1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/LoopInfo.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/ScalarEvolution.h" 49 #include "llvm/Analysis/ScalarEvolutionExpander.h" 50 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/LoopUtils.h" 63 #include "llvm/Transforms/Utils/LoopSimplify.h" 64 65 using namespace llvm; 66 67 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 68 cl::init(64)); 69 70 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 71 cl::init(false)); 72 73 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 74 cl::init(false)); 75 76 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 77 cl::Hidden, cl::init(10)); 78 79 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 80 cl::Hidden, cl::init(false)); 81 82 static const char *ClonedLoopTag = "irce.loop.clone"; 83 84 #define DEBUG_TYPE "irce" 85 86 namespace { 87 88 /// An inductive range check is conditional branch in a loop with 89 /// 90 /// 1. a very cold successor (i.e. the branch jumps to that successor very 91 /// rarely) 92 /// 93 /// and 94 /// 95 /// 2. a condition that is provably true for some contiguous range of values 96 /// taken by the containing loop's induction variable. 97 /// 98 class InductiveRangeCheck { 99 // Classifies a range check 100 enum RangeCheckKind : unsigned { 101 // Range check of the form "0 <= I". 102 RANGE_CHECK_LOWER = 1, 103 104 // Range check of the form "I < L" where L is known positive. 105 RANGE_CHECK_UPPER = 2, 106 107 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 108 // conditions. 109 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 110 111 // Unrecognized range check condition. 112 RANGE_CHECK_UNKNOWN = (unsigned)-1 113 }; 114 115 static StringRef rangeCheckKindToStr(RangeCheckKind); 116 117 const SCEV *Offset = nullptr; 118 const SCEV *Scale = nullptr; 119 Value *Length = nullptr; 120 Use *CheckUse = nullptr; 121 RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; 122 123 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 124 ScalarEvolution &SE, Value *&Index, 125 Value *&Length); 126 127 static void 128 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 129 SmallVectorImpl<InductiveRangeCheck> &Checks, 130 SmallPtrSetImpl<Value *> &Visited); 131 132 public: 133 const SCEV *getOffset() const { return Offset; } 134 const SCEV *getScale() const { return Scale; } 135 Value *getLength() const { return Length; } 136 137 void print(raw_ostream &OS) const { 138 OS << "InductiveRangeCheck:\n"; 139 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 140 OS << " Offset: "; 141 Offset->print(OS); 142 OS << " Scale: "; 143 Scale->print(OS); 144 OS << " Length: "; 145 if (Length) 146 Length->print(OS); 147 else 148 OS << "(null)"; 149 OS << "\n CheckUse: "; 150 getCheckUse()->getUser()->print(OS); 151 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 152 } 153 154 LLVM_DUMP_METHOD 155 void dump() { 156 print(dbgs()); 157 } 158 159 Use *getCheckUse() const { return CheckUse; } 160 161 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 162 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 163 164 class Range { 165 const SCEV *Begin; 166 const SCEV *End; 167 168 public: 169 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 170 assert(Begin->getType() == End->getType() && "ill-typed range!"); 171 } 172 173 Type *getType() const { return Begin->getType(); } 174 const SCEV *getBegin() const { return Begin; } 175 const SCEV *getEnd() const { return End; } 176 }; 177 178 /// This is the value the condition of the branch needs to evaluate to for the 179 /// branch to take the hot successor (see (1) above). 180 bool getPassingDirection() { return true; } 181 182 /// Computes a range for the induction variable (IndVar) in which the range 183 /// check is redundant and can be constant-folded away. The induction 184 /// variable is not required to be the canonical {0,+,1} induction variable. 185 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 186 const SCEVAddRecExpr *IndVar) const; 187 188 /// Parse out a set of inductive range checks from \p BI and append them to \p 189 /// Checks. 190 /// 191 /// NB! There may be conditions feeding into \p BI that aren't inductive range 192 /// checks, and hence don't end up in \p Checks. 193 static void 194 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 195 BranchProbabilityInfo &BPI, 196 SmallVectorImpl<InductiveRangeCheck> &Checks); 197 }; 198 199 class InductiveRangeCheckElimination : public LoopPass { 200 public: 201 static char ID; 202 InductiveRangeCheckElimination() : LoopPass(ID) { 203 initializeInductiveRangeCheckEliminationPass( 204 *PassRegistry::getPassRegistry()); 205 } 206 207 void getAnalysisUsage(AnalysisUsage &AU) const override { 208 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 209 getLoopAnalysisUsage(AU); 210 } 211 212 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 213 }; 214 215 char InductiveRangeCheckElimination::ID = 0; 216 } 217 218 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", 219 "Inductive range check elimination", false, false) 220 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 221 INITIALIZE_PASS_DEPENDENCY(LoopPass) 222 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", 223 "Inductive range check elimination", false, false) 224 225 StringRef InductiveRangeCheck::rangeCheckKindToStr( 226 InductiveRangeCheck::RangeCheckKind RCK) { 227 switch (RCK) { 228 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 229 return "RANGE_CHECK_UNKNOWN"; 230 231 case InductiveRangeCheck::RANGE_CHECK_UPPER: 232 return "RANGE_CHECK_UPPER"; 233 234 case InductiveRangeCheck::RANGE_CHECK_LOWER: 235 return "RANGE_CHECK_LOWER"; 236 237 case InductiveRangeCheck::RANGE_CHECK_BOTH: 238 return "RANGE_CHECK_BOTH"; 239 } 240 241 llvm_unreachable("unknown range check type!"); 242 } 243 244 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 245 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 246 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 247 /// range checked, and set `Length` to the upper limit `Index` is being range 248 /// checked with if (and only if) the range check type is stronger or equal to 249 /// RANGE_CHECK_UPPER. 250 /// 251 InductiveRangeCheck::RangeCheckKind 252 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 253 ScalarEvolution &SE, Value *&Index, 254 Value *&Length) { 255 256 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { 257 const SCEV *S = SE.getSCEV(V); 258 if (isa<SCEVCouldNotCompute>(S)) 259 return false; 260 261 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && 262 SE.isKnownNonNegative(S); 263 }; 264 265 using namespace llvm::PatternMatch; 266 267 ICmpInst::Predicate Pred = ICI->getPredicate(); 268 Value *LHS = ICI->getOperand(0); 269 Value *RHS = ICI->getOperand(1); 270 271 switch (Pred) { 272 default: 273 return RANGE_CHECK_UNKNOWN; 274 275 case ICmpInst::ICMP_SLE: 276 std::swap(LHS, RHS); 277 LLVM_FALLTHROUGH; 278 case ICmpInst::ICMP_SGE: 279 if (match(RHS, m_ConstantInt<0>())) { 280 Index = LHS; 281 return RANGE_CHECK_LOWER; 282 } 283 return RANGE_CHECK_UNKNOWN; 284 285 case ICmpInst::ICMP_SLT: 286 std::swap(LHS, RHS); 287 LLVM_FALLTHROUGH; 288 case ICmpInst::ICMP_SGT: 289 if (match(RHS, m_ConstantInt<-1>())) { 290 Index = LHS; 291 return RANGE_CHECK_LOWER; 292 } 293 294 if (IsNonNegativeAndNotLoopVarying(LHS)) { 295 Index = RHS; 296 Length = LHS; 297 return RANGE_CHECK_UPPER; 298 } 299 return RANGE_CHECK_UNKNOWN; 300 301 case ICmpInst::ICMP_ULT: 302 std::swap(LHS, RHS); 303 LLVM_FALLTHROUGH; 304 case ICmpInst::ICMP_UGT: 305 if (IsNonNegativeAndNotLoopVarying(LHS)) { 306 Index = RHS; 307 Length = LHS; 308 return RANGE_CHECK_BOTH; 309 } 310 return RANGE_CHECK_UNKNOWN; 311 } 312 313 llvm_unreachable("default clause returns!"); 314 } 315 316 void InductiveRangeCheck::extractRangeChecksFromCond( 317 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 318 SmallVectorImpl<InductiveRangeCheck> &Checks, 319 SmallPtrSetImpl<Value *> &Visited) { 320 using namespace llvm::PatternMatch; 321 322 Value *Condition = ConditionUse.get(); 323 if (!Visited.insert(Condition).second) 324 return; 325 326 if (match(Condition, m_And(m_Value(), m_Value()))) { 327 SmallVector<InductiveRangeCheck, 8> SubChecks; 328 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 329 SubChecks, Visited); 330 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 331 SubChecks, Visited); 332 333 if (SubChecks.size() == 2) { 334 // Handle a special case where we know how to merge two checks separately 335 // checking the upper and lower bounds into a full range check. 336 const auto &RChkA = SubChecks[0]; 337 const auto &RChkB = SubChecks[1]; 338 if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) && 339 RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) { 340 341 // If RChkA.Kind == RChkB.Kind then we just found two identical checks. 342 // But if one of them is a RANGE_CHECK_LOWER and the other is a 343 // RANGE_CHECK_UPPER (only possibility if they're different) then 344 // together they form a RANGE_CHECK_BOTH. 345 SubChecks[0].Kind = 346 (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind); 347 SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length; 348 SubChecks[0].CheckUse = &ConditionUse; 349 350 // We updated one of the checks in place, now erase the other. 351 SubChecks.pop_back(); 352 } 353 } 354 355 Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end()); 356 return; 357 } 358 359 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 360 if (!ICI) 361 return; 362 363 Value *Length = nullptr, *Index; 364 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length); 365 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 366 return; 367 368 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 369 bool IsAffineIndex = 370 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 371 372 if (!IsAffineIndex) 373 return; 374 375 InductiveRangeCheck IRC; 376 IRC.Length = Length; 377 IRC.Offset = IndexAddRec->getStart(); 378 IRC.Scale = IndexAddRec->getStepRecurrence(SE); 379 IRC.CheckUse = &ConditionUse; 380 IRC.Kind = RCKind; 381 Checks.push_back(IRC); 382 } 383 384 void InductiveRangeCheck::extractRangeChecksFromBranch( 385 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI, 386 SmallVectorImpl<InductiveRangeCheck> &Checks) { 387 388 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 389 return; 390 391 BranchProbability LikelyTaken(15, 16); 392 393 if (!SkipProfitabilityChecks && 394 BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 395 return; 396 397 SmallPtrSet<Value *, 8> Visited; 398 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 399 Checks, Visited); 400 } 401 402 // Add metadata to the loop L to disable loop optimizations. Callers need to 403 // confirm that optimizing loop L is not beneficial. 404 static void DisableAllLoopOptsOnLoop(Loop &L) { 405 // We do not care about any existing loopID related metadata for L, since we 406 // are setting all loop metadata to false. 407 LLVMContext &Context = L.getHeader()->getContext(); 408 // Reserve first location for self reference to the LoopID metadata node. 409 MDNode *Dummy = MDNode::get(Context, {}); 410 MDNode *DisableUnroll = MDNode::get( 411 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 412 Metadata *FalseVal = 413 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 414 MDNode *DisableVectorize = MDNode::get( 415 Context, 416 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 417 MDNode *DisableLICMVersioning = MDNode::get( 418 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 419 MDNode *DisableDistribution= MDNode::get( 420 Context, 421 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 422 MDNode *NewLoopID = 423 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 424 DisableLICMVersioning, DisableDistribution}); 425 // Set operand 0 to refer to the loop id itself. 426 NewLoopID->replaceOperandWith(0, NewLoopID); 427 L.setLoopID(NewLoopID); 428 } 429 430 namespace { 431 432 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 433 // except that it is more lightweight and can track the state of a loop through 434 // changing and potentially invalid IR. This structure also formalizes the 435 // kinds of loops we can deal with -- ones that have a single latch that is also 436 // an exiting block *and* have a canonical induction variable. 437 struct LoopStructure { 438 const char *Tag; 439 440 BasicBlock *Header; 441 BasicBlock *Latch; 442 443 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 444 // successor is `LatchExit', the exit block of the loop. 445 BranchInst *LatchBr; 446 BasicBlock *LatchExit; 447 unsigned LatchBrExitIdx; 448 449 Value *IndVarNext; 450 Value *IndVarStart; 451 Value *LoopExitAt; 452 bool IndVarIncreasing; 453 454 LoopStructure() 455 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr), 456 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr), 457 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {} 458 459 template <typename M> LoopStructure map(M Map) const { 460 LoopStructure Result; 461 Result.Tag = Tag; 462 Result.Header = cast<BasicBlock>(Map(Header)); 463 Result.Latch = cast<BasicBlock>(Map(Latch)); 464 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 465 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 466 Result.LatchBrExitIdx = LatchBrExitIdx; 467 Result.IndVarNext = Map(IndVarNext); 468 Result.IndVarStart = Map(IndVarStart); 469 Result.LoopExitAt = Map(LoopExitAt); 470 Result.IndVarIncreasing = IndVarIncreasing; 471 return Result; 472 } 473 474 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 475 BranchProbabilityInfo &BPI, 476 Loop &, 477 const char *&); 478 }; 479 480 /// This class is used to constrain loops to run within a given iteration space. 481 /// The algorithm this class implements is given a Loop and a range [Begin, 482 /// End). The algorithm then tries to break out a "main loop" out of the loop 483 /// it is given in a way that the "main loop" runs with the induction variable 484 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 485 /// loops to run any remaining iterations. The pre loop runs any iterations in 486 /// which the induction variable is < Begin, and the post loop runs any 487 /// iterations in which the induction variable is >= End. 488 /// 489 class LoopConstrainer { 490 // The representation of a clone of the original loop we started out with. 491 struct ClonedLoop { 492 // The cloned blocks 493 std::vector<BasicBlock *> Blocks; 494 495 // `Map` maps values in the clonee into values in the cloned version 496 ValueToValueMapTy Map; 497 498 // An instance of `LoopStructure` for the cloned loop 499 LoopStructure Structure; 500 }; 501 502 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 503 // more details on what these fields mean. 504 struct RewrittenRangeInfo { 505 BasicBlock *PseudoExit; 506 BasicBlock *ExitSelector; 507 std::vector<PHINode *> PHIValuesAtPseudoExit; 508 PHINode *IndVarEnd; 509 510 RewrittenRangeInfo() 511 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {} 512 }; 513 514 // Calculated subranges we restrict the iteration space of the main loop to. 515 // See the implementation of `calculateSubRanges' for more details on how 516 // these fields are computed. `LowLimit` is None if there is no restriction 517 // on low end of the restricted iteration space of the main loop. `HighLimit` 518 // is None if there is no restriction on high end of the restricted iteration 519 // space of the main loop. 520 521 struct SubRanges { 522 Optional<const SCEV *> LowLimit; 523 Optional<const SCEV *> HighLimit; 524 }; 525 526 // A utility function that does a `replaceUsesOfWith' on the incoming block 527 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 528 // incoming block list with `ReplaceBy'. 529 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 530 BasicBlock *ReplaceBy); 531 532 // Compute a safe set of limits for the main loop to run in -- effectively the 533 // intersection of `Range' and the iteration space of the original loop. 534 // Return None if unable to compute the set of subranges. 535 // 536 Optional<SubRanges> calculateSubRanges() const; 537 538 // Clone `OriginalLoop' and return the result in CLResult. The IR after 539 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 540 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 541 // but there is no such edge. 542 // 543 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 544 545 // Create the appropriate loop structure needed to describe a cloned copy of 546 // `Original`. The clone is described by `VM`. 547 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 548 ValueToValueMapTy &VM); 549 550 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 551 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 552 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 553 // `OriginalHeaderCount'. 554 // 555 // If there are iterations left to execute, control is made to jump to 556 // `ContinuationBlock', otherwise they take the normal loop exit. The 557 // returned `RewrittenRangeInfo' object is populated as follows: 558 // 559 // .PseudoExit is a basic block that unconditionally branches to 560 // `ContinuationBlock'. 561 // 562 // .ExitSelector is a basic block that decides, on exit from the loop, 563 // whether to branch to the "true" exit or to `PseudoExit'. 564 // 565 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 566 // for each PHINode in the loop header on taking the pseudo exit. 567 // 568 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 569 // preheader because it is made to branch to the loop header only 570 // conditionally. 571 // 572 RewrittenRangeInfo 573 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 574 Value *ExitLoopAt, 575 BasicBlock *ContinuationBlock) const; 576 577 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 578 // function creates a new preheader for `LS' and returns it. 579 // 580 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 581 const char *Tag) const; 582 583 // `ContinuationBlockAndPreheader' was the continuation block for some call to 584 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 585 // This function rewrites the PHI nodes in `LS.Header' to start with the 586 // correct value. 587 void rewriteIncomingValuesForPHIs( 588 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 589 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 590 591 // Even though we do not preserve any passes at this time, we at least need to 592 // keep the parent loop structure consistent. The `LPPassManager' seems to 593 // verify this after running a loop pass. This function adds the list of 594 // blocks denoted by BBs to this loops parent loop if required. 595 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 596 597 // Some global state. 598 Function &F; 599 LLVMContext &Ctx; 600 ScalarEvolution &SE; 601 DominatorTree &DT; 602 LPPassManager &LPM; 603 LoopInfo &LI; 604 605 // Information about the original loop we started out with. 606 Loop &OriginalLoop; 607 const SCEV *LatchTakenCount; 608 BasicBlock *OriginalPreheader; 609 610 // The preheader of the main loop. This may or may not be different from 611 // `OriginalPreheader'. 612 BasicBlock *MainLoopPreheader; 613 614 // The range we need to run the main loop in. 615 InductiveRangeCheck::Range Range; 616 617 // The structure of the main loop (see comment at the beginning of this class 618 // for a definition) 619 LoopStructure MainLoopStructure; 620 621 public: 622 LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM, 623 const LoopStructure &LS, ScalarEvolution &SE, 624 DominatorTree &DT, InductiveRangeCheck::Range R) 625 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 626 SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L), 627 LatchTakenCount(nullptr), OriginalPreheader(nullptr), 628 MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {} 629 630 // Entry point for the algorithm. Returns true on success. 631 bool run(); 632 }; 633 634 } 635 636 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 637 BasicBlock *ReplaceBy) { 638 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 639 if (PN->getIncomingBlock(i) == Block) 640 PN->setIncomingBlock(i, ReplaceBy); 641 } 642 643 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) { 644 APInt SMax = 645 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 646 return SE.getSignedRange(S).contains(SMax) && 647 SE.getUnsignedRange(S).contains(SMax); 648 } 649 650 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) { 651 APInt SMin = 652 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 653 return SE.getSignedRange(S).contains(SMin) && 654 SE.getUnsignedRange(S).contains(SMin); 655 } 656 657 Optional<LoopStructure> 658 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI, 659 Loop &L, const char *&FailureReason) { 660 if (!L.isLoopSimplifyForm()) { 661 FailureReason = "loop not in LoopSimplify form"; 662 return None; 663 } 664 665 BasicBlock *Latch = L.getLoopLatch(); 666 assert(Latch && "Simplified loops only have one latch!"); 667 668 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 669 FailureReason = "loop has already been cloned"; 670 return None; 671 } 672 673 if (!L.isLoopExiting(Latch)) { 674 FailureReason = "no loop latch"; 675 return None; 676 } 677 678 BasicBlock *Header = L.getHeader(); 679 BasicBlock *Preheader = L.getLoopPreheader(); 680 if (!Preheader) { 681 FailureReason = "no preheader"; 682 return None; 683 } 684 685 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 686 if (!LatchBr || LatchBr->isUnconditional()) { 687 FailureReason = "latch terminator not conditional branch"; 688 return None; 689 } 690 691 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 692 693 BranchProbability ExitProbability = 694 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 695 696 if (!SkipProfitabilityChecks && 697 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 698 FailureReason = "short running loop, not profitable"; 699 return None; 700 } 701 702 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 703 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 704 FailureReason = "latch terminator branch not conditional on integral icmp"; 705 return None; 706 } 707 708 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 709 if (isa<SCEVCouldNotCompute>(LatchCount)) { 710 FailureReason = "could not compute latch count"; 711 return None; 712 } 713 714 ICmpInst::Predicate Pred = ICI->getPredicate(); 715 Value *LeftValue = ICI->getOperand(0); 716 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 717 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 718 719 Value *RightValue = ICI->getOperand(1); 720 const SCEV *RightSCEV = SE.getSCEV(RightValue); 721 722 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 723 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 724 if (isa<SCEVAddRecExpr>(RightSCEV)) { 725 std::swap(LeftSCEV, RightSCEV); 726 std::swap(LeftValue, RightValue); 727 Pred = ICmpInst::getSwappedPredicate(Pred); 728 } else { 729 FailureReason = "no add recurrences in the icmp"; 730 return None; 731 } 732 } 733 734 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 735 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 736 return true; 737 738 IntegerType *Ty = cast<IntegerType>(AR->getType()); 739 IntegerType *WideTy = 740 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 741 742 const SCEVAddRecExpr *ExtendAfterOp = 743 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 744 if (ExtendAfterOp) { 745 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 746 const SCEV *ExtendedStep = 747 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 748 749 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 750 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 751 752 if (NoSignedWrap) 753 return true; 754 } 755 756 // We may have proved this when computing the sign extension above. 757 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 758 }; 759 760 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) { 761 if (!AR->isAffine()) 762 return false; 763 764 // Currently we only work with induction variables that have been proved to 765 // not wrap. This restriction can potentially be lifted in the future. 766 767 if (!HasNoSignedWrap(AR)) 768 return false; 769 770 if (const SCEVConstant *StepExpr = 771 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 772 ConstantInt *StepCI = StepExpr->getValue(); 773 if (StepCI->isOne() || StepCI->isMinusOne()) { 774 IsIncreasing = StepCI->isOne(); 775 return true; 776 } 777 } 778 779 return false; 780 }; 781 782 // `ICI` is interpreted as taking the backedge if the *next* value of the 783 // induction variable satisfies some constraint. 784 785 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV); 786 bool IsIncreasing = false; 787 if (!IsInductionVar(IndVarNext, IsIncreasing)) { 788 FailureReason = "LHS in icmp not induction variable"; 789 return None; 790 } 791 792 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 793 // TODO: generalize the predicates here to also match their unsigned variants. 794 if (IsIncreasing) { 795 bool FoundExpectedPred = 796 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) || 797 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0); 798 799 if (!FoundExpectedPred) { 800 FailureReason = "expected icmp slt semantically, found something else"; 801 return None; 802 } 803 804 if (LatchBrExitIdx == 0) { 805 if (CanBeSMax(SE, RightSCEV)) { 806 // TODO: this restriction is easily removable -- we just have to 807 // remember that the icmp was an slt and not an sle. 808 FailureReason = "limit may overflow when coercing sle to slt"; 809 return None; 810 } 811 812 IRBuilder<> B(Preheader->getTerminator()); 813 RightValue = B.CreateAdd(RightValue, One); 814 } 815 816 } else { 817 bool FoundExpectedPred = 818 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) || 819 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0); 820 821 if (!FoundExpectedPred) { 822 FailureReason = "expected icmp sgt semantically, found something else"; 823 return None; 824 } 825 826 if (LatchBrExitIdx == 0) { 827 if (CanBeSMin(SE, RightSCEV)) { 828 // TODO: this restriction is easily removable -- we just have to 829 // remember that the icmp was an sgt and not an sge. 830 FailureReason = "limit may overflow when coercing sge to sgt"; 831 return None; 832 } 833 834 IRBuilder<> B(Preheader->getTerminator()); 835 RightValue = B.CreateSub(RightValue, One); 836 } 837 } 838 839 const SCEV *StartNext = IndVarNext->getStart(); 840 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE)); 841 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 842 843 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 844 845 assert(SE.getLoopDisposition(LatchCount, &L) == 846 ScalarEvolution::LoopInvariant && 847 "loop variant exit count doesn't make sense!"); 848 849 assert(!L.contains(LatchExit) && "expected an exit block!"); 850 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 851 Value *IndVarStartV = 852 SCEVExpander(SE, DL, "irce") 853 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 854 IndVarStartV->setName("indvar.start"); 855 856 LoopStructure Result; 857 858 Result.Tag = "main"; 859 Result.Header = Header; 860 Result.Latch = Latch; 861 Result.LatchBr = LatchBr; 862 Result.LatchExit = LatchExit; 863 Result.LatchBrExitIdx = LatchBrExitIdx; 864 Result.IndVarStart = IndVarStartV; 865 Result.IndVarNext = LeftValue; 866 Result.IndVarIncreasing = IsIncreasing; 867 Result.LoopExitAt = RightValue; 868 869 FailureReason = nullptr; 870 871 return Result; 872 } 873 874 Optional<LoopConstrainer::SubRanges> 875 LoopConstrainer::calculateSubRanges() const { 876 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 877 878 if (Range.getType() != Ty) 879 return None; 880 881 LoopConstrainer::SubRanges Result; 882 883 // I think we can be more aggressive here and make this nuw / nsw if the 884 // addition that feeds into the icmp for the latch's terminating branch is nuw 885 // / nsw. In any case, a wrapping 2's complement addition is safe. 886 ConstantInt *One = ConstantInt::get(Ty, 1); 887 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 888 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 889 890 bool Increasing = MainLoopStructure.IndVarIncreasing; 891 892 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the 893 // range of values the induction variable takes. 894 895 const SCEV *Smallest = nullptr, *Greatest = nullptr; 896 897 if (Increasing) { 898 Smallest = Start; 899 Greatest = End; 900 } else { 901 // These two computations may sign-overflow. Here is why that is okay: 902 // 903 // We know that the induction variable does not sign-overflow on any 904 // iteration except the last one, and it starts at `Start` and ends at 905 // `End`, decrementing by one every time. 906 // 907 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 908 // induction variable is decreasing we know that that the smallest value 909 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 910 // 911 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 912 // that case, `Clamp` will always return `Smallest` and 913 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 914 // will be an empty range. Returning an empty range is always safe. 915 // 916 917 Smallest = SE.getAddExpr(End, SE.getSCEV(One)); 918 Greatest = SE.getAddExpr(Start, SE.getSCEV(One)); 919 } 920 921 auto Clamp = [this, Smallest, Greatest](const SCEV *S) { 922 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)); 923 }; 924 925 // In some cases we can prove that we don't need a pre or post loop 926 927 bool ProvablyNoPreloop = 928 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest); 929 if (!ProvablyNoPreloop) 930 Result.LowLimit = Clamp(Range.getBegin()); 931 932 bool ProvablyNoPostLoop = 933 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd()); 934 if (!ProvablyNoPostLoop) 935 Result.HighLimit = Clamp(Range.getEnd()); 936 937 return Result; 938 } 939 940 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 941 const char *Tag) const { 942 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 943 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 944 Result.Blocks.push_back(Clone); 945 Result.Map[BB] = Clone; 946 } 947 948 auto GetClonedValue = [&Result](Value *V) { 949 assert(V && "null values not in domain!"); 950 auto It = Result.Map.find(V); 951 if (It == Result.Map.end()) 952 return V; 953 return static_cast<Value *>(It->second); 954 }; 955 956 auto *ClonedLatch = 957 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 958 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 959 MDNode::get(Ctx, {})); 960 961 Result.Structure = MainLoopStructure.map(GetClonedValue); 962 Result.Structure.Tag = Tag; 963 964 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 965 BasicBlock *ClonedBB = Result.Blocks[i]; 966 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 967 968 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 969 970 for (Instruction &I : *ClonedBB) 971 RemapInstruction(&I, Result.Map, 972 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 973 974 // Exit blocks will now have one more predecessor and their PHI nodes need 975 // to be edited to reflect that. No phi nodes need to be introduced because 976 // the loop is in LCSSA. 977 978 for (auto *SBB : successors(OriginalBB)) { 979 if (OriginalLoop.contains(SBB)) 980 continue; // not an exit block 981 982 for (Instruction &I : *SBB) { 983 auto *PN = dyn_cast<PHINode>(&I); 984 if (!PN) 985 break; 986 987 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); 988 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); 989 } 990 } 991 } 992 } 993 994 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 995 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 996 BasicBlock *ContinuationBlock) const { 997 998 // We start with a loop with a single latch: 999 // 1000 // +--------------------+ 1001 // | | 1002 // | preheader | 1003 // | | 1004 // +--------+-----------+ 1005 // | ----------------\ 1006 // | / | 1007 // +--------v----v------+ | 1008 // | | | 1009 // | header | | 1010 // | | | 1011 // +--------------------+ | 1012 // | 1013 // ..... | 1014 // | 1015 // +--------------------+ | 1016 // | | | 1017 // | latch >----------/ 1018 // | | 1019 // +-------v------------+ 1020 // | 1021 // | 1022 // | +--------------------+ 1023 // | | | 1024 // +---> original exit | 1025 // | | 1026 // +--------------------+ 1027 // 1028 // We change the control flow to look like 1029 // 1030 // 1031 // +--------------------+ 1032 // | | 1033 // | preheader >-------------------------+ 1034 // | | | 1035 // +--------v-----------+ | 1036 // | /-------------+ | 1037 // | / | | 1038 // +--------v--v--------+ | | 1039 // | | | | 1040 // | header | | +--------+ | 1041 // | | | | | | 1042 // +--------------------+ | | +-----v-----v-----------+ 1043 // | | | | 1044 // | | | .pseudo.exit | 1045 // | | | | 1046 // | | +-----------v-----------+ 1047 // | | | 1048 // ..... | | | 1049 // | | +--------v-------------+ 1050 // +--------------------+ | | | | 1051 // | | | | | ContinuationBlock | 1052 // | latch >------+ | | | 1053 // | | | +----------------------+ 1054 // +---------v----------+ | 1055 // | | 1056 // | | 1057 // | +---------------^-----+ 1058 // | | | 1059 // +-----> .exit.selector | 1060 // | | 1061 // +----------v----------+ 1062 // | 1063 // +--------------------+ | 1064 // | | | 1065 // | original exit <----+ 1066 // | | 1067 // +--------------------+ 1068 // 1069 1070 RewrittenRangeInfo RRI; 1071 1072 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1073 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1074 &F, BBInsertLocation); 1075 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1076 BBInsertLocation); 1077 1078 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1079 bool Increasing = LS.IndVarIncreasing; 1080 1081 IRBuilder<> B(PreheaderJump); 1082 1083 // EnterLoopCond - is it okay to start executing this `LS'? 1084 Value *EnterLoopCond = Increasing 1085 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1086 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt); 1087 1088 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1089 PreheaderJump->eraseFromParent(); 1090 1091 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1092 B.SetInsertPoint(LS.LatchBr); 1093 Value *TakeBackedgeLoopCond = 1094 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt) 1095 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt); 1096 Value *CondForBranch = LS.LatchBrExitIdx == 1 1097 ? TakeBackedgeLoopCond 1098 : B.CreateNot(TakeBackedgeLoopCond); 1099 1100 LS.LatchBr->setCondition(CondForBranch); 1101 1102 B.SetInsertPoint(RRI.ExitSelector); 1103 1104 // IterationsLeft - are there any more iterations left, given the original 1105 // upper bound on the induction variable? If not, we branch to the "real" 1106 // exit. 1107 Value *IterationsLeft = Increasing 1108 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt) 1109 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt); 1110 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1111 1112 BranchInst *BranchToContinuation = 1113 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1114 1115 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1116 // each of the PHI nodes in the loop header. This feeds into the initial 1117 // value of the same PHI nodes if/when we continue execution. 1118 for (Instruction &I : *LS.Header) { 1119 auto *PN = dyn_cast<PHINode>(&I); 1120 if (!PN) 1121 break; 1122 1123 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", 1124 BranchToContinuation); 1125 1126 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); 1127 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), 1128 RRI.ExitSelector); 1129 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1130 } 1131 1132 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end", 1133 BranchToContinuation); 1134 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1135 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector); 1136 1137 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1138 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1139 for (Instruction &I : *LS.LatchExit) { 1140 if (PHINode *PN = dyn_cast<PHINode>(&I)) 1141 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); 1142 else 1143 break; 1144 } 1145 1146 return RRI; 1147 } 1148 1149 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1150 LoopStructure &LS, BasicBlock *ContinuationBlock, 1151 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1152 1153 unsigned PHIIndex = 0; 1154 for (Instruction &I : *LS.Header) { 1155 auto *PN = dyn_cast<PHINode>(&I); 1156 if (!PN) 1157 break; 1158 1159 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1160 if (PN->getIncomingBlock(i) == ContinuationBlock) 1161 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1162 } 1163 1164 LS.IndVarStart = RRI.IndVarEnd; 1165 } 1166 1167 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1168 BasicBlock *OldPreheader, 1169 const char *Tag) const { 1170 1171 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1172 BranchInst::Create(LS.Header, Preheader); 1173 1174 for (Instruction &I : *LS.Header) { 1175 auto *PN = dyn_cast<PHINode>(&I); 1176 if (!PN) 1177 break; 1178 1179 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1180 replacePHIBlock(PN, OldPreheader, Preheader); 1181 } 1182 1183 return Preheader; 1184 } 1185 1186 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1187 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1188 if (!ParentLoop) 1189 return; 1190 1191 for (BasicBlock *BB : BBs) 1192 ParentLoop->addBasicBlockToLoop(BB, LI); 1193 } 1194 1195 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1196 ValueToValueMapTy &VM) { 1197 Loop &New = LPM.addLoop(Parent); 1198 1199 // Add all of the blocks in Original to the new loop. 1200 for (auto *BB : Original->blocks()) 1201 if (LI.getLoopFor(BB) == Original) 1202 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1203 1204 // Add all of the subloops to the new loop. 1205 for (Loop *SubLoop : *Original) 1206 createClonedLoopStructure(SubLoop, &New, VM); 1207 1208 return &New; 1209 } 1210 1211 bool LoopConstrainer::run() { 1212 BasicBlock *Preheader = nullptr; 1213 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1214 Preheader = OriginalLoop.getLoopPreheader(); 1215 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1216 "preconditions!"); 1217 1218 OriginalPreheader = Preheader; 1219 MainLoopPreheader = Preheader; 1220 1221 Optional<SubRanges> MaybeSR = calculateSubRanges(); 1222 if (!MaybeSR.hasValue()) { 1223 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1224 return false; 1225 } 1226 1227 SubRanges SR = MaybeSR.getValue(); 1228 bool Increasing = MainLoopStructure.IndVarIncreasing; 1229 IntegerType *IVTy = 1230 cast<IntegerType>(MainLoopStructure.IndVarNext->getType()); 1231 1232 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1233 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1234 1235 // It would have been better to make `PreLoop' and `PostLoop' 1236 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1237 // constructor. 1238 ClonedLoop PreLoop, PostLoop; 1239 bool NeedsPreLoop = 1240 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1241 bool NeedsPostLoop = 1242 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1243 1244 Value *ExitPreLoopAt = nullptr; 1245 Value *ExitMainLoopAt = nullptr; 1246 const SCEVConstant *MinusOneS = 1247 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1248 1249 if (NeedsPreLoop) { 1250 const SCEV *ExitPreLoopAtSCEV = nullptr; 1251 1252 if (Increasing) 1253 ExitPreLoopAtSCEV = *SR.LowLimit; 1254 else { 1255 if (CanBeSMin(SE, *SR.HighLimit)) { 1256 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1257 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1258 << "\n"); 1259 return false; 1260 } 1261 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1262 } 1263 1264 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1265 ExitPreLoopAt->setName("exit.preloop.at"); 1266 } 1267 1268 if (NeedsPostLoop) { 1269 const SCEV *ExitMainLoopAtSCEV = nullptr; 1270 1271 if (Increasing) 1272 ExitMainLoopAtSCEV = *SR.HighLimit; 1273 else { 1274 if (CanBeSMin(SE, *SR.LowLimit)) { 1275 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1276 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1277 << "\n"); 1278 return false; 1279 } 1280 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1281 } 1282 1283 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1284 ExitMainLoopAt->setName("exit.mainloop.at"); 1285 } 1286 1287 // We clone these ahead of time so that we don't have to deal with changing 1288 // and temporarily invalid IR as we transform the loops. 1289 if (NeedsPreLoop) 1290 cloneLoop(PreLoop, "preloop"); 1291 if (NeedsPostLoop) 1292 cloneLoop(PostLoop, "postloop"); 1293 1294 RewrittenRangeInfo PreLoopRRI; 1295 1296 if (NeedsPreLoop) { 1297 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1298 PreLoop.Structure.Header); 1299 1300 MainLoopPreheader = 1301 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1302 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1303 ExitPreLoopAt, MainLoopPreheader); 1304 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1305 PreLoopRRI); 1306 } 1307 1308 BasicBlock *PostLoopPreheader = nullptr; 1309 RewrittenRangeInfo PostLoopRRI; 1310 1311 if (NeedsPostLoop) { 1312 PostLoopPreheader = 1313 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1314 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1315 ExitMainLoopAt, PostLoopPreheader); 1316 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1317 PostLoopRRI); 1318 } 1319 1320 BasicBlock *NewMainLoopPreheader = 1321 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1322 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1323 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1324 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1325 1326 // Some of the above may be nullptr, filter them out before passing to 1327 // addToParentLoopIfNeeded. 1328 auto NewBlocksEnd = 1329 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1330 1331 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1332 1333 DT.recalculate(F); 1334 1335 if (!PreLoop.Blocks.empty()) { 1336 auto *L = createClonedLoopStructure( 1337 &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map); 1338 formLCSSARecursively(*L, DT, &LI, &SE); 1339 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1340 // Pre loops are slow paths, we do not need to perform any loop 1341 // optimizations on them. 1342 DisableAllLoopOptsOnLoop(*L); 1343 } 1344 1345 if (!PostLoop.Blocks.empty()) { 1346 auto *L = createClonedLoopStructure( 1347 &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map); 1348 formLCSSARecursively(*L, DT, &LI, &SE); 1349 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1350 // Post loops are slow paths, we do not need to perform any loop 1351 // optimizations on them. 1352 DisableAllLoopOptsOnLoop(*L); 1353 } 1354 1355 formLCSSARecursively(OriginalLoop, DT, &LI, &SE); 1356 simplifyLoop(&OriginalLoop, &DT, &LI, &SE, nullptr, true); 1357 1358 return true; 1359 } 1360 1361 /// Computes and returns a range of values for the induction variable (IndVar) 1362 /// in which the range check can be safely elided. If it cannot compute such a 1363 /// range, returns None. 1364 Optional<InductiveRangeCheck::Range> 1365 InductiveRangeCheck::computeSafeIterationSpace( 1366 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const { 1367 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1368 // variable, that may or may not exist as a real llvm::Value in the loop) and 1369 // this inductive range check is a range check on the "C + D * I" ("C" is 1370 // getOffset() and "D" is getScale()). We rewrite the value being range 1371 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1372 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code 1373 // can be generalized as needed. 1374 // 1375 // The actual inequalities we solve are of the form 1376 // 1377 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1378 // 1379 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions 1380 // and subtractions are twos-complement wrapping and comparisons are signed. 1381 // 1382 // Proof: 1383 // 1384 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows 1385 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows 1386 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have 1387 // overflown. 1388 // 1389 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. 1390 // Hence 0 <= (IndVar + M) < L 1391 1392 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = 1393 // 127, IndVar = 126 and L = -2 in an i8 world. 1394 1395 if (!IndVar->isAffine()) 1396 return None; 1397 1398 const SCEV *A = IndVar->getStart(); 1399 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1400 if (!B) 1401 return None; 1402 1403 const SCEV *C = getOffset(); 1404 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale()); 1405 if (D != B) 1406 return None; 1407 1408 ConstantInt *ConstD = D->getValue(); 1409 if (!(ConstD->isMinusOne() || ConstD->isOne())) 1410 return None; 1411 1412 const SCEV *M = SE.getMinusSCEV(C, A); 1413 1414 const SCEV *Begin = SE.getNegativeSCEV(M); 1415 const SCEV *UpperLimit = nullptr; 1416 1417 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 1418 // We can potentially do much better here. 1419 if (Value *V = getLength()) { 1420 UpperLimit = SE.getSCEV(V); 1421 } else { 1422 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 1423 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1424 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1425 } 1426 1427 const SCEV *End = SE.getMinusSCEV(UpperLimit, M); 1428 return InductiveRangeCheck::Range(Begin, End); 1429 } 1430 1431 static Optional<InductiveRangeCheck::Range> 1432 IntersectRange(ScalarEvolution &SE, 1433 const Optional<InductiveRangeCheck::Range> &R1, 1434 const InductiveRangeCheck::Range &R2) { 1435 if (!R1.hasValue()) 1436 return R2; 1437 auto &R1Value = R1.getValue(); 1438 1439 // TODO: we could widen the smaller range and have this work; but for now we 1440 // bail out to keep things simple. 1441 if (R1Value.getType() != R2.getType()) 1442 return None; 1443 1444 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1445 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1446 1447 return InductiveRangeCheck::Range(NewBegin, NewEnd); 1448 } 1449 1450 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1451 if (skipLoop(L)) 1452 return false; 1453 1454 if (L->getBlocks().size() >= LoopSizeCutoff) { 1455 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1456 return false; 1457 } 1458 1459 BasicBlock *Preheader = L->getLoopPreheader(); 1460 if (!Preheader) { 1461 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1462 return false; 1463 } 1464 1465 LLVMContext &Context = Preheader->getContext(); 1466 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1467 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1468 BranchProbabilityInfo &BPI = 1469 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1470 1471 for (auto BBI : L->getBlocks()) 1472 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1473 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1474 RangeChecks); 1475 1476 if (RangeChecks.empty()) 1477 return false; 1478 1479 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1480 OS << "irce: looking at loop "; L->print(OS); 1481 OS << "irce: loop has " << RangeChecks.size() 1482 << " inductive range checks: \n"; 1483 for (InductiveRangeCheck &IRC : RangeChecks) 1484 IRC.print(OS); 1485 }; 1486 1487 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1488 1489 if (PrintRangeChecks) 1490 PrintRecognizedRangeChecks(errs()); 1491 1492 const char *FailureReason = nullptr; 1493 Optional<LoopStructure> MaybeLoopStructure = 1494 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1495 if (!MaybeLoopStructure.hasValue()) { 1496 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1497 << "\n";); 1498 return false; 1499 } 1500 LoopStructure LS = MaybeLoopStructure.getValue(); 1501 bool Increasing = LS.IndVarIncreasing; 1502 const SCEV *MinusOne = 1503 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true); 1504 const SCEVAddRecExpr *IndVar = 1505 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne)); 1506 1507 Optional<InductiveRangeCheck::Range> SafeIterRange; 1508 Instruction *ExprInsertPt = Preheader->getTerminator(); 1509 1510 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1511 1512 IRBuilder<> B(ExprInsertPt); 1513 for (InductiveRangeCheck &IRC : RangeChecks) { 1514 auto Result = IRC.computeSafeIterationSpace(SE, IndVar); 1515 if (Result.hasValue()) { 1516 auto MaybeSafeIterRange = 1517 IntersectRange(SE, SafeIterRange, Result.getValue()); 1518 if (MaybeSafeIterRange.hasValue()) { 1519 RangeChecksToEliminate.push_back(IRC); 1520 SafeIterRange = MaybeSafeIterRange.getValue(); 1521 } 1522 } 1523 } 1524 1525 if (!SafeIterRange.hasValue()) 1526 return false; 1527 1528 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1529 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM, 1530 LS, SE, DT, SafeIterRange.getValue()); 1531 bool Changed = LC.run(); 1532 1533 if (Changed) { 1534 auto PrintConstrainedLoopInfo = [L]() { 1535 dbgs() << "irce: in function "; 1536 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1537 dbgs() << "constrained "; 1538 L->print(dbgs()); 1539 }; 1540 1541 DEBUG(PrintConstrainedLoopInfo()); 1542 1543 if (PrintChangedLoops) 1544 PrintConstrainedLoopInfo(); 1545 1546 // Optimize away the now-redundant range checks. 1547 1548 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1549 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1550 ? ConstantInt::getTrue(Context) 1551 : ConstantInt::getFalse(Context); 1552 IRC.getCheckUse()->set(FoldedRangeCheck); 1553 } 1554 } 1555 1556 return Changed; 1557 } 1558 1559 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1560 return new InductiveRangeCheckElimination; 1561 } 1562