1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/LoopInfo.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/ScalarEvolution.h" 49 #include "llvm/Analysis/ScalarEvolutionExpander.h" 50 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/LoopSimplify.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 65 using namespace llvm; 66 67 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 68 cl::init(64)); 69 70 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 71 cl::init(false)); 72 73 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 74 cl::init(false)); 75 76 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 77 cl::Hidden, cl::init(10)); 78 79 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 80 cl::Hidden, cl::init(false)); 81 82 static const char *ClonedLoopTag = "irce.loop.clone"; 83 84 #define DEBUG_TYPE "irce" 85 86 namespace { 87 88 /// An inductive range check is conditional branch in a loop with 89 /// 90 /// 1. a very cold successor (i.e. the branch jumps to that successor very 91 /// rarely) 92 /// 93 /// and 94 /// 95 /// 2. a condition that is provably true for some contiguous range of values 96 /// taken by the containing loop's induction variable. 97 /// 98 class InductiveRangeCheck { 99 // Classifies a range check 100 enum RangeCheckKind : unsigned { 101 // Range check of the form "0 <= I". 102 RANGE_CHECK_LOWER = 1, 103 104 // Range check of the form "I < L" where L is known positive. 105 RANGE_CHECK_UPPER = 2, 106 107 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 108 // conditions. 109 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 110 111 // Unrecognized range check condition. 112 RANGE_CHECK_UNKNOWN = (unsigned)-1 113 }; 114 115 static StringRef rangeCheckKindToStr(RangeCheckKind); 116 117 const SCEV *Offset = nullptr; 118 const SCEV *Scale = nullptr; 119 Value *Length = nullptr; 120 Use *CheckUse = nullptr; 121 RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; 122 123 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 124 ScalarEvolution &SE, Value *&Index, 125 Value *&Length); 126 127 static void 128 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 129 SmallVectorImpl<InductiveRangeCheck> &Checks, 130 SmallPtrSetImpl<Value *> &Visited); 131 132 public: 133 const SCEV *getOffset() const { return Offset; } 134 const SCEV *getScale() const { return Scale; } 135 Value *getLength() const { return Length; } 136 137 void print(raw_ostream &OS) const { 138 OS << "InductiveRangeCheck:\n"; 139 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 140 OS << " Offset: "; 141 Offset->print(OS); 142 OS << " Scale: "; 143 Scale->print(OS); 144 OS << " Length: "; 145 if (Length) 146 Length->print(OS); 147 else 148 OS << "(null)"; 149 OS << "\n CheckUse: "; 150 getCheckUse()->getUser()->print(OS); 151 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 152 } 153 154 LLVM_DUMP_METHOD 155 void dump() { 156 print(dbgs()); 157 } 158 159 Use *getCheckUse() const { return CheckUse; } 160 161 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 162 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 163 164 class Range { 165 const SCEV *Begin; 166 const SCEV *End; 167 168 public: 169 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 170 assert(Begin->getType() == End->getType() && "ill-typed range!"); 171 } 172 173 Type *getType() const { return Begin->getType(); } 174 const SCEV *getBegin() const { return Begin; } 175 const SCEV *getEnd() const { return End; } 176 }; 177 178 /// This is the value the condition of the branch needs to evaluate to for the 179 /// branch to take the hot successor (see (1) above). 180 bool getPassingDirection() { return true; } 181 182 /// Computes a range for the induction variable (IndVar) in which the range 183 /// check is redundant and can be constant-folded away. The induction 184 /// variable is not required to be the canonical {0,+,1} induction variable. 185 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 186 const SCEVAddRecExpr *IndVar) const; 187 188 /// Parse out a set of inductive range checks from \p BI and append them to \p 189 /// Checks. 190 /// 191 /// NB! There may be conditions feeding into \p BI that aren't inductive range 192 /// checks, and hence don't end up in \p Checks. 193 static void 194 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 195 BranchProbabilityInfo &BPI, 196 SmallVectorImpl<InductiveRangeCheck> &Checks); 197 }; 198 199 class InductiveRangeCheckElimination : public LoopPass { 200 public: 201 static char ID; 202 InductiveRangeCheckElimination() : LoopPass(ID) { 203 initializeInductiveRangeCheckEliminationPass( 204 *PassRegistry::getPassRegistry()); 205 } 206 207 void getAnalysisUsage(AnalysisUsage &AU) const override { 208 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 209 getLoopAnalysisUsage(AU); 210 } 211 212 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 213 }; 214 215 char InductiveRangeCheckElimination::ID = 0; 216 } 217 218 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", 219 "Inductive range check elimination", false, false) 220 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 221 INITIALIZE_PASS_DEPENDENCY(LoopPass) 222 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", 223 "Inductive range check elimination", false, false) 224 225 StringRef InductiveRangeCheck::rangeCheckKindToStr( 226 InductiveRangeCheck::RangeCheckKind RCK) { 227 switch (RCK) { 228 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 229 return "RANGE_CHECK_UNKNOWN"; 230 231 case InductiveRangeCheck::RANGE_CHECK_UPPER: 232 return "RANGE_CHECK_UPPER"; 233 234 case InductiveRangeCheck::RANGE_CHECK_LOWER: 235 return "RANGE_CHECK_LOWER"; 236 237 case InductiveRangeCheck::RANGE_CHECK_BOTH: 238 return "RANGE_CHECK_BOTH"; 239 } 240 241 llvm_unreachable("unknown range check type!"); 242 } 243 244 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 245 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 246 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 247 /// range checked, and set `Length` to the upper limit `Index` is being range 248 /// checked with if (and only if) the range check type is stronger or equal to 249 /// RANGE_CHECK_UPPER. 250 /// 251 InductiveRangeCheck::RangeCheckKind 252 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 253 ScalarEvolution &SE, Value *&Index, 254 Value *&Length) { 255 256 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { 257 const SCEV *S = SE.getSCEV(V); 258 if (isa<SCEVCouldNotCompute>(S)) 259 return false; 260 261 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && 262 SE.isKnownNonNegative(S); 263 }; 264 265 using namespace llvm::PatternMatch; 266 267 ICmpInst::Predicate Pred = ICI->getPredicate(); 268 Value *LHS = ICI->getOperand(0); 269 Value *RHS = ICI->getOperand(1); 270 271 switch (Pred) { 272 default: 273 return RANGE_CHECK_UNKNOWN; 274 275 case ICmpInst::ICMP_SLE: 276 std::swap(LHS, RHS); 277 LLVM_FALLTHROUGH; 278 case ICmpInst::ICMP_SGE: 279 if (match(RHS, m_ConstantInt<0>())) { 280 Index = LHS; 281 return RANGE_CHECK_LOWER; 282 } 283 return RANGE_CHECK_UNKNOWN; 284 285 case ICmpInst::ICMP_SLT: 286 std::swap(LHS, RHS); 287 LLVM_FALLTHROUGH; 288 case ICmpInst::ICMP_SGT: 289 if (match(RHS, m_ConstantInt<-1>())) { 290 Index = LHS; 291 return RANGE_CHECK_LOWER; 292 } 293 294 if (IsNonNegativeAndNotLoopVarying(LHS)) { 295 Index = RHS; 296 Length = LHS; 297 return RANGE_CHECK_UPPER; 298 } 299 return RANGE_CHECK_UNKNOWN; 300 301 case ICmpInst::ICMP_ULT: 302 std::swap(LHS, RHS); 303 LLVM_FALLTHROUGH; 304 case ICmpInst::ICMP_UGT: 305 if (IsNonNegativeAndNotLoopVarying(LHS)) { 306 Index = RHS; 307 Length = LHS; 308 return RANGE_CHECK_BOTH; 309 } 310 return RANGE_CHECK_UNKNOWN; 311 } 312 313 llvm_unreachable("default clause returns!"); 314 } 315 316 void InductiveRangeCheck::extractRangeChecksFromCond( 317 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 318 SmallVectorImpl<InductiveRangeCheck> &Checks, 319 SmallPtrSetImpl<Value *> &Visited) { 320 using namespace llvm::PatternMatch; 321 322 Value *Condition = ConditionUse.get(); 323 if (!Visited.insert(Condition).second) 324 return; 325 326 if (match(Condition, m_And(m_Value(), m_Value()))) { 327 SmallVector<InductiveRangeCheck, 8> SubChecks; 328 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 329 SubChecks, Visited); 330 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 331 SubChecks, Visited); 332 333 if (SubChecks.size() == 2) { 334 // Handle a special case where we know how to merge two checks separately 335 // checking the upper and lower bounds into a full range check. 336 const auto &RChkA = SubChecks[0]; 337 const auto &RChkB = SubChecks[1]; 338 if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) && 339 RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) { 340 341 // If RChkA.Kind == RChkB.Kind then we just found two identical checks. 342 // But if one of them is a RANGE_CHECK_LOWER and the other is a 343 // RANGE_CHECK_UPPER (only possibility if they're different) then 344 // together they form a RANGE_CHECK_BOTH. 345 SubChecks[0].Kind = 346 (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind); 347 SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length; 348 SubChecks[0].CheckUse = &ConditionUse; 349 350 // We updated one of the checks in place, now erase the other. 351 SubChecks.pop_back(); 352 } 353 } 354 355 Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end()); 356 return; 357 } 358 359 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 360 if (!ICI) 361 return; 362 363 Value *Length = nullptr, *Index; 364 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length); 365 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 366 return; 367 368 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 369 bool IsAffineIndex = 370 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 371 372 if (!IsAffineIndex) 373 return; 374 375 InductiveRangeCheck IRC; 376 IRC.Length = Length; 377 IRC.Offset = IndexAddRec->getStart(); 378 IRC.Scale = IndexAddRec->getStepRecurrence(SE); 379 IRC.CheckUse = &ConditionUse; 380 IRC.Kind = RCKind; 381 Checks.push_back(IRC); 382 } 383 384 void InductiveRangeCheck::extractRangeChecksFromBranch( 385 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI, 386 SmallVectorImpl<InductiveRangeCheck> &Checks) { 387 388 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 389 return; 390 391 BranchProbability LikelyTaken(15, 16); 392 393 if (!SkipProfitabilityChecks && 394 BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 395 return; 396 397 SmallPtrSet<Value *, 8> Visited; 398 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 399 Checks, Visited); 400 } 401 402 // Add metadata to the loop L to disable loop optimizations. Callers need to 403 // confirm that optimizing loop L is not beneficial. 404 static void DisableAllLoopOptsOnLoop(Loop &L) { 405 // We do not care about any existing loopID related metadata for L, since we 406 // are setting all loop metadata to false. 407 LLVMContext &Context = L.getHeader()->getContext(); 408 // Reserve first location for self reference to the LoopID metadata node. 409 MDNode *Dummy = MDNode::get(Context, {}); 410 MDNode *DisableUnroll = MDNode::get( 411 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 412 Metadata *FalseVal = 413 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 414 MDNode *DisableVectorize = MDNode::get( 415 Context, 416 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 417 MDNode *DisableLICMVersioning = MDNode::get( 418 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 419 MDNode *DisableDistribution= MDNode::get( 420 Context, 421 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 422 MDNode *NewLoopID = 423 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 424 DisableLICMVersioning, DisableDistribution}); 425 // Set operand 0 to refer to the loop id itself. 426 NewLoopID->replaceOperandWith(0, NewLoopID); 427 L.setLoopID(NewLoopID); 428 } 429 430 namespace { 431 432 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 433 // except that it is more lightweight and can track the state of a loop through 434 // changing and potentially invalid IR. This structure also formalizes the 435 // kinds of loops we can deal with -- ones that have a single latch that is also 436 // an exiting block *and* have a canonical induction variable. 437 struct LoopStructure { 438 const char *Tag; 439 440 BasicBlock *Header; 441 BasicBlock *Latch; 442 443 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 444 // successor is `LatchExit', the exit block of the loop. 445 BranchInst *LatchBr; 446 BasicBlock *LatchExit; 447 unsigned LatchBrExitIdx; 448 449 // The loop represented by this instance of LoopStructure is semantically 450 // equivalent to: 451 // 452 // intN_ty inc = IndVarIncreasing ? 1 : -1; 453 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 454 // 455 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 456 // ... body ... 457 458 Value *IndVarBase; 459 Value *IndVarStart; 460 Value *IndVarStep; 461 Value *LoopExitAt; 462 bool IndVarIncreasing; 463 bool IsSignedPredicate; 464 465 LoopStructure() 466 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr), 467 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarBase(nullptr), 468 IndVarStart(nullptr), IndVarStep(nullptr), LoopExitAt(nullptr), 469 IndVarIncreasing(false), IsSignedPredicate(true) {} 470 471 template <typename M> LoopStructure map(M Map) const { 472 LoopStructure Result; 473 Result.Tag = Tag; 474 Result.Header = cast<BasicBlock>(Map(Header)); 475 Result.Latch = cast<BasicBlock>(Map(Latch)); 476 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 477 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 478 Result.LatchBrExitIdx = LatchBrExitIdx; 479 Result.IndVarBase = Map(IndVarBase); 480 Result.IndVarStart = Map(IndVarStart); 481 Result.IndVarStep = Map(IndVarStep); 482 Result.LoopExitAt = Map(LoopExitAt); 483 Result.IndVarIncreasing = IndVarIncreasing; 484 Result.IsSignedPredicate = IsSignedPredicate; 485 return Result; 486 } 487 488 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 489 BranchProbabilityInfo &BPI, 490 Loop &, 491 const char *&); 492 }; 493 494 /// This class is used to constrain loops to run within a given iteration space. 495 /// The algorithm this class implements is given a Loop and a range [Begin, 496 /// End). The algorithm then tries to break out a "main loop" out of the loop 497 /// it is given in a way that the "main loop" runs with the induction variable 498 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 499 /// loops to run any remaining iterations. The pre loop runs any iterations in 500 /// which the induction variable is < Begin, and the post loop runs any 501 /// iterations in which the induction variable is >= End. 502 /// 503 class LoopConstrainer { 504 // The representation of a clone of the original loop we started out with. 505 struct ClonedLoop { 506 // The cloned blocks 507 std::vector<BasicBlock *> Blocks; 508 509 // `Map` maps values in the clonee into values in the cloned version 510 ValueToValueMapTy Map; 511 512 // An instance of `LoopStructure` for the cloned loop 513 LoopStructure Structure; 514 }; 515 516 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 517 // more details on what these fields mean. 518 struct RewrittenRangeInfo { 519 BasicBlock *PseudoExit; 520 BasicBlock *ExitSelector; 521 std::vector<PHINode *> PHIValuesAtPseudoExit; 522 PHINode *IndVarEnd; 523 524 RewrittenRangeInfo() 525 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {} 526 }; 527 528 // Calculated subranges we restrict the iteration space of the main loop to. 529 // See the implementation of `calculateSubRanges' for more details on how 530 // these fields are computed. `LowLimit` is None if there is no restriction 531 // on low end of the restricted iteration space of the main loop. `HighLimit` 532 // is None if there is no restriction on high end of the restricted iteration 533 // space of the main loop. 534 535 struct SubRanges { 536 Optional<const SCEV *> LowLimit; 537 Optional<const SCEV *> HighLimit; 538 }; 539 540 // A utility function that does a `replaceUsesOfWith' on the incoming block 541 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 542 // incoming block list with `ReplaceBy'. 543 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 544 BasicBlock *ReplaceBy); 545 546 // Compute a safe set of limits for the main loop to run in -- effectively the 547 // intersection of `Range' and the iteration space of the original loop. 548 // Return None if unable to compute the set of subranges. 549 // 550 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 551 552 // Clone `OriginalLoop' and return the result in CLResult. The IR after 553 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 554 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 555 // but there is no such edge. 556 // 557 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 558 559 // Create the appropriate loop structure needed to describe a cloned copy of 560 // `Original`. The clone is described by `VM`. 561 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 562 ValueToValueMapTy &VM); 563 564 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 565 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 566 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 567 // `OriginalHeaderCount'. 568 // 569 // If there are iterations left to execute, control is made to jump to 570 // `ContinuationBlock', otherwise they take the normal loop exit. The 571 // returned `RewrittenRangeInfo' object is populated as follows: 572 // 573 // .PseudoExit is a basic block that unconditionally branches to 574 // `ContinuationBlock'. 575 // 576 // .ExitSelector is a basic block that decides, on exit from the loop, 577 // whether to branch to the "true" exit or to `PseudoExit'. 578 // 579 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 580 // for each PHINode in the loop header on taking the pseudo exit. 581 // 582 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 583 // preheader because it is made to branch to the loop header only 584 // conditionally. 585 // 586 RewrittenRangeInfo 587 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 588 Value *ExitLoopAt, 589 BasicBlock *ContinuationBlock) const; 590 591 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 592 // function creates a new preheader for `LS' and returns it. 593 // 594 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 595 const char *Tag) const; 596 597 // `ContinuationBlockAndPreheader' was the continuation block for some call to 598 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 599 // This function rewrites the PHI nodes in `LS.Header' to start with the 600 // correct value. 601 void rewriteIncomingValuesForPHIs( 602 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 603 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 604 605 // Even though we do not preserve any passes at this time, we at least need to 606 // keep the parent loop structure consistent. The `LPPassManager' seems to 607 // verify this after running a loop pass. This function adds the list of 608 // blocks denoted by BBs to this loops parent loop if required. 609 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 610 611 // Some global state. 612 Function &F; 613 LLVMContext &Ctx; 614 ScalarEvolution &SE; 615 DominatorTree &DT; 616 LPPassManager &LPM; 617 LoopInfo &LI; 618 619 // Information about the original loop we started out with. 620 Loop &OriginalLoop; 621 const SCEV *LatchTakenCount; 622 BasicBlock *OriginalPreheader; 623 624 // The preheader of the main loop. This may or may not be different from 625 // `OriginalPreheader'. 626 BasicBlock *MainLoopPreheader; 627 628 // The range we need to run the main loop in. 629 InductiveRangeCheck::Range Range; 630 631 // The structure of the main loop (see comment at the beginning of this class 632 // for a definition) 633 LoopStructure MainLoopStructure; 634 635 public: 636 LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM, 637 const LoopStructure &LS, ScalarEvolution &SE, 638 DominatorTree &DT, InductiveRangeCheck::Range R) 639 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 640 SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L), 641 LatchTakenCount(nullptr), OriginalPreheader(nullptr), 642 MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {} 643 644 // Entry point for the algorithm. Returns true on success. 645 bool run(); 646 }; 647 648 } 649 650 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 651 BasicBlock *ReplaceBy) { 652 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 653 if (PN->getIncomingBlock(i) == Block) 654 PN->setIncomingBlock(i, ReplaceBy); 655 } 656 657 static bool CanBeMax(ScalarEvolution &SE, const SCEV *S, bool Signed) { 658 APInt Max = Signed ? 659 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()) : 660 APInt::getMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 661 return SE.getSignedRange(S).contains(Max) && 662 SE.getUnsignedRange(S).contains(Max); 663 } 664 665 static bool SumCanReachMax(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, 666 bool Signed) { 667 // S1 < INT_MAX - S2 ===> S1 + S2 < INT_MAX. 668 assert(SE.isKnownNonNegative(S2) && 669 "We expected the 2nd arg to be non-negative!"); 670 const SCEV *Max = SE.getConstant( 671 Signed ? APInt::getSignedMaxValue( 672 cast<IntegerType>(S1->getType())->getBitWidth()) 673 : APInt::getMaxValue( 674 cast<IntegerType>(S1->getType())->getBitWidth())); 675 const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); 676 return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 677 S1, CapForS1); 678 } 679 680 static bool CanBeMin(ScalarEvolution &SE, const SCEV *S, bool Signed) { 681 APInt Min = Signed ? 682 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()) : 683 APInt::getMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 684 return SE.getSignedRange(S).contains(Min) && 685 SE.getUnsignedRange(S).contains(Min); 686 } 687 688 static bool SumCanReachMin(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, 689 bool Signed) { 690 // S1 > INT_MIN - S2 ===> S1 + S2 > INT_MIN. 691 assert(SE.isKnownNonPositive(S2) && 692 "We expected the 2nd arg to be non-positive!"); 693 const SCEV *Max = SE.getConstant( 694 Signed ? APInt::getSignedMinValue( 695 cast<IntegerType>(S1->getType())->getBitWidth()) 696 : APInt::getMinValue( 697 cast<IntegerType>(S1->getType())->getBitWidth())); 698 const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); 699 return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, 700 S1, CapForS1); 701 } 702 703 Optional<LoopStructure> 704 LoopStructure::parseLoopStructure(ScalarEvolution &SE, 705 BranchProbabilityInfo &BPI, 706 Loop &L, const char *&FailureReason) { 707 if (!L.isLoopSimplifyForm()) { 708 FailureReason = "loop not in LoopSimplify form"; 709 return None; 710 } 711 712 BasicBlock *Latch = L.getLoopLatch(); 713 assert(Latch && "Simplified loops only have one latch!"); 714 715 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 716 FailureReason = "loop has already been cloned"; 717 return None; 718 } 719 720 if (!L.isLoopExiting(Latch)) { 721 FailureReason = "no loop latch"; 722 return None; 723 } 724 725 BasicBlock *Header = L.getHeader(); 726 BasicBlock *Preheader = L.getLoopPreheader(); 727 if (!Preheader) { 728 FailureReason = "no preheader"; 729 return None; 730 } 731 732 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 733 if (!LatchBr || LatchBr->isUnconditional()) { 734 FailureReason = "latch terminator not conditional branch"; 735 return None; 736 } 737 738 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 739 740 BranchProbability ExitProbability = 741 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 742 743 if (!SkipProfitabilityChecks && 744 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 745 FailureReason = "short running loop, not profitable"; 746 return None; 747 } 748 749 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 750 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 751 FailureReason = "latch terminator branch not conditional on integral icmp"; 752 return None; 753 } 754 755 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 756 if (isa<SCEVCouldNotCompute>(LatchCount)) { 757 FailureReason = "could not compute latch count"; 758 return None; 759 } 760 761 ICmpInst::Predicate Pred = ICI->getPredicate(); 762 Value *LeftValue = ICI->getOperand(0); 763 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 764 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 765 766 Value *RightValue = ICI->getOperand(1); 767 const SCEV *RightSCEV = SE.getSCEV(RightValue); 768 769 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 770 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 771 if (isa<SCEVAddRecExpr>(RightSCEV)) { 772 std::swap(LeftSCEV, RightSCEV); 773 std::swap(LeftValue, RightValue); 774 Pred = ICmpInst::getSwappedPredicate(Pred); 775 } else { 776 FailureReason = "no add recurrences in the icmp"; 777 return None; 778 } 779 } 780 781 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 782 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 783 return true; 784 785 IntegerType *Ty = cast<IntegerType>(AR->getType()); 786 IntegerType *WideTy = 787 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 788 789 const SCEVAddRecExpr *ExtendAfterOp = 790 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 791 if (ExtendAfterOp) { 792 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 793 const SCEV *ExtendedStep = 794 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 795 796 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 797 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 798 799 if (NoSignedWrap) 800 return true; 801 } 802 803 // We may have proved this when computing the sign extension above. 804 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 805 }; 806 807 // Here we check whether the suggested AddRec is an induction variable that 808 // can be handled (i.e. with known constant step), and if yes, calculate its 809 // step and identify whether it is increasing or decreasing. 810 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing, 811 ConstantInt *&StepCI) { 812 if (!AR->isAffine()) 813 return false; 814 815 // Currently we only work with induction variables that have been proved to 816 // not wrap. This restriction can potentially be lifted in the future. 817 818 if (!HasNoSignedWrap(AR)) 819 return false; 820 821 if (const SCEVConstant *StepExpr = 822 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 823 StepCI = StepExpr->getValue(); 824 assert(!StepCI->isZero() && "Zero step?"); 825 IsIncreasing = !StepCI->isNegative(); 826 return true; 827 } 828 829 return false; 830 }; 831 832 // `ICI` is interpreted as taking the backedge if the *next* value of the 833 // induction variable satisfies some constraint. 834 835 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 836 bool IsIncreasing = false; 837 bool IsSignedPredicate = true; 838 ConstantInt *StepCI; 839 if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) { 840 FailureReason = "LHS in icmp not induction variable"; 841 return None; 842 } 843 844 const SCEV *StartNext = IndVarBase->getStart(); 845 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 846 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 847 const SCEV *Step = SE.getSCEV(StepCI); 848 849 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 850 if (IsIncreasing) { 851 bool DecreasedRightValueByOne = false; 852 if (StepCI->isOne()) { 853 // Try to turn eq/ne predicates to those we can work with. 854 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 855 // while (++i != len) { while (++i < len) { 856 // ... ---> ... 857 // } } 858 // If both parts are known non-negative, it is profitable to use 859 // unsigned comparison in increasing loop. This allows us to make the 860 // comparison check against "RightSCEV + 1" more optimistic. 861 if (SE.isKnownNonNegative(IndVarStart) && 862 SE.isKnownNonNegative(RightSCEV)) 863 Pred = ICmpInst::ICMP_ULT; 864 else 865 Pred = ICmpInst::ICMP_SLT; 866 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 867 !CanBeMin(SE, RightSCEV, /* IsSignedPredicate */ true)) { 868 // while (true) { while (true) { 869 // if (++i == len) ---> if (++i > len - 1) 870 // break; break; 871 // ... ... 872 // } } 873 // TODO: Insert ICMP_UGT if both are non-negative? 874 Pred = ICmpInst::ICMP_SGT; 875 RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); 876 DecreasedRightValueByOne = true; 877 } 878 } 879 880 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 881 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 882 bool FoundExpectedPred = 883 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 884 885 if (!FoundExpectedPred) { 886 FailureReason = "expected icmp slt semantically, found something else"; 887 return None; 888 } 889 890 IsSignedPredicate = 891 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 892 // The predicate that we need to check that the induction variable lies 893 // within bounds. 894 ICmpInst::Predicate BoundPred = 895 IsSignedPredicate ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 896 897 if (LatchBrExitIdx == 0) { 898 const SCEV *StepMinusOne = SE.getMinusSCEV(Step, 899 SE.getOne(Step->getType())); 900 if (SumCanReachMax(SE, RightSCEV, StepMinusOne, IsSignedPredicate)) { 901 // TODO: this restriction is easily removable -- we just have to 902 // remember that the icmp was an slt and not an sle. 903 FailureReason = "limit may overflow when coercing le to lt"; 904 return None; 905 } 906 907 if (!SE.isLoopEntryGuardedByCond( 908 &L, BoundPred, IndVarStart, 909 SE.getAddExpr(RightSCEV, Step))) { 910 FailureReason = "Induction variable start not bounded by upper limit"; 911 return None; 912 } 913 914 // We need to increase the right value unless we have already decreased 915 // it virtually when we replaced EQ with SGT. 916 if (!DecreasedRightValueByOne) { 917 IRBuilder<> B(Preheader->getTerminator()); 918 RightValue = B.CreateAdd(RightValue, One); 919 } 920 } else { 921 if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { 922 FailureReason = "Induction variable start not bounded by upper limit"; 923 return None; 924 } 925 assert(!DecreasedRightValueByOne && 926 "Right value can be decreased only for LatchBrExitIdx == 0!"); 927 } 928 } else { 929 bool IncreasedRightValueByOne = false; 930 if (StepCI->isMinusOne()) { 931 // Try to turn eq/ne predicates to those we can work with. 932 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 933 // while (--i != len) { while (--i > len) { 934 // ... ---> ... 935 // } } 936 // We intentionally don't turn the predicate into UGT even if we know 937 // that both operands are non-negative, because it will only pessimize 938 // our check against "RightSCEV - 1". 939 Pred = ICmpInst::ICMP_SGT; 940 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 941 !CanBeMax(SE, RightSCEV, /* IsSignedPredicate */ true)) { 942 // while (true) { while (true) { 943 // if (--i == len) ---> if (--i < len + 1) 944 // break; break; 945 // ... ... 946 // } } 947 // TODO: Insert ICMP_ULT if both are non-negative? 948 Pred = ICmpInst::ICMP_SLT; 949 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 950 IncreasedRightValueByOne = true; 951 } 952 } 953 954 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 955 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 956 957 bool FoundExpectedPred = 958 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 959 960 if (!FoundExpectedPred) { 961 FailureReason = "expected icmp sgt semantically, found something else"; 962 return None; 963 } 964 965 IsSignedPredicate = 966 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 967 // The predicate that we need to check that the induction variable lies 968 // within bounds. 969 ICmpInst::Predicate BoundPred = 970 IsSignedPredicate ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 971 972 if (LatchBrExitIdx == 0) { 973 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 974 if (SumCanReachMin(SE, RightSCEV, StepPlusOne, IsSignedPredicate)) { 975 // TODO: this restriction is easily removable -- we just have to 976 // remember that the icmp was an sgt and not an sge. 977 FailureReason = "limit may overflow when coercing ge to gt"; 978 return None; 979 } 980 981 if (!SE.isLoopEntryGuardedByCond( 982 &L, BoundPred, IndVarStart, 983 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) { 984 FailureReason = "Induction variable start not bounded by lower limit"; 985 return None; 986 } 987 988 // We need to decrease the right value unless we have already increased 989 // it virtually when we replaced EQ with SLT. 990 if (!IncreasedRightValueByOne) { 991 IRBuilder<> B(Preheader->getTerminator()); 992 RightValue = B.CreateSub(RightValue, One); 993 } 994 } else { 995 if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { 996 FailureReason = "Induction variable start not bounded by lower limit"; 997 return None; 998 } 999 assert(!IncreasedRightValueByOne && 1000 "Right value can be increased only for LatchBrExitIdx == 0!"); 1001 } 1002 } 1003 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1004 1005 assert(SE.getLoopDisposition(LatchCount, &L) == 1006 ScalarEvolution::LoopInvariant && 1007 "loop variant exit count doesn't make sense!"); 1008 1009 assert(!L.contains(LatchExit) && "expected an exit block!"); 1010 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1011 Value *IndVarStartV = 1012 SCEVExpander(SE, DL, "irce") 1013 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 1014 IndVarStartV->setName("indvar.start"); 1015 1016 LoopStructure Result; 1017 1018 Result.Tag = "main"; 1019 Result.Header = Header; 1020 Result.Latch = Latch; 1021 Result.LatchBr = LatchBr; 1022 Result.LatchExit = LatchExit; 1023 Result.LatchBrExitIdx = LatchBrExitIdx; 1024 Result.IndVarStart = IndVarStartV; 1025 Result.IndVarStep = StepCI; 1026 Result.IndVarBase = LeftValue; 1027 Result.IndVarIncreasing = IsIncreasing; 1028 Result.LoopExitAt = RightValue; 1029 Result.IsSignedPredicate = IsSignedPredicate; 1030 1031 FailureReason = nullptr; 1032 1033 return Result; 1034 } 1035 1036 Optional<LoopConstrainer::SubRanges> 1037 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1038 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1039 1040 if (Range.getType() != Ty) 1041 return None; 1042 1043 LoopConstrainer::SubRanges Result; 1044 1045 // I think we can be more aggressive here and make this nuw / nsw if the 1046 // addition that feeds into the icmp for the latch's terminating branch is nuw 1047 // / nsw. In any case, a wrapping 2's complement addition is safe. 1048 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 1049 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 1050 1051 bool Increasing = MainLoopStructure.IndVarIncreasing; 1052 1053 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1054 // [Smallest, GreatestSeen] is the range of values the induction variable 1055 // takes. 1056 1057 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1058 1059 const SCEV *One = SE.getOne(Ty); 1060 if (Increasing) { 1061 Smallest = Start; 1062 Greatest = End; 1063 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1064 GreatestSeen = SE.getMinusSCEV(End, One); 1065 } else { 1066 // These two computations may sign-overflow. Here is why that is okay: 1067 // 1068 // We know that the induction variable does not sign-overflow on any 1069 // iteration except the last one, and it starts at `Start` and ends at 1070 // `End`, decrementing by one every time. 1071 // 1072 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1073 // induction variable is decreasing we know that that the smallest value 1074 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1075 // 1076 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1077 // that case, `Clamp` will always return `Smallest` and 1078 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1079 // will be an empty range. Returning an empty range is always safe. 1080 // 1081 1082 Smallest = SE.getAddExpr(End, One); 1083 Greatest = SE.getAddExpr(Start, One); 1084 GreatestSeen = Start; 1085 } 1086 1087 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1088 bool MaybeNegativeValues = IsSignedPredicate || !SE.isKnownNonNegative(S); 1089 return MaybeNegativeValues 1090 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1091 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1092 }; 1093 1094 // In some cases we can prove that we don't need a pre or post loop. 1095 ICmpInst::Predicate PredLE = 1096 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1097 ICmpInst::Predicate PredLT = 1098 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1099 1100 bool ProvablyNoPreloop = 1101 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1102 if (!ProvablyNoPreloop) 1103 Result.LowLimit = Clamp(Range.getBegin()); 1104 1105 bool ProvablyNoPostLoop = 1106 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1107 if (!ProvablyNoPostLoop) 1108 Result.HighLimit = Clamp(Range.getEnd()); 1109 1110 return Result; 1111 } 1112 1113 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1114 const char *Tag) const { 1115 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1116 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1117 Result.Blocks.push_back(Clone); 1118 Result.Map[BB] = Clone; 1119 } 1120 1121 auto GetClonedValue = [&Result](Value *V) { 1122 assert(V && "null values not in domain!"); 1123 auto It = Result.Map.find(V); 1124 if (It == Result.Map.end()) 1125 return V; 1126 return static_cast<Value *>(It->second); 1127 }; 1128 1129 auto *ClonedLatch = 1130 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1131 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1132 MDNode::get(Ctx, {})); 1133 1134 Result.Structure = MainLoopStructure.map(GetClonedValue); 1135 Result.Structure.Tag = Tag; 1136 1137 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1138 BasicBlock *ClonedBB = Result.Blocks[i]; 1139 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1140 1141 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1142 1143 for (Instruction &I : *ClonedBB) 1144 RemapInstruction(&I, Result.Map, 1145 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1146 1147 // Exit blocks will now have one more predecessor and their PHI nodes need 1148 // to be edited to reflect that. No phi nodes need to be introduced because 1149 // the loop is in LCSSA. 1150 1151 for (auto *SBB : successors(OriginalBB)) { 1152 if (OriginalLoop.contains(SBB)) 1153 continue; // not an exit block 1154 1155 for (Instruction &I : *SBB) { 1156 auto *PN = dyn_cast<PHINode>(&I); 1157 if (!PN) 1158 break; 1159 1160 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); 1161 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1162 } 1163 } 1164 } 1165 } 1166 1167 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1168 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1169 BasicBlock *ContinuationBlock) const { 1170 1171 // We start with a loop with a single latch: 1172 // 1173 // +--------------------+ 1174 // | | 1175 // | preheader | 1176 // | | 1177 // +--------+-----------+ 1178 // | ----------------\ 1179 // | / | 1180 // +--------v----v------+ | 1181 // | | | 1182 // | header | | 1183 // | | | 1184 // +--------------------+ | 1185 // | 1186 // ..... | 1187 // | 1188 // +--------------------+ | 1189 // | | | 1190 // | latch >----------/ 1191 // | | 1192 // +-------v------------+ 1193 // | 1194 // | 1195 // | +--------------------+ 1196 // | | | 1197 // +---> original exit | 1198 // | | 1199 // +--------------------+ 1200 // 1201 // We change the control flow to look like 1202 // 1203 // 1204 // +--------------------+ 1205 // | | 1206 // | preheader >-------------------------+ 1207 // | | | 1208 // +--------v-----------+ | 1209 // | /-------------+ | 1210 // | / | | 1211 // +--------v--v--------+ | | 1212 // | | | | 1213 // | header | | +--------+ | 1214 // | | | | | | 1215 // +--------------------+ | | +-----v-----v-----------+ 1216 // | | | | 1217 // | | | .pseudo.exit | 1218 // | | | | 1219 // | | +-----------v-----------+ 1220 // | | | 1221 // ..... | | | 1222 // | | +--------v-------------+ 1223 // +--------------------+ | | | | 1224 // | | | | | ContinuationBlock | 1225 // | latch >------+ | | | 1226 // | | | +----------------------+ 1227 // +---------v----------+ | 1228 // | | 1229 // | | 1230 // | +---------------^-----+ 1231 // | | | 1232 // +-----> .exit.selector | 1233 // | | 1234 // +----------v----------+ 1235 // | 1236 // +--------------------+ | 1237 // | | | 1238 // | original exit <----+ 1239 // | | 1240 // +--------------------+ 1241 // 1242 1243 RewrittenRangeInfo RRI; 1244 1245 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1246 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1247 &F, BBInsertLocation); 1248 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1249 BBInsertLocation); 1250 1251 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1252 bool Increasing = LS.IndVarIncreasing; 1253 bool IsSignedPredicate = LS.IsSignedPredicate; 1254 1255 IRBuilder<> B(PreheaderJump); 1256 1257 // EnterLoopCond - is it okay to start executing this `LS'? 1258 Value *EnterLoopCond = nullptr; 1259 if (Increasing) 1260 EnterLoopCond = IsSignedPredicate 1261 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1262 : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt); 1263 else 1264 EnterLoopCond = IsSignedPredicate 1265 ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt) 1266 : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt); 1267 1268 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1269 PreheaderJump->eraseFromParent(); 1270 1271 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1272 B.SetInsertPoint(LS.LatchBr); 1273 Value *TakeBackedgeLoopCond = nullptr; 1274 if (Increasing) 1275 TakeBackedgeLoopCond = IsSignedPredicate 1276 ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt) 1277 : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt); 1278 else 1279 TakeBackedgeLoopCond = IsSignedPredicate 1280 ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt) 1281 : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt); 1282 Value *CondForBranch = LS.LatchBrExitIdx == 1 1283 ? TakeBackedgeLoopCond 1284 : B.CreateNot(TakeBackedgeLoopCond); 1285 1286 LS.LatchBr->setCondition(CondForBranch); 1287 1288 B.SetInsertPoint(RRI.ExitSelector); 1289 1290 // IterationsLeft - are there any more iterations left, given the original 1291 // upper bound on the induction variable? If not, we branch to the "real" 1292 // exit. 1293 Value *IterationsLeft = nullptr; 1294 if (Increasing) 1295 IterationsLeft = IsSignedPredicate 1296 ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt) 1297 : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt); 1298 else 1299 IterationsLeft = IsSignedPredicate 1300 ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt) 1301 : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt); 1302 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1303 1304 BranchInst *BranchToContinuation = 1305 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1306 1307 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1308 // each of the PHI nodes in the loop header. This feeds into the initial 1309 // value of the same PHI nodes if/when we continue execution. 1310 for (Instruction &I : *LS.Header) { 1311 auto *PN = dyn_cast<PHINode>(&I); 1312 if (!PN) 1313 break; 1314 1315 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", 1316 BranchToContinuation); 1317 1318 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); 1319 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), 1320 RRI.ExitSelector); 1321 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1322 } 1323 1324 RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end", 1325 BranchToContinuation); 1326 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1327 RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector); 1328 1329 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1330 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1331 for (Instruction &I : *LS.LatchExit) { 1332 if (PHINode *PN = dyn_cast<PHINode>(&I)) 1333 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); 1334 else 1335 break; 1336 } 1337 1338 return RRI; 1339 } 1340 1341 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1342 LoopStructure &LS, BasicBlock *ContinuationBlock, 1343 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1344 1345 unsigned PHIIndex = 0; 1346 for (Instruction &I : *LS.Header) { 1347 auto *PN = dyn_cast<PHINode>(&I); 1348 if (!PN) 1349 break; 1350 1351 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1352 if (PN->getIncomingBlock(i) == ContinuationBlock) 1353 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1354 } 1355 1356 LS.IndVarStart = RRI.IndVarEnd; 1357 } 1358 1359 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1360 BasicBlock *OldPreheader, 1361 const char *Tag) const { 1362 1363 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1364 BranchInst::Create(LS.Header, Preheader); 1365 1366 for (Instruction &I : *LS.Header) { 1367 auto *PN = dyn_cast<PHINode>(&I); 1368 if (!PN) 1369 break; 1370 1371 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1372 replacePHIBlock(PN, OldPreheader, Preheader); 1373 } 1374 1375 return Preheader; 1376 } 1377 1378 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1379 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1380 if (!ParentLoop) 1381 return; 1382 1383 for (BasicBlock *BB : BBs) 1384 ParentLoop->addBasicBlockToLoop(BB, LI); 1385 } 1386 1387 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1388 ValueToValueMapTy &VM) { 1389 Loop &New = *LI.AllocateLoop(); 1390 if (Parent) 1391 Parent->addChildLoop(&New); 1392 else 1393 LI.addTopLevelLoop(&New); 1394 LPM.addLoop(New); 1395 1396 // Add all of the blocks in Original to the new loop. 1397 for (auto *BB : Original->blocks()) 1398 if (LI.getLoopFor(BB) == Original) 1399 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1400 1401 // Add all of the subloops to the new loop. 1402 for (Loop *SubLoop : *Original) 1403 createClonedLoopStructure(SubLoop, &New, VM); 1404 1405 return &New; 1406 } 1407 1408 bool LoopConstrainer::run() { 1409 BasicBlock *Preheader = nullptr; 1410 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1411 Preheader = OriginalLoop.getLoopPreheader(); 1412 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1413 "preconditions!"); 1414 1415 OriginalPreheader = Preheader; 1416 MainLoopPreheader = Preheader; 1417 1418 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1419 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1420 if (!MaybeSR.hasValue()) { 1421 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1422 return false; 1423 } 1424 1425 SubRanges SR = MaybeSR.getValue(); 1426 bool Increasing = MainLoopStructure.IndVarIncreasing; 1427 IntegerType *IVTy = 1428 cast<IntegerType>(MainLoopStructure.IndVarBase->getType()); 1429 1430 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1431 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1432 1433 // It would have been better to make `PreLoop' and `PostLoop' 1434 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1435 // constructor. 1436 ClonedLoop PreLoop, PostLoop; 1437 bool NeedsPreLoop = 1438 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1439 bool NeedsPostLoop = 1440 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1441 1442 Value *ExitPreLoopAt = nullptr; 1443 Value *ExitMainLoopAt = nullptr; 1444 const SCEVConstant *MinusOneS = 1445 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1446 1447 if (NeedsPreLoop) { 1448 const SCEV *ExitPreLoopAtSCEV = nullptr; 1449 1450 if (Increasing) 1451 ExitPreLoopAtSCEV = *SR.LowLimit; 1452 else { 1453 if (CanBeMin(SE, *SR.HighLimit, IsSignedPredicate)) { 1454 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1455 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1456 << "\n"); 1457 return false; 1458 } 1459 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1460 } 1461 1462 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1463 ExitPreLoopAt->setName("exit.preloop.at"); 1464 } 1465 1466 if (NeedsPostLoop) { 1467 const SCEV *ExitMainLoopAtSCEV = nullptr; 1468 1469 if (Increasing) 1470 ExitMainLoopAtSCEV = *SR.HighLimit; 1471 else { 1472 if (CanBeMin(SE, *SR.LowLimit, IsSignedPredicate)) { 1473 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1474 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1475 << "\n"); 1476 return false; 1477 } 1478 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1479 } 1480 1481 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1482 ExitMainLoopAt->setName("exit.mainloop.at"); 1483 } 1484 1485 // We clone these ahead of time so that we don't have to deal with changing 1486 // and temporarily invalid IR as we transform the loops. 1487 if (NeedsPreLoop) 1488 cloneLoop(PreLoop, "preloop"); 1489 if (NeedsPostLoop) 1490 cloneLoop(PostLoop, "postloop"); 1491 1492 RewrittenRangeInfo PreLoopRRI; 1493 1494 if (NeedsPreLoop) { 1495 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1496 PreLoop.Structure.Header); 1497 1498 MainLoopPreheader = 1499 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1500 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1501 ExitPreLoopAt, MainLoopPreheader); 1502 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1503 PreLoopRRI); 1504 } 1505 1506 BasicBlock *PostLoopPreheader = nullptr; 1507 RewrittenRangeInfo PostLoopRRI; 1508 1509 if (NeedsPostLoop) { 1510 PostLoopPreheader = 1511 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1512 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1513 ExitMainLoopAt, PostLoopPreheader); 1514 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1515 PostLoopRRI); 1516 } 1517 1518 BasicBlock *NewMainLoopPreheader = 1519 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1520 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1521 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1522 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1523 1524 // Some of the above may be nullptr, filter them out before passing to 1525 // addToParentLoopIfNeeded. 1526 auto NewBlocksEnd = 1527 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1528 1529 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1530 1531 DT.recalculate(F); 1532 1533 // We need to first add all the pre and post loop blocks into the loop 1534 // structures (as part of createClonedLoopStructure), and then update the 1535 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1536 // LI when LoopSimplifyForm is generated. 1537 Loop *PreL = nullptr, *PostL = nullptr; 1538 if (!PreLoop.Blocks.empty()) { 1539 PreL = createClonedLoopStructure( 1540 &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map); 1541 } 1542 1543 if (!PostLoop.Blocks.empty()) { 1544 PostL = createClonedLoopStructure( 1545 &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map); 1546 } 1547 1548 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1549 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1550 formLCSSARecursively(*L, DT, &LI, &SE); 1551 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1552 // Pre/post loops are slow paths, we do not need to perform any loop 1553 // optimizations on them. 1554 if (!IsOriginalLoop) 1555 DisableAllLoopOptsOnLoop(*L); 1556 }; 1557 if (PreL) 1558 CanonicalizeLoop(PreL, false); 1559 if (PostL) 1560 CanonicalizeLoop(PostL, false); 1561 CanonicalizeLoop(&OriginalLoop, true); 1562 1563 return true; 1564 } 1565 1566 /// Computes and returns a range of values for the induction variable (IndVar) 1567 /// in which the range check can be safely elided. If it cannot compute such a 1568 /// range, returns None. 1569 Optional<InductiveRangeCheck::Range> 1570 InductiveRangeCheck::computeSafeIterationSpace( 1571 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const { 1572 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1573 // variable, that may or may not exist as a real llvm::Value in the loop) and 1574 // this inductive range check is a range check on the "C + D * I" ("C" is 1575 // getOffset() and "D" is getScale()). We rewrite the value being range 1576 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1577 // 1578 // The actual inequalities we solve are of the form 1579 // 1580 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1581 // 1582 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions 1583 // and subtractions are twos-complement wrapping and comparisons are signed. 1584 // 1585 // Proof: 1586 // 1587 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows 1588 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows 1589 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have 1590 // overflown. 1591 // 1592 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. 1593 // Hence 0 <= (IndVar + M) < L 1594 1595 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = 1596 // 127, IndVar = 126 and L = -2 in an i8 world. 1597 1598 if (!IndVar->isAffine()) 1599 return None; 1600 1601 const SCEV *A = IndVar->getStart(); 1602 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1603 if (!B) 1604 return None; 1605 assert(!B->isZero() && "Recurrence with zero step?"); 1606 1607 const SCEV *C = getOffset(); 1608 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale()); 1609 if (D != B) 1610 return None; 1611 1612 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1613 1614 const SCEV *M = SE.getMinusSCEV(C, A); 1615 const SCEV *Begin = SE.getNegativeSCEV(M); 1616 const SCEV *UpperLimit = nullptr; 1617 1618 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 1619 // We can potentially do much better here. 1620 if (Value *V = getLength()) { 1621 UpperLimit = SE.getSCEV(V); 1622 } else { 1623 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 1624 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1625 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1626 } 1627 1628 const SCEV *End = SE.getMinusSCEV(UpperLimit, M); 1629 return InductiveRangeCheck::Range(Begin, End); 1630 } 1631 1632 static Optional<InductiveRangeCheck::Range> 1633 IntersectRange(ScalarEvolution &SE, 1634 const Optional<InductiveRangeCheck::Range> &R1, 1635 const InductiveRangeCheck::Range &R2) { 1636 if (!R1.hasValue()) 1637 return R2; 1638 auto &R1Value = R1.getValue(); 1639 1640 // TODO: we could widen the smaller range and have this work; but for now we 1641 // bail out to keep things simple. 1642 if (R1Value.getType() != R2.getType()) 1643 return None; 1644 1645 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1646 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1647 1648 return InductiveRangeCheck::Range(NewBegin, NewEnd); 1649 } 1650 1651 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1652 if (skipLoop(L)) 1653 return false; 1654 1655 if (L->getBlocks().size() >= LoopSizeCutoff) { 1656 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1657 return false; 1658 } 1659 1660 BasicBlock *Preheader = L->getLoopPreheader(); 1661 if (!Preheader) { 1662 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1663 return false; 1664 } 1665 1666 LLVMContext &Context = Preheader->getContext(); 1667 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1668 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1669 BranchProbabilityInfo &BPI = 1670 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1671 1672 for (auto BBI : L->getBlocks()) 1673 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1674 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1675 RangeChecks); 1676 1677 if (RangeChecks.empty()) 1678 return false; 1679 1680 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1681 OS << "irce: looking at loop "; L->print(OS); 1682 OS << "irce: loop has " << RangeChecks.size() 1683 << " inductive range checks: \n"; 1684 for (InductiveRangeCheck &IRC : RangeChecks) 1685 IRC.print(OS); 1686 }; 1687 1688 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1689 1690 if (PrintRangeChecks) 1691 PrintRecognizedRangeChecks(errs()); 1692 1693 const char *FailureReason = nullptr; 1694 Optional<LoopStructure> MaybeLoopStructure = 1695 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1696 if (!MaybeLoopStructure.hasValue()) { 1697 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1698 << "\n";); 1699 return false; 1700 } 1701 LoopStructure LS = MaybeLoopStructure.getValue(); 1702 const SCEVAddRecExpr *IndVar = 1703 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1704 1705 Optional<InductiveRangeCheck::Range> SafeIterRange; 1706 Instruction *ExprInsertPt = Preheader->getTerminator(); 1707 1708 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1709 1710 IRBuilder<> B(ExprInsertPt); 1711 for (InductiveRangeCheck &IRC : RangeChecks) { 1712 auto Result = IRC.computeSafeIterationSpace(SE, IndVar); 1713 if (Result.hasValue()) { 1714 auto MaybeSafeIterRange = 1715 IntersectRange(SE, SafeIterRange, Result.getValue()); 1716 if (MaybeSafeIterRange.hasValue()) { 1717 RangeChecksToEliminate.push_back(IRC); 1718 SafeIterRange = MaybeSafeIterRange.getValue(); 1719 } 1720 } 1721 } 1722 1723 if (!SafeIterRange.hasValue()) 1724 return false; 1725 1726 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1727 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM, 1728 LS, SE, DT, SafeIterRange.getValue()); 1729 bool Changed = LC.run(); 1730 1731 if (Changed) { 1732 auto PrintConstrainedLoopInfo = [L]() { 1733 dbgs() << "irce: in function "; 1734 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1735 dbgs() << "constrained "; 1736 L->print(dbgs()); 1737 }; 1738 1739 DEBUG(PrintConstrainedLoopInfo()); 1740 1741 if (PrintChangedLoops) 1742 PrintConstrainedLoopInfo(); 1743 1744 // Optimize away the now-redundant range checks. 1745 1746 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1747 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1748 ? ConstantInt::getTrue(Context) 1749 : ConstantInt::getFalse(Context); 1750 IRC.getCheckUse()->set(FoldedRangeCheck); 1751 } 1752 } 1753 1754 return Changed; 1755 } 1756 1757 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1758 return new InductiveRangeCheckElimination; 1759 } 1760