1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringRef.h"
53 #include "llvm/ADT/Twine.h"
54 #include "llvm/Analysis/BranchProbabilityInfo.h"
55 #include "llvm/Analysis/LoopAnalysisManager.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopPass.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpander.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/PatternMatch.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Use.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Scalar.h"
87 #include "llvm/Transforms/Utils/Cloning.h"
88 #include "llvm/Transforms/Utils/LoopSimplify.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Utils/ValueMapper.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <iterator>
94 #include <limits>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 using namespace llvm::PatternMatch;
100 
101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
102                                         cl::init(64));
103 
104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
105                                        cl::init(false));
106 
107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
108                                       cl::init(false));
109 
110 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
111                                           cl::Hidden, cl::init(10));
112 
113 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
114                                              cl::Hidden, cl::init(false));
115 
116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
117                                                  cl::Hidden, cl::init(true));
118 
119 static cl::opt<bool> AllowNarrowLatchCondition(
120     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
121     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
122              "with narrow latch condition."));
123 
124 static const char *ClonedLoopTag = "irce.loop.clone";
125 
126 #define DEBUG_TYPE "irce"
127 
128 namespace {
129 
130 /// An inductive range check is conditional branch in a loop with
131 ///
132 ///  1. a very cold successor (i.e. the branch jumps to that successor very
133 ///     rarely)
134 ///
135 ///  and
136 ///
137 ///  2. a condition that is provably true for some contiguous range of values
138 ///     taken by the containing loop's induction variable.
139 ///
140 class InductiveRangeCheck {
141 
142   const SCEV *Begin = nullptr;
143   const SCEV *Step = nullptr;
144   const SCEV *End = nullptr;
145   Use *CheckUse = nullptr;
146   bool IsSigned = true;
147 
148   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
149                                   Value *&Index, Value *&Length,
150                                   bool &IsSigned);
151 
152   static void
153   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
154                              SmallVectorImpl<InductiveRangeCheck> &Checks,
155                              SmallPtrSetImpl<Value *> &Visited);
156 
157 public:
158   const SCEV *getBegin() const { return Begin; }
159   const SCEV *getStep() const { return Step; }
160   const SCEV *getEnd() const { return End; }
161   bool isSigned() const { return IsSigned; }
162 
163   void print(raw_ostream &OS) const {
164     OS << "InductiveRangeCheck:\n";
165     OS << "  Begin: ";
166     Begin->print(OS);
167     OS << "  Step: ";
168     Step->print(OS);
169     OS << "  End: ";
170     End->print(OS);
171     OS << "\n  CheckUse: ";
172     getCheckUse()->getUser()->print(OS);
173     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
174   }
175 
176   LLVM_DUMP_METHOD
177   void dump() {
178     print(dbgs());
179   }
180 
181   Use *getCheckUse() const { return CheckUse; }
182 
183   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
184   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
185 
186   class Range {
187     const SCEV *Begin;
188     const SCEV *End;
189 
190   public:
191     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
192       assert(Begin->getType() == End->getType() && "ill-typed range!");
193     }
194 
195     Type *getType() const { return Begin->getType(); }
196     const SCEV *getBegin() const { return Begin; }
197     const SCEV *getEnd() const { return End; }
198     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
199       if (Begin == End)
200         return true;
201       if (IsSigned)
202         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
203       else
204         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
205     }
206   };
207 
208   /// This is the value the condition of the branch needs to evaluate to for the
209   /// branch to take the hot successor (see (1) above).
210   bool getPassingDirection() { return true; }
211 
212   /// Computes a range for the induction variable (IndVar) in which the range
213   /// check is redundant and can be constant-folded away.  The induction
214   /// variable is not required to be the canonical {0,+,1} induction variable.
215   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
216                                             const SCEVAddRecExpr *IndVar,
217                                             bool IsLatchSigned) const;
218 
219   /// Parse out a set of inductive range checks from \p BI and append them to \p
220   /// Checks.
221   ///
222   /// NB! There may be conditions feeding into \p BI that aren't inductive range
223   /// checks, and hence don't end up in \p Checks.
224   static void
225   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
226                                BranchProbabilityInfo *BPI,
227                                SmallVectorImpl<InductiveRangeCheck> &Checks);
228 };
229 
230 class InductiveRangeCheckElimination {
231   ScalarEvolution &SE;
232   BranchProbabilityInfo *BPI;
233   DominatorTree &DT;
234   LoopInfo &LI;
235 
236 public:
237   InductiveRangeCheckElimination(ScalarEvolution &SE,
238                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
239                                  LoopInfo &LI)
240       : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
241 
242   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
243 };
244 
245 class IRCELegacyPass : public FunctionPass {
246 public:
247   static char ID;
248 
249   IRCELegacyPass() : FunctionPass(ID) {
250     initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
251   }
252 
253   void getAnalysisUsage(AnalysisUsage &AU) const override {
254     AU.addRequired<BranchProbabilityInfoWrapperPass>();
255     AU.addRequired<DominatorTreeWrapperPass>();
256     AU.addPreserved<DominatorTreeWrapperPass>();
257     AU.addRequired<LoopInfoWrapperPass>();
258     AU.addPreserved<LoopInfoWrapperPass>();
259     AU.addRequired<ScalarEvolutionWrapperPass>();
260     AU.addPreserved<ScalarEvolutionWrapperPass>();
261   }
262 
263   bool runOnFunction(Function &F) override;
264 };
265 
266 } // end anonymous namespace
267 
268 char IRCELegacyPass::ID = 0;
269 
270 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
271                       "Inductive range check elimination", false, false)
272 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
273 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
274 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
275 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
276 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
277                     false, false)
278 
279 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
280 /// be interpreted as a range check, return false and set `Index` and `Length`
281 /// to `nullptr`.  Otherwise set `Index` to the value being range checked, and
282 /// set `Length` to the upper limit `Index` is being range checked.
283 bool
284 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
285                                          ScalarEvolution &SE, Value *&Index,
286                                          Value *&Length, bool &IsSigned) {
287   auto IsLoopInvariant = [&SE, L](Value *V) {
288     return SE.isLoopInvariant(SE.getSCEV(V), L);
289   };
290 
291   ICmpInst::Predicate Pred = ICI->getPredicate();
292   Value *LHS = ICI->getOperand(0);
293   Value *RHS = ICI->getOperand(1);
294 
295   switch (Pred) {
296   default:
297     return false;
298 
299   case ICmpInst::ICMP_SLE:
300     std::swap(LHS, RHS);
301     LLVM_FALLTHROUGH;
302   case ICmpInst::ICMP_SGE:
303     IsSigned = true;
304     if (match(RHS, m_ConstantInt<0>())) {
305       Index = LHS;
306       return true; // Lower.
307     }
308     return false;
309 
310   case ICmpInst::ICMP_SLT:
311     std::swap(LHS, RHS);
312     LLVM_FALLTHROUGH;
313   case ICmpInst::ICMP_SGT:
314     IsSigned = true;
315     if (match(RHS, m_ConstantInt<-1>())) {
316       Index = LHS;
317       return true; // Lower.
318     }
319 
320     if (IsLoopInvariant(LHS)) {
321       Index = RHS;
322       Length = LHS;
323       return true; // Upper.
324     }
325     return false;
326 
327   case ICmpInst::ICMP_ULT:
328     std::swap(LHS, RHS);
329     LLVM_FALLTHROUGH;
330   case ICmpInst::ICMP_UGT:
331     IsSigned = false;
332     if (IsLoopInvariant(LHS)) {
333       Index = RHS;
334       Length = LHS;
335       return true; // Both lower and upper.
336     }
337     return false;
338   }
339 
340   llvm_unreachable("default clause returns!");
341 }
342 
343 void InductiveRangeCheck::extractRangeChecksFromCond(
344     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
345     SmallVectorImpl<InductiveRangeCheck> &Checks,
346     SmallPtrSetImpl<Value *> &Visited) {
347   Value *Condition = ConditionUse.get();
348   if (!Visited.insert(Condition).second)
349     return;
350 
351   // TODO: Do the same for OR, XOR, NOT etc?
352   if (match(Condition, m_And(m_Value(), m_Value()))) {
353     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
354                                Checks, Visited);
355     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
356                                Checks, Visited);
357     return;
358   }
359 
360   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
361   if (!ICI)
362     return;
363 
364   Value *Length = nullptr, *Index;
365   bool IsSigned;
366   if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
367     return;
368 
369   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
370   bool IsAffineIndex =
371       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
372 
373   if (!IsAffineIndex)
374     return;
375 
376   const SCEV *End = nullptr;
377   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
378   // We can potentially do much better here.
379   if (Length)
380     End = SE.getSCEV(Length);
381   else {
382     // So far we can only reach this point for Signed range check. This may
383     // change in future. In this case we will need to pick Unsigned max for the
384     // unsigned range check.
385     unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
386     const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
387     End = SIntMax;
388   }
389 
390   InductiveRangeCheck IRC;
391   IRC.End = End;
392   IRC.Begin = IndexAddRec->getStart();
393   IRC.Step = IndexAddRec->getStepRecurrence(SE);
394   IRC.CheckUse = &ConditionUse;
395   IRC.IsSigned = IsSigned;
396   Checks.push_back(IRC);
397 }
398 
399 void InductiveRangeCheck::extractRangeChecksFromBranch(
400     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
401     SmallVectorImpl<InductiveRangeCheck> &Checks) {
402   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
403     return;
404 
405   BranchProbability LikelyTaken(15, 16);
406 
407   if (!SkipProfitabilityChecks && BPI &&
408       BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
409     return;
410 
411   SmallPtrSet<Value *, 8> Visited;
412   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
413                                                   Checks, Visited);
414 }
415 
416 // Add metadata to the loop L to disable loop optimizations. Callers need to
417 // confirm that optimizing loop L is not beneficial.
418 static void DisableAllLoopOptsOnLoop(Loop &L) {
419   // We do not care about any existing loopID related metadata for L, since we
420   // are setting all loop metadata to false.
421   LLVMContext &Context = L.getHeader()->getContext();
422   // Reserve first location for self reference to the LoopID metadata node.
423   MDNode *Dummy = MDNode::get(Context, {});
424   MDNode *DisableUnroll = MDNode::get(
425       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
426   Metadata *FalseVal =
427       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
428   MDNode *DisableVectorize = MDNode::get(
429       Context,
430       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
431   MDNode *DisableLICMVersioning = MDNode::get(
432       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
433   MDNode *DisableDistribution= MDNode::get(
434       Context,
435       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
436   MDNode *NewLoopID =
437       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
438                             DisableLICMVersioning, DisableDistribution});
439   // Set operand 0 to refer to the loop id itself.
440   NewLoopID->replaceOperandWith(0, NewLoopID);
441   L.setLoopID(NewLoopID);
442 }
443 
444 namespace {
445 
446 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
447 // except that it is more lightweight and can track the state of a loop through
448 // changing and potentially invalid IR.  This structure also formalizes the
449 // kinds of loops we can deal with -- ones that have a single latch that is also
450 // an exiting block *and* have a canonical induction variable.
451 struct LoopStructure {
452   const char *Tag = "";
453 
454   BasicBlock *Header = nullptr;
455   BasicBlock *Latch = nullptr;
456 
457   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
458   // successor is `LatchExit', the exit block of the loop.
459   BranchInst *LatchBr = nullptr;
460   BasicBlock *LatchExit = nullptr;
461   unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
462 
463   // The loop represented by this instance of LoopStructure is semantically
464   // equivalent to:
465   //
466   // intN_ty inc = IndVarIncreasing ? 1 : -1;
467   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
468   //
469   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
470   //   ... body ...
471 
472   Value *IndVarBase = nullptr;
473   Value *IndVarStart = nullptr;
474   Value *IndVarStep = nullptr;
475   Value *LoopExitAt = nullptr;
476   bool IndVarIncreasing = false;
477   bool IsSignedPredicate = true;
478 
479   LoopStructure() = default;
480 
481   template <typename M> LoopStructure map(M Map) const {
482     LoopStructure Result;
483     Result.Tag = Tag;
484     Result.Header = cast<BasicBlock>(Map(Header));
485     Result.Latch = cast<BasicBlock>(Map(Latch));
486     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
487     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
488     Result.LatchBrExitIdx = LatchBrExitIdx;
489     Result.IndVarBase = Map(IndVarBase);
490     Result.IndVarStart = Map(IndVarStart);
491     Result.IndVarStep = Map(IndVarStep);
492     Result.LoopExitAt = Map(LoopExitAt);
493     Result.IndVarIncreasing = IndVarIncreasing;
494     Result.IsSignedPredicate = IsSignedPredicate;
495     return Result;
496   }
497 
498   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
499                                                     BranchProbabilityInfo *BPI,
500                                                     Loop &, const char *&);
501 };
502 
503 /// This class is used to constrain loops to run within a given iteration space.
504 /// The algorithm this class implements is given a Loop and a range [Begin,
505 /// End).  The algorithm then tries to break out a "main loop" out of the loop
506 /// it is given in a way that the "main loop" runs with the induction variable
507 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
508 /// loops to run any remaining iterations.  The pre loop runs any iterations in
509 /// which the induction variable is < Begin, and the post loop runs any
510 /// iterations in which the induction variable is >= End.
511 class LoopConstrainer {
512   // The representation of a clone of the original loop we started out with.
513   struct ClonedLoop {
514     // The cloned blocks
515     std::vector<BasicBlock *> Blocks;
516 
517     // `Map` maps values in the clonee into values in the cloned version
518     ValueToValueMapTy Map;
519 
520     // An instance of `LoopStructure` for the cloned loop
521     LoopStructure Structure;
522   };
523 
524   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
525   // more details on what these fields mean.
526   struct RewrittenRangeInfo {
527     BasicBlock *PseudoExit = nullptr;
528     BasicBlock *ExitSelector = nullptr;
529     std::vector<PHINode *> PHIValuesAtPseudoExit;
530     PHINode *IndVarEnd = nullptr;
531 
532     RewrittenRangeInfo() = default;
533   };
534 
535   // Calculated subranges we restrict the iteration space of the main loop to.
536   // See the implementation of `calculateSubRanges' for more details on how
537   // these fields are computed.  `LowLimit` is None if there is no restriction
538   // on low end of the restricted iteration space of the main loop.  `HighLimit`
539   // is None if there is no restriction on high end of the restricted iteration
540   // space of the main loop.
541 
542   struct SubRanges {
543     Optional<const SCEV *> LowLimit;
544     Optional<const SCEV *> HighLimit;
545   };
546 
547   // Compute a safe set of limits for the main loop to run in -- effectively the
548   // intersection of `Range' and the iteration space of the original loop.
549   // Return None if unable to compute the set of subranges.
550   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
551 
552   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
553   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
554   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
555   // but there is no such edge.
556   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
557 
558   // Create the appropriate loop structure needed to describe a cloned copy of
559   // `Original`.  The clone is described by `VM`.
560   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
561                                   ValueToValueMapTy &VM, bool IsSubloop);
562 
563   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
564   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
565   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
566   // `OriginalHeaderCount'.
567   //
568   // If there are iterations left to execute, control is made to jump to
569   // `ContinuationBlock', otherwise they take the normal loop exit.  The
570   // returned `RewrittenRangeInfo' object is populated as follows:
571   //
572   //  .PseudoExit is a basic block that unconditionally branches to
573   //      `ContinuationBlock'.
574   //
575   //  .ExitSelector is a basic block that decides, on exit from the loop,
576   //      whether to branch to the "true" exit or to `PseudoExit'.
577   //
578   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
579   //      for each PHINode in the loop header on taking the pseudo exit.
580   //
581   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
582   // preheader because it is made to branch to the loop header only
583   // conditionally.
584   RewrittenRangeInfo
585   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
586                           Value *ExitLoopAt,
587                           BasicBlock *ContinuationBlock) const;
588 
589   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
590   // function creates a new preheader for `LS' and returns it.
591   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
592                               const char *Tag) const;
593 
594   // `ContinuationBlockAndPreheader' was the continuation block for some call to
595   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
596   // This function rewrites the PHI nodes in `LS.Header' to start with the
597   // correct value.
598   void rewriteIncomingValuesForPHIs(
599       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
600       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
601 
602   // Even though we do not preserve any passes at this time, we at least need to
603   // keep the parent loop structure consistent.  The `LPPassManager' seems to
604   // verify this after running a loop pass.  This function adds the list of
605   // blocks denoted by BBs to this loops parent loop if required.
606   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
607 
608   // Some global state.
609   Function &F;
610   LLVMContext &Ctx;
611   ScalarEvolution &SE;
612   DominatorTree &DT;
613   LoopInfo &LI;
614   function_ref<void(Loop *, bool)> LPMAddNewLoop;
615 
616   // Information about the original loop we started out with.
617   Loop &OriginalLoop;
618 
619   const SCEV *LatchTakenCount = nullptr;
620   BasicBlock *OriginalPreheader = nullptr;
621 
622   // The preheader of the main loop.  This may or may not be different from
623   // `OriginalPreheader'.
624   BasicBlock *MainLoopPreheader = nullptr;
625 
626   // The range we need to run the main loop in.
627   InductiveRangeCheck::Range Range;
628 
629   // The structure of the main loop (see comment at the beginning of this class
630   // for a definition)
631   LoopStructure MainLoopStructure;
632 
633 public:
634   LoopConstrainer(Loop &L, LoopInfo &LI,
635                   function_ref<void(Loop *, bool)> LPMAddNewLoop,
636                   const LoopStructure &LS, ScalarEvolution &SE,
637                   DominatorTree &DT, InductiveRangeCheck::Range R)
638       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
639         SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
640         Range(R), MainLoopStructure(LS) {}
641 
642   // Entry point for the algorithm.  Returns true on success.
643   bool run();
644 };
645 
646 } // end anonymous namespace
647 
648 /// Given a loop with an deccreasing induction variable, is it possible to
649 /// safely calculate the bounds of a new loop using the given Predicate.
650 static bool isSafeDecreasingBound(const SCEV *Start,
651                                   const SCEV *BoundSCEV, const SCEV *Step,
652                                   ICmpInst::Predicate Pred,
653                                   unsigned LatchBrExitIdx,
654                                   Loop *L, ScalarEvolution &SE) {
655   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
656       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
657     return false;
658 
659   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
660     return false;
661 
662   assert(SE.isKnownNegative(Step) && "expecting negative step");
663 
664   LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
665   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
666   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
667   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
668   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
669                     << "\n");
670   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
671 
672   bool IsSigned = ICmpInst::isSigned(Pred);
673   // The predicate that we need to check that the induction variable lies
674   // within bounds.
675   ICmpInst::Predicate BoundPred =
676     IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
677 
678   if (LatchBrExitIdx == 1)
679     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
680 
681   assert(LatchBrExitIdx == 0 &&
682          "LatchBrExitIdx should be either 0 or 1");
683 
684   const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
685   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
686   APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
687     APInt::getMinValue(BitWidth);
688   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
689 
690   const SCEV *MinusOne =
691     SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
692 
693   return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
694          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
695 
696 }
697 
698 /// Given a loop with an increasing induction variable, is it possible to
699 /// safely calculate the bounds of a new loop using the given Predicate.
700 static bool isSafeIncreasingBound(const SCEV *Start,
701                                   const SCEV *BoundSCEV, const SCEV *Step,
702                                   ICmpInst::Predicate Pred,
703                                   unsigned LatchBrExitIdx,
704                                   Loop *L, ScalarEvolution &SE) {
705   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
706       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
707     return false;
708 
709   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
710     return false;
711 
712   LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
713   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
714   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
715   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
716   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
717                     << "\n");
718   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
719 
720   bool IsSigned = ICmpInst::isSigned(Pred);
721   // The predicate that we need to check that the induction variable lies
722   // within bounds.
723   ICmpInst::Predicate BoundPred =
724       IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
725 
726   if (LatchBrExitIdx == 1)
727     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
728 
729   assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
730 
731   const SCEV *StepMinusOne =
732     SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
733   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
734   APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
735     APInt::getMaxValue(BitWidth);
736   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
737 
738   return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
739                                       SE.getAddExpr(BoundSCEV, Step)) &&
740           SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
741 }
742 
743 Optional<LoopStructure>
744 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
745                                   BranchProbabilityInfo *BPI, Loop &L,
746                                   const char *&FailureReason) {
747   if (!L.isLoopSimplifyForm()) {
748     FailureReason = "loop not in LoopSimplify form";
749     return None;
750   }
751 
752   BasicBlock *Latch = L.getLoopLatch();
753   assert(Latch && "Simplified loops only have one latch!");
754 
755   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
756     FailureReason = "loop has already been cloned";
757     return None;
758   }
759 
760   if (!L.isLoopExiting(Latch)) {
761     FailureReason = "no loop latch";
762     return None;
763   }
764 
765   BasicBlock *Header = L.getHeader();
766   BasicBlock *Preheader = L.getLoopPreheader();
767   if (!Preheader) {
768     FailureReason = "no preheader";
769     return None;
770   }
771 
772   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
773   if (!LatchBr || LatchBr->isUnconditional()) {
774     FailureReason = "latch terminator not conditional branch";
775     return None;
776   }
777 
778   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
779 
780   BranchProbability ExitProbability =
781       BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
782           : BranchProbability::getZero();
783 
784   if (!SkipProfitabilityChecks &&
785       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
786     FailureReason = "short running loop, not profitable";
787     return None;
788   }
789 
790   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
791   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
792     FailureReason = "latch terminator branch not conditional on integral icmp";
793     return None;
794   }
795 
796   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
797   if (isa<SCEVCouldNotCompute>(LatchCount)) {
798     FailureReason = "could not compute latch count";
799     return None;
800   }
801 
802   ICmpInst::Predicate Pred = ICI->getPredicate();
803   Value *LeftValue = ICI->getOperand(0);
804   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
805   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
806 
807   Value *RightValue = ICI->getOperand(1);
808   const SCEV *RightSCEV = SE.getSCEV(RightValue);
809 
810   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
811   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
812     if (isa<SCEVAddRecExpr>(RightSCEV)) {
813       std::swap(LeftSCEV, RightSCEV);
814       std::swap(LeftValue, RightValue);
815       Pred = ICmpInst::getSwappedPredicate(Pred);
816     } else {
817       FailureReason = "no add recurrences in the icmp";
818       return None;
819     }
820   }
821 
822   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
823     if (AR->getNoWrapFlags(SCEV::FlagNSW))
824       return true;
825 
826     IntegerType *Ty = cast<IntegerType>(AR->getType());
827     IntegerType *WideTy =
828         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
829 
830     const SCEVAddRecExpr *ExtendAfterOp =
831         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
832     if (ExtendAfterOp) {
833       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
834       const SCEV *ExtendedStep =
835           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
836 
837       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
838                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
839 
840       if (NoSignedWrap)
841         return true;
842     }
843 
844     // We may have proved this when computing the sign extension above.
845     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
846   };
847 
848   // `ICI` is interpreted as taking the backedge if the *next* value of the
849   // induction variable satisfies some constraint.
850 
851   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
852   if (!IndVarBase->isAffine()) {
853     FailureReason = "LHS in icmp not induction variable";
854     return None;
855   }
856   const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
857   if (!isa<SCEVConstant>(StepRec)) {
858     FailureReason = "LHS in icmp not induction variable";
859     return None;
860   }
861   ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
862 
863   if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
864     FailureReason = "LHS in icmp needs nsw for equality predicates";
865     return None;
866   }
867 
868   assert(!StepCI->isZero() && "Zero step?");
869   bool IsIncreasing = !StepCI->isNegative();
870   bool IsSignedPredicate;
871   const SCEV *StartNext = IndVarBase->getStart();
872   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
873   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
874   const SCEV *Step = SE.getSCEV(StepCI);
875 
876   const SCEV *FixedRightSCEV = nullptr;
877 
878   // If RightValue resides within loop (but still being loop invariant),
879   // regenerate it as preheader.
880   if (auto *I = dyn_cast<Instruction>(RightValue))
881     if (L.contains(I->getParent()))
882       FixedRightSCEV = RightSCEV;
883 
884   if (IsIncreasing) {
885     bool DecreasedRightValueByOne = false;
886     if (StepCI->isOne()) {
887       // Try to turn eq/ne predicates to those we can work with.
888       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
889         // while (++i != len) {         while (++i < len) {
890         //   ...                 --->     ...
891         // }                            }
892         // If both parts are known non-negative, it is profitable to use
893         // unsigned comparison in increasing loop. This allows us to make the
894         // comparison check against "RightSCEV + 1" more optimistic.
895         if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
896             isKnownNonNegativeInLoop(RightSCEV, &L, SE))
897           Pred = ICmpInst::ICMP_ULT;
898         else
899           Pred = ICmpInst::ICMP_SLT;
900       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
901         // while (true) {               while (true) {
902         //   if (++i == len)     --->     if (++i > len - 1)
903         //     break;                       break;
904         //   ...                          ...
905         // }                            }
906         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
907             cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
908           Pred = ICmpInst::ICMP_UGT;
909           RightSCEV = SE.getMinusSCEV(RightSCEV,
910                                       SE.getOne(RightSCEV->getType()));
911           DecreasedRightValueByOne = true;
912         } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
913           Pred = ICmpInst::ICMP_SGT;
914           RightSCEV = SE.getMinusSCEV(RightSCEV,
915                                       SE.getOne(RightSCEV->getType()));
916           DecreasedRightValueByOne = true;
917         }
918       }
919     }
920 
921     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
922     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
923     bool FoundExpectedPred =
924         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
925 
926     if (!FoundExpectedPred) {
927       FailureReason = "expected icmp slt semantically, found something else";
928       return None;
929     }
930 
931     IsSignedPredicate = ICmpInst::isSigned(Pred);
932     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
933       FailureReason = "unsigned latch conditions are explicitly prohibited";
934       return None;
935     }
936 
937     if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
938                                LatchBrExitIdx, &L, SE)) {
939       FailureReason = "Unsafe loop bounds";
940       return None;
941     }
942     if (LatchBrExitIdx == 0) {
943       // We need to increase the right value unless we have already decreased
944       // it virtually when we replaced EQ with SGT.
945       if (!DecreasedRightValueByOne)
946         FixedRightSCEV =
947             SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
948     } else {
949       assert(!DecreasedRightValueByOne &&
950              "Right value can be decreased only for LatchBrExitIdx == 0!");
951     }
952   } else {
953     bool IncreasedRightValueByOne = false;
954     if (StepCI->isMinusOne()) {
955       // Try to turn eq/ne predicates to those we can work with.
956       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
957         // while (--i != len) {         while (--i > len) {
958         //   ...                 --->     ...
959         // }                            }
960         // We intentionally don't turn the predicate into UGT even if we know
961         // that both operands are non-negative, because it will only pessimize
962         // our check against "RightSCEV - 1".
963         Pred = ICmpInst::ICMP_SGT;
964       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
965         // while (true) {               while (true) {
966         //   if (--i == len)     --->     if (--i < len + 1)
967         //     break;                       break;
968         //   ...                          ...
969         // }                            }
970         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
971             cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
972           Pred = ICmpInst::ICMP_ULT;
973           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
974           IncreasedRightValueByOne = true;
975         } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
976           Pred = ICmpInst::ICMP_SLT;
977           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
978           IncreasedRightValueByOne = true;
979         }
980       }
981     }
982 
983     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
984     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
985 
986     bool FoundExpectedPred =
987         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
988 
989     if (!FoundExpectedPred) {
990       FailureReason = "expected icmp sgt semantically, found something else";
991       return None;
992     }
993 
994     IsSignedPredicate =
995         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
996 
997     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
998       FailureReason = "unsigned latch conditions are explicitly prohibited";
999       return None;
1000     }
1001 
1002     if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1003                                LatchBrExitIdx, &L, SE)) {
1004       FailureReason = "Unsafe bounds";
1005       return None;
1006     }
1007 
1008     if (LatchBrExitIdx == 0) {
1009       // We need to decrease the right value unless we have already increased
1010       // it virtually when we replaced EQ with SLT.
1011       if (!IncreasedRightValueByOne)
1012         FixedRightSCEV =
1013             SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1014     } else {
1015       assert(!IncreasedRightValueByOne &&
1016              "Right value can be increased only for LatchBrExitIdx == 0!");
1017     }
1018   }
1019   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1020 
1021   assert(SE.getLoopDisposition(LatchCount, &L) ==
1022              ScalarEvolution::LoopInvariant &&
1023          "loop variant exit count doesn't make sense!");
1024 
1025   assert(!L.contains(LatchExit) && "expected an exit block!");
1026   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1027   SCEVExpander Expander(SE, DL, "irce");
1028   Instruction *Ins = Preheader->getTerminator();
1029 
1030   if (FixedRightSCEV)
1031     RightValue =
1032         Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1033 
1034   Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1035   IndVarStartV->setName("indvar.start");
1036 
1037   LoopStructure Result;
1038 
1039   Result.Tag = "main";
1040   Result.Header = Header;
1041   Result.Latch = Latch;
1042   Result.LatchBr = LatchBr;
1043   Result.LatchExit = LatchExit;
1044   Result.LatchBrExitIdx = LatchBrExitIdx;
1045   Result.IndVarStart = IndVarStartV;
1046   Result.IndVarStep = StepCI;
1047   Result.IndVarBase = LeftValue;
1048   Result.IndVarIncreasing = IsIncreasing;
1049   Result.LoopExitAt = RightValue;
1050   Result.IsSignedPredicate = IsSignedPredicate;
1051 
1052   FailureReason = nullptr;
1053 
1054   return Result;
1055 }
1056 
1057 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1058 /// signed or unsigned extension of \p S to type \p Ty.
1059 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1060                                 bool Signed) {
1061   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1062 }
1063 
1064 Optional<LoopConstrainer::SubRanges>
1065 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1066   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1067 
1068   auto *RTy = cast<IntegerType>(Range.getType());
1069 
1070   // We only support wide range checks and narrow latches.
1071   if (!AllowNarrowLatchCondition && RTy != Ty)
1072     return None;
1073   if (RTy->getBitWidth() < Ty->getBitWidth())
1074     return None;
1075 
1076   LoopConstrainer::SubRanges Result;
1077 
1078   // I think we can be more aggressive here and make this nuw / nsw if the
1079   // addition that feeds into the icmp for the latch's terminating branch is nuw
1080   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1081   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1082                                    RTy, SE, IsSignedPredicate);
1083   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1084                                  SE, IsSignedPredicate);
1085 
1086   bool Increasing = MainLoopStructure.IndVarIncreasing;
1087 
1088   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1089   // [Smallest, GreatestSeen] is the range of values the induction variable
1090   // takes.
1091 
1092   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1093 
1094   const SCEV *One = SE.getOne(RTy);
1095   if (Increasing) {
1096     Smallest = Start;
1097     Greatest = End;
1098     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1099     GreatestSeen = SE.getMinusSCEV(End, One);
1100   } else {
1101     // These two computations may sign-overflow.  Here is why that is okay:
1102     //
1103     // We know that the induction variable does not sign-overflow on any
1104     // iteration except the last one, and it starts at `Start` and ends at
1105     // `End`, decrementing by one every time.
1106     //
1107     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1108     //    induction variable is decreasing we know that that the smallest value
1109     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1110     //
1111     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1112     //    that case, `Clamp` will always return `Smallest` and
1113     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1114     //    will be an empty range.  Returning an empty range is always safe.
1115 
1116     Smallest = SE.getAddExpr(End, One);
1117     Greatest = SE.getAddExpr(Start, One);
1118     GreatestSeen = Start;
1119   }
1120 
1121   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1122     return IsSignedPredicate
1123                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1124                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1125   };
1126 
1127   // In some cases we can prove that we don't need a pre or post loop.
1128   ICmpInst::Predicate PredLE =
1129       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1130   ICmpInst::Predicate PredLT =
1131       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1132 
1133   bool ProvablyNoPreloop =
1134       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1135   if (!ProvablyNoPreloop)
1136     Result.LowLimit = Clamp(Range.getBegin());
1137 
1138   bool ProvablyNoPostLoop =
1139       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1140   if (!ProvablyNoPostLoop)
1141     Result.HighLimit = Clamp(Range.getEnd());
1142 
1143   return Result;
1144 }
1145 
1146 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1147                                 const char *Tag) const {
1148   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1149     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1150     Result.Blocks.push_back(Clone);
1151     Result.Map[BB] = Clone;
1152   }
1153 
1154   auto GetClonedValue = [&Result](Value *V) {
1155     assert(V && "null values not in domain!");
1156     auto It = Result.Map.find(V);
1157     if (It == Result.Map.end())
1158       return V;
1159     return static_cast<Value *>(It->second);
1160   };
1161 
1162   auto *ClonedLatch =
1163       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1164   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1165                                             MDNode::get(Ctx, {}));
1166 
1167   Result.Structure = MainLoopStructure.map(GetClonedValue);
1168   Result.Structure.Tag = Tag;
1169 
1170   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1171     BasicBlock *ClonedBB = Result.Blocks[i];
1172     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1173 
1174     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1175 
1176     for (Instruction &I : *ClonedBB)
1177       RemapInstruction(&I, Result.Map,
1178                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1179 
1180     // Exit blocks will now have one more predecessor and their PHI nodes need
1181     // to be edited to reflect that.  No phi nodes need to be introduced because
1182     // the loop is in LCSSA.
1183 
1184     for (auto *SBB : successors(OriginalBB)) {
1185       if (OriginalLoop.contains(SBB))
1186         continue; // not an exit block
1187 
1188       for (PHINode &PN : SBB->phis()) {
1189         Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1190         PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1191       }
1192     }
1193   }
1194 }
1195 
1196 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1197     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1198     BasicBlock *ContinuationBlock) const {
1199   // We start with a loop with a single latch:
1200   //
1201   //    +--------------------+
1202   //    |                    |
1203   //    |     preheader      |
1204   //    |                    |
1205   //    +--------+-----------+
1206   //             |      ----------------\
1207   //             |     /                |
1208   //    +--------v----v------+          |
1209   //    |                    |          |
1210   //    |      header        |          |
1211   //    |                    |          |
1212   //    +--------------------+          |
1213   //                                    |
1214   //            .....                   |
1215   //                                    |
1216   //    +--------------------+          |
1217   //    |                    |          |
1218   //    |       latch        >----------/
1219   //    |                    |
1220   //    +-------v------------+
1221   //            |
1222   //            |
1223   //            |   +--------------------+
1224   //            |   |                    |
1225   //            +--->   original exit    |
1226   //                |                    |
1227   //                +--------------------+
1228   //
1229   // We change the control flow to look like
1230   //
1231   //
1232   //    +--------------------+
1233   //    |                    |
1234   //    |     preheader      >-------------------------+
1235   //    |                    |                         |
1236   //    +--------v-----------+                         |
1237   //             |    /-------------+                  |
1238   //             |   /              |                  |
1239   //    +--------v--v--------+      |                  |
1240   //    |                    |      |                  |
1241   //    |      header        |      |   +--------+     |
1242   //    |                    |      |   |        |     |
1243   //    +--------------------+      |   |  +-----v-----v-----------+
1244   //                                |   |  |                       |
1245   //                                |   |  |     .pseudo.exit      |
1246   //                                |   |  |                       |
1247   //                                |   |  +-----------v-----------+
1248   //                                |   |              |
1249   //            .....               |   |              |
1250   //                                |   |     +--------v-------------+
1251   //    +--------------------+      |   |     |                      |
1252   //    |                    |      |   |     |   ContinuationBlock  |
1253   //    |       latch        >------+   |     |                      |
1254   //    |                    |          |     +----------------------+
1255   //    +---------v----------+          |
1256   //              |                     |
1257   //              |                     |
1258   //              |     +---------------^-----+
1259   //              |     |                     |
1260   //              +----->    .exit.selector   |
1261   //                    |                     |
1262   //                    +----------v----------+
1263   //                               |
1264   //     +--------------------+    |
1265   //     |                    |    |
1266   //     |   original exit    <----+
1267   //     |                    |
1268   //     +--------------------+
1269 
1270   RewrittenRangeInfo RRI;
1271 
1272   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1273   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1274                                         &F, BBInsertLocation);
1275   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1276                                       BBInsertLocation);
1277 
1278   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1279   bool Increasing = LS.IndVarIncreasing;
1280   bool IsSignedPredicate = LS.IsSignedPredicate;
1281 
1282   IRBuilder<> B(PreheaderJump);
1283   auto *RangeTy = Range.getBegin()->getType();
1284   auto NoopOrExt = [&](Value *V) {
1285     if (V->getType() == RangeTy)
1286       return V;
1287     return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1288                              : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1289   };
1290 
1291   // EnterLoopCond - is it okay to start executing this `LS'?
1292   Value *EnterLoopCond = nullptr;
1293   auto Pred =
1294       Increasing
1295           ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1296           : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1297   Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1298   EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1299 
1300   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1301   PreheaderJump->eraseFromParent();
1302 
1303   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1304   B.SetInsertPoint(LS.LatchBr);
1305   Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1306   Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1307 
1308   Value *CondForBranch = LS.LatchBrExitIdx == 1
1309                              ? TakeBackedgeLoopCond
1310                              : B.CreateNot(TakeBackedgeLoopCond);
1311 
1312   LS.LatchBr->setCondition(CondForBranch);
1313 
1314   B.SetInsertPoint(RRI.ExitSelector);
1315 
1316   // IterationsLeft - are there any more iterations left, given the original
1317   // upper bound on the induction variable?  If not, we branch to the "real"
1318   // exit.
1319   Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1320   Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1321   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1322 
1323   BranchInst *BranchToContinuation =
1324       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1325 
1326   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1327   // each of the PHI nodes in the loop header.  This feeds into the initial
1328   // value of the same PHI nodes if/when we continue execution.
1329   for (PHINode &PN : LS.Header->phis()) {
1330     PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1331                                       BranchToContinuation);
1332 
1333     NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1334     NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1335                         RRI.ExitSelector);
1336     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1337   }
1338 
1339   RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1340                                   BranchToContinuation);
1341   RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1342   RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1343 
1344   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1345   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1346   LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1347 
1348   return RRI;
1349 }
1350 
1351 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1352     LoopStructure &LS, BasicBlock *ContinuationBlock,
1353     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1354   unsigned PHIIndex = 0;
1355   for (PHINode &PN : LS.Header->phis())
1356     PN.setIncomingValueForBlock(ContinuationBlock,
1357                                 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1358 
1359   LS.IndVarStart = RRI.IndVarEnd;
1360 }
1361 
1362 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1363                                              BasicBlock *OldPreheader,
1364                                              const char *Tag) const {
1365   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1366   BranchInst::Create(LS.Header, Preheader);
1367 
1368   LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1369 
1370   return Preheader;
1371 }
1372 
1373 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1374   Loop *ParentLoop = OriginalLoop.getParentLoop();
1375   if (!ParentLoop)
1376     return;
1377 
1378   for (BasicBlock *BB : BBs)
1379     ParentLoop->addBasicBlockToLoop(BB, LI);
1380 }
1381 
1382 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1383                                                  ValueToValueMapTy &VM,
1384                                                  bool IsSubloop) {
1385   Loop &New = *LI.AllocateLoop();
1386   if (Parent)
1387     Parent->addChildLoop(&New);
1388   else
1389     LI.addTopLevelLoop(&New);
1390   LPMAddNewLoop(&New, IsSubloop);
1391 
1392   // Add all of the blocks in Original to the new loop.
1393   for (auto *BB : Original->blocks())
1394     if (LI.getLoopFor(BB) == Original)
1395       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1396 
1397   // Add all of the subloops to the new loop.
1398   for (Loop *SubLoop : *Original)
1399     createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1400 
1401   return &New;
1402 }
1403 
1404 bool LoopConstrainer::run() {
1405   BasicBlock *Preheader = nullptr;
1406   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1407   Preheader = OriginalLoop.getLoopPreheader();
1408   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1409          "preconditions!");
1410 
1411   OriginalPreheader = Preheader;
1412   MainLoopPreheader = Preheader;
1413 
1414   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1415   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1416   if (!MaybeSR.hasValue()) {
1417     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1418     return false;
1419   }
1420 
1421   SubRanges SR = MaybeSR.getValue();
1422   bool Increasing = MainLoopStructure.IndVarIncreasing;
1423   IntegerType *IVTy =
1424       cast<IntegerType>(Range.getBegin()->getType());
1425 
1426   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1427   Instruction *InsertPt = OriginalPreheader->getTerminator();
1428 
1429   // It would have been better to make `PreLoop' and `PostLoop'
1430   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1431   // constructor.
1432   ClonedLoop PreLoop, PostLoop;
1433   bool NeedsPreLoop =
1434       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1435   bool NeedsPostLoop =
1436       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1437 
1438   Value *ExitPreLoopAt = nullptr;
1439   Value *ExitMainLoopAt = nullptr;
1440   const SCEVConstant *MinusOneS =
1441       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1442 
1443   if (NeedsPreLoop) {
1444     const SCEV *ExitPreLoopAtSCEV = nullptr;
1445 
1446     if (Increasing)
1447       ExitPreLoopAtSCEV = *SR.LowLimit;
1448     else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1449                                IsSignedPredicate))
1450       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1451     else {
1452       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1453                         << "preloop exit limit.  HighLimit = "
1454                         << *(*SR.HighLimit) << "\n");
1455       return false;
1456     }
1457 
1458     if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1459       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1460                         << " preloop exit limit " << *ExitPreLoopAtSCEV
1461                         << " at block " << InsertPt->getParent()->getName()
1462                         << "\n");
1463       return false;
1464     }
1465 
1466     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1467     ExitPreLoopAt->setName("exit.preloop.at");
1468   }
1469 
1470   if (NeedsPostLoop) {
1471     const SCEV *ExitMainLoopAtSCEV = nullptr;
1472 
1473     if (Increasing)
1474       ExitMainLoopAtSCEV = *SR.HighLimit;
1475     else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1476                                IsSignedPredicate))
1477       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1478     else {
1479       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1480                         << "mainloop exit limit.  LowLimit = "
1481                         << *(*SR.LowLimit) << "\n");
1482       return false;
1483     }
1484 
1485     if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1486       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1487                         << " main loop exit limit " << *ExitMainLoopAtSCEV
1488                         << " at block " << InsertPt->getParent()->getName()
1489                         << "\n");
1490       return false;
1491     }
1492 
1493     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1494     ExitMainLoopAt->setName("exit.mainloop.at");
1495   }
1496 
1497   // We clone these ahead of time so that we don't have to deal with changing
1498   // and temporarily invalid IR as we transform the loops.
1499   if (NeedsPreLoop)
1500     cloneLoop(PreLoop, "preloop");
1501   if (NeedsPostLoop)
1502     cloneLoop(PostLoop, "postloop");
1503 
1504   RewrittenRangeInfo PreLoopRRI;
1505 
1506   if (NeedsPreLoop) {
1507     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1508                                                   PreLoop.Structure.Header);
1509 
1510     MainLoopPreheader =
1511         createPreheader(MainLoopStructure, Preheader, "mainloop");
1512     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1513                                          ExitPreLoopAt, MainLoopPreheader);
1514     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1515                                  PreLoopRRI);
1516   }
1517 
1518   BasicBlock *PostLoopPreheader = nullptr;
1519   RewrittenRangeInfo PostLoopRRI;
1520 
1521   if (NeedsPostLoop) {
1522     PostLoopPreheader =
1523         createPreheader(PostLoop.Structure, Preheader, "postloop");
1524     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1525                                           ExitMainLoopAt, PostLoopPreheader);
1526     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1527                                  PostLoopRRI);
1528   }
1529 
1530   BasicBlock *NewMainLoopPreheader =
1531       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1532   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1533                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1534                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1535 
1536   // Some of the above may be nullptr, filter them out before passing to
1537   // addToParentLoopIfNeeded.
1538   auto NewBlocksEnd =
1539       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1540 
1541   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1542 
1543   DT.recalculate(F);
1544 
1545   // We need to first add all the pre and post loop blocks into the loop
1546   // structures (as part of createClonedLoopStructure), and then update the
1547   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1548   // LI when LoopSimplifyForm is generated.
1549   Loop *PreL = nullptr, *PostL = nullptr;
1550   if (!PreLoop.Blocks.empty()) {
1551     PreL = createClonedLoopStructure(&OriginalLoop,
1552                                      OriginalLoop.getParentLoop(), PreLoop.Map,
1553                                      /* IsSubLoop */ false);
1554   }
1555 
1556   if (!PostLoop.Blocks.empty()) {
1557     PostL =
1558         createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1559                                   PostLoop.Map, /* IsSubLoop */ false);
1560   }
1561 
1562   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1563   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1564     formLCSSARecursively(*L, DT, &LI, &SE);
1565     simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1566     // Pre/post loops are slow paths, we do not need to perform any loop
1567     // optimizations on them.
1568     if (!IsOriginalLoop)
1569       DisableAllLoopOptsOnLoop(*L);
1570   };
1571   if (PreL)
1572     CanonicalizeLoop(PreL, false);
1573   if (PostL)
1574     CanonicalizeLoop(PostL, false);
1575   CanonicalizeLoop(&OriginalLoop, true);
1576 
1577   return true;
1578 }
1579 
1580 /// Computes and returns a range of values for the induction variable (IndVar)
1581 /// in which the range check can be safely elided.  If it cannot compute such a
1582 /// range, returns None.
1583 Optional<InductiveRangeCheck::Range>
1584 InductiveRangeCheck::computeSafeIterationSpace(
1585     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1586     bool IsLatchSigned) const {
1587   // We can deal when types of latch check and range checks don't match in case
1588   // if latch check is more narrow.
1589   auto *IVType = cast<IntegerType>(IndVar->getType());
1590   auto *RCType = cast<IntegerType>(getBegin()->getType());
1591   if (IVType->getBitWidth() > RCType->getBitWidth())
1592     return None;
1593   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1594   // variable, that may or may not exist as a real llvm::Value in the loop) and
1595   // this inductive range check is a range check on the "C + D * I" ("C" is
1596   // getBegin() and "D" is getStep()).  We rewrite the value being range
1597   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1598   //
1599   // The actual inequalities we solve are of the form
1600   //
1601   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1602   //
1603   // Here L stands for upper limit of the safe iteration space.
1604   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1605   // overflows when calculating (0 - M) and (L - M) we, depending on type of
1606   // IV's iteration space, limit the calculations by borders of the iteration
1607   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1608   // If we figured out that "anything greater than (-M) is safe", we strengthen
1609   // this to "everything greater than 0 is safe", assuming that values between
1610   // -M and 0 just do not exist in unsigned iteration space, and we don't want
1611   // to deal with overflown values.
1612 
1613   if (!IndVar->isAffine())
1614     return None;
1615 
1616   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1617   const SCEVConstant *B = dyn_cast<SCEVConstant>(
1618       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1619   if (!B)
1620     return None;
1621   assert(!B->isZero() && "Recurrence with zero step?");
1622 
1623   const SCEV *C = getBegin();
1624   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1625   if (D != B)
1626     return None;
1627 
1628   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1629   unsigned BitWidth = RCType->getBitWidth();
1630   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1631 
1632   // Subtract Y from X so that it does not go through border of the IV
1633   // iteration space. Mathematically, it is equivalent to:
1634   //
1635   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
1636   //
1637   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1638   // any width of bit grid). But after we take min/max, the result is
1639   // guaranteed to be within [INT_MIN, INT_MAX].
1640   //
1641   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1642   // values, depending on type of latch condition that defines IV iteration
1643   // space.
1644   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1645     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1646     // This is required to ensure that SINT_MAX - X does not overflow signed and
1647     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1648     // restriction and make it work for negative X either?
1649     if (IsLatchSigned) {
1650       // X is a number from signed range, Y is interpreted as signed.
1651       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1652       // thing we should care about is that we didn't cross SINT_MAX.
1653       // So, if Y is positive, we subtract Y safely.
1654       //   Rule 1: Y > 0 ---> Y.
1655       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1656       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1657       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1658       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1659       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1660       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1661       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1662                              SCEV::FlagNSW);
1663     } else
1664       // X is a number from unsigned range, Y is interpreted as signed.
1665       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1666       // thing we should care about is that we didn't cross zero.
1667       // So, if Y is negative, we subtract Y safely.
1668       //   Rule 1: Y <s 0 ---> Y.
1669       // If 0 <= Y <= X, we subtract Y safely.
1670       //   Rule 2: Y <=s X ---> Y.
1671       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1672       //   Rule 3: Y >s X ---> X.
1673       // It gives us smin(X, Y) to subtract in all cases.
1674       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1675   };
1676   const SCEV *M = SE.getMinusSCEV(C, A);
1677   const SCEV *Zero = SE.getZero(M->getType());
1678 
1679   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1680   auto SCEVCheckNonNegative = [&](const SCEV *X) {
1681     const Loop *L = IndVar->getLoop();
1682     const SCEV *One = SE.getOne(X->getType());
1683     // Can we trivially prove that X is a non-negative or negative value?
1684     if (isKnownNonNegativeInLoop(X, L, SE))
1685       return One;
1686     else if (isKnownNegativeInLoop(X, L, SE))
1687       return Zero;
1688     // If not, we will have to figure it out during the execution.
1689     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1690     const SCEV *NegOne = SE.getNegativeSCEV(One);
1691     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1692   };
1693   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1694   // X is non-negative (in sense of a signed value). We need to re-implement
1695   // this function in a way that it will correctly handle negative X as well.
1696   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1697   // end up with a negative X and produce wrong results. So currently we ensure
1698   // that if getEnd() is negative then both ends of the safe range are zero.
1699   // Note that this may pessimize elimination of unsigned range checks against
1700   // negative values.
1701   const SCEV *REnd = getEnd();
1702   const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1703 
1704   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1705   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1706   return InductiveRangeCheck::Range(Begin, End);
1707 }
1708 
1709 static Optional<InductiveRangeCheck::Range>
1710 IntersectSignedRange(ScalarEvolution &SE,
1711                      const Optional<InductiveRangeCheck::Range> &R1,
1712                      const InductiveRangeCheck::Range &R2) {
1713   if (R2.isEmpty(SE, /* IsSigned */ true))
1714     return None;
1715   if (!R1.hasValue())
1716     return R2;
1717   auto &R1Value = R1.getValue();
1718   // We never return empty ranges from this function, and R1 is supposed to be
1719   // a result of intersection. Thus, R1 is never empty.
1720   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1721          "We should never have empty R1!");
1722 
1723   // TODO: we could widen the smaller range and have this work; but for now we
1724   // bail out to keep things simple.
1725   if (R1Value.getType() != R2.getType())
1726     return None;
1727 
1728   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1729   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1730 
1731   // If the resulting range is empty, just return None.
1732   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1733   if (Ret.isEmpty(SE, /* IsSigned */ true))
1734     return None;
1735   return Ret;
1736 }
1737 
1738 static Optional<InductiveRangeCheck::Range>
1739 IntersectUnsignedRange(ScalarEvolution &SE,
1740                        const Optional<InductiveRangeCheck::Range> &R1,
1741                        const InductiveRangeCheck::Range &R2) {
1742   if (R2.isEmpty(SE, /* IsSigned */ false))
1743     return None;
1744   if (!R1.hasValue())
1745     return R2;
1746   auto &R1Value = R1.getValue();
1747   // We never return empty ranges from this function, and R1 is supposed to be
1748   // a result of intersection. Thus, R1 is never empty.
1749   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1750          "We should never have empty R1!");
1751 
1752   // TODO: we could widen the smaller range and have this work; but for now we
1753   // bail out to keep things simple.
1754   if (R1Value.getType() != R2.getType())
1755     return None;
1756 
1757   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1758   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1759 
1760   // If the resulting range is empty, just return None.
1761   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1762   if (Ret.isEmpty(SE, /* IsSigned */ false))
1763     return None;
1764   return Ret;
1765 }
1766 
1767 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1768   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1769   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1770   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1771 
1772   BranchProbabilityInfo BPI;
1773   BPI.calculate(F, LI);
1774   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1775 
1776   bool Changed = false;
1777 
1778   for (const auto &L : LI) {
1779     Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1780                             /*PreserveLCSSA=*/false);
1781     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1782   }
1783 
1784   SmallPriorityWorklist<Loop *, 4> Worklist;
1785   appendLoopsToWorklist(LI, Worklist);
1786   auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1787     if (!IsSubloop)
1788       appendLoopsToWorklist(*NL, Worklist);
1789   };
1790 
1791   while (!Worklist.empty()) {
1792     Loop *L = Worklist.pop_back_val();
1793     Changed |= IRCE.run(L, LPMAddNewLoop);
1794   }
1795 
1796   if (!Changed)
1797     return PreservedAnalyses::all();
1798   return getLoopPassPreservedAnalyses();
1799 }
1800 
1801 bool IRCELegacyPass::runOnFunction(Function &F) {
1802   if (skipFunction(F))
1803     return false;
1804 
1805   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1806   BranchProbabilityInfo &BPI =
1807       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1808   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1809   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1810   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1811 
1812   bool Changed = false;
1813 
1814   for (const auto &L : LI) {
1815     Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1816                             /*PreserveLCSSA=*/false);
1817     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1818   }
1819 
1820   SmallPriorityWorklist<Loop *, 4> Worklist;
1821   appendLoopsToWorklist(LI, Worklist);
1822   auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1823     if (!IsSubloop)
1824       appendLoopsToWorklist(*NL, Worklist);
1825   };
1826 
1827   while (!Worklist.empty()) {
1828     Loop *L = Worklist.pop_back_val();
1829     Changed |= IRCE.run(L, LPMAddNewLoop);
1830   }
1831   return Changed;
1832 }
1833 
1834 bool InductiveRangeCheckElimination::run(
1835     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1836   if (L->getBlocks().size() >= LoopSizeCutoff) {
1837     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1838     return false;
1839   }
1840 
1841   BasicBlock *Preheader = L->getLoopPreheader();
1842   if (!Preheader) {
1843     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1844     return false;
1845   }
1846 
1847   LLVMContext &Context = Preheader->getContext();
1848   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1849 
1850   for (auto BBI : L->getBlocks())
1851     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1852       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1853                                                         RangeChecks);
1854 
1855   if (RangeChecks.empty())
1856     return false;
1857 
1858   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1859     OS << "irce: looking at loop "; L->print(OS);
1860     OS << "irce: loop has " << RangeChecks.size()
1861        << " inductive range checks: \n";
1862     for (InductiveRangeCheck &IRC : RangeChecks)
1863       IRC.print(OS);
1864   };
1865 
1866   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1867 
1868   if (PrintRangeChecks)
1869     PrintRecognizedRangeChecks(errs());
1870 
1871   const char *FailureReason = nullptr;
1872   Optional<LoopStructure> MaybeLoopStructure =
1873       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1874   if (!MaybeLoopStructure.hasValue()) {
1875     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1876                       << FailureReason << "\n";);
1877     return false;
1878   }
1879   LoopStructure LS = MaybeLoopStructure.getValue();
1880   const SCEVAddRecExpr *IndVar =
1881       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1882 
1883   Optional<InductiveRangeCheck::Range> SafeIterRange;
1884   Instruction *ExprInsertPt = Preheader->getTerminator();
1885 
1886   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1887   // Basing on the type of latch predicate, we interpret the IV iteration range
1888   // as signed or unsigned range. We use different min/max functions (signed or
1889   // unsigned) when intersecting this range with safe iteration ranges implied
1890   // by range checks.
1891   auto IntersectRange =
1892       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1893 
1894   IRBuilder<> B(ExprInsertPt);
1895   for (InductiveRangeCheck &IRC : RangeChecks) {
1896     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1897                                                 LS.IsSignedPredicate);
1898     if (Result.hasValue()) {
1899       auto MaybeSafeIterRange =
1900           IntersectRange(SE, SafeIterRange, Result.getValue());
1901       if (MaybeSafeIterRange.hasValue()) {
1902         assert(
1903             !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1904             "We should never return empty ranges!");
1905         RangeChecksToEliminate.push_back(IRC);
1906         SafeIterRange = MaybeSafeIterRange.getValue();
1907       }
1908     }
1909   }
1910 
1911   if (!SafeIterRange.hasValue())
1912     return false;
1913 
1914   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1915                      SafeIterRange.getValue());
1916   bool Changed = LC.run();
1917 
1918   if (Changed) {
1919     auto PrintConstrainedLoopInfo = [L]() {
1920       dbgs() << "irce: in function ";
1921       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1922       dbgs() << "constrained ";
1923       L->print(dbgs());
1924     };
1925 
1926     LLVM_DEBUG(PrintConstrainedLoopInfo());
1927 
1928     if (PrintChangedLoops)
1929       PrintConstrainedLoopInfo();
1930 
1931     // Optimize away the now-redundant range checks.
1932 
1933     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1934       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1935                                           ? ConstantInt::getTrue(Context)
1936                                           : ConstantInt::getFalse(Context);
1937       IRC.getCheckUse()->set(FoldedRangeCheck);
1938     }
1939   }
1940 
1941   return Changed;
1942 }
1943 
1944 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1945   return new IRCELegacyPass();
1946 }
1947