1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/InstructionSimplify.h" 47 #include "llvm/Analysis/LoopInfo.h" 48 #include "llvm/Analysis/LoopPass.h" 49 #include "llvm/Analysis/ScalarEvolution.h" 50 #include "llvm/Analysis/ScalarEvolutionExpander.h" 51 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 52 #include "llvm/Analysis/ValueTracking.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/PatternMatch.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/LoopUtils.h" 68 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 69 #include "llvm/Transforms/Utils/UnrollLoop.h" 70 #include <array> 71 72 using namespace llvm; 73 74 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 75 cl::init(64)); 76 77 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 78 cl::init(false)); 79 80 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 81 cl::init(false)); 82 83 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 84 cl::Hidden, cl::init(10)); 85 86 #define DEBUG_TYPE "irce" 87 88 namespace { 89 90 /// An inductive range check is conditional branch in a loop with 91 /// 92 /// 1. a very cold successor (i.e. the branch jumps to that successor very 93 /// rarely) 94 /// 95 /// and 96 /// 97 /// 2. a condition that is provably true for some contiguous range of values 98 /// taken by the containing loop's induction variable. 99 /// 100 class InductiveRangeCheck { 101 // Classifies a range check 102 enum RangeCheckKind : unsigned { 103 // Range check of the form "0 <= I". 104 RANGE_CHECK_LOWER = 1, 105 106 // Range check of the form "I < L" where L is known positive. 107 RANGE_CHECK_UPPER = 2, 108 109 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 110 // conditions. 111 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 112 113 // Unrecognized range check condition. 114 RANGE_CHECK_UNKNOWN = (unsigned)-1 115 }; 116 117 static const char *rangeCheckKindToStr(RangeCheckKind); 118 119 const SCEV *Offset; 120 const SCEV *Scale; 121 Value *Length; 122 BranchInst *Branch; 123 RangeCheckKind Kind; 124 125 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 126 ScalarEvolution &SE, Value *&Index, 127 Value *&Length); 128 129 static InductiveRangeCheck::RangeCheckKind 130 parseRangeCheck(Loop *L, ScalarEvolution &SE, Value *Condition, 131 const SCEV *&Index, Value *&UpperLimit); 132 133 InductiveRangeCheck() : 134 Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { } 135 136 public: 137 const SCEV *getOffset() const { return Offset; } 138 const SCEV *getScale() const { return Scale; } 139 Value *getLength() const { return Length; } 140 141 void print(raw_ostream &OS) const { 142 OS << "InductiveRangeCheck:\n"; 143 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 144 OS << " Offset: "; 145 Offset->print(OS); 146 OS << " Scale: "; 147 Scale->print(OS); 148 OS << " Length: "; 149 if (Length) 150 Length->print(OS); 151 else 152 OS << "(null)"; 153 OS << "\n Branch: "; 154 getBranch()->print(OS); 155 OS << "\n"; 156 } 157 158 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 159 void dump() { 160 print(dbgs()); 161 } 162 #endif 163 164 BranchInst *getBranch() const { return Branch; } 165 166 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 167 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 168 169 class Range { 170 const SCEV *Begin; 171 const SCEV *End; 172 173 public: 174 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 175 assert(Begin->getType() == End->getType() && "ill-typed range!"); 176 } 177 178 Type *getType() const { return Begin->getType(); } 179 const SCEV *getBegin() const { return Begin; } 180 const SCEV *getEnd() const { return End; } 181 }; 182 183 typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy; 184 185 /// This is the value the condition of the branch needs to evaluate to for the 186 /// branch to take the hot successor (see (1) above). 187 bool getPassingDirection() { return true; } 188 189 /// Computes a range for the induction variable (IndVar) in which the range 190 /// check is redundant and can be constant-folded away. The induction 191 /// variable is not required to be the canonical {0,+,1} induction variable. 192 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 193 const SCEVAddRecExpr *IndVar, 194 IRBuilder<> &B) const; 195 196 /// Create an inductive range check out of BI if possible, else return 197 /// nullptr. 198 static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI, 199 Loop *L, ScalarEvolution &SE, 200 BranchProbabilityInfo &BPI); 201 }; 202 203 class InductiveRangeCheckElimination : public LoopPass { 204 InductiveRangeCheck::AllocatorTy Allocator; 205 206 public: 207 static char ID; 208 InductiveRangeCheckElimination() : LoopPass(ID) { 209 initializeInductiveRangeCheckEliminationPass( 210 *PassRegistry::getPassRegistry()); 211 } 212 213 void getAnalysisUsage(AnalysisUsage &AU) const override { 214 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 215 getLoopAnalysisUsage(AU); 216 } 217 218 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 219 }; 220 221 char InductiveRangeCheckElimination::ID = 0; 222 } 223 224 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", 225 "Inductive range check elimination", false, false) 226 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 227 INITIALIZE_PASS_DEPENDENCY(LoopPass) 228 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", 229 "Inductive range check elimination", false, false) 230 231 const char *InductiveRangeCheck::rangeCheckKindToStr( 232 InductiveRangeCheck::RangeCheckKind RCK) { 233 switch (RCK) { 234 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 235 return "RANGE_CHECK_UNKNOWN"; 236 237 case InductiveRangeCheck::RANGE_CHECK_UPPER: 238 return "RANGE_CHECK_UPPER"; 239 240 case InductiveRangeCheck::RANGE_CHECK_LOWER: 241 return "RANGE_CHECK_LOWER"; 242 243 case InductiveRangeCheck::RANGE_CHECK_BOTH: 244 return "RANGE_CHECK_BOTH"; 245 } 246 247 llvm_unreachable("unknown range check type!"); 248 } 249 250 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` 251 /// cannot 252 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 253 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value 254 /// being 255 /// range checked, and set `Length` to the upper limit `Index` is being range 256 /// checked with if (and only if) the range check type is stronger or equal to 257 /// RANGE_CHECK_UPPER. 258 /// 259 InductiveRangeCheck::RangeCheckKind 260 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 261 ScalarEvolution &SE, Value *&Index, 262 Value *&Length) { 263 264 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { 265 const SCEV *S = SE.getSCEV(V); 266 if (isa<SCEVCouldNotCompute>(S)) 267 return false; 268 269 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && 270 SE.isKnownNonNegative(S); 271 }; 272 273 using namespace llvm::PatternMatch; 274 275 ICmpInst::Predicate Pred = ICI->getPredicate(); 276 Value *LHS = ICI->getOperand(0); 277 Value *RHS = ICI->getOperand(1); 278 279 switch (Pred) { 280 default: 281 return RANGE_CHECK_UNKNOWN; 282 283 case ICmpInst::ICMP_SLE: 284 std::swap(LHS, RHS); 285 // fallthrough 286 case ICmpInst::ICMP_SGE: 287 if (match(RHS, m_ConstantInt<0>())) { 288 Index = LHS; 289 return RANGE_CHECK_LOWER; 290 } 291 return RANGE_CHECK_UNKNOWN; 292 293 case ICmpInst::ICMP_SLT: 294 std::swap(LHS, RHS); 295 // fallthrough 296 case ICmpInst::ICMP_SGT: 297 if (match(RHS, m_ConstantInt<-1>())) { 298 Index = LHS; 299 return RANGE_CHECK_LOWER; 300 } 301 302 if (IsNonNegativeAndNotLoopVarying(LHS)) { 303 Index = RHS; 304 Length = LHS; 305 return RANGE_CHECK_UPPER; 306 } 307 return RANGE_CHECK_UNKNOWN; 308 309 case ICmpInst::ICMP_ULT: 310 std::swap(LHS, RHS); 311 // fallthrough 312 case ICmpInst::ICMP_UGT: 313 if (IsNonNegativeAndNotLoopVarying(LHS)) { 314 Index = RHS; 315 Length = LHS; 316 return RANGE_CHECK_BOTH; 317 } 318 return RANGE_CHECK_UNKNOWN; 319 } 320 321 llvm_unreachable("default clause returns!"); 322 } 323 324 /// Parses an arbitrary condition into a range check. `Length` is set only if 325 /// the range check is recognized to be `RANGE_CHECK_UPPER` or stronger. 326 InductiveRangeCheck::RangeCheckKind 327 InductiveRangeCheck::parseRangeCheck(Loop *L, ScalarEvolution &SE, 328 Value *Condition, const SCEV *&Index, 329 Value *&Length) { 330 using namespace llvm::PatternMatch; 331 332 Value *A = nullptr; 333 Value *B = nullptr; 334 335 if (match(Condition, m_And(m_Value(A), m_Value(B)))) { 336 Value *IndexA = nullptr, *IndexB = nullptr; 337 Value *LengthA = nullptr, *LengthB = nullptr; 338 ICmpInst *ICmpA = dyn_cast<ICmpInst>(A), *ICmpB = dyn_cast<ICmpInst>(B); 339 340 if (!ICmpA || !ICmpB) 341 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 342 343 auto RCKindA = parseRangeCheckICmp(L, ICmpA, SE, IndexA, LengthA); 344 auto RCKindB = parseRangeCheckICmp(L, ICmpB, SE, IndexB, LengthB); 345 346 if (RCKindA == InductiveRangeCheck::RANGE_CHECK_UNKNOWN || 347 RCKindB == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 348 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 349 350 if (IndexA != IndexB) 351 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 352 353 if (LengthA != nullptr && LengthB != nullptr && LengthA != LengthB) 354 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 355 356 Index = SE.getSCEV(IndexA); 357 if (isa<SCEVCouldNotCompute>(Index)) 358 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 359 360 Length = LengthA == nullptr ? LengthB : LengthA; 361 362 return (InductiveRangeCheck::RangeCheckKind)(RCKindA | RCKindB); 363 } 364 365 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 366 Value *IndexVal = nullptr; 367 368 auto RCKind = parseRangeCheckICmp(L, ICI, SE, IndexVal, Length); 369 370 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 371 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 372 373 Index = SE.getSCEV(IndexVal); 374 if (isa<SCEVCouldNotCompute>(Index)) 375 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 376 377 return RCKind; 378 } 379 380 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 381 } 382 383 384 InductiveRangeCheck * 385 InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI, 386 Loop *L, ScalarEvolution &SE, 387 BranchProbabilityInfo &BPI) { 388 389 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 390 return nullptr; 391 392 BranchProbability LikelyTaken(15, 16); 393 394 if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken) 395 return nullptr; 396 397 Value *Length = nullptr; 398 const SCEV *IndexSCEV = nullptr; 399 400 auto RCKind = InductiveRangeCheck::parseRangeCheck(L, SE, BI->getCondition(), 401 IndexSCEV, Length); 402 403 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 404 return nullptr; 405 406 assert(IndexSCEV && "contract with SplitRangeCheckCondition!"); 407 assert((!(RCKind & InductiveRangeCheck::RANGE_CHECK_UPPER) || Length) && 408 "contract with SplitRangeCheckCondition!"); 409 410 const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV); 411 bool IsAffineIndex = 412 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 413 414 if (!IsAffineIndex) 415 return nullptr; 416 417 InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck; 418 IRC->Length = Length; 419 IRC->Offset = IndexAddRec->getStart(); 420 IRC->Scale = IndexAddRec->getStepRecurrence(SE); 421 IRC->Branch = BI; 422 IRC->Kind = RCKind; 423 return IRC; 424 } 425 426 namespace { 427 428 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 429 // except that it is more lightweight and can track the state of a loop through 430 // changing and potentially invalid IR. This structure also formalizes the 431 // kinds of loops we can deal with -- ones that have a single latch that is also 432 // an exiting block *and* have a canonical induction variable. 433 struct LoopStructure { 434 const char *Tag; 435 436 BasicBlock *Header; 437 BasicBlock *Latch; 438 439 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 440 // successor is `LatchExit', the exit block of the loop. 441 BranchInst *LatchBr; 442 BasicBlock *LatchExit; 443 unsigned LatchBrExitIdx; 444 445 Value *IndVarNext; 446 Value *IndVarStart; 447 Value *LoopExitAt; 448 bool IndVarIncreasing; 449 450 LoopStructure() 451 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr), 452 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr), 453 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {} 454 455 template <typename M> LoopStructure map(M Map) const { 456 LoopStructure Result; 457 Result.Tag = Tag; 458 Result.Header = cast<BasicBlock>(Map(Header)); 459 Result.Latch = cast<BasicBlock>(Map(Latch)); 460 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 461 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 462 Result.LatchBrExitIdx = LatchBrExitIdx; 463 Result.IndVarNext = Map(IndVarNext); 464 Result.IndVarStart = Map(IndVarStart); 465 Result.LoopExitAt = Map(LoopExitAt); 466 Result.IndVarIncreasing = IndVarIncreasing; 467 return Result; 468 } 469 470 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 471 BranchProbabilityInfo &BPI, 472 Loop &, 473 const char *&); 474 }; 475 476 /// This class is used to constrain loops to run within a given iteration space. 477 /// The algorithm this class implements is given a Loop and a range [Begin, 478 /// End). The algorithm then tries to break out a "main loop" out of the loop 479 /// it is given in a way that the "main loop" runs with the induction variable 480 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 481 /// loops to run any remaining iterations. The pre loop runs any iterations in 482 /// which the induction variable is < Begin, and the post loop runs any 483 /// iterations in which the induction variable is >= End. 484 /// 485 class LoopConstrainer { 486 // The representation of a clone of the original loop we started out with. 487 struct ClonedLoop { 488 // The cloned blocks 489 std::vector<BasicBlock *> Blocks; 490 491 // `Map` maps values in the clonee into values in the cloned version 492 ValueToValueMapTy Map; 493 494 // An instance of `LoopStructure` for the cloned loop 495 LoopStructure Structure; 496 }; 497 498 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 499 // more details on what these fields mean. 500 struct RewrittenRangeInfo { 501 BasicBlock *PseudoExit; 502 BasicBlock *ExitSelector; 503 std::vector<PHINode *> PHIValuesAtPseudoExit; 504 PHINode *IndVarEnd; 505 506 RewrittenRangeInfo() 507 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {} 508 }; 509 510 // Calculated subranges we restrict the iteration space of the main loop to. 511 // See the implementation of `calculateSubRanges' for more details on how 512 // these fields are computed. `LowLimit` is None if there is no restriction 513 // on low end of the restricted iteration space of the main loop. `HighLimit` 514 // is None if there is no restriction on high end of the restricted iteration 515 // space of the main loop. 516 517 struct SubRanges { 518 Optional<const SCEV *> LowLimit; 519 Optional<const SCEV *> HighLimit; 520 }; 521 522 // A utility function that does a `replaceUsesOfWith' on the incoming block 523 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 524 // incoming block list with `ReplaceBy'. 525 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 526 BasicBlock *ReplaceBy); 527 528 // Compute a safe set of limits for the main loop to run in -- effectively the 529 // intersection of `Range' and the iteration space of the original loop. 530 // Return None if unable to compute the set of subranges. 531 // 532 Optional<SubRanges> calculateSubRanges() const; 533 534 // Clone `OriginalLoop' and return the result in CLResult. The IR after 535 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 536 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 537 // but there is no such edge. 538 // 539 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 540 541 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 542 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 543 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 544 // `OriginalHeaderCount'. 545 // 546 // If there are iterations left to execute, control is made to jump to 547 // `ContinuationBlock', otherwise they take the normal loop exit. The 548 // returned `RewrittenRangeInfo' object is populated as follows: 549 // 550 // .PseudoExit is a basic block that unconditionally branches to 551 // `ContinuationBlock'. 552 // 553 // .ExitSelector is a basic block that decides, on exit from the loop, 554 // whether to branch to the "true" exit or to `PseudoExit'. 555 // 556 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 557 // for each PHINode in the loop header on taking the pseudo exit. 558 // 559 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 560 // preheader because it is made to branch to the loop header only 561 // conditionally. 562 // 563 RewrittenRangeInfo 564 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 565 Value *ExitLoopAt, 566 BasicBlock *ContinuationBlock) const; 567 568 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 569 // function creates a new preheader for `LS' and returns it. 570 // 571 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 572 const char *Tag) const; 573 574 // `ContinuationBlockAndPreheader' was the continuation block for some call to 575 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 576 // This function rewrites the PHI nodes in `LS.Header' to start with the 577 // correct value. 578 void rewriteIncomingValuesForPHIs( 579 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 580 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 581 582 // Even though we do not preserve any passes at this time, we at least need to 583 // keep the parent loop structure consistent. The `LPPassManager' seems to 584 // verify this after running a loop pass. This function adds the list of 585 // blocks denoted by BBs to this loops parent loop if required. 586 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 587 588 // Some global state. 589 Function &F; 590 LLVMContext &Ctx; 591 ScalarEvolution &SE; 592 593 // Information about the original loop we started out with. 594 Loop &OriginalLoop; 595 LoopInfo &OriginalLoopInfo; 596 const SCEV *LatchTakenCount; 597 BasicBlock *OriginalPreheader; 598 599 // The preheader of the main loop. This may or may not be different from 600 // `OriginalPreheader'. 601 BasicBlock *MainLoopPreheader; 602 603 // The range we need to run the main loop in. 604 InductiveRangeCheck::Range Range; 605 606 // The structure of the main loop (see comment at the beginning of this class 607 // for a definition) 608 LoopStructure MainLoopStructure; 609 610 public: 611 LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS, 612 ScalarEvolution &SE, InductiveRangeCheck::Range R) 613 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 614 SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr), 615 OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R), 616 MainLoopStructure(LS) {} 617 618 // Entry point for the algorithm. Returns true on success. 619 bool run(); 620 }; 621 622 } 623 624 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 625 BasicBlock *ReplaceBy) { 626 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 627 if (PN->getIncomingBlock(i) == Block) 628 PN->setIncomingBlock(i, ReplaceBy); 629 } 630 631 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) { 632 APInt SMax = 633 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 634 return SE.getSignedRange(S).contains(SMax) && 635 SE.getUnsignedRange(S).contains(SMax); 636 } 637 638 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) { 639 APInt SMin = 640 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 641 return SE.getSignedRange(S).contains(SMin) && 642 SE.getUnsignedRange(S).contains(SMin); 643 } 644 645 Optional<LoopStructure> 646 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI, 647 Loop &L, const char *&FailureReason) { 648 assert(L.isLoopSimplifyForm() && "should follow from addRequired<>"); 649 650 BasicBlock *Latch = L.getLoopLatch(); 651 if (!L.isLoopExiting(Latch)) { 652 FailureReason = "no loop latch"; 653 return None; 654 } 655 656 BasicBlock *Header = L.getHeader(); 657 BasicBlock *Preheader = L.getLoopPreheader(); 658 if (!Preheader) { 659 FailureReason = "no preheader"; 660 return None; 661 } 662 663 BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin()); 664 if (!LatchBr || LatchBr->isUnconditional()) { 665 FailureReason = "latch terminator not conditional branch"; 666 return None; 667 } 668 669 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 670 671 BranchProbability ExitProbability = 672 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 673 674 if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 675 FailureReason = "short running loop, not profitable"; 676 return None; 677 } 678 679 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 680 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 681 FailureReason = "latch terminator branch not conditional on integral icmp"; 682 return None; 683 } 684 685 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 686 if (isa<SCEVCouldNotCompute>(LatchCount)) { 687 FailureReason = "could not compute latch count"; 688 return None; 689 } 690 691 ICmpInst::Predicate Pred = ICI->getPredicate(); 692 Value *LeftValue = ICI->getOperand(0); 693 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 694 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 695 696 Value *RightValue = ICI->getOperand(1); 697 const SCEV *RightSCEV = SE.getSCEV(RightValue); 698 699 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 700 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 701 if (isa<SCEVAddRecExpr>(RightSCEV)) { 702 std::swap(LeftSCEV, RightSCEV); 703 std::swap(LeftValue, RightValue); 704 Pred = ICmpInst::getSwappedPredicate(Pred); 705 } else { 706 FailureReason = "no add recurrences in the icmp"; 707 return None; 708 } 709 } 710 711 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 712 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 713 return true; 714 715 IntegerType *Ty = cast<IntegerType>(AR->getType()); 716 IntegerType *WideTy = 717 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 718 719 const SCEVAddRecExpr *ExtendAfterOp = 720 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 721 if (ExtendAfterOp) { 722 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 723 const SCEV *ExtendedStep = 724 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 725 726 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 727 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 728 729 if (NoSignedWrap) 730 return true; 731 } 732 733 // We may have proved this when computing the sign extension above. 734 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 735 }; 736 737 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) { 738 if (!AR->isAffine()) 739 return false; 740 741 // Currently we only work with induction variables that have been proved to 742 // not wrap. This restriction can potentially be lifted in the future. 743 744 if (!HasNoSignedWrap(AR)) 745 return false; 746 747 if (const SCEVConstant *StepExpr = 748 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 749 ConstantInt *StepCI = StepExpr->getValue(); 750 if (StepCI->isOne() || StepCI->isMinusOne()) { 751 IsIncreasing = StepCI->isOne(); 752 return true; 753 } 754 } 755 756 return false; 757 }; 758 759 // `ICI` is interpreted as taking the backedge if the *next* value of the 760 // induction variable satisfies some constraint. 761 762 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV); 763 bool IsIncreasing = false; 764 if (!IsInductionVar(IndVarNext, IsIncreasing)) { 765 FailureReason = "LHS in icmp not induction variable"; 766 return None; 767 } 768 769 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 770 // TODO: generalize the predicates here to also match their unsigned variants. 771 if (IsIncreasing) { 772 bool FoundExpectedPred = 773 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) || 774 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0); 775 776 if (!FoundExpectedPred) { 777 FailureReason = "expected icmp slt semantically, found something else"; 778 return None; 779 } 780 781 if (LatchBrExitIdx == 0) { 782 if (CanBeSMax(SE, RightSCEV)) { 783 // TODO: this restriction is easily removable -- we just have to 784 // remember that the icmp was an slt and not an sle. 785 FailureReason = "limit may overflow when coercing sle to slt"; 786 return None; 787 } 788 789 IRBuilder<> B(&*Preheader->rbegin()); 790 RightValue = B.CreateAdd(RightValue, One); 791 } 792 793 } else { 794 bool FoundExpectedPred = 795 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) || 796 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0); 797 798 if (!FoundExpectedPred) { 799 FailureReason = "expected icmp sgt semantically, found something else"; 800 return None; 801 } 802 803 if (LatchBrExitIdx == 0) { 804 if (CanBeSMin(SE, RightSCEV)) { 805 // TODO: this restriction is easily removable -- we just have to 806 // remember that the icmp was an sgt and not an sge. 807 FailureReason = "limit may overflow when coercing sge to sgt"; 808 return None; 809 } 810 811 IRBuilder<> B(&*Preheader->rbegin()); 812 RightValue = B.CreateSub(RightValue, One); 813 } 814 } 815 816 const SCEV *StartNext = IndVarNext->getStart(); 817 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE)); 818 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 819 820 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 821 822 assert(SE.getLoopDisposition(LatchCount, &L) == 823 ScalarEvolution::LoopInvariant && 824 "loop variant exit count doesn't make sense!"); 825 826 assert(!L.contains(LatchExit) && "expected an exit block!"); 827 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 828 Value *IndVarStartV = 829 SCEVExpander(SE, DL, "irce") 830 .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin()); 831 IndVarStartV->setName("indvar.start"); 832 833 LoopStructure Result; 834 835 Result.Tag = "main"; 836 Result.Header = Header; 837 Result.Latch = Latch; 838 Result.LatchBr = LatchBr; 839 Result.LatchExit = LatchExit; 840 Result.LatchBrExitIdx = LatchBrExitIdx; 841 Result.IndVarStart = IndVarStartV; 842 Result.IndVarNext = LeftValue; 843 Result.IndVarIncreasing = IsIncreasing; 844 Result.LoopExitAt = RightValue; 845 846 FailureReason = nullptr; 847 848 return Result; 849 } 850 851 Optional<LoopConstrainer::SubRanges> 852 LoopConstrainer::calculateSubRanges() const { 853 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 854 855 if (Range.getType() != Ty) 856 return None; 857 858 LoopConstrainer::SubRanges Result; 859 860 // I think we can be more aggressive here and make this nuw / nsw if the 861 // addition that feeds into the icmp for the latch's terminating branch is nuw 862 // / nsw. In any case, a wrapping 2's complement addition is safe. 863 ConstantInt *One = ConstantInt::get(Ty, 1); 864 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 865 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 866 867 bool Increasing = MainLoopStructure.IndVarIncreasing; 868 869 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the 870 // range of values the induction variable takes. 871 872 const SCEV *Smallest = nullptr, *Greatest = nullptr; 873 874 if (Increasing) { 875 Smallest = Start; 876 Greatest = End; 877 } else { 878 // These two computations may sign-overflow. Here is why that is okay: 879 // 880 // We know that the induction variable does not sign-overflow on any 881 // iteration except the last one, and it starts at `Start` and ends at 882 // `End`, decrementing by one every time. 883 // 884 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 885 // induction variable is decreasing we know that that the smallest value 886 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 887 // 888 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 889 // that case, `Clamp` will always return `Smallest` and 890 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 891 // will be an empty range. Returning an empty range is always safe. 892 // 893 894 Smallest = SE.getAddExpr(End, SE.getSCEV(One)); 895 Greatest = SE.getAddExpr(Start, SE.getSCEV(One)); 896 } 897 898 auto Clamp = [this, Smallest, Greatest](const SCEV *S) { 899 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)); 900 }; 901 902 // In some cases we can prove that we don't need a pre or post loop 903 904 bool ProvablyNoPreloop = 905 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest); 906 if (!ProvablyNoPreloop) 907 Result.LowLimit = Clamp(Range.getBegin()); 908 909 bool ProvablyNoPostLoop = 910 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd()); 911 if (!ProvablyNoPostLoop) 912 Result.HighLimit = Clamp(Range.getEnd()); 913 914 return Result; 915 } 916 917 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 918 const char *Tag) const { 919 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 920 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 921 Result.Blocks.push_back(Clone); 922 Result.Map[BB] = Clone; 923 } 924 925 auto GetClonedValue = [&Result](Value *V) { 926 assert(V && "null values not in domain!"); 927 auto It = Result.Map.find(V); 928 if (It == Result.Map.end()) 929 return V; 930 return static_cast<Value *>(It->second); 931 }; 932 933 Result.Structure = MainLoopStructure.map(GetClonedValue); 934 Result.Structure.Tag = Tag; 935 936 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 937 BasicBlock *ClonedBB = Result.Blocks[i]; 938 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 939 940 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 941 942 for (Instruction &I : *ClonedBB) 943 RemapInstruction(&I, Result.Map, 944 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 945 946 // Exit blocks will now have one more predecessor and their PHI nodes need 947 // to be edited to reflect that. No phi nodes need to be introduced because 948 // the loop is in LCSSA. 949 950 for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB); 951 SBBI != SBBE; ++SBBI) { 952 953 if (OriginalLoop.contains(*SBBI)) 954 continue; // not an exit block 955 956 for (Instruction &I : **SBBI) { 957 if (!isa<PHINode>(&I)) 958 break; 959 960 PHINode *PN = cast<PHINode>(&I); 961 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); 962 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); 963 } 964 } 965 } 966 } 967 968 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 969 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 970 BasicBlock *ContinuationBlock) const { 971 972 // We start with a loop with a single latch: 973 // 974 // +--------------------+ 975 // | | 976 // | preheader | 977 // | | 978 // +--------+-----------+ 979 // | ----------------\ 980 // | / | 981 // +--------v----v------+ | 982 // | | | 983 // | header | | 984 // | | | 985 // +--------------------+ | 986 // | 987 // ..... | 988 // | 989 // +--------------------+ | 990 // | | | 991 // | latch >----------/ 992 // | | 993 // +-------v------------+ 994 // | 995 // | 996 // | +--------------------+ 997 // | | | 998 // +---> original exit | 999 // | | 1000 // +--------------------+ 1001 // 1002 // We change the control flow to look like 1003 // 1004 // 1005 // +--------------------+ 1006 // | | 1007 // | preheader >-------------------------+ 1008 // | | | 1009 // +--------v-----------+ | 1010 // | /-------------+ | 1011 // | / | | 1012 // +--------v--v--------+ | | 1013 // | | | | 1014 // | header | | +--------+ | 1015 // | | | | | | 1016 // +--------------------+ | | +-----v-----v-----------+ 1017 // | | | | 1018 // | | | .pseudo.exit | 1019 // | | | | 1020 // | | +-----------v-----------+ 1021 // | | | 1022 // ..... | | | 1023 // | | +--------v-------------+ 1024 // +--------------------+ | | | | 1025 // | | | | | ContinuationBlock | 1026 // | latch >------+ | | | 1027 // | | | +----------------------+ 1028 // +---------v----------+ | 1029 // | | 1030 // | | 1031 // | +---------------^-----+ 1032 // | | | 1033 // +-----> .exit.selector | 1034 // | | 1035 // +----------v----------+ 1036 // | 1037 // +--------------------+ | 1038 // | | | 1039 // | original exit <----+ 1040 // | | 1041 // +--------------------+ 1042 // 1043 1044 RewrittenRangeInfo RRI; 1045 1046 auto BBInsertLocation = std::next(Function::iterator(LS.Latch)); 1047 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1048 &F, &*BBInsertLocation); 1049 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1050 &*BBInsertLocation); 1051 1052 BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin()); 1053 bool Increasing = LS.IndVarIncreasing; 1054 1055 IRBuilder<> B(PreheaderJump); 1056 1057 // EnterLoopCond - is it okay to start executing this `LS'? 1058 Value *EnterLoopCond = Increasing 1059 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1060 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt); 1061 1062 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1063 PreheaderJump->eraseFromParent(); 1064 1065 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1066 B.SetInsertPoint(LS.LatchBr); 1067 Value *TakeBackedgeLoopCond = 1068 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt) 1069 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt); 1070 Value *CondForBranch = LS.LatchBrExitIdx == 1 1071 ? TakeBackedgeLoopCond 1072 : B.CreateNot(TakeBackedgeLoopCond); 1073 1074 LS.LatchBr->setCondition(CondForBranch); 1075 1076 B.SetInsertPoint(RRI.ExitSelector); 1077 1078 // IterationsLeft - are there any more iterations left, given the original 1079 // upper bound on the induction variable? If not, we branch to the "real" 1080 // exit. 1081 Value *IterationsLeft = Increasing 1082 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt) 1083 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt); 1084 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1085 1086 BranchInst *BranchToContinuation = 1087 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1088 1089 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1090 // each of the PHI nodes in the loop header. This feeds into the initial 1091 // value of the same PHI nodes if/when we continue execution. 1092 for (Instruction &I : *LS.Header) { 1093 if (!isa<PHINode>(&I)) 1094 break; 1095 1096 PHINode *PN = cast<PHINode>(&I); 1097 1098 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", 1099 BranchToContinuation); 1100 1101 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); 1102 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), 1103 RRI.ExitSelector); 1104 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1105 } 1106 1107 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end", 1108 BranchToContinuation); 1109 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1110 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector); 1111 1112 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1113 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1114 for (Instruction &I : *LS.LatchExit) { 1115 if (PHINode *PN = dyn_cast<PHINode>(&I)) 1116 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); 1117 else 1118 break; 1119 } 1120 1121 return RRI; 1122 } 1123 1124 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1125 LoopStructure &LS, BasicBlock *ContinuationBlock, 1126 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1127 1128 unsigned PHIIndex = 0; 1129 for (Instruction &I : *LS.Header) { 1130 if (!isa<PHINode>(&I)) 1131 break; 1132 1133 PHINode *PN = cast<PHINode>(&I); 1134 1135 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1136 if (PN->getIncomingBlock(i) == ContinuationBlock) 1137 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1138 } 1139 1140 LS.IndVarStart = RRI.IndVarEnd; 1141 } 1142 1143 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1144 BasicBlock *OldPreheader, 1145 const char *Tag) const { 1146 1147 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1148 BranchInst::Create(LS.Header, Preheader); 1149 1150 for (Instruction &I : *LS.Header) { 1151 if (!isa<PHINode>(&I)) 1152 break; 1153 1154 PHINode *PN = cast<PHINode>(&I); 1155 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1156 replacePHIBlock(PN, OldPreheader, Preheader); 1157 } 1158 1159 return Preheader; 1160 } 1161 1162 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1163 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1164 if (!ParentLoop) 1165 return; 1166 1167 for (BasicBlock *BB : BBs) 1168 ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo); 1169 } 1170 1171 bool LoopConstrainer::run() { 1172 BasicBlock *Preheader = nullptr; 1173 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1174 Preheader = OriginalLoop.getLoopPreheader(); 1175 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1176 "preconditions!"); 1177 1178 OriginalPreheader = Preheader; 1179 MainLoopPreheader = Preheader; 1180 1181 Optional<SubRanges> MaybeSR = calculateSubRanges(); 1182 if (!MaybeSR.hasValue()) { 1183 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1184 return false; 1185 } 1186 1187 SubRanges SR = MaybeSR.getValue(); 1188 bool Increasing = MainLoopStructure.IndVarIncreasing; 1189 IntegerType *IVTy = 1190 cast<IntegerType>(MainLoopStructure.IndVarNext->getType()); 1191 1192 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1193 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1194 1195 // It would have been better to make `PreLoop' and `PostLoop' 1196 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1197 // constructor. 1198 ClonedLoop PreLoop, PostLoop; 1199 bool NeedsPreLoop = 1200 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1201 bool NeedsPostLoop = 1202 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1203 1204 Value *ExitPreLoopAt = nullptr; 1205 Value *ExitMainLoopAt = nullptr; 1206 const SCEVConstant *MinusOneS = 1207 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1208 1209 if (NeedsPreLoop) { 1210 const SCEV *ExitPreLoopAtSCEV = nullptr; 1211 1212 if (Increasing) 1213 ExitPreLoopAtSCEV = *SR.LowLimit; 1214 else { 1215 if (CanBeSMin(SE, *SR.HighLimit)) { 1216 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1217 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1218 << "\n"); 1219 return false; 1220 } 1221 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1222 } 1223 1224 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1225 ExitPreLoopAt->setName("exit.preloop.at"); 1226 } 1227 1228 if (NeedsPostLoop) { 1229 const SCEV *ExitMainLoopAtSCEV = nullptr; 1230 1231 if (Increasing) 1232 ExitMainLoopAtSCEV = *SR.HighLimit; 1233 else { 1234 if (CanBeSMin(SE, *SR.LowLimit)) { 1235 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1236 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1237 << "\n"); 1238 return false; 1239 } 1240 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1241 } 1242 1243 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1244 ExitMainLoopAt->setName("exit.mainloop.at"); 1245 } 1246 1247 // We clone these ahead of time so that we don't have to deal with changing 1248 // and temporarily invalid IR as we transform the loops. 1249 if (NeedsPreLoop) 1250 cloneLoop(PreLoop, "preloop"); 1251 if (NeedsPostLoop) 1252 cloneLoop(PostLoop, "postloop"); 1253 1254 RewrittenRangeInfo PreLoopRRI; 1255 1256 if (NeedsPreLoop) { 1257 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1258 PreLoop.Structure.Header); 1259 1260 MainLoopPreheader = 1261 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1262 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1263 ExitPreLoopAt, MainLoopPreheader); 1264 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1265 PreLoopRRI); 1266 } 1267 1268 BasicBlock *PostLoopPreheader = nullptr; 1269 RewrittenRangeInfo PostLoopRRI; 1270 1271 if (NeedsPostLoop) { 1272 PostLoopPreheader = 1273 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1274 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1275 ExitMainLoopAt, PostLoopPreheader); 1276 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1277 PostLoopRRI); 1278 } 1279 1280 BasicBlock *NewMainLoopPreheader = 1281 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1282 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1283 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1284 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1285 1286 // Some of the above may be nullptr, filter them out before passing to 1287 // addToParentLoopIfNeeded. 1288 auto NewBlocksEnd = 1289 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1290 1291 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1292 addToParentLoopIfNeeded(PreLoop.Blocks); 1293 addToParentLoopIfNeeded(PostLoop.Blocks); 1294 1295 return true; 1296 } 1297 1298 /// Computes and returns a range of values for the induction variable (IndVar) 1299 /// in which the range check can be safely elided. If it cannot compute such a 1300 /// range, returns None. 1301 Optional<InductiveRangeCheck::Range> 1302 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE, 1303 const SCEVAddRecExpr *IndVar, 1304 IRBuilder<> &) const { 1305 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1306 // variable, that may or may not exist as a real llvm::Value in the loop) and 1307 // this inductive range check is a range check on the "C + D * I" ("C" is 1308 // getOffset() and "D" is getScale()). We rewrite the value being range 1309 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1310 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code 1311 // can be generalized as needed. 1312 // 1313 // The actual inequalities we solve are of the form 1314 // 1315 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1316 // 1317 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions 1318 // and subtractions are twos-complement wrapping and comparisons are signed. 1319 // 1320 // Proof: 1321 // 1322 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows 1323 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows 1324 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have 1325 // overflown. 1326 // 1327 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. 1328 // Hence 0 <= (IndVar + M) < L 1329 1330 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = 1331 // 127, IndVar = 126 and L = -2 in an i8 world. 1332 1333 if (!IndVar->isAffine()) 1334 return None; 1335 1336 const SCEV *A = IndVar->getStart(); 1337 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1338 if (!B) 1339 return None; 1340 1341 const SCEV *C = getOffset(); 1342 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale()); 1343 if (D != B) 1344 return None; 1345 1346 ConstantInt *ConstD = D->getValue(); 1347 if (!(ConstD->isMinusOne() || ConstD->isOne())) 1348 return None; 1349 1350 const SCEV *M = SE.getMinusSCEV(C, A); 1351 1352 const SCEV *Begin = SE.getNegativeSCEV(M); 1353 const SCEV *UpperLimit = nullptr; 1354 1355 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 1356 // We can potentially do much better here. 1357 if (Value *V = getLength()) { 1358 UpperLimit = SE.getSCEV(V); 1359 } else { 1360 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 1361 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1362 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1363 } 1364 1365 const SCEV *End = SE.getMinusSCEV(UpperLimit, M); 1366 return InductiveRangeCheck::Range(Begin, End); 1367 } 1368 1369 static Optional<InductiveRangeCheck::Range> 1370 IntersectRange(ScalarEvolution &SE, 1371 const Optional<InductiveRangeCheck::Range> &R1, 1372 const InductiveRangeCheck::Range &R2, IRBuilder<> &B) { 1373 if (!R1.hasValue()) 1374 return R2; 1375 auto &R1Value = R1.getValue(); 1376 1377 // TODO: we could widen the smaller range and have this work; but for now we 1378 // bail out to keep things simple. 1379 if (R1Value.getType() != R2.getType()) 1380 return None; 1381 1382 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1383 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1384 1385 return InductiveRangeCheck::Range(NewBegin, NewEnd); 1386 } 1387 1388 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1389 if (L->getBlocks().size() >= LoopSizeCutoff) { 1390 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1391 return false; 1392 } 1393 1394 BasicBlock *Preheader = L->getLoopPreheader(); 1395 if (!Preheader) { 1396 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1397 return false; 1398 } 1399 1400 LLVMContext &Context = Preheader->getContext(); 1401 InductiveRangeCheck::AllocatorTy IRCAlloc; 1402 SmallVector<InductiveRangeCheck *, 16> RangeChecks; 1403 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1404 BranchProbabilityInfo &BPI = 1405 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1406 1407 for (auto BBI : L->getBlocks()) 1408 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1409 if (InductiveRangeCheck *IRC = 1410 InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI)) 1411 RangeChecks.push_back(IRC); 1412 1413 if (RangeChecks.empty()) 1414 return false; 1415 1416 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1417 OS << "irce: looking at loop "; L->print(OS); 1418 OS << "irce: loop has " << RangeChecks.size() 1419 << " inductive range checks: \n"; 1420 for (InductiveRangeCheck *IRC : RangeChecks) 1421 IRC->print(OS); 1422 }; 1423 1424 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1425 1426 if (PrintRangeChecks) 1427 PrintRecognizedRangeChecks(errs()); 1428 1429 const char *FailureReason = nullptr; 1430 Optional<LoopStructure> MaybeLoopStructure = 1431 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1432 if (!MaybeLoopStructure.hasValue()) { 1433 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1434 << "\n";); 1435 return false; 1436 } 1437 LoopStructure LS = MaybeLoopStructure.getValue(); 1438 bool Increasing = LS.IndVarIncreasing; 1439 const SCEV *MinusOne = 1440 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true); 1441 const SCEVAddRecExpr *IndVar = 1442 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne)); 1443 1444 Optional<InductiveRangeCheck::Range> SafeIterRange; 1445 Instruction *ExprInsertPt = Preheader->getTerminator(); 1446 1447 SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate; 1448 1449 IRBuilder<> B(ExprInsertPt); 1450 for (InductiveRangeCheck *IRC : RangeChecks) { 1451 auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B); 1452 if (Result.hasValue()) { 1453 auto MaybeSafeIterRange = 1454 IntersectRange(SE, SafeIterRange, Result.getValue(), B); 1455 if (MaybeSafeIterRange.hasValue()) { 1456 RangeChecksToEliminate.push_back(IRC); 1457 SafeIterRange = MaybeSafeIterRange.getValue(); 1458 } 1459 } 1460 } 1461 1462 if (!SafeIterRange.hasValue()) 1463 return false; 1464 1465 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS, 1466 SE, SafeIterRange.getValue()); 1467 bool Changed = LC.run(); 1468 1469 if (Changed) { 1470 auto PrintConstrainedLoopInfo = [L]() { 1471 dbgs() << "irce: in function "; 1472 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1473 dbgs() << "constrained "; 1474 L->print(dbgs()); 1475 }; 1476 1477 DEBUG(PrintConstrainedLoopInfo()); 1478 1479 if (PrintChangedLoops) 1480 PrintConstrainedLoopInfo(); 1481 1482 // Optimize away the now-redundant range checks. 1483 1484 for (InductiveRangeCheck *IRC : RangeChecksToEliminate) { 1485 ConstantInt *FoldedRangeCheck = IRC->getPassingDirection() 1486 ? ConstantInt::getTrue(Context) 1487 : ConstantInt::getFalse(Context); 1488 IRC->getBranch()->setCondition(FoldedRangeCheck); 1489 } 1490 } 1491 1492 return Changed; 1493 } 1494 1495 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1496 return new InductiveRangeCheckElimination; 1497 } 1498