1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/PriorityWorklist.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringRef.h"
54 #include "llvm/ADT/Twine.h"
55 #include "llvm/Analysis/BlockFrequencyInfo.h"
56 #include "llvm/Analysis/BranchProbabilityInfo.h"
57 #include "llvm/Analysis/LoopAnalysisManager.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/LoopPass.h"
60 #include "llvm/Analysis/PostDominators.h"
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/IRBuilder.h"
70 #include "llvm/IR/InstrTypes.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/Metadata.h"
73 #include "llvm/IR/Module.h"
74 #include "llvm/IR/PatternMatch.h"
75 #include "llvm/IR/Type.h"
76 #include "llvm/IR/Use.h"
77 #include "llvm/IR/User.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Scalar.h"
89 #include "llvm/Transforms/Utils/Cloning.h"
90 #include "llvm/Transforms/Utils/LoopSimplify.h"
91 #include "llvm/Transforms/Utils/LoopUtils.h"
92 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
93 #include "llvm/Transforms/Utils/ValueMapper.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <iterator>
97 #include <limits>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 
104 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
105                                         cl::init(64));
106 
107 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
108                                        cl::init(false));
109 
110 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
111                                       cl::init(false));
112 
113 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
114                                           cl::Hidden, cl::init(10));
115 
116 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
117                                              cl::Hidden, cl::init(false));
118 
119 static cl::opt<unsigned> MinRuntimeIterations("min-runtime-iterations",
120                                               cl::Hidden, cl::init(3));
121 
122 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
123                                                  cl::Hidden, cl::init(true));
124 
125 static cl::opt<bool> AllowNarrowLatchCondition(
126     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
127     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
128              "with narrow latch condition."));
129 
130 static const char *ClonedLoopTag = "irce.loop.clone";
131 
132 #define DEBUG_TYPE "irce"
133 
134 namespace {
135 
136 /// An inductive range check is conditional branch in a loop with
137 ///
138 ///  1. a very cold successor (i.e. the branch jumps to that successor very
139 ///     rarely)
140 ///
141 ///  and
142 ///
143 ///  2. a condition that is provably true for some contiguous range of values
144 ///     taken by the containing loop's induction variable.
145 ///
146 class InductiveRangeCheck {
147 
148   const SCEV *Begin = nullptr;
149   const SCEV *Step = nullptr;
150   const SCEV *End = nullptr;
151   Use *CheckUse = nullptr;
152   bool IsSigned = true;
153 
154   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
155                                   Value *&Index, Value *&Length,
156                                   bool &IsSigned);
157 
158   static void
159   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
160                              SmallVectorImpl<InductiveRangeCheck> &Checks,
161                              SmallPtrSetImpl<Value *> &Visited);
162 
163 public:
164   const SCEV *getBegin() const { return Begin; }
165   const SCEV *getStep() const { return Step; }
166   const SCEV *getEnd() const { return End; }
167   bool isSigned() const { return IsSigned; }
168 
169   void print(raw_ostream &OS) const {
170     OS << "InductiveRangeCheck:\n";
171     OS << "  Begin: ";
172     Begin->print(OS);
173     OS << "  Step: ";
174     Step->print(OS);
175     OS << "  End: ";
176     End->print(OS);
177     OS << "\n  CheckUse: ";
178     getCheckUse()->getUser()->print(OS);
179     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
180   }
181 
182   LLVM_DUMP_METHOD
183   void dump() {
184     print(dbgs());
185   }
186 
187   Use *getCheckUse() const { return CheckUse; }
188 
189   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
190   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
191 
192   class Range {
193     const SCEV *Begin;
194     const SCEV *End;
195 
196   public:
197     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
198       assert(Begin->getType() == End->getType() && "ill-typed range!");
199     }
200 
201     Type *getType() const { return Begin->getType(); }
202     const SCEV *getBegin() const { return Begin; }
203     const SCEV *getEnd() const { return End; }
204     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
205       if (Begin == End)
206         return true;
207       if (IsSigned)
208         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
209       else
210         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
211     }
212   };
213 
214   /// This is the value the condition of the branch needs to evaluate to for the
215   /// branch to take the hot successor (see (1) above).
216   bool getPassingDirection() { return true; }
217 
218   /// Computes a range for the induction variable (IndVar) in which the range
219   /// check is redundant and can be constant-folded away.  The induction
220   /// variable is not required to be the canonical {0,+,1} induction variable.
221   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
222                                             const SCEVAddRecExpr *IndVar,
223                                             bool IsLatchSigned) const;
224 
225   /// Parse out a set of inductive range checks from \p BI and append them to \p
226   /// Checks.
227   ///
228   /// NB! There may be conditions feeding into \p BI that aren't inductive range
229   /// checks, and hence don't end up in \p Checks.
230   static void
231   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
232                                BranchProbabilityInfo *BPI,
233                                SmallVectorImpl<InductiveRangeCheck> &Checks);
234 };
235 
236 struct LoopStructure;
237 
238 class InductiveRangeCheckElimination {
239   ScalarEvolution &SE;
240   BranchProbabilityInfo *BPI;
241   DominatorTree &DT;
242   LoopInfo &LI;
243 
244   using GetBFIFunc =
245       llvm::Optional<llvm::function_ref<llvm::BlockFrequencyInfo &()> >;
246   GetBFIFunc GetBFI;
247 
248   // Returns true if it is profitable to do a transform basing on estimation of
249   // number of iterations.
250   bool isProfitableToTransform(const Loop &L, LoopStructure &LS);
251 
252 public:
253   InductiveRangeCheckElimination(ScalarEvolution &SE,
254                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
255                                  LoopInfo &LI, GetBFIFunc GetBFI = None)
256       : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
257 
258   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
259 };
260 
261 class IRCELegacyPass : public FunctionPass {
262 public:
263   static char ID;
264 
265   IRCELegacyPass() : FunctionPass(ID) {
266     initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
267   }
268 
269   void getAnalysisUsage(AnalysisUsage &AU) const override {
270     AU.addRequired<BranchProbabilityInfoWrapperPass>();
271     AU.addRequired<DominatorTreeWrapperPass>();
272     AU.addPreserved<DominatorTreeWrapperPass>();
273     AU.addRequired<LoopInfoWrapperPass>();
274     AU.addPreserved<LoopInfoWrapperPass>();
275     AU.addRequired<ScalarEvolutionWrapperPass>();
276     AU.addPreserved<ScalarEvolutionWrapperPass>();
277   }
278 
279   bool runOnFunction(Function &F) override;
280 };
281 
282 } // end anonymous namespace
283 
284 char IRCELegacyPass::ID = 0;
285 
286 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
287                       "Inductive range check elimination", false, false)
288 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
289 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
290 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
291 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
292 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
293                     false, false)
294 
295 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
296 /// be interpreted as a range check, return false and set `Index` and `Length`
297 /// to `nullptr`.  Otherwise set `Index` to the value being range checked, and
298 /// set `Length` to the upper limit `Index` is being range checked.
299 bool
300 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
301                                          ScalarEvolution &SE, Value *&Index,
302                                          Value *&Length, bool &IsSigned) {
303   auto IsLoopInvariant = [&SE, L](Value *V) {
304     return SE.isLoopInvariant(SE.getSCEV(V), L);
305   };
306 
307   ICmpInst::Predicate Pred = ICI->getPredicate();
308   Value *LHS = ICI->getOperand(0);
309   Value *RHS = ICI->getOperand(1);
310 
311   switch (Pred) {
312   default:
313     return false;
314 
315   case ICmpInst::ICMP_SLE:
316     std::swap(LHS, RHS);
317     LLVM_FALLTHROUGH;
318   case ICmpInst::ICMP_SGE:
319     IsSigned = true;
320     if (match(RHS, m_ConstantInt<0>())) {
321       Index = LHS;
322       return true; // Lower.
323     }
324     return false;
325 
326   case ICmpInst::ICMP_SLT:
327     std::swap(LHS, RHS);
328     LLVM_FALLTHROUGH;
329   case ICmpInst::ICMP_SGT:
330     IsSigned = true;
331     if (match(RHS, m_ConstantInt<-1>())) {
332       Index = LHS;
333       return true; // Lower.
334     }
335 
336     if (IsLoopInvariant(LHS)) {
337       Index = RHS;
338       Length = LHS;
339       return true; // Upper.
340     }
341     return false;
342 
343   case ICmpInst::ICMP_ULT:
344     std::swap(LHS, RHS);
345     LLVM_FALLTHROUGH;
346   case ICmpInst::ICMP_UGT:
347     IsSigned = false;
348     if (IsLoopInvariant(LHS)) {
349       Index = RHS;
350       Length = LHS;
351       return true; // Both lower and upper.
352     }
353     return false;
354   }
355 
356   llvm_unreachable("default clause returns!");
357 }
358 
359 void InductiveRangeCheck::extractRangeChecksFromCond(
360     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
361     SmallVectorImpl<InductiveRangeCheck> &Checks,
362     SmallPtrSetImpl<Value *> &Visited) {
363   Value *Condition = ConditionUse.get();
364   if (!Visited.insert(Condition).second)
365     return;
366 
367   // TODO: Do the same for OR, XOR, NOT etc?
368   if (match(Condition, m_And(m_Value(), m_Value()))) {
369     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
370                                Checks, Visited);
371     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
372                                Checks, Visited);
373     return;
374   }
375 
376   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
377   if (!ICI)
378     return;
379 
380   Value *Length = nullptr, *Index;
381   bool IsSigned;
382   if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
383     return;
384 
385   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
386   bool IsAffineIndex =
387       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
388 
389   if (!IsAffineIndex)
390     return;
391 
392   const SCEV *End = nullptr;
393   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
394   // We can potentially do much better here.
395   if (Length)
396     End = SE.getSCEV(Length);
397   else {
398     // So far we can only reach this point for Signed range check. This may
399     // change in future. In this case we will need to pick Unsigned max for the
400     // unsigned range check.
401     unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
402     const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
403     End = SIntMax;
404   }
405 
406   InductiveRangeCheck IRC;
407   IRC.End = End;
408   IRC.Begin = IndexAddRec->getStart();
409   IRC.Step = IndexAddRec->getStepRecurrence(SE);
410   IRC.CheckUse = &ConditionUse;
411   IRC.IsSigned = IsSigned;
412   Checks.push_back(IRC);
413 }
414 
415 void InductiveRangeCheck::extractRangeChecksFromBranch(
416     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
417     SmallVectorImpl<InductiveRangeCheck> &Checks) {
418   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
419     return;
420 
421   BranchProbability LikelyTaken(15, 16);
422 
423   if (!SkipProfitabilityChecks && BPI &&
424       BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
425     return;
426 
427   SmallPtrSet<Value *, 8> Visited;
428   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
429                                                   Checks, Visited);
430 }
431 
432 // Add metadata to the loop L to disable loop optimizations. Callers need to
433 // confirm that optimizing loop L is not beneficial.
434 static void DisableAllLoopOptsOnLoop(Loop &L) {
435   // We do not care about any existing loopID related metadata for L, since we
436   // are setting all loop metadata to false.
437   LLVMContext &Context = L.getHeader()->getContext();
438   // Reserve first location for self reference to the LoopID metadata node.
439   MDNode *Dummy = MDNode::get(Context, {});
440   MDNode *DisableUnroll = MDNode::get(
441       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
442   Metadata *FalseVal =
443       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
444   MDNode *DisableVectorize = MDNode::get(
445       Context,
446       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
447   MDNode *DisableLICMVersioning = MDNode::get(
448       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
449   MDNode *DisableDistribution= MDNode::get(
450       Context,
451       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
452   MDNode *NewLoopID =
453       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
454                             DisableLICMVersioning, DisableDistribution});
455   // Set operand 0 to refer to the loop id itself.
456   NewLoopID->replaceOperandWith(0, NewLoopID);
457   L.setLoopID(NewLoopID);
458 }
459 
460 namespace {
461 
462 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
463 // except that it is more lightweight and can track the state of a loop through
464 // changing and potentially invalid IR.  This structure also formalizes the
465 // kinds of loops we can deal with -- ones that have a single latch that is also
466 // an exiting block *and* have a canonical induction variable.
467 struct LoopStructure {
468   const char *Tag = "";
469 
470   BasicBlock *Header = nullptr;
471   BasicBlock *Latch = nullptr;
472 
473   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
474   // successor is `LatchExit', the exit block of the loop.
475   BranchInst *LatchBr = nullptr;
476   BasicBlock *LatchExit = nullptr;
477   unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
478 
479   // The loop represented by this instance of LoopStructure is semantically
480   // equivalent to:
481   //
482   // intN_ty inc = IndVarIncreasing ? 1 : -1;
483   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
484   //
485   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
486   //   ... body ...
487 
488   Value *IndVarBase = nullptr;
489   Value *IndVarStart = nullptr;
490   Value *IndVarStep = nullptr;
491   Value *LoopExitAt = nullptr;
492   bool IndVarIncreasing = false;
493   bool IsSignedPredicate = true;
494 
495   LoopStructure() = default;
496 
497   template <typename M> LoopStructure map(M Map) const {
498     LoopStructure Result;
499     Result.Tag = Tag;
500     Result.Header = cast<BasicBlock>(Map(Header));
501     Result.Latch = cast<BasicBlock>(Map(Latch));
502     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
503     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
504     Result.LatchBrExitIdx = LatchBrExitIdx;
505     Result.IndVarBase = Map(IndVarBase);
506     Result.IndVarStart = Map(IndVarStart);
507     Result.IndVarStep = Map(IndVarStep);
508     Result.LoopExitAt = Map(LoopExitAt);
509     Result.IndVarIncreasing = IndVarIncreasing;
510     Result.IsSignedPredicate = IsSignedPredicate;
511     return Result;
512   }
513 
514   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, Loop &,
515                                                     const char *&);
516 };
517 
518 /// This class is used to constrain loops to run within a given iteration space.
519 /// The algorithm this class implements is given a Loop and a range [Begin,
520 /// End).  The algorithm then tries to break out a "main loop" out of the loop
521 /// it is given in a way that the "main loop" runs with the induction variable
522 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
523 /// loops to run any remaining iterations.  The pre loop runs any iterations in
524 /// which the induction variable is < Begin, and the post loop runs any
525 /// iterations in which the induction variable is >= End.
526 class LoopConstrainer {
527   // The representation of a clone of the original loop we started out with.
528   struct ClonedLoop {
529     // The cloned blocks
530     std::vector<BasicBlock *> Blocks;
531 
532     // `Map` maps values in the clonee into values in the cloned version
533     ValueToValueMapTy Map;
534 
535     // An instance of `LoopStructure` for the cloned loop
536     LoopStructure Structure;
537   };
538 
539   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
540   // more details on what these fields mean.
541   struct RewrittenRangeInfo {
542     BasicBlock *PseudoExit = nullptr;
543     BasicBlock *ExitSelector = nullptr;
544     std::vector<PHINode *> PHIValuesAtPseudoExit;
545     PHINode *IndVarEnd = nullptr;
546 
547     RewrittenRangeInfo() = default;
548   };
549 
550   // Calculated subranges we restrict the iteration space of the main loop to.
551   // See the implementation of `calculateSubRanges' for more details on how
552   // these fields are computed.  `LowLimit` is None if there is no restriction
553   // on low end of the restricted iteration space of the main loop.  `HighLimit`
554   // is None if there is no restriction on high end of the restricted iteration
555   // space of the main loop.
556 
557   struct SubRanges {
558     Optional<const SCEV *> LowLimit;
559     Optional<const SCEV *> HighLimit;
560   };
561 
562   // Compute a safe set of limits for the main loop to run in -- effectively the
563   // intersection of `Range' and the iteration space of the original loop.
564   // Return None if unable to compute the set of subranges.
565   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
566 
567   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
568   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
569   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
570   // but there is no such edge.
571   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
572 
573   // Create the appropriate loop structure needed to describe a cloned copy of
574   // `Original`.  The clone is described by `VM`.
575   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
576                                   ValueToValueMapTy &VM, bool IsSubloop);
577 
578   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
579   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
580   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
581   // `OriginalHeaderCount'.
582   //
583   // If there are iterations left to execute, control is made to jump to
584   // `ContinuationBlock', otherwise they take the normal loop exit.  The
585   // returned `RewrittenRangeInfo' object is populated as follows:
586   //
587   //  .PseudoExit is a basic block that unconditionally branches to
588   //      `ContinuationBlock'.
589   //
590   //  .ExitSelector is a basic block that decides, on exit from the loop,
591   //      whether to branch to the "true" exit or to `PseudoExit'.
592   //
593   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
594   //      for each PHINode in the loop header on taking the pseudo exit.
595   //
596   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
597   // preheader because it is made to branch to the loop header only
598   // conditionally.
599   RewrittenRangeInfo
600   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
601                           Value *ExitLoopAt,
602                           BasicBlock *ContinuationBlock) const;
603 
604   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
605   // function creates a new preheader for `LS' and returns it.
606   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
607                               const char *Tag) const;
608 
609   // `ContinuationBlockAndPreheader' was the continuation block for some call to
610   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
611   // This function rewrites the PHI nodes in `LS.Header' to start with the
612   // correct value.
613   void rewriteIncomingValuesForPHIs(
614       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
615       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
616 
617   // Even though we do not preserve any passes at this time, we at least need to
618   // keep the parent loop structure consistent.  The `LPPassManager' seems to
619   // verify this after running a loop pass.  This function adds the list of
620   // blocks denoted by BBs to this loops parent loop if required.
621   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
622 
623   // Some global state.
624   Function &F;
625   LLVMContext &Ctx;
626   ScalarEvolution &SE;
627   DominatorTree &DT;
628   LoopInfo &LI;
629   function_ref<void(Loop *, bool)> LPMAddNewLoop;
630 
631   // Information about the original loop we started out with.
632   Loop &OriginalLoop;
633 
634   const SCEV *LatchTakenCount = nullptr;
635   BasicBlock *OriginalPreheader = nullptr;
636 
637   // The preheader of the main loop.  This may or may not be different from
638   // `OriginalPreheader'.
639   BasicBlock *MainLoopPreheader = nullptr;
640 
641   // The range we need to run the main loop in.
642   InductiveRangeCheck::Range Range;
643 
644   // The structure of the main loop (see comment at the beginning of this class
645   // for a definition)
646   LoopStructure MainLoopStructure;
647 
648 public:
649   LoopConstrainer(Loop &L, LoopInfo &LI,
650                   function_ref<void(Loop *, bool)> LPMAddNewLoop,
651                   const LoopStructure &LS, ScalarEvolution &SE,
652                   DominatorTree &DT, InductiveRangeCheck::Range R)
653       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
654         SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
655         Range(R), MainLoopStructure(LS) {}
656 
657   // Entry point for the algorithm.  Returns true on success.
658   bool run();
659 };
660 
661 } // end anonymous namespace
662 
663 /// Given a loop with an deccreasing induction variable, is it possible to
664 /// safely calculate the bounds of a new loop using the given Predicate.
665 static bool isSafeDecreasingBound(const SCEV *Start,
666                                   const SCEV *BoundSCEV, const SCEV *Step,
667                                   ICmpInst::Predicate Pred,
668                                   unsigned LatchBrExitIdx,
669                                   Loop *L, ScalarEvolution &SE) {
670   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
671       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
672     return false;
673 
674   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
675     return false;
676 
677   assert(SE.isKnownNegative(Step) && "expecting negative step");
678 
679   LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
680   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
681   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
682   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
683   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
684                     << "\n");
685   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
686 
687   bool IsSigned = ICmpInst::isSigned(Pred);
688   // The predicate that we need to check that the induction variable lies
689   // within bounds.
690   ICmpInst::Predicate BoundPred =
691     IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
692 
693   if (LatchBrExitIdx == 1)
694     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
695 
696   assert(LatchBrExitIdx == 0 &&
697          "LatchBrExitIdx should be either 0 or 1");
698 
699   const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
700   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
701   APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
702     APInt::getMinValue(BitWidth);
703   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
704 
705   const SCEV *MinusOne =
706     SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
707 
708   return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
709          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
710 
711 }
712 
713 /// Given a loop with an increasing induction variable, is it possible to
714 /// safely calculate the bounds of a new loop using the given Predicate.
715 static bool isSafeIncreasingBound(const SCEV *Start,
716                                   const SCEV *BoundSCEV, const SCEV *Step,
717                                   ICmpInst::Predicate Pred,
718                                   unsigned LatchBrExitIdx,
719                                   Loop *L, ScalarEvolution &SE) {
720   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
721       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
722     return false;
723 
724   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
725     return false;
726 
727   LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
728   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
729   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
730   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
731   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
732                     << "\n");
733   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
734 
735   bool IsSigned = ICmpInst::isSigned(Pred);
736   // The predicate that we need to check that the induction variable lies
737   // within bounds.
738   ICmpInst::Predicate BoundPred =
739       IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
740 
741   if (LatchBrExitIdx == 1)
742     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
743 
744   assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
745 
746   const SCEV *StepMinusOne =
747     SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
748   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
749   APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
750     APInt::getMaxValue(BitWidth);
751   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
752 
753   return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
754                                       SE.getAddExpr(BoundSCEV, Step)) &&
755           SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
756 }
757 
758 Optional<LoopStructure>
759 LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L,
760                                   const char *&FailureReason) {
761   if (!L.isLoopSimplifyForm()) {
762     FailureReason = "loop not in LoopSimplify form";
763     return None;
764   }
765 
766   BasicBlock *Latch = L.getLoopLatch();
767   assert(Latch && "Simplified loops only have one latch!");
768 
769   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
770     FailureReason = "loop has already been cloned";
771     return None;
772   }
773 
774   if (!L.isLoopExiting(Latch)) {
775     FailureReason = "no loop latch";
776     return None;
777   }
778 
779   BasicBlock *Header = L.getHeader();
780   BasicBlock *Preheader = L.getLoopPreheader();
781   if (!Preheader) {
782     FailureReason = "no preheader";
783     return None;
784   }
785 
786   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
787   if (!LatchBr || LatchBr->isUnconditional()) {
788     FailureReason = "latch terminator not conditional branch";
789     return None;
790   }
791 
792   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
793 
794   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
795   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
796     FailureReason = "latch terminator branch not conditional on integral icmp";
797     return None;
798   }
799 
800   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
801   if (isa<SCEVCouldNotCompute>(LatchCount)) {
802     FailureReason = "could not compute latch count";
803     return None;
804   }
805 
806   ICmpInst::Predicate Pred = ICI->getPredicate();
807   Value *LeftValue = ICI->getOperand(0);
808   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
809   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
810 
811   Value *RightValue = ICI->getOperand(1);
812   const SCEV *RightSCEV = SE.getSCEV(RightValue);
813 
814   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
815   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
816     if (isa<SCEVAddRecExpr>(RightSCEV)) {
817       std::swap(LeftSCEV, RightSCEV);
818       std::swap(LeftValue, RightValue);
819       Pred = ICmpInst::getSwappedPredicate(Pred);
820     } else {
821       FailureReason = "no add recurrences in the icmp";
822       return None;
823     }
824   }
825 
826   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
827     if (AR->getNoWrapFlags(SCEV::FlagNSW))
828       return true;
829 
830     IntegerType *Ty = cast<IntegerType>(AR->getType());
831     IntegerType *WideTy =
832         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
833 
834     const SCEVAddRecExpr *ExtendAfterOp =
835         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
836     if (ExtendAfterOp) {
837       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
838       const SCEV *ExtendedStep =
839           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
840 
841       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
842                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
843 
844       if (NoSignedWrap)
845         return true;
846     }
847 
848     // We may have proved this when computing the sign extension above.
849     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
850   };
851 
852   // `ICI` is interpreted as taking the backedge if the *next* value of the
853   // induction variable satisfies some constraint.
854 
855   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
856   if (!IndVarBase->isAffine()) {
857     FailureReason = "LHS in icmp not induction variable";
858     return None;
859   }
860   const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
861   if (!isa<SCEVConstant>(StepRec)) {
862     FailureReason = "LHS in icmp not induction variable";
863     return None;
864   }
865   ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
866 
867   if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
868     FailureReason = "LHS in icmp needs nsw for equality predicates";
869     return None;
870   }
871 
872   assert(!StepCI->isZero() && "Zero step?");
873   bool IsIncreasing = !StepCI->isNegative();
874   bool IsSignedPredicate;
875   const SCEV *StartNext = IndVarBase->getStart();
876   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
877   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
878   const SCEV *Step = SE.getSCEV(StepCI);
879 
880   const SCEV *FixedRightSCEV = nullptr;
881 
882   // If RightValue resides within loop (but still being loop invariant),
883   // regenerate it as preheader.
884   if (auto *I = dyn_cast<Instruction>(RightValue))
885     if (L.contains(I->getParent()))
886       FixedRightSCEV = RightSCEV;
887 
888   if (IsIncreasing) {
889     bool DecreasedRightValueByOne = false;
890     if (StepCI->isOne()) {
891       // Try to turn eq/ne predicates to those we can work with.
892       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
893         // while (++i != len) {         while (++i < len) {
894         //   ...                 --->     ...
895         // }                            }
896         // If both parts are known non-negative, it is profitable to use
897         // unsigned comparison in increasing loop. This allows us to make the
898         // comparison check against "RightSCEV + 1" more optimistic.
899         if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
900             isKnownNonNegativeInLoop(RightSCEV, &L, SE))
901           Pred = ICmpInst::ICMP_ULT;
902         else
903           Pred = ICmpInst::ICMP_SLT;
904       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
905         // while (true) {               while (true) {
906         //   if (++i == len)     --->     if (++i > len - 1)
907         //     break;                       break;
908         //   ...                          ...
909         // }                            }
910         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
911             cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
912           Pred = ICmpInst::ICMP_UGT;
913           RightSCEV = SE.getMinusSCEV(RightSCEV,
914                                       SE.getOne(RightSCEV->getType()));
915           DecreasedRightValueByOne = true;
916         } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
917           Pred = ICmpInst::ICMP_SGT;
918           RightSCEV = SE.getMinusSCEV(RightSCEV,
919                                       SE.getOne(RightSCEV->getType()));
920           DecreasedRightValueByOne = true;
921         }
922       }
923     }
924 
925     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
926     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
927     bool FoundExpectedPred =
928         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
929 
930     if (!FoundExpectedPred) {
931       FailureReason = "expected icmp slt semantically, found something else";
932       return None;
933     }
934 
935     IsSignedPredicate = ICmpInst::isSigned(Pred);
936     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
937       FailureReason = "unsigned latch conditions are explicitly prohibited";
938       return None;
939     }
940 
941     if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
942                                LatchBrExitIdx, &L, SE)) {
943       FailureReason = "Unsafe loop bounds";
944       return None;
945     }
946     if (LatchBrExitIdx == 0) {
947       // We need to increase the right value unless we have already decreased
948       // it virtually when we replaced EQ with SGT.
949       if (!DecreasedRightValueByOne)
950         FixedRightSCEV =
951             SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
952     } else {
953       assert(!DecreasedRightValueByOne &&
954              "Right value can be decreased only for LatchBrExitIdx == 0!");
955     }
956   } else {
957     bool IncreasedRightValueByOne = false;
958     if (StepCI->isMinusOne()) {
959       // Try to turn eq/ne predicates to those we can work with.
960       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
961         // while (--i != len) {         while (--i > len) {
962         //   ...                 --->     ...
963         // }                            }
964         // We intentionally don't turn the predicate into UGT even if we know
965         // that both operands are non-negative, because it will only pessimize
966         // our check against "RightSCEV - 1".
967         Pred = ICmpInst::ICMP_SGT;
968       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
969         // while (true) {               while (true) {
970         //   if (--i == len)     --->     if (--i < len + 1)
971         //     break;                       break;
972         //   ...                          ...
973         // }                            }
974         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
975             cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
976           Pred = ICmpInst::ICMP_ULT;
977           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
978           IncreasedRightValueByOne = true;
979         } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
980           Pred = ICmpInst::ICMP_SLT;
981           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
982           IncreasedRightValueByOne = true;
983         }
984       }
985     }
986 
987     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
988     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
989 
990     bool FoundExpectedPred =
991         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
992 
993     if (!FoundExpectedPred) {
994       FailureReason = "expected icmp sgt semantically, found something else";
995       return None;
996     }
997 
998     IsSignedPredicate =
999         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
1000 
1001     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
1002       FailureReason = "unsigned latch conditions are explicitly prohibited";
1003       return None;
1004     }
1005 
1006     if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1007                                LatchBrExitIdx, &L, SE)) {
1008       FailureReason = "Unsafe bounds";
1009       return None;
1010     }
1011 
1012     if (LatchBrExitIdx == 0) {
1013       // We need to decrease the right value unless we have already increased
1014       // it virtually when we replaced EQ with SLT.
1015       if (!IncreasedRightValueByOne)
1016         FixedRightSCEV =
1017             SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1018     } else {
1019       assert(!IncreasedRightValueByOne &&
1020              "Right value can be increased only for LatchBrExitIdx == 0!");
1021     }
1022   }
1023   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1024 
1025   assert(SE.getLoopDisposition(LatchCount, &L) ==
1026              ScalarEvolution::LoopInvariant &&
1027          "loop variant exit count doesn't make sense!");
1028 
1029   assert(!L.contains(LatchExit) && "expected an exit block!");
1030   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1031   SCEVExpander Expander(SE, DL, "irce");
1032   Instruction *Ins = Preheader->getTerminator();
1033 
1034   if (FixedRightSCEV)
1035     RightValue =
1036         Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1037 
1038   Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1039   IndVarStartV->setName("indvar.start");
1040 
1041   LoopStructure Result;
1042 
1043   Result.Tag = "main";
1044   Result.Header = Header;
1045   Result.Latch = Latch;
1046   Result.LatchBr = LatchBr;
1047   Result.LatchExit = LatchExit;
1048   Result.LatchBrExitIdx = LatchBrExitIdx;
1049   Result.IndVarStart = IndVarStartV;
1050   Result.IndVarStep = StepCI;
1051   Result.IndVarBase = LeftValue;
1052   Result.IndVarIncreasing = IsIncreasing;
1053   Result.LoopExitAt = RightValue;
1054   Result.IsSignedPredicate = IsSignedPredicate;
1055 
1056   FailureReason = nullptr;
1057 
1058   return Result;
1059 }
1060 
1061 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1062 /// signed or unsigned extension of \p S to type \p Ty.
1063 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1064                                 bool Signed) {
1065   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1066 }
1067 
1068 Optional<LoopConstrainer::SubRanges>
1069 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1070   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1071 
1072   auto *RTy = cast<IntegerType>(Range.getType());
1073 
1074   // We only support wide range checks and narrow latches.
1075   if (!AllowNarrowLatchCondition && RTy != Ty)
1076     return None;
1077   if (RTy->getBitWidth() < Ty->getBitWidth())
1078     return None;
1079 
1080   LoopConstrainer::SubRanges Result;
1081 
1082   // I think we can be more aggressive here and make this nuw / nsw if the
1083   // addition that feeds into the icmp for the latch's terminating branch is nuw
1084   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1085   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1086                                    RTy, SE, IsSignedPredicate);
1087   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1088                                  SE, IsSignedPredicate);
1089 
1090   bool Increasing = MainLoopStructure.IndVarIncreasing;
1091 
1092   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1093   // [Smallest, GreatestSeen] is the range of values the induction variable
1094   // takes.
1095 
1096   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1097 
1098   const SCEV *One = SE.getOne(RTy);
1099   if (Increasing) {
1100     Smallest = Start;
1101     Greatest = End;
1102     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1103     GreatestSeen = SE.getMinusSCEV(End, One);
1104   } else {
1105     // These two computations may sign-overflow.  Here is why that is okay:
1106     //
1107     // We know that the induction variable does not sign-overflow on any
1108     // iteration except the last one, and it starts at `Start` and ends at
1109     // `End`, decrementing by one every time.
1110     //
1111     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1112     //    induction variable is decreasing we know that that the smallest value
1113     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1114     //
1115     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1116     //    that case, `Clamp` will always return `Smallest` and
1117     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1118     //    will be an empty range.  Returning an empty range is always safe.
1119 
1120     Smallest = SE.getAddExpr(End, One);
1121     Greatest = SE.getAddExpr(Start, One);
1122     GreatestSeen = Start;
1123   }
1124 
1125   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1126     return IsSignedPredicate
1127                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1128                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1129   };
1130 
1131   // In some cases we can prove that we don't need a pre or post loop.
1132   ICmpInst::Predicate PredLE =
1133       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1134   ICmpInst::Predicate PredLT =
1135       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1136 
1137   bool ProvablyNoPreloop =
1138       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1139   if (!ProvablyNoPreloop)
1140     Result.LowLimit = Clamp(Range.getBegin());
1141 
1142   bool ProvablyNoPostLoop =
1143       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1144   if (!ProvablyNoPostLoop)
1145     Result.HighLimit = Clamp(Range.getEnd());
1146 
1147   return Result;
1148 }
1149 
1150 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1151                                 const char *Tag) const {
1152   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1153     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1154     Result.Blocks.push_back(Clone);
1155     Result.Map[BB] = Clone;
1156   }
1157 
1158   auto GetClonedValue = [&Result](Value *V) {
1159     assert(V && "null values not in domain!");
1160     auto It = Result.Map.find(V);
1161     if (It == Result.Map.end())
1162       return V;
1163     return static_cast<Value *>(It->second);
1164   };
1165 
1166   auto *ClonedLatch =
1167       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1168   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1169                                             MDNode::get(Ctx, {}));
1170 
1171   Result.Structure = MainLoopStructure.map(GetClonedValue);
1172   Result.Structure.Tag = Tag;
1173 
1174   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1175     BasicBlock *ClonedBB = Result.Blocks[i];
1176     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1177 
1178     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1179 
1180     for (Instruction &I : *ClonedBB)
1181       RemapInstruction(&I, Result.Map,
1182                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1183 
1184     // Exit blocks will now have one more predecessor and their PHI nodes need
1185     // to be edited to reflect that.  No phi nodes need to be introduced because
1186     // the loop is in LCSSA.
1187 
1188     for (auto *SBB : successors(OriginalBB)) {
1189       if (OriginalLoop.contains(SBB))
1190         continue; // not an exit block
1191 
1192       for (PHINode &PN : SBB->phis()) {
1193         Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1194         PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1195       }
1196     }
1197   }
1198 }
1199 
1200 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1201     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1202     BasicBlock *ContinuationBlock) const {
1203   // We start with a loop with a single latch:
1204   //
1205   //    +--------------------+
1206   //    |                    |
1207   //    |     preheader      |
1208   //    |                    |
1209   //    +--------+-----------+
1210   //             |      ----------------\
1211   //             |     /                |
1212   //    +--------v----v------+          |
1213   //    |                    |          |
1214   //    |      header        |          |
1215   //    |                    |          |
1216   //    +--------------------+          |
1217   //                                    |
1218   //            .....                   |
1219   //                                    |
1220   //    +--------------------+          |
1221   //    |                    |          |
1222   //    |       latch        >----------/
1223   //    |                    |
1224   //    +-------v------------+
1225   //            |
1226   //            |
1227   //            |   +--------------------+
1228   //            |   |                    |
1229   //            +--->   original exit    |
1230   //                |                    |
1231   //                +--------------------+
1232   //
1233   // We change the control flow to look like
1234   //
1235   //
1236   //    +--------------------+
1237   //    |                    |
1238   //    |     preheader      >-------------------------+
1239   //    |                    |                         |
1240   //    +--------v-----------+                         |
1241   //             |    /-------------+                  |
1242   //             |   /              |                  |
1243   //    +--------v--v--------+      |                  |
1244   //    |                    |      |                  |
1245   //    |      header        |      |   +--------+     |
1246   //    |                    |      |   |        |     |
1247   //    +--------------------+      |   |  +-----v-----v-----------+
1248   //                                |   |  |                       |
1249   //                                |   |  |     .pseudo.exit      |
1250   //                                |   |  |                       |
1251   //                                |   |  +-----------v-----------+
1252   //                                |   |              |
1253   //            .....               |   |              |
1254   //                                |   |     +--------v-------------+
1255   //    +--------------------+      |   |     |                      |
1256   //    |                    |      |   |     |   ContinuationBlock  |
1257   //    |       latch        >------+   |     |                      |
1258   //    |                    |          |     +----------------------+
1259   //    +---------v----------+          |
1260   //              |                     |
1261   //              |                     |
1262   //              |     +---------------^-----+
1263   //              |     |                     |
1264   //              +----->    .exit.selector   |
1265   //                    |                     |
1266   //                    +----------v----------+
1267   //                               |
1268   //     +--------------------+    |
1269   //     |                    |    |
1270   //     |   original exit    <----+
1271   //     |                    |
1272   //     +--------------------+
1273 
1274   RewrittenRangeInfo RRI;
1275 
1276   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1277   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1278                                         &F, BBInsertLocation);
1279   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1280                                       BBInsertLocation);
1281 
1282   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1283   bool Increasing = LS.IndVarIncreasing;
1284   bool IsSignedPredicate = LS.IsSignedPredicate;
1285 
1286   IRBuilder<> B(PreheaderJump);
1287   auto *RangeTy = Range.getBegin()->getType();
1288   auto NoopOrExt = [&](Value *V) {
1289     if (V->getType() == RangeTy)
1290       return V;
1291     return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1292                              : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1293   };
1294 
1295   // EnterLoopCond - is it okay to start executing this `LS'?
1296   Value *EnterLoopCond = nullptr;
1297   auto Pred =
1298       Increasing
1299           ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1300           : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1301   Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1302   EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1303 
1304   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1305   PreheaderJump->eraseFromParent();
1306 
1307   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1308   B.SetInsertPoint(LS.LatchBr);
1309   Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1310   Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1311 
1312   Value *CondForBranch = LS.LatchBrExitIdx == 1
1313                              ? TakeBackedgeLoopCond
1314                              : B.CreateNot(TakeBackedgeLoopCond);
1315 
1316   LS.LatchBr->setCondition(CondForBranch);
1317 
1318   B.SetInsertPoint(RRI.ExitSelector);
1319 
1320   // IterationsLeft - are there any more iterations left, given the original
1321   // upper bound on the induction variable?  If not, we branch to the "real"
1322   // exit.
1323   Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1324   Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1325   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1326 
1327   BranchInst *BranchToContinuation =
1328       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1329 
1330   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1331   // each of the PHI nodes in the loop header.  This feeds into the initial
1332   // value of the same PHI nodes if/when we continue execution.
1333   for (PHINode &PN : LS.Header->phis()) {
1334     PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1335                                       BranchToContinuation);
1336 
1337     NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1338     NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1339                         RRI.ExitSelector);
1340     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1341   }
1342 
1343   RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1344                                   BranchToContinuation);
1345   RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1346   RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1347 
1348   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1349   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1350   LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1351 
1352   return RRI;
1353 }
1354 
1355 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1356     LoopStructure &LS, BasicBlock *ContinuationBlock,
1357     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1358   unsigned PHIIndex = 0;
1359   for (PHINode &PN : LS.Header->phis())
1360     PN.setIncomingValueForBlock(ContinuationBlock,
1361                                 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1362 
1363   LS.IndVarStart = RRI.IndVarEnd;
1364 }
1365 
1366 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1367                                              BasicBlock *OldPreheader,
1368                                              const char *Tag) const {
1369   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1370   BranchInst::Create(LS.Header, Preheader);
1371 
1372   LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1373 
1374   return Preheader;
1375 }
1376 
1377 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1378   Loop *ParentLoop = OriginalLoop.getParentLoop();
1379   if (!ParentLoop)
1380     return;
1381 
1382   for (BasicBlock *BB : BBs)
1383     ParentLoop->addBasicBlockToLoop(BB, LI);
1384 }
1385 
1386 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1387                                                  ValueToValueMapTy &VM,
1388                                                  bool IsSubloop) {
1389   Loop &New = *LI.AllocateLoop();
1390   if (Parent)
1391     Parent->addChildLoop(&New);
1392   else
1393     LI.addTopLevelLoop(&New);
1394   LPMAddNewLoop(&New, IsSubloop);
1395 
1396   // Add all of the blocks in Original to the new loop.
1397   for (auto *BB : Original->blocks())
1398     if (LI.getLoopFor(BB) == Original)
1399       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1400 
1401   // Add all of the subloops to the new loop.
1402   for (Loop *SubLoop : *Original)
1403     createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1404 
1405   return &New;
1406 }
1407 
1408 bool LoopConstrainer::run() {
1409   BasicBlock *Preheader = nullptr;
1410   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1411   Preheader = OriginalLoop.getLoopPreheader();
1412   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1413          "preconditions!");
1414 
1415   OriginalPreheader = Preheader;
1416   MainLoopPreheader = Preheader;
1417 
1418   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1419   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1420   if (!MaybeSR.hasValue()) {
1421     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1422     return false;
1423   }
1424 
1425   SubRanges SR = MaybeSR.getValue();
1426   bool Increasing = MainLoopStructure.IndVarIncreasing;
1427   IntegerType *IVTy =
1428       cast<IntegerType>(Range.getBegin()->getType());
1429 
1430   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1431   Instruction *InsertPt = OriginalPreheader->getTerminator();
1432 
1433   // It would have been better to make `PreLoop' and `PostLoop'
1434   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1435   // constructor.
1436   ClonedLoop PreLoop, PostLoop;
1437   bool NeedsPreLoop =
1438       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1439   bool NeedsPostLoop =
1440       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1441 
1442   Value *ExitPreLoopAt = nullptr;
1443   Value *ExitMainLoopAt = nullptr;
1444   const SCEVConstant *MinusOneS =
1445       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1446 
1447   if (NeedsPreLoop) {
1448     const SCEV *ExitPreLoopAtSCEV = nullptr;
1449 
1450     if (Increasing)
1451       ExitPreLoopAtSCEV = *SR.LowLimit;
1452     else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1453                                IsSignedPredicate))
1454       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1455     else {
1456       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1457                         << "preloop exit limit.  HighLimit = "
1458                         << *(*SR.HighLimit) << "\n");
1459       return false;
1460     }
1461 
1462     if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1463       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1464                         << " preloop exit limit " << *ExitPreLoopAtSCEV
1465                         << " at block " << InsertPt->getParent()->getName()
1466                         << "\n");
1467       return false;
1468     }
1469 
1470     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1471     ExitPreLoopAt->setName("exit.preloop.at");
1472   }
1473 
1474   if (NeedsPostLoop) {
1475     const SCEV *ExitMainLoopAtSCEV = nullptr;
1476 
1477     if (Increasing)
1478       ExitMainLoopAtSCEV = *SR.HighLimit;
1479     else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1480                                IsSignedPredicate))
1481       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1482     else {
1483       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1484                         << "mainloop exit limit.  LowLimit = "
1485                         << *(*SR.LowLimit) << "\n");
1486       return false;
1487     }
1488 
1489     if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1490       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1491                         << " main loop exit limit " << *ExitMainLoopAtSCEV
1492                         << " at block " << InsertPt->getParent()->getName()
1493                         << "\n");
1494       return false;
1495     }
1496 
1497     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1498     ExitMainLoopAt->setName("exit.mainloop.at");
1499   }
1500 
1501   // We clone these ahead of time so that we don't have to deal with changing
1502   // and temporarily invalid IR as we transform the loops.
1503   if (NeedsPreLoop)
1504     cloneLoop(PreLoop, "preloop");
1505   if (NeedsPostLoop)
1506     cloneLoop(PostLoop, "postloop");
1507 
1508   RewrittenRangeInfo PreLoopRRI;
1509 
1510   if (NeedsPreLoop) {
1511     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1512                                                   PreLoop.Structure.Header);
1513 
1514     MainLoopPreheader =
1515         createPreheader(MainLoopStructure, Preheader, "mainloop");
1516     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1517                                          ExitPreLoopAt, MainLoopPreheader);
1518     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1519                                  PreLoopRRI);
1520   }
1521 
1522   BasicBlock *PostLoopPreheader = nullptr;
1523   RewrittenRangeInfo PostLoopRRI;
1524 
1525   if (NeedsPostLoop) {
1526     PostLoopPreheader =
1527         createPreheader(PostLoop.Structure, Preheader, "postloop");
1528     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1529                                           ExitMainLoopAt, PostLoopPreheader);
1530     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1531                                  PostLoopRRI);
1532   }
1533 
1534   BasicBlock *NewMainLoopPreheader =
1535       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1536   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1537                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1538                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1539 
1540   // Some of the above may be nullptr, filter them out before passing to
1541   // addToParentLoopIfNeeded.
1542   auto NewBlocksEnd =
1543       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1544 
1545   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1546 
1547   DT.recalculate(F);
1548 
1549   // We need to first add all the pre and post loop blocks into the loop
1550   // structures (as part of createClonedLoopStructure), and then update the
1551   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1552   // LI when LoopSimplifyForm is generated.
1553   Loop *PreL = nullptr, *PostL = nullptr;
1554   if (!PreLoop.Blocks.empty()) {
1555     PreL = createClonedLoopStructure(&OriginalLoop,
1556                                      OriginalLoop.getParentLoop(), PreLoop.Map,
1557                                      /* IsSubLoop */ false);
1558   }
1559 
1560   if (!PostLoop.Blocks.empty()) {
1561     PostL =
1562         createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1563                                   PostLoop.Map, /* IsSubLoop */ false);
1564   }
1565 
1566   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1567   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1568     formLCSSARecursively(*L, DT, &LI, &SE);
1569     simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1570     // Pre/post loops are slow paths, we do not need to perform any loop
1571     // optimizations on them.
1572     if (!IsOriginalLoop)
1573       DisableAllLoopOptsOnLoop(*L);
1574   };
1575   if (PreL)
1576     CanonicalizeLoop(PreL, false);
1577   if (PostL)
1578     CanonicalizeLoop(PostL, false);
1579   CanonicalizeLoop(&OriginalLoop, true);
1580 
1581   return true;
1582 }
1583 
1584 /// Computes and returns a range of values for the induction variable (IndVar)
1585 /// in which the range check can be safely elided.  If it cannot compute such a
1586 /// range, returns None.
1587 Optional<InductiveRangeCheck::Range>
1588 InductiveRangeCheck::computeSafeIterationSpace(
1589     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1590     bool IsLatchSigned) const {
1591   // We can deal when types of latch check and range checks don't match in case
1592   // if latch check is more narrow.
1593   auto *IVType = cast<IntegerType>(IndVar->getType());
1594   auto *RCType = cast<IntegerType>(getBegin()->getType());
1595   if (IVType->getBitWidth() > RCType->getBitWidth())
1596     return None;
1597   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1598   // variable, that may or may not exist as a real llvm::Value in the loop) and
1599   // this inductive range check is a range check on the "C + D * I" ("C" is
1600   // getBegin() and "D" is getStep()).  We rewrite the value being range
1601   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1602   //
1603   // The actual inequalities we solve are of the form
1604   //
1605   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1606   //
1607   // Here L stands for upper limit of the safe iteration space.
1608   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1609   // overflows when calculating (0 - M) and (L - M) we, depending on type of
1610   // IV's iteration space, limit the calculations by borders of the iteration
1611   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1612   // If we figured out that "anything greater than (-M) is safe", we strengthen
1613   // this to "everything greater than 0 is safe", assuming that values between
1614   // -M and 0 just do not exist in unsigned iteration space, and we don't want
1615   // to deal with overflown values.
1616 
1617   if (!IndVar->isAffine())
1618     return None;
1619 
1620   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1621   const SCEVConstant *B = dyn_cast<SCEVConstant>(
1622       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1623   if (!B)
1624     return None;
1625   assert(!B->isZero() && "Recurrence with zero step?");
1626 
1627   const SCEV *C = getBegin();
1628   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1629   if (D != B)
1630     return None;
1631 
1632   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1633   unsigned BitWidth = RCType->getBitWidth();
1634   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1635 
1636   // Subtract Y from X so that it does not go through border of the IV
1637   // iteration space. Mathematically, it is equivalent to:
1638   //
1639   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
1640   //
1641   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1642   // any width of bit grid). But after we take min/max, the result is
1643   // guaranteed to be within [INT_MIN, INT_MAX].
1644   //
1645   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1646   // values, depending on type of latch condition that defines IV iteration
1647   // space.
1648   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1649     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1650     // This is required to ensure that SINT_MAX - X does not overflow signed and
1651     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1652     // restriction and make it work for negative X either?
1653     if (IsLatchSigned) {
1654       // X is a number from signed range, Y is interpreted as signed.
1655       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1656       // thing we should care about is that we didn't cross SINT_MAX.
1657       // So, if Y is positive, we subtract Y safely.
1658       //   Rule 1: Y > 0 ---> Y.
1659       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1660       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1661       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1662       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1663       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1664       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1665       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1666                              SCEV::FlagNSW);
1667     } else
1668       // X is a number from unsigned range, Y is interpreted as signed.
1669       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1670       // thing we should care about is that we didn't cross zero.
1671       // So, if Y is negative, we subtract Y safely.
1672       //   Rule 1: Y <s 0 ---> Y.
1673       // If 0 <= Y <= X, we subtract Y safely.
1674       //   Rule 2: Y <=s X ---> Y.
1675       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1676       //   Rule 3: Y >s X ---> X.
1677       // It gives us smin(X, Y) to subtract in all cases.
1678       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1679   };
1680   const SCEV *M = SE.getMinusSCEV(C, A);
1681   const SCEV *Zero = SE.getZero(M->getType());
1682 
1683   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1684   auto SCEVCheckNonNegative = [&](const SCEV *X) {
1685     const Loop *L = IndVar->getLoop();
1686     const SCEV *One = SE.getOne(X->getType());
1687     // Can we trivially prove that X is a non-negative or negative value?
1688     if (isKnownNonNegativeInLoop(X, L, SE))
1689       return One;
1690     else if (isKnownNegativeInLoop(X, L, SE))
1691       return Zero;
1692     // If not, we will have to figure it out during the execution.
1693     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1694     const SCEV *NegOne = SE.getNegativeSCEV(One);
1695     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1696   };
1697   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1698   // X is non-negative (in sense of a signed value). We need to re-implement
1699   // this function in a way that it will correctly handle negative X as well.
1700   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1701   // end up with a negative X and produce wrong results. So currently we ensure
1702   // that if getEnd() is negative then both ends of the safe range are zero.
1703   // Note that this may pessimize elimination of unsigned range checks against
1704   // negative values.
1705   const SCEV *REnd = getEnd();
1706   const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1707 
1708   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1709   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1710   return InductiveRangeCheck::Range(Begin, End);
1711 }
1712 
1713 static Optional<InductiveRangeCheck::Range>
1714 IntersectSignedRange(ScalarEvolution &SE,
1715                      const Optional<InductiveRangeCheck::Range> &R1,
1716                      const InductiveRangeCheck::Range &R2) {
1717   if (R2.isEmpty(SE, /* IsSigned */ true))
1718     return None;
1719   if (!R1.hasValue())
1720     return R2;
1721   auto &R1Value = R1.getValue();
1722   // We never return empty ranges from this function, and R1 is supposed to be
1723   // a result of intersection. Thus, R1 is never empty.
1724   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1725          "We should never have empty R1!");
1726 
1727   // TODO: we could widen the smaller range and have this work; but for now we
1728   // bail out to keep things simple.
1729   if (R1Value.getType() != R2.getType())
1730     return None;
1731 
1732   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1733   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1734 
1735   // If the resulting range is empty, just return None.
1736   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1737   if (Ret.isEmpty(SE, /* IsSigned */ true))
1738     return None;
1739   return Ret;
1740 }
1741 
1742 static Optional<InductiveRangeCheck::Range>
1743 IntersectUnsignedRange(ScalarEvolution &SE,
1744                        const Optional<InductiveRangeCheck::Range> &R1,
1745                        const InductiveRangeCheck::Range &R2) {
1746   if (R2.isEmpty(SE, /* IsSigned */ false))
1747     return None;
1748   if (!R1.hasValue())
1749     return R2;
1750   auto &R1Value = R1.getValue();
1751   // We never return empty ranges from this function, and R1 is supposed to be
1752   // a result of intersection. Thus, R1 is never empty.
1753   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1754          "We should never have empty R1!");
1755 
1756   // TODO: we could widen the smaller range and have this work; but for now we
1757   // bail out to keep things simple.
1758   if (R1Value.getType() != R2.getType())
1759     return None;
1760 
1761   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1762   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1763 
1764   // If the resulting range is empty, just return None.
1765   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1766   if (Ret.isEmpty(SE, /* IsSigned */ false))
1767     return None;
1768   return Ret;
1769 }
1770 
1771 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1772   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1773   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1774   auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
1775   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1776 
1777   // Get BFI analysis result on demand. Please note that modification of
1778   // CFG invalidates this analysis and we should handle it.
1779   auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
1780     return AM.getResult<BlockFrequencyAnalysis>(F);
1781   };
1782   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
1783 
1784   bool Changed = false;
1785   {
1786     bool CFGChanged = false;
1787     for (const auto &L : LI) {
1788       CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1789                                  /*PreserveLCSSA=*/false);
1790       Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1791     }
1792     Changed |= CFGChanged;
1793 
1794     if (CFGChanged && !SkipProfitabilityChecks)
1795       AM.invalidate<BlockFrequencyAnalysis>(F);
1796   }
1797 
1798   SmallPriorityWorklist<Loop *, 4> Worklist;
1799   appendLoopsToWorklist(LI, Worklist);
1800   auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1801     if (!IsSubloop)
1802       appendLoopsToWorklist(*NL, Worklist);
1803   };
1804 
1805   while (!Worklist.empty()) {
1806     Loop *L = Worklist.pop_back_val();
1807     if (IRCE.run(L, LPMAddNewLoop)) {
1808       Changed = true;
1809       if (!SkipProfitabilityChecks)
1810         AM.invalidate<BlockFrequencyAnalysis>(F);
1811     }
1812   }
1813 
1814   if (!Changed)
1815     return PreservedAnalyses::all();
1816   return getLoopPassPreservedAnalyses();
1817 }
1818 
1819 bool IRCELegacyPass::runOnFunction(Function &F) {
1820   if (skipFunction(F))
1821     return false;
1822 
1823   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1824   BranchProbabilityInfo &BPI =
1825       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1826   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1827   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1828   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1829 
1830   bool Changed = false;
1831 
1832   for (const auto &L : LI) {
1833     Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1834                             /*PreserveLCSSA=*/false);
1835     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1836   }
1837 
1838   SmallPriorityWorklist<Loop *, 4> Worklist;
1839   appendLoopsToWorklist(LI, Worklist);
1840   auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1841     if (!IsSubloop)
1842       appendLoopsToWorklist(*NL, Worklist);
1843   };
1844 
1845   while (!Worklist.empty()) {
1846     Loop *L = Worklist.pop_back_val();
1847     Changed |= IRCE.run(L, LPMAddNewLoop);
1848   }
1849   return Changed;
1850 }
1851 
1852 bool
1853 InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L,
1854                                                         LoopStructure &LS) {
1855   if (SkipProfitabilityChecks)
1856     return true;
1857   if (GetBFI.hasValue()) {
1858     BlockFrequencyInfo &BFI = (*GetBFI)();
1859     uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
1860     uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
1861     if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
1862       LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1863                         << "the estimated number of iterations basing on "
1864                            "frequency info is " << (hFreq / phFreq) << "\n";);
1865       return false;
1866     }
1867     return true;
1868   }
1869 
1870   if (!BPI)
1871     return true;
1872   BranchProbability ExitProbability =
1873       BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx);
1874   if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
1875     LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1876                       << "the exit probability is too big " << ExitProbability
1877                       << "\n";);
1878     return false;
1879   }
1880   return true;
1881 }
1882 
1883 bool InductiveRangeCheckElimination::run(
1884     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1885   if (L->getBlocks().size() >= LoopSizeCutoff) {
1886     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1887     return false;
1888   }
1889 
1890   BasicBlock *Preheader = L->getLoopPreheader();
1891   if (!Preheader) {
1892     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1893     return false;
1894   }
1895 
1896   LLVMContext &Context = Preheader->getContext();
1897   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1898 
1899   for (auto BBI : L->getBlocks())
1900     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1901       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1902                                                         RangeChecks);
1903 
1904   if (RangeChecks.empty())
1905     return false;
1906 
1907   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1908     OS << "irce: looking at loop "; L->print(OS);
1909     OS << "irce: loop has " << RangeChecks.size()
1910        << " inductive range checks: \n";
1911     for (InductiveRangeCheck &IRC : RangeChecks)
1912       IRC.print(OS);
1913   };
1914 
1915   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1916 
1917   if (PrintRangeChecks)
1918     PrintRecognizedRangeChecks(errs());
1919 
1920   const char *FailureReason = nullptr;
1921   Optional<LoopStructure> MaybeLoopStructure =
1922       LoopStructure::parseLoopStructure(SE, *L, FailureReason);
1923   if (!MaybeLoopStructure.hasValue()) {
1924     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1925                       << FailureReason << "\n";);
1926     return false;
1927   }
1928   LoopStructure LS = MaybeLoopStructure.getValue();
1929   if (!isProfitableToTransform(*L, LS))
1930     return false;
1931   const SCEVAddRecExpr *IndVar =
1932       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1933 
1934   Optional<InductiveRangeCheck::Range> SafeIterRange;
1935   Instruction *ExprInsertPt = Preheader->getTerminator();
1936 
1937   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1938   // Basing on the type of latch predicate, we interpret the IV iteration range
1939   // as signed or unsigned range. We use different min/max functions (signed or
1940   // unsigned) when intersecting this range with safe iteration ranges implied
1941   // by range checks.
1942   auto IntersectRange =
1943       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1944 
1945   IRBuilder<> B(ExprInsertPt);
1946   for (InductiveRangeCheck &IRC : RangeChecks) {
1947     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1948                                                 LS.IsSignedPredicate);
1949     if (Result.hasValue()) {
1950       auto MaybeSafeIterRange =
1951           IntersectRange(SE, SafeIterRange, Result.getValue());
1952       if (MaybeSafeIterRange.hasValue()) {
1953         assert(
1954             !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1955             "We should never return empty ranges!");
1956         RangeChecksToEliminate.push_back(IRC);
1957         SafeIterRange = MaybeSafeIterRange.getValue();
1958       }
1959     }
1960   }
1961 
1962   if (!SafeIterRange.hasValue())
1963     return false;
1964 
1965   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1966                      SafeIterRange.getValue());
1967   bool Changed = LC.run();
1968 
1969   if (Changed) {
1970     auto PrintConstrainedLoopInfo = [L]() {
1971       dbgs() << "irce: in function ";
1972       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1973       dbgs() << "constrained ";
1974       L->print(dbgs());
1975     };
1976 
1977     LLVM_DEBUG(PrintConstrainedLoopInfo());
1978 
1979     if (PrintChangedLoops)
1980       PrintConstrainedLoopInfo();
1981 
1982     // Optimize away the now-redundant range checks.
1983 
1984     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1985       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1986                                           ? ConstantInt::getTrue(Context)
1987                                           : ConstantInt::getFalse(Context);
1988       IRC.getCheckUse()->set(FoldedRangeCheck);
1989     }
1990   }
1991 
1992   return Changed;
1993 }
1994 
1995 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1996   return new IRCELegacyPass();
1997 }
1998