1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/ADT/Optional.h" 45 46 #include "llvm/Analysis/BranchProbabilityInfo.h" 47 #include "llvm/Analysis/InstructionSimplify.h" 48 #include "llvm/Analysis/LoopInfo.h" 49 #include "llvm/Analysis/LoopPass.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/Analysis/ScalarEvolutionExpander.h" 52 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/ValueHandle.h" 62 #include "llvm/IR/Verifier.h" 63 64 #include "llvm/Support/Debug.h" 65 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/LoopUtils.h" 70 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 71 #include "llvm/Transforms/Utils/UnrollLoop.h" 72 73 #include "llvm/Pass.h" 74 75 #include <array> 76 77 using namespace llvm; 78 79 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 80 cl::init(64)); 81 82 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 83 cl::init(false)); 84 85 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 86 cl::Hidden, cl::init(10)); 87 88 #define DEBUG_TYPE "irce" 89 90 namespace { 91 92 /// An inductive range check is conditional branch in a loop with 93 /// 94 /// 1. a very cold successor (i.e. the branch jumps to that successor very 95 /// rarely) 96 /// 97 /// and 98 /// 99 /// 2. a condition that is provably true for some range of values taken by the 100 /// containing loop's induction variable. 101 /// 102 /// Currently all inductive range checks are branches conditional on an 103 /// expression of the form 104 /// 105 /// 0 <= (Offset + Scale * I) < Length 106 /// 107 /// where `I' is the canonical induction variable of a loop to which Offset and 108 /// Scale are loop invariant, and Length is >= 0. Currently the 'false' branch 109 /// is considered cold, looking at profiling data to verify that is a TODO. 110 111 class InductiveRangeCheck { 112 const SCEV *Offset; 113 const SCEV *Scale; 114 Value *Length; 115 BranchInst *Branch; 116 117 InductiveRangeCheck() : 118 Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { } 119 120 public: 121 const SCEV *getOffset() const { return Offset; } 122 const SCEV *getScale() const { return Scale; } 123 Value *getLength() const { return Length; } 124 125 void print(raw_ostream &OS) const { 126 OS << "InductiveRangeCheck:\n"; 127 OS << " Offset: "; 128 Offset->print(OS); 129 OS << " Scale: "; 130 Scale->print(OS); 131 OS << " Length: "; 132 Length->print(OS); 133 OS << " Branch: "; 134 getBranch()->print(OS); 135 OS << "\n"; 136 } 137 138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 139 void dump() { 140 print(dbgs()); 141 } 142 #endif 143 144 BranchInst *getBranch() const { return Branch; } 145 146 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 147 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 148 149 class Range { 150 const SCEV *Begin; 151 const SCEV *End; 152 153 public: 154 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 155 assert(Begin->getType() == End->getType() && "ill-typed range!"); 156 } 157 158 Type *getType() const { return Begin->getType(); } 159 const SCEV *getBegin() const { return Begin; } 160 const SCEV *getEnd() const { return End; } 161 }; 162 163 typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy; 164 165 /// This is the value the condition of the branch needs to evaluate to for the 166 /// branch to take the hot successor (see (1) above). 167 bool getPassingDirection() { return true; } 168 169 /// Computes a range for the induction variable (IndVar) in which the range 170 /// check is redundant and can be constant-folded away. The induction 171 /// variable is not required to be the canonical {0,+,1} induction variable. 172 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 173 const SCEVAddRecExpr *IndVar, 174 IRBuilder<> &B) const; 175 176 /// Create an inductive range check out of BI if possible, else return 177 /// nullptr. 178 static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI, 179 Loop *L, ScalarEvolution &SE, 180 BranchProbabilityInfo &BPI); 181 }; 182 183 class InductiveRangeCheckElimination : public LoopPass { 184 InductiveRangeCheck::AllocatorTy Allocator; 185 186 public: 187 static char ID; 188 InductiveRangeCheckElimination() : LoopPass(ID) { 189 initializeInductiveRangeCheckEliminationPass( 190 *PassRegistry::getPassRegistry()); 191 } 192 193 void getAnalysisUsage(AnalysisUsage &AU) const override { 194 AU.addRequired<LoopInfoWrapperPass>(); 195 AU.addRequiredID(LoopSimplifyID); 196 AU.addRequiredID(LCSSAID); 197 AU.addRequired<ScalarEvolution>(); 198 AU.addRequired<BranchProbabilityInfo>(); 199 } 200 201 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 202 }; 203 204 char InductiveRangeCheckElimination::ID = 0; 205 } 206 207 INITIALIZE_PASS(InductiveRangeCheckElimination, "irce", 208 "Inductive range check elimination", false, false) 209 210 static bool IsLowerBoundCheck(Value *Check, Value *&IndexV) { 211 using namespace llvm::PatternMatch; 212 213 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 214 Value *LHS = nullptr, *RHS = nullptr; 215 216 if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) 217 return false; 218 219 switch (Pred) { 220 default: 221 return false; 222 223 case ICmpInst::ICMP_SLE: 224 std::swap(LHS, RHS); 225 // fallthrough 226 case ICmpInst::ICMP_SGE: 227 if (!match(RHS, m_ConstantInt<0>())) 228 return false; 229 IndexV = LHS; 230 return true; 231 232 case ICmpInst::ICMP_SLT: 233 std::swap(LHS, RHS); 234 // fallthrough 235 case ICmpInst::ICMP_SGT: 236 if (!match(RHS, m_ConstantInt<-1>())) 237 return false; 238 IndexV = LHS; 239 return true; 240 } 241 } 242 243 static bool IsUpperBoundCheck(Value *Check, Value *Index, Value *&UpperLimit) { 244 using namespace llvm::PatternMatch; 245 246 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 247 Value *LHS = nullptr, *RHS = nullptr; 248 249 if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) 250 return false; 251 252 switch (Pred) { 253 default: 254 return false; 255 256 case ICmpInst::ICMP_SGT: 257 std::swap(LHS, RHS); 258 // fallthrough 259 case ICmpInst::ICMP_SLT: 260 if (LHS != Index) 261 return false; 262 UpperLimit = RHS; 263 return true; 264 265 case ICmpInst::ICMP_UGT: 266 std::swap(LHS, RHS); 267 // fallthrough 268 case ICmpInst::ICMP_ULT: 269 if (LHS != Index) 270 return false; 271 UpperLimit = RHS; 272 return true; 273 } 274 } 275 276 /// Split a condition into something semantically equivalent to (0 <= I < 277 /// Limit), both comparisons signed and Len loop invariant on L and positive. 278 /// On success, return true and set Index to I and UpperLimit to Limit. Return 279 /// false on failure (we may still write to UpperLimit and Index on failure). 280 /// It does not try to interpret I as a loop index. 281 /// 282 static bool SplitRangeCheckCondition(Loop *L, ScalarEvolution &SE, 283 Value *Condition, const SCEV *&Index, 284 Value *&UpperLimit) { 285 286 // TODO: currently this catches some silly cases like comparing "%idx slt 1". 287 // Our transformations are still correct, but less likely to be profitable in 288 // those cases. We have to come up with some heuristics that pick out the 289 // range checks that are more profitable to clone a loop for. This function 290 // in general can be made more robust. 291 292 using namespace llvm::PatternMatch; 293 294 Value *A = nullptr; 295 Value *B = nullptr; 296 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 297 298 // In these early checks we assume that the matched UpperLimit is positive. 299 // We'll verify that fact later, before returning true. 300 301 if (match(Condition, m_And(m_Value(A), m_Value(B)))) { 302 Value *IndexV = nullptr; 303 Value *ExpectedUpperBoundCheck = nullptr; 304 305 if (IsLowerBoundCheck(A, IndexV)) 306 ExpectedUpperBoundCheck = B; 307 else if (IsLowerBoundCheck(B, IndexV)) 308 ExpectedUpperBoundCheck = A; 309 else 310 return false; 311 312 if (!IsUpperBoundCheck(ExpectedUpperBoundCheck, IndexV, UpperLimit)) 313 return false; 314 315 Index = SE.getSCEV(IndexV); 316 317 if (isa<SCEVCouldNotCompute>(Index)) 318 return false; 319 320 } else if (match(Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 321 switch (Pred) { 322 default: 323 return false; 324 325 case ICmpInst::ICMP_SGT: 326 std::swap(A, B); 327 // fall through 328 case ICmpInst::ICMP_SLT: 329 UpperLimit = B; 330 Index = SE.getSCEV(A); 331 if (isa<SCEVCouldNotCompute>(Index) || !SE.isKnownNonNegative(Index)) 332 return false; 333 break; 334 335 case ICmpInst::ICMP_UGT: 336 std::swap(A, B); 337 // fall through 338 case ICmpInst::ICMP_ULT: 339 UpperLimit = B; 340 Index = SE.getSCEV(A); 341 if (isa<SCEVCouldNotCompute>(Index)) 342 return false; 343 break; 344 } 345 } else { 346 return false; 347 } 348 349 const SCEV *UpperLimitSCEV = SE.getSCEV(UpperLimit); 350 if (isa<SCEVCouldNotCompute>(UpperLimitSCEV) || 351 !SE.isKnownNonNegative(UpperLimitSCEV)) 352 return false; 353 354 if (SE.getLoopDisposition(UpperLimitSCEV, L) != 355 ScalarEvolution::LoopInvariant) { 356 DEBUG(dbgs() << " in function: " << L->getHeader()->getParent()->getName() 357 << " "; 358 dbgs() << " UpperLimit is not loop invariant: " 359 << UpperLimit->getName() << "\n";); 360 return false; 361 } 362 363 return true; 364 } 365 366 367 InductiveRangeCheck * 368 InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI, 369 Loop *L, ScalarEvolution &SE, 370 BranchProbabilityInfo &BPI) { 371 372 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 373 return nullptr; 374 375 BranchProbability LikelyTaken(15, 16); 376 377 if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken) 378 return nullptr; 379 380 Value *Length = nullptr; 381 const SCEV *IndexSCEV = nullptr; 382 383 if (!SplitRangeCheckCondition(L, SE, BI->getCondition(), IndexSCEV, Length)) 384 return nullptr; 385 386 assert(IndexSCEV && Length && "contract with SplitRangeCheckCondition!"); 387 388 const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV); 389 bool IsAffineIndex = 390 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 391 392 if (!IsAffineIndex) 393 return nullptr; 394 395 InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck; 396 IRC->Length = Length; 397 IRC->Offset = IndexAddRec->getStart(); 398 IRC->Scale = IndexAddRec->getStepRecurrence(SE); 399 IRC->Branch = BI; 400 return IRC; 401 } 402 403 namespace { 404 405 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 406 // except that it is more lightweight and can track the state of a loop through 407 // changing and potentially invalid IR. This structure also formalizes the 408 // kinds of loops we can deal with -- ones that have a single latch that is also 409 // an exiting block *and* have a canonical induction variable. 410 struct LoopStructure { 411 const char *Tag; 412 413 BasicBlock *Header; 414 BasicBlock *Latch; 415 416 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 417 // successor is `LatchExit', the exit block of the loop. 418 BranchInst *LatchBr; 419 BasicBlock *LatchExit; 420 unsigned LatchBrExitIdx; 421 422 Value *IndVarNext; 423 Value *IndVarStart; 424 Value *LoopExitAt; 425 bool IndVarIncreasing; 426 427 LoopStructure() 428 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr), 429 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr), 430 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {} 431 432 template <typename M> LoopStructure map(M Map) const { 433 LoopStructure Result; 434 Result.Tag = Tag; 435 Result.Header = cast<BasicBlock>(Map(Header)); 436 Result.Latch = cast<BasicBlock>(Map(Latch)); 437 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 438 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 439 Result.LatchBrExitIdx = LatchBrExitIdx; 440 Result.IndVarNext = Map(IndVarNext); 441 Result.IndVarStart = Map(IndVarStart); 442 Result.LoopExitAt = Map(LoopExitAt); 443 Result.IndVarIncreasing = IndVarIncreasing; 444 return Result; 445 } 446 447 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 448 BranchProbabilityInfo &BPI, 449 Loop &, 450 const char *&); 451 }; 452 453 /// This class is used to constrain loops to run within a given iteration space. 454 /// The algorithm this class implements is given a Loop and a range [Begin, 455 /// End). The algorithm then tries to break out a "main loop" out of the loop 456 /// it is given in a way that the "main loop" runs with the induction variable 457 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 458 /// loops to run any remaining iterations. The pre loop runs any iterations in 459 /// which the induction variable is < Begin, and the post loop runs any 460 /// iterations in which the induction variable is >= End. 461 /// 462 class LoopConstrainer { 463 // The representation of a clone of the original loop we started out with. 464 struct ClonedLoop { 465 // The cloned blocks 466 std::vector<BasicBlock *> Blocks; 467 468 // `Map` maps values in the clonee into values in the cloned version 469 ValueToValueMapTy Map; 470 471 // An instance of `LoopStructure` for the cloned loop 472 LoopStructure Structure; 473 }; 474 475 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 476 // more details on what these fields mean. 477 struct RewrittenRangeInfo { 478 BasicBlock *PseudoExit; 479 BasicBlock *ExitSelector; 480 std::vector<PHINode *> PHIValuesAtPseudoExit; 481 PHINode *IndVarEnd; 482 483 RewrittenRangeInfo() 484 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {} 485 }; 486 487 // Calculated subranges we restrict the iteration space of the main loop to. 488 // See the implementation of `calculateSubRanges' for more details on how 489 // these fields are computed. `LowLimit` is None if there is no restriction 490 // on low end of the restricted iteration space of the main loop. `HighLimit` 491 // is None if there is no restriction on high end of the restricted iteration 492 // space of the main loop. 493 494 struct SubRanges { 495 Optional<const SCEV *> LowLimit; 496 Optional<const SCEV *> HighLimit; 497 }; 498 499 // A utility function that does a `replaceUsesOfWith' on the incoming block 500 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 501 // incoming block list with `ReplaceBy'. 502 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 503 BasicBlock *ReplaceBy); 504 505 // Compute a safe set of limits for the main loop to run in -- effectively the 506 // intersection of `Range' and the iteration space of the original loop. 507 // Return None if unable to compute the set of subranges. 508 // 509 Optional<SubRanges> calculateSubRanges() const; 510 511 // Clone `OriginalLoop' and return the result in CLResult. The IR after 512 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 513 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 514 // but there is no such edge. 515 // 516 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 517 518 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 519 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 520 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 521 // `OriginalHeaderCount'. 522 // 523 // If there are iterations left to execute, control is made to jump to 524 // `ContinuationBlock', otherwise they take the normal loop exit. The 525 // returned `RewrittenRangeInfo' object is populated as follows: 526 // 527 // .PseudoExit is a basic block that unconditionally branches to 528 // `ContinuationBlock'. 529 // 530 // .ExitSelector is a basic block that decides, on exit from the loop, 531 // whether to branch to the "true" exit or to `PseudoExit'. 532 // 533 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 534 // for each PHINode in the loop header on taking the pseudo exit. 535 // 536 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 537 // preheader because it is made to branch to the loop header only 538 // conditionally. 539 // 540 RewrittenRangeInfo 541 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 542 Value *ExitLoopAt, 543 BasicBlock *ContinuationBlock) const; 544 545 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 546 // function creates a new preheader for `LS' and returns it. 547 // 548 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 549 const char *Tag) const; 550 551 // `ContinuationBlockAndPreheader' was the continuation block for some call to 552 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 553 // This function rewrites the PHI nodes in `LS.Header' to start with the 554 // correct value. 555 void rewriteIncomingValuesForPHIs( 556 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 557 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 558 559 // Even though we do not preserve any passes at this time, we at least need to 560 // keep the parent loop structure consistent. The `LPPassManager' seems to 561 // verify this after running a loop pass. This function adds the list of 562 // blocks denoted by BBs to this loops parent loop if required. 563 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 564 565 // Some global state. 566 Function &F; 567 LLVMContext &Ctx; 568 ScalarEvolution &SE; 569 570 // Information about the original loop we started out with. 571 Loop &OriginalLoop; 572 LoopInfo &OriginalLoopInfo; 573 const SCEV *LatchTakenCount; 574 BasicBlock *OriginalPreheader; 575 576 // The preheader of the main loop. This may or may not be different from 577 // `OriginalPreheader'. 578 BasicBlock *MainLoopPreheader; 579 580 // The range we need to run the main loop in. 581 InductiveRangeCheck::Range Range; 582 583 // The structure of the main loop (see comment at the beginning of this class 584 // for a definition) 585 LoopStructure MainLoopStructure; 586 587 public: 588 LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS, 589 ScalarEvolution &SE, InductiveRangeCheck::Range R) 590 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 591 SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr), 592 OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R), 593 MainLoopStructure(LS) {} 594 595 // Entry point for the algorithm. Returns true on success. 596 bool run(); 597 }; 598 599 } 600 601 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 602 BasicBlock *ReplaceBy) { 603 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 604 if (PN->getIncomingBlock(i) == Block) 605 PN->setIncomingBlock(i, ReplaceBy); 606 } 607 608 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) { 609 APInt SMax = 610 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 611 return SE.getSignedRange(S).contains(SMax) && 612 SE.getUnsignedRange(S).contains(SMax); 613 } 614 615 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) { 616 APInt SMin = 617 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 618 return SE.getSignedRange(S).contains(SMin) && 619 SE.getUnsignedRange(S).contains(SMin); 620 } 621 622 Optional<LoopStructure> 623 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI, 624 Loop &L, const char *&FailureReason) { 625 assert(L.isLoopSimplifyForm() && "should follow from addRequired<>"); 626 627 BasicBlock *Latch = L.getLoopLatch(); 628 if (!L.isLoopExiting(Latch)) { 629 FailureReason = "no loop latch"; 630 return None; 631 } 632 633 BasicBlock *Header = L.getHeader(); 634 BasicBlock *Preheader = L.getLoopPreheader(); 635 if (!Preheader) { 636 FailureReason = "no preheader"; 637 return None; 638 } 639 640 BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin()); 641 if (!LatchBr || LatchBr->isUnconditional()) { 642 FailureReason = "latch terminator not conditional branch"; 643 return None; 644 } 645 646 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 647 648 BranchProbability ExitProbability = 649 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 650 651 if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 652 FailureReason = "short running loop, not profitable"; 653 return None; 654 } 655 656 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 657 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 658 FailureReason = "latch terminator branch not conditional on integral icmp"; 659 return None; 660 } 661 662 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 663 if (isa<SCEVCouldNotCompute>(LatchCount)) { 664 FailureReason = "could not compute latch count"; 665 return None; 666 } 667 668 ICmpInst::Predicate Pred = ICI->getPredicate(); 669 Value *LeftValue = ICI->getOperand(0); 670 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 671 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 672 673 Value *RightValue = ICI->getOperand(1); 674 const SCEV *RightSCEV = SE.getSCEV(RightValue); 675 676 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 677 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 678 if (isa<SCEVAddRecExpr>(RightSCEV)) { 679 std::swap(LeftSCEV, RightSCEV); 680 std::swap(LeftValue, RightValue); 681 Pred = ICmpInst::getSwappedPredicate(Pred); 682 } else { 683 FailureReason = "no add recurrences in the icmp"; 684 return None; 685 } 686 } 687 688 auto IsInductionVar = [&SE](const SCEVAddRecExpr *AR, bool &IsIncreasing) { 689 if (!AR->isAffine()) 690 return false; 691 692 IntegerType *Ty = cast<IntegerType>(AR->getType()); 693 IntegerType *WideTy = 694 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 695 696 // Currently we only work with induction variables that have been proved to 697 // not wrap. This restriction can potentially be lifted in the future. 698 699 const SCEVAddRecExpr *ExtendAfterOp = 700 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 701 if (!ExtendAfterOp) 702 return false; 703 704 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 705 const SCEV *ExtendedStep = 706 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 707 708 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 709 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 710 711 if (!NoSignedWrap) 712 return false; 713 714 if (const SCEVConstant *StepExpr = 715 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 716 ConstantInt *StepCI = StepExpr->getValue(); 717 if (StepCI->isOne() || StepCI->isMinusOne()) { 718 IsIncreasing = StepCI->isOne(); 719 return true; 720 } 721 } 722 723 return false; 724 }; 725 726 // `ICI` is interpreted as taking the backedge if the *next* value of the 727 // induction variable satisfies some constraint. 728 729 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV); 730 bool IsIncreasing = false; 731 if (!IsInductionVar(IndVarNext, IsIncreasing)) { 732 FailureReason = "LHS in icmp not induction variable"; 733 return None; 734 } 735 736 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 737 // TODO: generalize the predicates here to also match their unsigned variants. 738 if (IsIncreasing) { 739 bool FoundExpectedPred = 740 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) || 741 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0); 742 743 if (!FoundExpectedPred) { 744 FailureReason = "expected icmp slt semantically, found something else"; 745 return None; 746 } 747 748 if (LatchBrExitIdx == 0) { 749 if (CanBeSMax(SE, RightSCEV)) { 750 // TODO: this restriction is easily removable -- we just have to 751 // remember that the icmp was an slt and not an sle. 752 FailureReason = "limit may overflow when coercing sle to slt"; 753 return None; 754 } 755 756 IRBuilder<> B(&*Preheader->rbegin()); 757 RightValue = B.CreateAdd(RightValue, One); 758 } 759 760 } else { 761 bool FoundExpectedPred = 762 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) || 763 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0); 764 765 if (!FoundExpectedPred) { 766 FailureReason = "expected icmp sgt semantically, found something else"; 767 return None; 768 } 769 770 if (LatchBrExitIdx == 0) { 771 if (CanBeSMin(SE, RightSCEV)) { 772 // TODO: this restriction is easily removable -- we just have to 773 // remember that the icmp was an sgt and not an sge. 774 FailureReason = "limit may overflow when coercing sge to sgt"; 775 return None; 776 } 777 778 IRBuilder<> B(&*Preheader->rbegin()); 779 RightValue = B.CreateSub(RightValue, One); 780 } 781 } 782 783 const SCEV *StartNext = IndVarNext->getStart(); 784 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE)); 785 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 786 787 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 788 789 assert(SE.getLoopDisposition(LatchCount, &L) == 790 ScalarEvolution::LoopInvariant && 791 "loop variant exit count doesn't make sense!"); 792 793 assert(!L.contains(LatchExit) && "expected an exit block!"); 794 795 Value *IndVarStartV = SCEVExpander(SE, "irce").expandCodeFor( 796 IndVarStart, IndVarTy, &*Preheader->rbegin()); 797 IndVarStartV->setName("indvar.start"); 798 799 LoopStructure Result; 800 801 Result.Tag = "main"; 802 Result.Header = Header; 803 Result.Latch = Latch; 804 Result.LatchBr = LatchBr; 805 Result.LatchExit = LatchExit; 806 Result.LatchBrExitIdx = LatchBrExitIdx; 807 Result.IndVarStart = IndVarStartV; 808 Result.IndVarNext = LeftValue; 809 Result.IndVarIncreasing = IsIncreasing; 810 Result.LoopExitAt = RightValue; 811 812 FailureReason = nullptr; 813 814 return Result; 815 } 816 817 Optional<LoopConstrainer::SubRanges> 818 LoopConstrainer::calculateSubRanges() const { 819 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 820 821 if (Range.getType() != Ty) 822 return None; 823 824 LoopConstrainer::SubRanges Result; 825 826 // I think we can be more aggressive here and make this nuw / nsw if the 827 // addition that feeds into the icmp for the latch's terminating branch is nuw 828 // / nsw. In any case, a wrapping 2's complement addition is safe. 829 ConstantInt *One = ConstantInt::get(Ty, 1); 830 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 831 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 832 833 bool Increasing = MainLoopStructure.IndVarIncreasing; 834 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the 835 // range of values the induction variable takes. 836 const SCEV *Smallest = 837 Increasing ? Start : SE.getAddExpr(End, SE.getSCEV(One)); 838 const SCEV *Greatest = 839 Increasing ? End : SE.getAddExpr(Start, SE.getSCEV(One)); 840 841 auto Clamp = [this, Smallest, Greatest](const SCEV *S) { 842 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)); 843 }; 844 845 // In some cases we can prove that we don't need a pre or post loop 846 847 bool ProvablyNoPreloop = 848 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest); 849 if (!ProvablyNoPreloop) 850 Result.LowLimit = Clamp(Range.getBegin()); 851 852 bool ProvablyNoPostLoop = 853 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd()); 854 if (!ProvablyNoPostLoop) 855 Result.HighLimit = Clamp(Range.getEnd()); 856 857 return Result; 858 } 859 860 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 861 const char *Tag) const { 862 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 863 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 864 Result.Blocks.push_back(Clone); 865 Result.Map[BB] = Clone; 866 } 867 868 auto GetClonedValue = [&Result](Value *V) { 869 assert(V && "null values not in domain!"); 870 auto It = Result.Map.find(V); 871 if (It == Result.Map.end()) 872 return V; 873 return static_cast<Value *>(It->second); 874 }; 875 876 Result.Structure = MainLoopStructure.map(GetClonedValue); 877 Result.Structure.Tag = Tag; 878 879 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 880 BasicBlock *ClonedBB = Result.Blocks[i]; 881 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 882 883 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 884 885 for (Instruction &I : *ClonedBB) 886 RemapInstruction(&I, Result.Map, 887 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 888 889 // Exit blocks will now have one more predecessor and their PHI nodes need 890 // to be edited to reflect that. No phi nodes need to be introduced because 891 // the loop is in LCSSA. 892 893 for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB); 894 SBBI != SBBE; ++SBBI) { 895 896 if (OriginalLoop.contains(*SBBI)) 897 continue; // not an exit block 898 899 for (Instruction &I : **SBBI) { 900 if (!isa<PHINode>(&I)) 901 break; 902 903 PHINode *PN = cast<PHINode>(&I); 904 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); 905 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); 906 } 907 } 908 } 909 } 910 911 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 912 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 913 BasicBlock *ContinuationBlock) const { 914 915 // We start with a loop with a single latch: 916 // 917 // +--------------------+ 918 // | | 919 // | preheader | 920 // | | 921 // +--------+-----------+ 922 // | ----------------\ 923 // | / | 924 // +--------v----v------+ | 925 // | | | 926 // | header | | 927 // | | | 928 // +--------------------+ | 929 // | 930 // ..... | 931 // | 932 // +--------------------+ | 933 // | | | 934 // | latch >----------/ 935 // | | 936 // +-------v------------+ 937 // | 938 // | 939 // | +--------------------+ 940 // | | | 941 // +---> original exit | 942 // | | 943 // +--------------------+ 944 // 945 // We change the control flow to look like 946 // 947 // 948 // +--------------------+ 949 // | | 950 // | preheader >-------------------------+ 951 // | | | 952 // +--------v-----------+ | 953 // | /-------------+ | 954 // | / | | 955 // +--------v--v--------+ | | 956 // | | | | 957 // | header | | +--------+ | 958 // | | | | | | 959 // +--------------------+ | | +-----v-----v-----------+ 960 // | | | | 961 // | | | .pseudo.exit | 962 // | | | | 963 // | | +-----------v-----------+ 964 // | | | 965 // ..... | | | 966 // | | +--------v-------------+ 967 // +--------------------+ | | | | 968 // | | | | | ContinuationBlock | 969 // | latch >------+ | | | 970 // | | | +----------------------+ 971 // +---------v----------+ | 972 // | | 973 // | | 974 // | +---------------^-----+ 975 // | | | 976 // +-----> .exit.selector | 977 // | | 978 // +----------v----------+ 979 // | 980 // +--------------------+ | 981 // | | | 982 // | original exit <----+ 983 // | | 984 // +--------------------+ 985 // 986 987 RewrittenRangeInfo RRI; 988 989 auto BBInsertLocation = std::next(Function::iterator(LS.Latch)); 990 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 991 &F, BBInsertLocation); 992 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 993 BBInsertLocation); 994 995 BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin()); 996 bool Increasing = LS.IndVarIncreasing; 997 998 IRBuilder<> B(PreheaderJump); 999 1000 // EnterLoopCond - is it okay to start executing this `LS'? 1001 Value *EnterLoopCond = Increasing 1002 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1003 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt); 1004 1005 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1006 PreheaderJump->eraseFromParent(); 1007 1008 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1009 B.SetInsertPoint(LS.LatchBr); 1010 Value *TakeBackedgeLoopCond = 1011 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt) 1012 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt); 1013 Value *CondForBranch = LS.LatchBrExitIdx == 1 1014 ? TakeBackedgeLoopCond 1015 : B.CreateNot(TakeBackedgeLoopCond); 1016 1017 LS.LatchBr->setCondition(CondForBranch); 1018 1019 B.SetInsertPoint(RRI.ExitSelector); 1020 1021 // IterationsLeft - are there any more iterations left, given the original 1022 // upper bound on the induction variable? If not, we branch to the "real" 1023 // exit. 1024 Value *IterationsLeft = Increasing 1025 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt) 1026 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt); 1027 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1028 1029 BranchInst *BranchToContinuation = 1030 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1031 1032 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1033 // each of the PHI nodes in the loop header. This feeds into the initial 1034 // value of the same PHI nodes if/when we continue execution. 1035 for (Instruction &I : *LS.Header) { 1036 if (!isa<PHINode>(&I)) 1037 break; 1038 1039 PHINode *PN = cast<PHINode>(&I); 1040 1041 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", 1042 BranchToContinuation); 1043 1044 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); 1045 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), 1046 RRI.ExitSelector); 1047 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1048 } 1049 1050 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end", 1051 BranchToContinuation); 1052 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1053 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector); 1054 1055 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1056 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1057 for (Instruction &I : *LS.LatchExit) { 1058 if (PHINode *PN = dyn_cast<PHINode>(&I)) 1059 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); 1060 else 1061 break; 1062 } 1063 1064 return RRI; 1065 } 1066 1067 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1068 LoopStructure &LS, BasicBlock *ContinuationBlock, 1069 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1070 1071 unsigned PHIIndex = 0; 1072 for (Instruction &I : *LS.Header) { 1073 if (!isa<PHINode>(&I)) 1074 break; 1075 1076 PHINode *PN = cast<PHINode>(&I); 1077 1078 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1079 if (PN->getIncomingBlock(i) == ContinuationBlock) 1080 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1081 } 1082 1083 LS.IndVarStart = RRI.IndVarEnd; 1084 } 1085 1086 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1087 BasicBlock *OldPreheader, 1088 const char *Tag) const { 1089 1090 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1091 BranchInst::Create(LS.Header, Preheader); 1092 1093 for (Instruction &I : *LS.Header) { 1094 if (!isa<PHINode>(&I)) 1095 break; 1096 1097 PHINode *PN = cast<PHINode>(&I); 1098 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1099 replacePHIBlock(PN, OldPreheader, Preheader); 1100 } 1101 1102 return Preheader; 1103 } 1104 1105 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1106 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1107 if (!ParentLoop) 1108 return; 1109 1110 for (BasicBlock *BB : BBs) 1111 ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo); 1112 } 1113 1114 bool LoopConstrainer::run() { 1115 BasicBlock *Preheader = nullptr; 1116 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1117 Preheader = OriginalLoop.getLoopPreheader(); 1118 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1119 "preconditions!"); 1120 1121 OriginalPreheader = Preheader; 1122 MainLoopPreheader = Preheader; 1123 1124 Optional<SubRanges> MaybeSR = calculateSubRanges(); 1125 if (!MaybeSR.hasValue()) { 1126 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1127 return false; 1128 } 1129 1130 SubRanges SR = MaybeSR.getValue(); 1131 bool Increasing = MainLoopStructure.IndVarIncreasing; 1132 IntegerType *IVTy = 1133 cast<IntegerType>(MainLoopStructure.IndVarNext->getType()); 1134 1135 SCEVExpander Expander(SE, "irce"); 1136 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1137 1138 // It would have been better to make `PreLoop' and `PostLoop' 1139 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1140 // constructor. 1141 ClonedLoop PreLoop, PostLoop; 1142 bool NeedsPreLoop = 1143 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1144 bool NeedsPostLoop = 1145 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1146 1147 Value *ExitPreLoopAt = nullptr; 1148 Value *ExitMainLoopAt = nullptr; 1149 const SCEVConstant *MinusOneS = 1150 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1151 1152 if (NeedsPreLoop) { 1153 const SCEV *ExitPreLoopAtSCEV = nullptr; 1154 1155 if (Increasing) 1156 ExitPreLoopAtSCEV = *SR.LowLimit; 1157 else { 1158 if (CanBeSMin(SE, *SR.HighLimit)) { 1159 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1160 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1161 << "\n"); 1162 return false; 1163 } 1164 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1165 } 1166 1167 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1168 ExitPreLoopAt->setName("exit.preloop.at"); 1169 } 1170 1171 if (NeedsPostLoop) { 1172 const SCEV *ExitMainLoopAtSCEV = nullptr; 1173 1174 if (Increasing) 1175 ExitMainLoopAtSCEV = *SR.HighLimit; 1176 else { 1177 if (CanBeSMin(SE, *SR.LowLimit)) { 1178 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1179 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1180 << "\n"); 1181 return false; 1182 } 1183 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1184 } 1185 1186 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1187 ExitMainLoopAt->setName("exit.mainloop.at"); 1188 } 1189 1190 // We clone these ahead of time so that we don't have to deal with changing 1191 // and temporarily invalid IR as we transform the loops. 1192 if (NeedsPreLoop) 1193 cloneLoop(PreLoop, "preloop"); 1194 if (NeedsPostLoop) 1195 cloneLoop(PostLoop, "postloop"); 1196 1197 RewrittenRangeInfo PreLoopRRI; 1198 1199 if (NeedsPreLoop) { 1200 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1201 PreLoop.Structure.Header); 1202 1203 MainLoopPreheader = 1204 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1205 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1206 ExitPreLoopAt, MainLoopPreheader); 1207 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1208 PreLoopRRI); 1209 } 1210 1211 BasicBlock *PostLoopPreheader = nullptr; 1212 RewrittenRangeInfo PostLoopRRI; 1213 1214 if (NeedsPostLoop) { 1215 PostLoopPreheader = 1216 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1217 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1218 ExitMainLoopAt, PostLoopPreheader); 1219 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1220 PostLoopRRI); 1221 } 1222 1223 BasicBlock *NewMainLoopPreheader = 1224 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1225 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1226 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1227 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1228 1229 // Some of the above may be nullptr, filter them out before passing to 1230 // addToParentLoopIfNeeded. 1231 auto NewBlocksEnd = 1232 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1233 1234 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1235 addToParentLoopIfNeeded(PreLoop.Blocks); 1236 addToParentLoopIfNeeded(PostLoop.Blocks); 1237 1238 return true; 1239 } 1240 1241 /// Computes and returns a range of values for the induction variable (IndVar) 1242 /// in which the range check can be safely elided. If it cannot compute such a 1243 /// range, returns None. 1244 Optional<InductiveRangeCheck::Range> 1245 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE, 1246 const SCEVAddRecExpr *IndVar, 1247 IRBuilder<> &) const { 1248 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1249 // variable, that may or may not exist as a real llvm::Value in the loop) and 1250 // this inductive range check is a range check on the "C + D * I" ("C" is 1251 // getOffset() and "D" is getScale()). We rewrite the value being range 1252 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1253 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code 1254 // can be generalized as needed. 1255 // 1256 // The actual inequalities we solve are of the form 1257 // 1258 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1259 // 1260 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions 1261 // and subtractions are twos-complement wrapping and comparisons are signed. 1262 // 1263 // Proof: 1264 // 1265 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows 1266 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows 1267 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have 1268 // overflown. 1269 // 1270 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. 1271 // Hence 0 <= (IndVar + M) < L 1272 1273 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = 1274 // 127, IndVar = 126 and L = -2 in an i8 world. 1275 1276 if (!IndVar->isAffine()) 1277 return None; 1278 1279 const SCEV *A = IndVar->getStart(); 1280 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1281 if (!B) 1282 return None; 1283 1284 const SCEV *C = getOffset(); 1285 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale()); 1286 if (D != B) 1287 return None; 1288 1289 ConstantInt *ConstD = D->getValue(); 1290 if (!(ConstD->isMinusOne() || ConstD->isOne())) 1291 return None; 1292 1293 const SCEV *M = SE.getMinusSCEV(C, A); 1294 1295 const SCEV *Begin = SE.getNegativeSCEV(M); 1296 const SCEV *End = SE.getMinusSCEV(SE.getSCEV(getLength()), M); 1297 1298 return InductiveRangeCheck::Range(Begin, End); 1299 } 1300 1301 static Optional<InductiveRangeCheck::Range> 1302 IntersectRange(ScalarEvolution &SE, 1303 const Optional<InductiveRangeCheck::Range> &R1, 1304 const InductiveRangeCheck::Range &R2, IRBuilder<> &B) { 1305 if (!R1.hasValue()) 1306 return R2; 1307 auto &R1Value = R1.getValue(); 1308 1309 // TODO: we could widen the smaller range and have this work; but for now we 1310 // bail out to keep things simple. 1311 if (R1Value.getType() != R2.getType()) 1312 return None; 1313 1314 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1315 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1316 1317 return InductiveRangeCheck::Range(NewBegin, NewEnd); 1318 } 1319 1320 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1321 if (L->getBlocks().size() >= LoopSizeCutoff) { 1322 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1323 return false; 1324 } 1325 1326 BasicBlock *Preheader = L->getLoopPreheader(); 1327 if (!Preheader) { 1328 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1329 return false; 1330 } 1331 1332 LLVMContext &Context = Preheader->getContext(); 1333 InductiveRangeCheck::AllocatorTy IRCAlloc; 1334 SmallVector<InductiveRangeCheck *, 16> RangeChecks; 1335 ScalarEvolution &SE = getAnalysis<ScalarEvolution>(); 1336 BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>(); 1337 1338 for (auto BBI : L->getBlocks()) 1339 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1340 if (InductiveRangeCheck *IRC = 1341 InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI)) 1342 RangeChecks.push_back(IRC); 1343 1344 if (RangeChecks.empty()) 1345 return false; 1346 1347 DEBUG(dbgs() << "irce: looking at loop "; L->print(dbgs()); 1348 dbgs() << "irce: loop has " << RangeChecks.size() 1349 << " inductive range checks: \n"; 1350 for (InductiveRangeCheck *IRC : RangeChecks) 1351 IRC->print(dbgs()); 1352 ); 1353 1354 const char *FailureReason = nullptr; 1355 Optional<LoopStructure> MaybeLoopStructure = 1356 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1357 if (!MaybeLoopStructure.hasValue()) { 1358 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1359 << "\n";); 1360 return false; 1361 } 1362 LoopStructure LS = MaybeLoopStructure.getValue(); 1363 bool Increasing = LS.IndVarIncreasing; 1364 const SCEV *MinusOne = 1365 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true); 1366 const SCEVAddRecExpr *IndVar = 1367 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne)); 1368 1369 Optional<InductiveRangeCheck::Range> SafeIterRange; 1370 Instruction *ExprInsertPt = Preheader->getTerminator(); 1371 1372 SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate; 1373 1374 IRBuilder<> B(ExprInsertPt); 1375 for (InductiveRangeCheck *IRC : RangeChecks) { 1376 auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B); 1377 if (Result.hasValue()) { 1378 auto MaybeSafeIterRange = 1379 IntersectRange(SE, SafeIterRange, Result.getValue(), B); 1380 if (MaybeSafeIterRange.hasValue()) { 1381 RangeChecksToEliminate.push_back(IRC); 1382 SafeIterRange = MaybeSafeIterRange.getValue(); 1383 } 1384 } 1385 } 1386 1387 if (!SafeIterRange.hasValue()) 1388 return false; 1389 1390 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS, 1391 SE, SafeIterRange.getValue()); 1392 bool Changed = LC.run(); 1393 1394 if (Changed) { 1395 auto PrintConstrainedLoopInfo = [L]() { 1396 dbgs() << "irce: in function "; 1397 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1398 dbgs() << "constrained "; 1399 L->print(dbgs()); 1400 }; 1401 1402 DEBUG(PrintConstrainedLoopInfo()); 1403 1404 if (PrintChangedLoops) 1405 PrintConstrainedLoopInfo(); 1406 1407 // Optimize away the now-redundant range checks. 1408 1409 for (InductiveRangeCheck *IRC : RangeChecksToEliminate) { 1410 ConstantInt *FoldedRangeCheck = IRC->getPassingDirection() 1411 ? ConstantInt::getTrue(Context) 1412 : ConstantInt::getFalse(Context); 1413 IRC->getBranch()->setCondition(FoldedRangeCheck); 1414 } 1415 } 1416 1417 return Changed; 1418 } 1419 1420 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1421 return new InductiveRangeCheckElimination; 1422 } 1423