreasing) {
881 bool DecreasedRightValueByOne = false;
882 if (StepCI->isOne()) {
883 // Try to turn eq/ne predicates to those we can work with.
884 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
885 // while (++i != len) { while (++i < len) {
886 // ... ---> ...
887 // } }
888 // If both parts are known non-negative, it is profitable to use
889 // unsigned comparison in increasing loop. This allows us to make the
890 // comparison check against "RightSCEV + 1" more optimistic.
891 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
892 isKnownNonNegativeInLoop(RightSCEV, &L, SE))
893 Pred = ICmpInst::ICMP_ULT;
894 else
895 Pred = ICmpInst::ICMP_SLT;
896 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
897 // while (true) { while (true) {
898 // if (++i == len) ---> if (++i > len - 1)
899 // break; break;
900 // ... ...
901 // } }
902 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
903 cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
904 Pred = ICmpInst::ICMP_UGT;
905 RightSCEV = SE.getMinusSCEV(RightSCEV,
906 SE.getOne(RightSCEV->getType()));
907 DecreasedRightValueByOne = true;
908 } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
909 Pred = ICmpInst::ICMP_SGT;
910 RightSCEV = SE.getMinusSCEV(RightSCEV,
911 SE.getOne(RightSCEV->getType()));
912 DecreasedRightValueByOne = true;
913 }
914 }
915 }
916
917 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
918 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
919 bool FoundExpectedPred =
920 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
921
922 if (!FoundExpectedPred) {
923 FailureReason = "expected icmp slt semantically, found something else";
924 return None;
925 }
926
927 IsSignedPredicate = ICmpInst::isSigned(Pred);
928 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
929 FailureReason = "unsigned latch conditions are explicitly prohibited";
930 return None;
931 }
932
933 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
934 LatchBrExitIdx, &L, SE)) {
935 FailureReason = "Unsafe loop bounds";
936 return None;
937 }
938 if (LatchBrExitIdx == 0) {
939 // We need to increase the right value unless we have already decreased
940 // it virtually when we replaced EQ with SGT.
941 if (!DecreasedRightValueByOne)
942 FixedRightSCEV =
943 SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
944 } else {
945 assert(!DecreasedRightValueByOne &&
946 "Right value can be decreased only for LatchBrExitIdx == 0!");
947 }
948 } else {
949 bool IncreasedRightValueByOne = false;
950 if (StepCI->isMinusOne()) {
951 // Try to turn eq/ne predicates to those we can work with.
952 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
953 // while (--i != len) { while (--i > len) {
954 // ... ---> ...
955 // } }
956 // We intentionally don't turn the predicate into UGT even if we know
957 // that both operands are non-negative, because it will only pessimize
958 // our check against "RightSCEV - 1".
959 Pred = ICmpInst::ICMP_SGT;
960 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
961 // while (true) { while (true) {
962 // if (--i == len) ---> if (--i < len + 1)
963 // break; break;
964 // ... ...
965 // } }
966 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
967 cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
968 Pred = ICmpInst::ICMP_ULT;
969 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
970 IncreasedRightValueByOne = true;
971 } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
972 Pred = ICmpInst::ICMP_SLT;
973 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
974 IncreasedRightValueByOne = true;
975 }
976 }
977 }
978
979 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
980 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
981
982 bool FoundExpectedPred =
983 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
984
985 if (!FoundExpectedPred) {
986 FailureReason = "expected icmp sgt semantically, found something else";
987 return None;
988 }
989
990 IsSignedPredicate =
991 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
992
993 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
994 FailureReason = "unsigned latch conditions are explicitly prohibited";
995 return None;
996 }
997
998 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
999 LatchBrExitIdx, &L, SE)) {
1000 FailureReason = "Unsafe bounds";
1001 return None;
1002 }
1003
1004 if (LatchBrExitIdx == 0) {
1005 // We need to decrease the right value unless we have already increased
1006 // it virtually when we replaced EQ with SLT.
1007 if (!IncreasedRightValueByOne)
1008 FixedRightSCEV =
1009 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1010 } else {
1011 assert(!IncreasedRightValueByOne &&
1012 "Right value can be increased only for LatchBrExitIdx == 0!");
1013 }
1014 }
1015 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1016
1017 assert(SE.getLoopDisposition(LatchCount, &L) ==
1018 ScalarEvolution::LoopInvariant &&
1019 "loop variant exit count doesn't make sense!");
1020
1021 assert(!L.contains(LatchExit) && "expected an exit block!");
1022 const DataLayout &DL = Preheader->getModule()->getDataLayout();
1023 SCEVExpander Expander(SE, DL, "irce");
1024 Instruction *Ins = Preheader->getTerminator();
1025
1026 if (FixedRightSCEV)
1027 RightValue =
1028 Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1029
1030 Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1031 IndVarStartV->setName("indvar.start");
1032
1033 LoopStructure Result;
1034
1035 Result.Tag = "main";
1036 Result.Header = Header;
1037 Result.Latch = Latch;
1038 Result.LatchBr = LatchBr;
1039 Result.LatchExit = LatchExit;
1040 Result.LatchBrExitIdx = LatchBrExitIdx;
1041 Result.IndVarStart = IndVarStartV;
1042 Result.IndVarStep = StepCI;
1043 Result.IndVarBase = LeftValue;
1044 Result.IndVarIncreasing = IsIncreasing;
1045 Result.LoopExitAt = RightValue;
1046 Result.IsSignedPredicate = IsSignedPredicate;
1047
1048 FailureReason = nullptr;
1049
1050 return Result;
1051 }
1052
1053 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1054 /// signed or unsigned extension of \p S to type \p Ty.
NoopOrExtend(const SCEV * S,Type * Ty,ScalarEvolution & SE,bool Signed)1055 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1056 bool Signed) {
1057 return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1058 }
1059
1060 Optional<LoopConstrainer::SubRanges>
calculateSubRanges(bool IsSignedPredicate) const1061 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1062 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1063
1064 auto *RTy = cast<IntegerType>(Range.getType());
1065
1066 // We only support wide range checks and narrow latches.
1067 if (!AllowNarrowLatchCondition && RTy != Ty)
1068 return None;
1069 if (RTy->getBitWidth() < Ty->getBitWidth())
1070 return None;
1071
1072 LoopConstrainer::SubRanges Result;
1073
1074 // I think we can be more aggressive here and make this nuw / nsw if the
1075 // addition that feeds into the icmp for the latch's terminating branch is nuw
1076 // / nsw. In any case, a wrapping 2's complement addition is safe.
1077 const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1078 RTy, SE, IsSignedPredicate);
1079 const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1080 SE, IsSignedPredicate);
1081
1082 bool Increasing = MainLoopStructure.IndVarIncreasing;
1083
1084 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1085 // [Smallest, GreatestSeen] is the range of values the induction variable
1086 // takes.
1087
1088 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1089
1090 const SCEV *One = SE.getOne(RTy);
1091 if (Increasing) {
1092 Smallest = Start;
1093 Greatest = End;
1094 // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1095 GreatestSeen = SE.getMinusSCEV(End, One);
1096 } else {
1097 // These two computations may sign-overflow. Here is why that is okay:
1098 //
1099 // We know that the induction variable does not sign-overflow on any
1100 // iteration except the last one, and it starts at `Start` and ends at
1101 // `End`, decrementing by one every time.
1102 //
1103 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1104 // induction variable is decreasing we know that that the smallest value
1105 // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1106 //
1107 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
1108 // that case, `Clamp` will always return `Smallest` and
1109 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1110 // will be an empty range. Returning an empty range is always safe.
1111
1112 Smallest = SE.getAddExpr(End, One);
1113 Greatest = SE.getAddExpr(Start, One);
1114 GreatestSeen = Start;
1115 }
1116
1117 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1118 return IsSignedPredicate
1119 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1120 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1121 };
1122
1123 // In some cases we can prove that we don't need a pre or post loop.
1124 ICmpInst::Predicate PredLE =
1125 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1126 ICmpInst::Predicate PredLT =
1127 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1128
1129 bool ProvablyNoPreloop =
1130 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1131 if (!ProvablyNoPreloop)
1132 Result.LowLimit = Clamp(Range.getBegin());
1133
1134 bool ProvablyNoPostLoop =
1135 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1136 if (!ProvablyNoPostLoop)
1137 Result.HighLimit = Clamp(Range.getEnd());
1138
1139 return Result;
1140 }
1141
cloneLoop(LoopConstrainer::ClonedLoop & Result,const char * Tag) const1142 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1143 const char *Tag) const {
1144 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1145 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1146 Result.Blocks.push_back(Clone);
1147 Result.Map[BB] = Clone;
1148 }
1149
1150 auto GetClonedValue = [&Result](Value *V) {
1151 assert(V && "null values not in domain!");
1152 auto It = Result.Map.find(V);
1153 if (It == Result.Map.end())
1154 return V;
1155 return static_cast<Value *>(It->second);
1156 };
1157
1158 auto *ClonedLatch =
1159 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1160 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1161 MDNode::get(Ctx, {}));
1162
1163 Result.Structure = MainLoopStructure.map(GetClonedValue);
1164 Result.Structure.Tag = Tag;
1165
1166 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1167 BasicBlock *ClonedBB = Result.Blocks[i];
1168 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1169
1170 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1171
1172 for (Instruction &I : *ClonedBB)
1173 RemapInstruction(&I, Result.Map,
1174 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1175
1176 // Exit blocks will now have one more predecessor and their PHI nodes need
1177 // to be edited to reflect that. No phi nodes need to be introduced because
1178 // the loop is in LCSSA.
1179
1180 for (auto *SBB : successors(OriginalBB)) {
1181 if (OriginalLoop.contains(SBB))
1182 continue; // not an exit block
1183
1184 for (PHINode &PN : SBB->phis()) {
1185 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1186 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1187 }
1188 }
1189 }
1190 }
1191
changeIterationSpaceEnd(const LoopStructure & LS,BasicBlock * Preheader,Value * ExitSubloopAt,BasicBlock * ContinuationBlock) const1192 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1193 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1194 BasicBlock *ContinuationBlock) const {
1195 // We start with a loop with a single latch:
1196 //
1197 // +--------------------+
1198 // | |
1199 // | preheader |
1200 // | |
1201 // +--------+-----------+
1202 // | ----------------\
1203 // | / |
1204 // +--------v----v------+ |
1205 // | | |
1206 // | header | |
1207 // | | |
1208 // +--------------------+ |
1209 // |
1210 // ..... |
1211 // |
1212 // +--------------------+ |
1213 // | | |
1214 // | latch >----------/
1215 // | |
1216 // +-------v------------+
1217 // |
1218 // |
1219 // | +--------------------+
1220 // | | |
1221 // +---> original exit |
1222 // | |
1223 // +--------------------+
1224 //
1225 // We change the control flow to look like
1226 //
1227 //
1228 // +--------------------+
1229 // | |
1230 // | preheader >-------------------------+
1231 // | | |
1232 // +--------v-----------+ |
1233 // | /-------------+ |
1234 // | / | |
1235 // +--------v--v--------+ | |
1236 // | | | |
1237 // | header | | +--------+ |
1238 // | | | | | |
1239 // +--------------------+ | | +-----v-----v-----------+
1240 // | | | |
1241 // | | | .pseudo.exit |
1242 // | | | |
1243 // | | +-----------v-----------+
1244 // | | |
1245 // ..... | | |
1246 // | | +--------v-------------+
1247 // +--------------------+ | | | |
1248 // | | | | | ContinuationBlock |
1249 // | latch >------+ | | |
1250 // | | | +----------------------+
1251 // +---------v----------+ |
1252 // | |
1253 // | |
1254 // | +---------------^-----+
1255 // | | |
1256 // +-----> .exit.selector |
1257 // | |
1258 // +----------v----------+
1259 // |
1260 // +--------------------+ |
1261 // | | |
1262 // | original exit <----+
1263 // | |
1264 // +--------------------+
1265
1266 RewrittenRangeInfo RRI;
1267
1268 BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1269 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1270 &F, BBInsertLocation);
1271 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1272 BBInsertLocation);
1273
1274 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1275 bool Increasing = LS.IndVarIncreasing;
1276 bool IsSignedPredicate = LS.IsSignedPredicate;
1277
1278 IRBuilder<> B(PreheaderJump);
1279 auto *RangeTy = Range.getBegin()->getType();
1280 auto NoopOrExt = [&](Value *V) {
1281 if (V->getType() == RangeTy)
1282 return V;
1283 return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1284 : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1285 };
1286
1287 // EnterLoopCond - is it okay to start executing this `LS'?
1288 Value *EnterLoopCond = nullptr;
1289 auto Pred =
1290 Increasing
1291 ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1292 : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1293 Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1294 EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1295
1296 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1297 PreheaderJump->eraseFromParent();
1298
1299 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1300 B.SetInsertPoint(LS.LatchBr);
1301 Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1302 Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1303
1304 Value *CondForBranch = LS.LatchBrExitIdx == 1
1305 ? TakeBackedgeLoopCond
1306 : B.CreateNot(TakeBackedgeLoopCond);
1307
1308 LS.LatchBr->setCondition(CondForBranch);
1309
1310 B.SetInsertPoint(RRI.ExitSelector);
1311
1312 // IterationsLeft - are there any more iterations left, given the original
1313 // upper bound on the induction variable? If not, we branch to the "real"
1314 // exit.
1315 Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1316 Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1317 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1318
1319 BranchInst *BranchToContinuation =
1320 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1321
1322 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1323 // each of the PHI nodes in the loop header. This feeds into the initial
1324 // value of the same PHI nodes if/when we continue execution.
1325 for (PHINode &PN : LS.Header->phis()) {
1326 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1327 BranchToContinuation);
1328
1329 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1330 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1331 RRI.ExitSelector);
1332 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1333 }
1334
1335 RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1336 BranchToContinuation);
1337 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1338 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1339
1340 // The latch exit now has a branch from `RRI.ExitSelector' instead of
1341 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
1342 LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1343
1344 return RRI;
1345 }
1346
rewriteIncomingValuesForPHIs(LoopStructure & LS,BasicBlock * ContinuationBlock,const LoopConstrainer::RewrittenRangeInfo & RRI) const1347 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1348 LoopStructure &LS, BasicBlock *ContinuationBlock,
1349 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1350 unsigned PHIIndex = 0;
1351 for (PHINode &PN : LS.Header->phis())
1352 PN.setIncomingValueForBlock(ContinuationBlock,
1353 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1354
1355 LS.IndVarStart = RRI.IndVarEnd;
1356 }
1357
createPreheader(const LoopStructure & LS,BasicBlock * OldPreheader,const char * Tag) const1358 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1359 BasicBlock *OldPreheader,
1360 const char *Tag) const {
1361 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1362 BranchInst::Create(LS.Header, Preheader);
1363
1364 LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1365
1366 return Preheader;
1367 }
1368
addToParentLoopIfNeeded(ArrayRef<BasicBlock * > BBs)1369 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1370 Loop *ParentLoop = OriginalLoop.getParentLoop();
1371 if (!ParentLoop)
1372 return;
1373
1374 for (BasicBlock *BB : BBs)
1375 ParentLoop->addBasicBlockToLoop(BB, LI);
1376 }
1377
createClonedLoopStructure(Loop * Original,Loop * Parent,ValueToValueMapTy & VM,bool IsSubloop)1378 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1379 ValueToValueMapTy &VM,
1380 bool IsSubloop) {
1381 Loop &New = *LI.AllocateLoop();
1382 if (Parent)
1383 Parent->addChildLoop(&New);
1384 else
1385 LI.addTopLevelLoop(&New);
1386 LPMAddNewLoop(&New, IsSubloop);
1387
1388 // Add all of the blocks in Original to the new loop.
1389 for (auto *BB : Original->blocks())
1390 if (LI.getLoopFor(BB) == Original)
1391 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1392
1393 // Add all of the subloops to the new loop.
1394 for (Loop *SubLoop : *Original)
1395 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1396
1397 return &New;
1398 }
1399
run()1400 bool LoopConstrainer::run() {
1401 BasicBlock *Preheader = nullptr;
1402 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1403 Preheader = OriginalLoop.getLoopPreheader();
1404 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1405 "preconditions!");
1406
1407 OriginalPreheader = Preheader;
1408 MainLoopPreheader = Preheader;
1409
1410 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1411 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1412 if (!MaybeSR) {
1413 LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1414 return false;
1415 }
1416
1417 SubRanges SR = *MaybeSR;
1418 bool Increasing = MainLoopStructure.IndVarIncreasing;
1419 IntegerType *IVTy =
1420 cast<IntegerType>(Range.getBegin()->getType());
1421
1422 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1423 Instruction *InsertPt = OriginalPreheader->getTerminator();
1424
1425 // It would have been better to make `PreLoop' and `PostLoop'
1426 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1427 // constructor.
1428 ClonedLoop PreLoop, PostLoop;
1429 bool NeedsPreLoop =
1430 Increasing ? SR.LowLimit.has_value() : SR.HighLimit.has_value();
1431 bool NeedsPostLoop =
1432 Increasing ? SR.HighLimit.has_value() : SR.LowLimit.has_value();
1433
1434 Value *ExitPreLoopAt = nullptr;
1435 Value *ExitMainLoopAt = nullptr;
1436 const SCEVConstant *MinusOneS =
1437 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1438
1439 if (NeedsPreLoop) {
1440 const SCEV *ExitPreLoopAtSCEV = nullptr;
1441
1442 if (Increasing)
1443 ExitPreLoopAtSCEV = *SR.LowLimit;
1444 else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1445 IsSignedPredicate))
1446 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1447 else {
1448 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1449 << "preloop exit limit. HighLimit = "
1450 << *(*SR.HighLimit) << "\n");
1451 return false;
1452 }
1453
1454 if (!Expander.isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt)) {
1455 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1456 << " preloop exit limit " << *ExitPreLoopAtSCEV
1457 << " at block " << InsertPt->getParent()->getName()
1458 << "\n");
1459 return false;
1460 }
1461
1462 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1463 ExitPreLoopAt->setName("exit.preloop.at");
1464 }
1465
1466 if (NeedsPostLoop) {
1467 const SCEV *ExitMainLoopAtSCEV = nullptr;
1468
1469 if (Increasing)
1470 ExitMainLoopAtSCEV = *SR.HighLimit;
1471 else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1472 IsSignedPredicate))
1473 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1474 else {
1475 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1476 << "mainloop exit limit. LowLimit = "
1477 << *(*SR.LowLimit) << "\n");
1478 return false;
1479 }
1480
1481 if (!Expander.isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt)) {
1482 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1483 << " main loop exit limit " << *ExitMainLoopAtSCEV
1484 << " at block " << InsertPt->getParent()->getName()
1485 << "\n");
1486 return false;
1487 }
1488
1489 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1490 ExitMainLoopAt->setName("exit.mainloop.at");
1491 }
1492
1493 // We clone these ahead of time so that we don't have to deal with changing
1494 // and temporarily invalid IR as we transform the loops.
1495 if (NeedsPreLoop)
1496 cloneLoop(PreLoop, "preloop");
1497 if (NeedsPostLoop)
1498 cloneLoop(PostLoop, "postloop");
1499
1500 RewrittenRangeInfo PreLoopRRI;
1501
1502 if (NeedsPreLoop) {
1503 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1504 PreLoop.Structure.Header);
1505
1506 MainLoopPreheader =
1507 createPreheader(MainLoopStructure, Preheader, "mainloop");
1508 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1509 ExitPreLoopAt, MainLoopPreheader);
1510 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1511 PreLoopRRI);
1512 }
1513
1514 BasicBlock *PostLoopPreheader = nullptr;
1515 RewrittenRangeInfo PostLoopRRI;
1516
1517 if (NeedsPostLoop) {
1518 PostLoopPreheader =
1519 createPreheader(PostLoop.Structure, Preheader, "postloop");
1520 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1521 ExitMainLoopAt, PostLoopPreheader);
1522 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1523 PostLoopRRI);
1524 }
1525
1526 BasicBlock *NewMainLoopPreheader =
1527 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1528 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1529 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1530 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1531
1532 // Some of the above may be nullptr, filter them out before passing to
1533 // addToParentLoopIfNeeded.
1534 auto NewBlocksEnd =
1535 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1536
1537 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1538
1539 DT.recalculate(F);
1540
1541 // We need to first add all the pre and post loop blocks into the loop
1542 // structures (as part of createClonedLoopStructure), and then update the
1543 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1544 // LI when LoopSimplifyForm is generated.
1545 Loop *PreL = nullptr, *PostL = nullptr;
1546 if (!PreLoop.Blocks.empty()) {
1547 PreL = createClonedLoopStructure(&OriginalLoop,
1548 OriginalLoop.getParentLoop(), PreLoop.Map,
1549 /* IsSubLoop */ false);
1550 }
1551
1552 if (!PostLoop.Blocks.empty()) {
1553 PostL =
1554 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1555 PostLoop.Map, /* IsSubLoop */ false);
1556 }
1557
1558 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1559 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1560 formLCSSARecursively(*L, DT, &LI, &SE);
1561 simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1562 // Pre/post loops are slow paths, we do not need to perform any loop
1563 // optimizations on them.
1564 if (!IsOriginalLoop)
1565 DisableAllLoopOptsOnLoop(*L);
1566 };
1567 if (PreL)
1568 CanonicalizeLoop(PreL, false);
1569 if (PostL)
1570 CanonicalizeLoop(PostL, false);
1571 CanonicalizeLoop(&OriginalLoop, true);
1572
1573 return true;
1574 }
1575
1576 /// Computes and returns a range of values for the induction variable (IndVar)
1577 /// in which the range check can be safely elided. If it cannot compute such a
1578 /// range, returns None.
1579 Optional<InductiveRangeCheck::Range>
computeSafeIterationSpace(ScalarEvolution & SE,const SCEVAddRecExpr * IndVar,bool IsLatchSigned) const1580 InductiveRangeCheck::computeSafeIterationSpace(
1581 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1582 bool IsLatchSigned) const {
1583 // We can deal when types of latch check and range checks don't match in case
1584 // if latch check is more narrow.
1585 auto *IVType = cast<IntegerType>(IndVar->getType());
1586 auto *RCType = cast<IntegerType>(getBegin()->getType());
1587 if (IVType->getBitWidth() > RCType->getBitWidth())
1588 return None;
1589 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1590 // variable, that may or may not exist as a real llvm::Value in the loop) and
1591 // this inductive range check is a range check on the "C + D * I" ("C" is
1592 // getBegin() and "D" is getStep()). We rewrite the value being range
1593 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1594 //
1595 // The actual inequalities we solve are of the form
1596 //
1597 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1598 //
1599 // Here L stands for upper limit of the safe iteration space.
1600 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1601 // overflows when calculating (0 - M) and (L - M) we, depending on type of
1602 // IV's iteration space, limit the calculations by borders of the iteration
1603 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1604 // If we figured out that "anything greater than (-M) is safe", we strengthen
1605 // this to "everything greater than 0 is safe", assuming that values between
1606 // -M and 0 just do not exist in unsigned iteration space, and we don't want
1607 // to deal with overflown values.
1608
1609 if (!IndVar->isAffine())
1610 return None;
1611
1612 const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1613 const SCEVConstant *B = dyn_cast<SCEVConstant>(
1614 NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1615 if (!B)
1616 return None;
1617 assert(!B->isZero() && "Recurrence with zero step?");
1618
1619 const SCEV *C = getBegin();
1620 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1621 if (D != B)
1622 return None;
1623
1624 assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1625 unsigned BitWidth = RCType->getBitWidth();
1626 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1627
1628 // Subtract Y from X so that it does not go through border of the IV
1629 // iteration space. Mathematically, it is equivalent to:
1630 //
1631 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
1632 //
1633 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1634 // any width of bit grid). But after we take min/max, the result is
1635 // guaranteed to be within [INT_MIN, INT_MAX].
1636 //
1637 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1638 // values, depending on type of latch condition that defines IV iteration
1639 // space.
1640 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1641 // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1642 // This is required to ensure that SINT_MAX - X does not overflow signed and
1643 // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1644 // restriction and make it work for negative X either?
1645 if (IsLatchSigned) {
1646 // X is a number from signed range, Y is interpreted as signed.
1647 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1648 // thing we should care about is that we didn't cross SINT_MAX.
1649 // So, if Y is positive, we subtract Y safely.
1650 // Rule 1: Y > 0 ---> Y.
1651 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1652 // Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1653 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1654 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1655 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1656 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1657 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1658 SCEV::FlagNSW);
1659 } else
1660 // X is a number from unsigned range, Y is interpreted as signed.
1661 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1662 // thing we should care about is that we didn't cross zero.
1663 // So, if Y is negative, we subtract Y safely.
1664 // Rule 1: Y <s 0 ---> Y.
1665 // If 0 <= Y <= X, we subtract Y safely.
1666 // Rule 2: Y <=s X ---> Y.
1667 // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1668 // Rule 3: Y >s X ---> X.
1669 // It gives us smin(X, Y) to subtract in all cases.
1670 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1671 };
1672 const SCEV *M = SE.getMinusSCEV(C, A);
1673 const SCEV *Zero = SE.getZero(M->getType());
1674
1675 // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1676 auto SCEVCheckNonNegative = [&](const SCEV *X) {
1677 const Loop *L = IndVar->getLoop();
1678 const SCEV *One = SE.getOne(X->getType());
1679 // Can we trivially prove that X is a non-negative or negative value?
1680 if (isKnownNonNegativeInLoop(X, L, SE))
1681 return One;
1682 else if (isKnownNegativeInLoop(X, L, SE))
1683 return Zero;
1684 // If not, we will have to figure it out during the execution.
1685 // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1686 const SCEV *NegOne = SE.getNegativeSCEV(One);
1687 return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1688 };
1689 // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1690 // X is non-negative (in sense of a signed value). We need to re-implement
1691 // this function in a way that it will correctly handle negative X as well.
1692 // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1693 // end up with a negative X and produce wrong results. So currently we ensure
1694 // that if getEnd() is negative then both ends of the safe range are zero.
1695 // Note that this may pessimize elimination of unsigned range checks against
1696 // negative values.
1697 const SCEV *REnd = getEnd();
1698 const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1699
1700 const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1701 const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1702 return InductiveRangeCheck::Range(Begin, End);
1703 }
1704
1705 static Optional<InductiveRangeCheck::Range>
IntersectSignedRange(ScalarEvolution & SE,const Optional<InductiveRangeCheck::Range> & R1,const InductiveRangeCheck::Range & R2)1706 IntersectSignedRange(ScalarEvolution &SE,
1707 const Optional<InductiveRangeCheck::Range> &R1,
1708 const InductiveRangeCheck::Range &R2) {
1709 if (R2.isEmpty(SE, /* IsSigned */ true))
1710 return None;
1711 if (!R1)
1712 return R2;
1713 auto &R1Value = R1.value();
1714 // We never return empty ranges from this function, and R1 is supposed to be
1715 // a result of intersection. Thus, R1 is never empty.
1716 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1717 "We should never have empty R1!");
1718
1719 // TODO: we could widen the smaller range and have this work; but for now we
1720 // bail out to keep things simple.
1721 if (R1Value.getType() != R2.getType())
1722 return None;
1723
1724 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1725 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1726
1727 // If the resulting range is empty, just return None.
1728 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1729 if (Ret.isEmpty(SE, /* IsSigned */ true))
1730 return None;
1731 return Ret;
1732 }
1733
1734 static Optional<InductiveRangeCheck::Range>
IntersectUnsignedRange(ScalarEvolution & SE,const Optional<InductiveRangeCheck::Range> & R1,const InductiveRangeCheck::Range & R2)1735 IntersectUnsignedRange(ScalarEvolution &SE,
1736 const Optional<InductiveRangeCheck::Range> &R1,
1737 const InductiveRangeCheck::Range &R2) {
1738 if (R2.isEmpty(SE, /* IsSigned */ false))
1739 return None;
1740 if (!R1)
1741 return R2;
1742 auto &R1Value = R1.value();
1743 // We never return empty ranges from this function, and R1 is supposed to be
1744 // a result of intersection. Thus, R1 is never empty.
1745 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1746 "We should never have empty R1!");
1747
1748 // TODO: we could widen the smaller range and have this work; but for now we
1749 // bail out to keep things simple.
1750 if (R1Value.getType() != R2.getType())
1751 return None;
1752
1753 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1754 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1755
1756 // If the resulting range is empty, just return None.
1757 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1758 if (Ret.isEmpty(SE, /* IsSigned */ false))
1759 return None;
1760 return Ret;
1761 }
1762
run(Function & F,FunctionAnalysisManager & AM)1763 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1764 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1765 LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1766 // There are no loops in the function. Return before computing other expensive
1767 // analyses.
1768 if (LI.empty())
1769 return PreservedAnalyses::all();
1770 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1771 auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
1772
1773 // Get BFI analysis result on demand. Please note that modification of
1774 // CFG invalidates this analysis and we should handle it.
1775 auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
1776 return AM.getResult<BlockFrequencyAnalysis>(F);
1777 };
1778 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
1779
1780 bool Changed = false;
1781 {
1782 bool CFGChanged = false;
1783 for (const auto &L : LI) {
1784 CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1785 /*PreserveLCSSA=*/false);
1786 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1787 }
1788 Changed |= CFGChanged;
1789
1790 if (CFGChanged && !SkipProfitabilityChecks) {
1791 PreservedAnalyses PA = PreservedAnalyses::all();
1792 PA.abandon<BlockFrequencyAnalysis>();
1793 AM.invalidate(F, PA);
1794 }
1795 }
1796
1797 SmallPriorityWorklist<Loop *, 4> Worklist;
1798 appendLoopsToWorklist(LI, Worklist);
1799 auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1800 if (!IsSubloop)
1801 appendLoopsToWorklist(*NL, Worklist);
1802 };
1803
1804 while (!Worklist.empty()) {
1805 Loop *L = Worklist.pop_back_val();
1806 if (IRCE.run(L, LPMAddNewLoop)) {
1807 Changed = true;
1808 if (!SkipProfitabilityChecks) {
1809 PreservedAnalyses PA = PreservedAnalyses::all();
1810 PA.abandon<BlockFrequencyAnalysis>();
1811 AM.invalidate(F, PA);
1812 }
1813 }
1814 }
1815
1816 if (!Changed)
1817 return PreservedAnalyses::all();
1818 return getLoopPassPreservedAnalyses();
1819 }
1820
runOnFunction(Function & F)1821 bool IRCELegacyPass::runOnFunction(Function &F) {
1822 if (skipFunction(F))
1823 return false;
1824
1825 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1826 BranchProbabilityInfo &BPI =
1827 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1828 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1829 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1830 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1831
1832 bool Changed = false;
1833
1834 for (const auto &L : LI) {
1835 Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1836 /*PreserveLCSSA=*/false);
1837 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1838 }
1839
1840 SmallPriorityWorklist<Loop *, 4> Worklist;
1841 appendLoopsToWorklist(LI, Worklist);
1842 auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1843 if (!IsSubloop)
1844 appendLoopsToWorklist(*NL, Worklist);
1845 };
1846
1847 while (!Worklist.empty()) {
1848 Loop *L = Worklist.pop_back_val();
1849 Changed |= IRCE.run(L, LPMAddNewLoop);
1850 }
1851 return Changed;
1852 }
1853
1854 bool
isProfitableToTransform(const Loop & L,LoopStructure & LS)1855 InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L,
1856 LoopStructure &LS) {
1857 if (SkipProfitabilityChecks)
1858 return true;
1859 if (GetBFI) {
1860 BlockFrequencyInfo &BFI = (*GetBFI)();
1861 uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
1862 uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
1863 if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
1864 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1865 << "the estimated number of iterations basing on "
1866 "frequency info is " << (hFreq / phFreq) << "\n";);
1867 return false;
1868 }
1869 return true;
1870 }
1871
1872 if (!BPI)
1873 return true;
1874 BranchProbability ExitProbability =
1875 BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx);
1876 if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) {
1877 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1878 << "the exit probability is too big " << ExitProbability
1879 << "\n";);
1880 return false;
1881 }
1882 return true;
1883 }
1884
run(Loop * L,function_ref<void (Loop *,bool)> LPMAddNewLoop)1885 bool InductiveRangeCheckElimination::run(
1886 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1887 if (L->getBlocks().size() >= LoopSizeCutoff) {
1888 LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1889 return false;
1890 }
1891
1892 BasicBlock *Preheader = L->getLoopPreheader();
1893 if (!Preheader) {
1894 LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1895 return false;
1896 }
1897
1898 LLVMContext &Context = Preheader->getContext();
1899 SmallVector<InductiveRangeCheck, 16> RangeChecks;
1900
1901 for (auto BBI : L->getBlocks())
1902 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1903 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1904 RangeChecks);
1905
1906 if (RangeChecks.empty())
1907 return false;
1908
1909 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1910 OS << "irce: looking at loop "; L->print(OS);
1911 OS << "irce: loop has " << RangeChecks.size()
1912 << " inductive range checks: \n";
1913 for (InductiveRangeCheck &IRC : RangeChecks)
1914 IRC.print(OS);
1915 };
1916
1917 LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1918
1919 if (PrintRangeChecks)
1920 PrintRecognizedRangeChecks(errs());
1921
1922 const char *FailureReason = nullptr;
1923 Optional<LoopStructure> MaybeLoopStructure =
1924 LoopStructure::parseLoopStructure(SE, *L, FailureReason);
1925 if (!MaybeLoopStructure) {
1926 LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1927 << FailureReason << "\n";);
1928 return false;
1929 }
1930 LoopStructure LS = *MaybeLoopStructure;
1931 if (!isProfitableToTransform(*L, LS))
1932 return false;
1933 const SCEVAddRecExpr *IndVar =
1934 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1935
1936 Optional<InductiveRangeCheck::Range> SafeIterRange;
1937 Instruction *ExprInsertPt = Preheader->getTerminator();
1938
1939 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1940 // Basing on the type of latch predicate, we interpret the IV iteration range
1941 // as signed or unsigned range. We use different min/max functions (signed or
1942 // unsigned) when intersecting this range with safe iteration ranges implied
1943 // by range checks.
1944 auto IntersectRange =
1945 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1946
1947 IRBuilder<> B(ExprInsertPt);
1948 for (InductiveRangeCheck &IRC : RangeChecks) {
1949 auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1950 LS.IsSignedPredicate);
1951 if (Result) {
1952 auto MaybeSafeIterRange =
1953 IntersectRange(SE, SafeIterRange, Result.value());
1954 if (MaybeSafeIterRange) {
1955 assert(!MaybeSafeIterRange.value().isEmpty(SE, LS.IsSignedPredicate) &&
1956 "We should never return empty ranges!");
1957 RangeChecksToEliminate.push_back(IRC);
1958 SafeIterRange = MaybeSafeIterRange.value();
1959 }
1960 }
1961 }
1962
1963 if (!SafeIterRange)
1964 return false;
1965
1966 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, SafeIterRange.value());
1967 bool Changed = LC.run();
1968
1969 if (Changed) {
1970 auto PrintConstrainedLoopInfo = [L]() {
1971 dbgs() << "irce: in function ";
1972 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1973 dbgs() << "constrained ";
1974 L->print(dbgs());
1975 };
1976
1977 LLVM_DEBUG(PrintConstrainedLoopInfo());
1978
1979 if (PrintChangedLoops)
1980 PrintConstrainedLoopInfo();
1981
1982 // Optimize away the now-redundant range checks.
1983
1984 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1985 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1986 ? ConstantInt::getTrue(Context)
1987 : ConstantInt::getFalse(Context);
1988 IRC.getCheckUse()->set(FoldedRangeCheck);
1989 }
1990 }
1991
1992 return Changed;
1993 }
1994
createInductiveRangeCheckEliminationPass()1995 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1996 return new IRCELegacyPass();
1997 }
1998