1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/ScalarEvolution.h"
49 #include "llvm/Analysis/ScalarEvolutionExpander.h"
50 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Cloning.h"
62 #include "llvm/Transforms/Utils/LoopSimplify.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 
65 using namespace llvm;
66 
67 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
68                                         cl::init(64));
69 
70 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
71                                        cl::init(false));
72 
73 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
74                                       cl::init(false));
75 
76 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
77                                           cl::Hidden, cl::init(10));
78 
79 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
80                                              cl::Hidden, cl::init(false));
81 
82 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
83                                                  cl::Hidden, cl::init(false));
84 
85 static const char *ClonedLoopTag = "irce.loop.clone";
86 
87 #define DEBUG_TYPE "irce"
88 
89 namespace {
90 
91 /// An inductive range check is conditional branch in a loop with
92 ///
93 ///  1. a very cold successor (i.e. the branch jumps to that successor very
94 ///     rarely)
95 ///
96 ///  and
97 ///
98 ///  2. a condition that is provably true for some contiguous range of values
99 ///     taken by the containing loop's induction variable.
100 ///
101 class InductiveRangeCheck {
102   // Classifies a range check
103   enum RangeCheckKind : unsigned {
104     // Range check of the form "0 <= I".
105     RANGE_CHECK_LOWER = 1,
106 
107     // Range check of the form "I < L" where L is known positive.
108     RANGE_CHECK_UPPER = 2,
109 
110     // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
111     // conditions.
112     RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
113 
114     // Unrecognized range check condition.
115     RANGE_CHECK_UNKNOWN = (unsigned)-1
116   };
117 
118   static StringRef rangeCheckKindToStr(RangeCheckKind);
119 
120   const SCEV *Offset = nullptr;
121   const SCEV *Scale = nullptr;
122   Value *Length = nullptr;
123   Use *CheckUse = nullptr;
124   RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
125 
126   static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
127                                             ScalarEvolution &SE, Value *&Index,
128                                             Value *&Length);
129 
130   static void
131   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
132                              SmallVectorImpl<InductiveRangeCheck> &Checks,
133                              SmallPtrSetImpl<Value *> &Visited);
134 
135 public:
136   const SCEV *getOffset() const { return Offset; }
137   const SCEV *getScale() const { return Scale; }
138   Value *getLength() const { return Length; }
139 
140   void print(raw_ostream &OS) const {
141     OS << "InductiveRangeCheck:\n";
142     OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
143     OS << "  Offset: ";
144     Offset->print(OS);
145     OS << "  Scale: ";
146     Scale->print(OS);
147     OS << "  Length: ";
148     if (Length)
149       Length->print(OS);
150     else
151       OS << "(null)";
152     OS << "\n  CheckUse: ";
153     getCheckUse()->getUser()->print(OS);
154     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
155   }
156 
157   LLVM_DUMP_METHOD
158   void dump() {
159     print(dbgs());
160   }
161 
162   Use *getCheckUse() const { return CheckUse; }
163 
164   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
165   /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
166 
167   class Range {
168     const SCEV *Begin;
169     const SCEV *End;
170 
171   public:
172     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
173       assert(Begin->getType() == End->getType() && "ill-typed range!");
174     }
175 
176     Type *getType() const { return Begin->getType(); }
177     const SCEV *getBegin() const { return Begin; }
178     const SCEV *getEnd() const { return End; }
179   };
180 
181   /// This is the value the condition of the branch needs to evaluate to for the
182   /// branch to take the hot successor (see (1) above).
183   bool getPassingDirection() { return true; }
184 
185   /// Computes a range for the induction variable (IndVar) in which the range
186   /// check is redundant and can be constant-folded away.  The induction
187   /// variable is not required to be the canonical {0,+,1} induction variable.
188   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
189                                             const SCEVAddRecExpr *IndVar) const;
190 
191   /// Parse out a set of inductive range checks from \p BI and append them to \p
192   /// Checks.
193   ///
194   /// NB! There may be conditions feeding into \p BI that aren't inductive range
195   /// checks, and hence don't end up in \p Checks.
196   static void
197   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
198                                BranchProbabilityInfo &BPI,
199                                SmallVectorImpl<InductiveRangeCheck> &Checks);
200 };
201 
202 class InductiveRangeCheckElimination : public LoopPass {
203 public:
204   static char ID;
205   InductiveRangeCheckElimination() : LoopPass(ID) {
206     initializeInductiveRangeCheckEliminationPass(
207         *PassRegistry::getPassRegistry());
208   }
209 
210   void getAnalysisUsage(AnalysisUsage &AU) const override {
211     AU.addRequired<BranchProbabilityInfoWrapperPass>();
212     getLoopAnalysisUsage(AU);
213   }
214 
215   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
216 };
217 
218 char InductiveRangeCheckElimination::ID = 0;
219 }
220 
221 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
222                       "Inductive range check elimination", false, false)
223 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
224 INITIALIZE_PASS_DEPENDENCY(LoopPass)
225 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
226                     "Inductive range check elimination", false, false)
227 
228 StringRef InductiveRangeCheck::rangeCheckKindToStr(
229     InductiveRangeCheck::RangeCheckKind RCK) {
230   switch (RCK) {
231   case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
232     return "RANGE_CHECK_UNKNOWN";
233 
234   case InductiveRangeCheck::RANGE_CHECK_UPPER:
235     return "RANGE_CHECK_UPPER";
236 
237   case InductiveRangeCheck::RANGE_CHECK_LOWER:
238     return "RANGE_CHECK_LOWER";
239 
240   case InductiveRangeCheck::RANGE_CHECK_BOTH:
241     return "RANGE_CHECK_BOTH";
242   }
243 
244   llvm_unreachable("unknown range check type!");
245 }
246 
247 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
248 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
249 /// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
250 /// range checked, and set `Length` to the upper limit `Index` is being range
251 /// checked with if (and only if) the range check type is stronger or equal to
252 /// RANGE_CHECK_UPPER.
253 ///
254 InductiveRangeCheck::RangeCheckKind
255 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
256                                          ScalarEvolution &SE, Value *&Index,
257                                          Value *&Length) {
258 
259   auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
260     const SCEV *S = SE.getSCEV(V);
261     if (isa<SCEVCouldNotCompute>(S))
262       return false;
263 
264     return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
265            SE.isKnownNonNegative(S);
266   };
267 
268   using namespace llvm::PatternMatch;
269 
270   ICmpInst::Predicate Pred = ICI->getPredicate();
271   Value *LHS = ICI->getOperand(0);
272   Value *RHS = ICI->getOperand(1);
273 
274   switch (Pred) {
275   default:
276     return RANGE_CHECK_UNKNOWN;
277 
278   case ICmpInst::ICMP_SLE:
279     std::swap(LHS, RHS);
280     LLVM_FALLTHROUGH;
281   case ICmpInst::ICMP_SGE:
282     if (match(RHS, m_ConstantInt<0>())) {
283       Index = LHS;
284       return RANGE_CHECK_LOWER;
285     }
286     return RANGE_CHECK_UNKNOWN;
287 
288   case ICmpInst::ICMP_SLT:
289     std::swap(LHS, RHS);
290     LLVM_FALLTHROUGH;
291   case ICmpInst::ICMP_SGT:
292     if (match(RHS, m_ConstantInt<-1>())) {
293       Index = LHS;
294       return RANGE_CHECK_LOWER;
295     }
296 
297     if (IsNonNegativeAndNotLoopVarying(LHS)) {
298       Index = RHS;
299       Length = LHS;
300       return RANGE_CHECK_UPPER;
301     }
302     return RANGE_CHECK_UNKNOWN;
303 
304   case ICmpInst::ICMP_ULT:
305     std::swap(LHS, RHS);
306     LLVM_FALLTHROUGH;
307   case ICmpInst::ICMP_UGT:
308     if (IsNonNegativeAndNotLoopVarying(LHS)) {
309       Index = RHS;
310       Length = LHS;
311       return RANGE_CHECK_BOTH;
312     }
313     return RANGE_CHECK_UNKNOWN;
314   }
315 
316   llvm_unreachable("default clause returns!");
317 }
318 
319 void InductiveRangeCheck::extractRangeChecksFromCond(
320     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
321     SmallVectorImpl<InductiveRangeCheck> &Checks,
322     SmallPtrSetImpl<Value *> &Visited) {
323   using namespace llvm::PatternMatch;
324 
325   Value *Condition = ConditionUse.get();
326   if (!Visited.insert(Condition).second)
327     return;
328 
329   if (match(Condition, m_And(m_Value(), m_Value()))) {
330     SmallVector<InductiveRangeCheck, 8> SubChecks;
331     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
332                                SubChecks, Visited);
333     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
334                                SubChecks, Visited);
335 
336     if (SubChecks.size() == 2) {
337       // Handle a special case where we know how to merge two checks separately
338       // checking the upper and lower bounds into a full range check.
339       const auto &RChkA = SubChecks[0];
340       const auto &RChkB = SubChecks[1];
341       if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
342           RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
343 
344         // If RChkA.Kind == RChkB.Kind then we just found two identical checks.
345         // But if one of them is a RANGE_CHECK_LOWER and the other is a
346         // RANGE_CHECK_UPPER (only possibility if they're different) then
347         // together they form a RANGE_CHECK_BOTH.
348         SubChecks[0].Kind =
349             (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
350         SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
351         SubChecks[0].CheckUse = &ConditionUse;
352 
353         // We updated one of the checks in place, now erase the other.
354         SubChecks.pop_back();
355       }
356     }
357 
358     Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
359     return;
360   }
361 
362   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
363   if (!ICI)
364     return;
365 
366   Value *Length = nullptr, *Index;
367   auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
368   if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
369     return;
370 
371   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
372   bool IsAffineIndex =
373       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
374 
375   if (!IsAffineIndex)
376     return;
377 
378   InductiveRangeCheck IRC;
379   IRC.Length = Length;
380   IRC.Offset = IndexAddRec->getStart();
381   IRC.Scale = IndexAddRec->getStepRecurrence(SE);
382   IRC.CheckUse = &ConditionUse;
383   IRC.Kind = RCKind;
384   Checks.push_back(IRC);
385 }
386 
387 void InductiveRangeCheck::extractRangeChecksFromBranch(
388     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
389     SmallVectorImpl<InductiveRangeCheck> &Checks) {
390 
391   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
392     return;
393 
394   BranchProbability LikelyTaken(15, 16);
395 
396   if (!SkipProfitabilityChecks &&
397       BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
398     return;
399 
400   SmallPtrSet<Value *, 8> Visited;
401   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
402                                                   Checks, Visited);
403 }
404 
405 // Add metadata to the loop L to disable loop optimizations. Callers need to
406 // confirm that optimizing loop L is not beneficial.
407 static void DisableAllLoopOptsOnLoop(Loop &L) {
408   // We do not care about any existing loopID related metadata for L, since we
409   // are setting all loop metadata to false.
410   LLVMContext &Context = L.getHeader()->getContext();
411   // Reserve first location for self reference to the LoopID metadata node.
412   MDNode *Dummy = MDNode::get(Context, {});
413   MDNode *DisableUnroll = MDNode::get(
414       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
415   Metadata *FalseVal =
416       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
417   MDNode *DisableVectorize = MDNode::get(
418       Context,
419       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
420   MDNode *DisableLICMVersioning = MDNode::get(
421       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
422   MDNode *DisableDistribution= MDNode::get(
423       Context,
424       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
425   MDNode *NewLoopID =
426       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
427                             DisableLICMVersioning, DisableDistribution});
428   // Set operand 0 to refer to the loop id itself.
429   NewLoopID->replaceOperandWith(0, NewLoopID);
430   L.setLoopID(NewLoopID);
431 }
432 
433 namespace {
434 
435 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
436 // except that it is more lightweight and can track the state of a loop through
437 // changing and potentially invalid IR.  This structure also formalizes the
438 // kinds of loops we can deal with -- ones that have a single latch that is also
439 // an exiting block *and* have a canonical induction variable.
440 struct LoopStructure {
441   const char *Tag;
442 
443   BasicBlock *Header;
444   BasicBlock *Latch;
445 
446   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
447   // successor is `LatchExit', the exit block of the loop.
448   BranchInst *LatchBr;
449   BasicBlock *LatchExit;
450   unsigned LatchBrExitIdx;
451 
452   // The loop represented by this instance of LoopStructure is semantically
453   // equivalent to:
454   //
455   // intN_ty inc = IndVarIncreasing ? 1 : -1;
456   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
457   //
458   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
459   //   ... body ...
460 
461   Value *IndVarBase;
462   Value *IndVarStart;
463   Value *IndVarStep;
464   Value *LoopExitAt;
465   bool IndVarIncreasing;
466   bool IsSignedPredicate;
467 
468   LoopStructure()
469       : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
470         LatchExit(nullptr), LatchBrExitIdx(-1), IndVarBase(nullptr),
471         IndVarStart(nullptr), IndVarStep(nullptr), LoopExitAt(nullptr),
472         IndVarIncreasing(false), IsSignedPredicate(true) {}
473 
474   template <typename M> LoopStructure map(M Map) const {
475     LoopStructure Result;
476     Result.Tag = Tag;
477     Result.Header = cast<BasicBlock>(Map(Header));
478     Result.Latch = cast<BasicBlock>(Map(Latch));
479     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
480     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
481     Result.LatchBrExitIdx = LatchBrExitIdx;
482     Result.IndVarBase = Map(IndVarBase);
483     Result.IndVarStart = Map(IndVarStart);
484     Result.IndVarStep = Map(IndVarStep);
485     Result.LoopExitAt = Map(LoopExitAt);
486     Result.IndVarIncreasing = IndVarIncreasing;
487     Result.IsSignedPredicate = IsSignedPredicate;
488     return Result;
489   }
490 
491   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
492                                                     BranchProbabilityInfo &BPI,
493                                                     Loop &,
494                                                     const char *&);
495 };
496 
497 /// This class is used to constrain loops to run within a given iteration space.
498 /// The algorithm this class implements is given a Loop and a range [Begin,
499 /// End).  The algorithm then tries to break out a "main loop" out of the loop
500 /// it is given in a way that the "main loop" runs with the induction variable
501 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
502 /// loops to run any remaining iterations.  The pre loop runs any iterations in
503 /// which the induction variable is < Begin, and the post loop runs any
504 /// iterations in which the induction variable is >= End.
505 ///
506 class LoopConstrainer {
507   // The representation of a clone of the original loop we started out with.
508   struct ClonedLoop {
509     // The cloned blocks
510     std::vector<BasicBlock *> Blocks;
511 
512     // `Map` maps values in the clonee into values in the cloned version
513     ValueToValueMapTy Map;
514 
515     // An instance of `LoopStructure` for the cloned loop
516     LoopStructure Structure;
517   };
518 
519   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
520   // more details on what these fields mean.
521   struct RewrittenRangeInfo {
522     BasicBlock *PseudoExit;
523     BasicBlock *ExitSelector;
524     std::vector<PHINode *> PHIValuesAtPseudoExit;
525     PHINode *IndVarEnd;
526 
527     RewrittenRangeInfo()
528         : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
529   };
530 
531   // Calculated subranges we restrict the iteration space of the main loop to.
532   // See the implementation of `calculateSubRanges' for more details on how
533   // these fields are computed.  `LowLimit` is None if there is no restriction
534   // on low end of the restricted iteration space of the main loop.  `HighLimit`
535   // is None if there is no restriction on high end of the restricted iteration
536   // space of the main loop.
537 
538   struct SubRanges {
539     Optional<const SCEV *> LowLimit;
540     Optional<const SCEV *> HighLimit;
541   };
542 
543   // A utility function that does a `replaceUsesOfWith' on the incoming block
544   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
545   // incoming block list with `ReplaceBy'.
546   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
547                               BasicBlock *ReplaceBy);
548 
549   // Compute a safe set of limits for the main loop to run in -- effectively the
550   // intersection of `Range' and the iteration space of the original loop.
551   // Return None if unable to compute the set of subranges.
552   //
553   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
554 
555   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
556   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
557   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
558   // but there is no such edge.
559   //
560   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
561 
562   // Create the appropriate loop structure needed to describe a cloned copy of
563   // `Original`.  The clone is described by `VM`.
564   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
565                                   ValueToValueMapTy &VM);
566 
567   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
568   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
569   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
570   // `OriginalHeaderCount'.
571   //
572   // If there are iterations left to execute, control is made to jump to
573   // `ContinuationBlock', otherwise they take the normal loop exit.  The
574   // returned `RewrittenRangeInfo' object is populated as follows:
575   //
576   //  .PseudoExit is a basic block that unconditionally branches to
577   //      `ContinuationBlock'.
578   //
579   //  .ExitSelector is a basic block that decides, on exit from the loop,
580   //      whether to branch to the "true" exit or to `PseudoExit'.
581   //
582   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
583   //      for each PHINode in the loop header on taking the pseudo exit.
584   //
585   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
586   // preheader because it is made to branch to the loop header only
587   // conditionally.
588   //
589   RewrittenRangeInfo
590   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
591                           Value *ExitLoopAt,
592                           BasicBlock *ContinuationBlock) const;
593 
594   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
595   // function creates a new preheader for `LS' and returns it.
596   //
597   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
598                               const char *Tag) const;
599 
600   // `ContinuationBlockAndPreheader' was the continuation block for some call to
601   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
602   // This function rewrites the PHI nodes in `LS.Header' to start with the
603   // correct value.
604   void rewriteIncomingValuesForPHIs(
605       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
606       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
607 
608   // Even though we do not preserve any passes at this time, we at least need to
609   // keep the parent loop structure consistent.  The `LPPassManager' seems to
610   // verify this after running a loop pass.  This function adds the list of
611   // blocks denoted by BBs to this loops parent loop if required.
612   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
613 
614   // Some global state.
615   Function &F;
616   LLVMContext &Ctx;
617   ScalarEvolution &SE;
618   DominatorTree &DT;
619   LPPassManager &LPM;
620   LoopInfo &LI;
621 
622   // Information about the original loop we started out with.
623   Loop &OriginalLoop;
624   const SCEV *LatchTakenCount;
625   BasicBlock *OriginalPreheader;
626 
627   // The preheader of the main loop.  This may or may not be different from
628   // `OriginalPreheader'.
629   BasicBlock *MainLoopPreheader;
630 
631   // The range we need to run the main loop in.
632   InductiveRangeCheck::Range Range;
633 
634   // The structure of the main loop (see comment at the beginning of this class
635   // for a definition)
636   LoopStructure MainLoopStructure;
637 
638 public:
639   LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM,
640                   const LoopStructure &LS, ScalarEvolution &SE,
641                   DominatorTree &DT, InductiveRangeCheck::Range R)
642       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
643         SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L),
644         LatchTakenCount(nullptr), OriginalPreheader(nullptr),
645         MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {}
646 
647   // Entry point for the algorithm.  Returns true on success.
648   bool run();
649 };
650 
651 }
652 
653 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
654                                       BasicBlock *ReplaceBy) {
655   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
656     if (PN->getIncomingBlock(i) == Block)
657       PN->setIncomingBlock(i, ReplaceBy);
658 }
659 
660 static bool CanBeMax(ScalarEvolution &SE, const SCEV *S, bool Signed) {
661   APInt Max = Signed ?
662       APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()) :
663       APInt::getMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
664   return SE.getSignedRange(S).contains(Max) &&
665          SE.getUnsignedRange(S).contains(Max);
666 }
667 
668 static bool SumCanReachMax(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2,
669                            bool Signed) {
670   // S1 < INT_MAX - S2 ===> S1 + S2 < INT_MAX.
671   assert(SE.isKnownNonNegative(S2) &&
672          "We expected the 2nd arg to be non-negative!");
673   const SCEV *Max = SE.getConstant(
674       Signed ? APInt::getSignedMaxValue(
675                    cast<IntegerType>(S1->getType())->getBitWidth())
676              : APInt::getMaxValue(
677                    cast<IntegerType>(S1->getType())->getBitWidth()));
678   const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2);
679   return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
680                               S1, CapForS1);
681 }
682 
683 static bool CanBeMin(ScalarEvolution &SE, const SCEV *S, bool Signed) {
684   APInt Min = Signed ?
685       APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()) :
686       APInt::getMinValue(cast<IntegerType>(S->getType())->getBitWidth());
687   return SE.getSignedRange(S).contains(Min) &&
688          SE.getUnsignedRange(S).contains(Min);
689 }
690 
691 static bool SumCanReachMin(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2,
692                            bool Signed) {
693   // S1 > INT_MIN - S2 ===> S1 + S2 > INT_MIN.
694   assert(SE.isKnownNonPositive(S2) &&
695          "We expected the 2nd arg to be non-positive!");
696   const SCEV *Max = SE.getConstant(
697       Signed ? APInt::getSignedMinValue(
698                    cast<IntegerType>(S1->getType())->getBitWidth())
699              : APInt::getMinValue(
700                    cast<IntegerType>(S1->getType())->getBitWidth()));
701   const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2);
702   return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT,
703                               S1, CapForS1);
704 }
705 
706 Optional<LoopStructure>
707 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
708                                   BranchProbabilityInfo &BPI,
709                                   Loop &L, const char *&FailureReason) {
710   if (!L.isLoopSimplifyForm()) {
711     FailureReason = "loop not in LoopSimplify form";
712     return None;
713   }
714 
715   BasicBlock *Latch = L.getLoopLatch();
716   assert(Latch && "Simplified loops only have one latch!");
717 
718   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
719     FailureReason = "loop has already been cloned";
720     return None;
721   }
722 
723   if (!L.isLoopExiting(Latch)) {
724     FailureReason = "no loop latch";
725     return None;
726   }
727 
728   BasicBlock *Header = L.getHeader();
729   BasicBlock *Preheader = L.getLoopPreheader();
730   if (!Preheader) {
731     FailureReason = "no preheader";
732     return None;
733   }
734 
735   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
736   if (!LatchBr || LatchBr->isUnconditional()) {
737     FailureReason = "latch terminator not conditional branch";
738     return None;
739   }
740 
741   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
742 
743   BranchProbability ExitProbability =
744     BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
745 
746   if (!SkipProfitabilityChecks &&
747       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
748     FailureReason = "short running loop, not profitable";
749     return None;
750   }
751 
752   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
753   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
754     FailureReason = "latch terminator branch not conditional on integral icmp";
755     return None;
756   }
757 
758   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
759   if (isa<SCEVCouldNotCompute>(LatchCount)) {
760     FailureReason = "could not compute latch count";
761     return None;
762   }
763 
764   ICmpInst::Predicate Pred = ICI->getPredicate();
765   Value *LeftValue = ICI->getOperand(0);
766   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
767   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
768 
769   Value *RightValue = ICI->getOperand(1);
770   const SCEV *RightSCEV = SE.getSCEV(RightValue);
771 
772   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
773   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
774     if (isa<SCEVAddRecExpr>(RightSCEV)) {
775       std::swap(LeftSCEV, RightSCEV);
776       std::swap(LeftValue, RightValue);
777       Pred = ICmpInst::getSwappedPredicate(Pred);
778     } else {
779       FailureReason = "no add recurrences in the icmp";
780       return None;
781     }
782   }
783 
784   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
785     if (AR->getNoWrapFlags(SCEV::FlagNSW))
786       return true;
787 
788     IntegerType *Ty = cast<IntegerType>(AR->getType());
789     IntegerType *WideTy =
790         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
791 
792     const SCEVAddRecExpr *ExtendAfterOp =
793         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
794     if (ExtendAfterOp) {
795       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
796       const SCEV *ExtendedStep =
797           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
798 
799       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
800                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
801 
802       if (NoSignedWrap)
803         return true;
804     }
805 
806     // We may have proved this when computing the sign extension above.
807     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
808   };
809 
810   // Here we check whether the suggested AddRec is an induction variable that
811   // can be handled (i.e. with known constant step), and if yes, calculate its
812   // step and identify whether it is increasing or decreasing.
813   auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing,
814                             ConstantInt *&StepCI) {
815     if (!AR->isAffine())
816       return false;
817 
818     // Currently we only work with induction variables that have been proved to
819     // not wrap.  This restriction can potentially be lifted in the future.
820 
821     if (!HasNoSignedWrap(AR))
822       return false;
823 
824     if (const SCEVConstant *StepExpr =
825             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
826       StepCI = StepExpr->getValue();
827       assert(!StepCI->isZero() && "Zero step?");
828       IsIncreasing = !StepCI->isNegative();
829       return true;
830     }
831 
832     return false;
833   };
834 
835   // `ICI` is interpreted as taking the backedge if the *next* value of the
836   // induction variable satisfies some constraint.
837 
838   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
839   bool IsIncreasing = false;
840   bool IsSignedPredicate = true;
841   ConstantInt *StepCI;
842   if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) {
843     FailureReason = "LHS in icmp not induction variable";
844     return None;
845   }
846 
847   const SCEV *StartNext = IndVarBase->getStart();
848   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
849   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
850   const SCEV *Step = SE.getSCEV(StepCI);
851 
852   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
853   if (IsIncreasing) {
854     bool DecreasedRightValueByOne = false;
855     if (StepCI->isOne()) {
856       // Try to turn eq/ne predicates to those we can work with.
857       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
858         // while (++i != len) {         while (++i < len) {
859         //   ...                 --->     ...
860         // }                            }
861         // If both parts are known non-negative, it is profitable to use
862         // unsigned comparison in increasing loop. This allows us to make the
863         // comparison check against "RightSCEV + 1" more optimistic.
864         if (SE.isKnownNonNegative(IndVarStart) &&
865             SE.isKnownNonNegative(RightSCEV))
866           Pred = ICmpInst::ICMP_ULT;
867         else
868           Pred = ICmpInst::ICMP_SLT;
869       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
870                !CanBeMin(SE, RightSCEV, /* IsSignedPredicate */ true)) {
871         // while (true) {               while (true) {
872         //   if (++i == len)     --->     if (++i > len - 1)
873         //     break;                       break;
874         //   ...                          ...
875         // }                            }
876         // TODO: Insert ICMP_UGT if both are non-negative?
877         Pred = ICmpInst::ICMP_SGT;
878         RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
879         DecreasedRightValueByOne = true;
880       }
881     }
882 
883     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
884     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
885     bool FoundExpectedPred =
886         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
887 
888     if (!FoundExpectedPred) {
889       FailureReason = "expected icmp slt semantically, found something else";
890       return None;
891     }
892 
893     IsSignedPredicate =
894         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
895 
896     // FIXME: We temporarily disable unsigned latch conditions by default
897     // because of found problems with intersecting signed and unsigned ranges.
898     // We are going to turn it on once the problems are fixed.
899     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
900       FailureReason = "unsigned latch conditions are explicitly prohibited";
901       return None;
902     }
903 
904     // The predicate that we need to check that the induction variable lies
905     // within bounds.
906     ICmpInst::Predicate BoundPred =
907         IsSignedPredicate ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
908 
909     if (LatchBrExitIdx == 0) {
910       const SCEV *StepMinusOne = SE.getMinusSCEV(Step,
911                                                  SE.getOne(Step->getType()));
912       if (SumCanReachMax(SE, RightSCEV, StepMinusOne, IsSignedPredicate)) {
913         // TODO: this restriction is easily removable -- we just have to
914         // remember that the icmp was an slt and not an sle.
915         FailureReason = "limit may overflow when coercing le to lt";
916         return None;
917       }
918 
919       if (!SE.isLoopEntryGuardedByCond(
920               &L, BoundPred, IndVarStart,
921               SE.getAddExpr(RightSCEV, Step))) {
922         FailureReason = "Induction variable start not bounded by upper limit";
923         return None;
924       }
925 
926       // We need to increase the right value unless we have already decreased
927       // it virtually when we replaced EQ with SGT.
928       if (!DecreasedRightValueByOne) {
929         IRBuilder<> B(Preheader->getTerminator());
930         RightValue = B.CreateAdd(RightValue, One);
931       }
932     } else {
933       if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) {
934         FailureReason = "Induction variable start not bounded by upper limit";
935         return None;
936       }
937       assert(!DecreasedRightValueByOne &&
938              "Right value can be decreased only for LatchBrExitIdx == 0!");
939     }
940   } else {
941     bool IncreasedRightValueByOne = false;
942     if (StepCI->isMinusOne()) {
943       // Try to turn eq/ne predicates to those we can work with.
944       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
945         // while (--i != len) {         while (--i > len) {
946         //   ...                 --->     ...
947         // }                            }
948         // We intentionally don't turn the predicate into UGT even if we know
949         // that both operands are non-negative, because it will only pessimize
950         // our check against "RightSCEV - 1".
951         Pred = ICmpInst::ICMP_SGT;
952       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
953                !CanBeMax(SE, RightSCEV, /* IsSignedPredicate */ true)) {
954         // while (true) {               while (true) {
955         //   if (--i == len)     --->     if (--i < len + 1)
956         //     break;                       break;
957         //   ...                          ...
958         // }                            }
959         // TODO: Insert ICMP_ULT if both are non-negative?
960         Pred = ICmpInst::ICMP_SLT;
961         RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
962         IncreasedRightValueByOne = true;
963       }
964     }
965 
966     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
967     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
968 
969     bool FoundExpectedPred =
970         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
971 
972     if (!FoundExpectedPred) {
973       FailureReason = "expected icmp sgt semantically, found something else";
974       return None;
975     }
976 
977     IsSignedPredicate =
978         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
979 
980     // FIXME: We temporarily disable unsigned latch conditions by default
981     // because of found problems with intersecting signed and unsigned ranges.
982     // We are going to turn it on once the problems are fixed.
983     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
984       FailureReason = "unsigned latch conditions are explicitly prohibited";
985       return None;
986     }
987 
988     // The predicate that we need to check that the induction variable lies
989     // within bounds.
990     ICmpInst::Predicate BoundPred =
991         IsSignedPredicate ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
992 
993     if (LatchBrExitIdx == 0) {
994       const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
995       if (SumCanReachMin(SE, RightSCEV, StepPlusOne, IsSignedPredicate)) {
996         // TODO: this restriction is easily removable -- we just have to
997         // remember that the icmp was an sgt and not an sge.
998         FailureReason = "limit may overflow when coercing ge to gt";
999         return None;
1000       }
1001 
1002       if (!SE.isLoopEntryGuardedByCond(
1003               &L, BoundPred, IndVarStart,
1004               SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) {
1005         FailureReason = "Induction variable start not bounded by lower limit";
1006         return None;
1007       }
1008 
1009       // We need to decrease the right value unless we have already increased
1010       // it virtually when we replaced EQ with SLT.
1011       if (!IncreasedRightValueByOne) {
1012         IRBuilder<> B(Preheader->getTerminator());
1013         RightValue = B.CreateSub(RightValue, One);
1014       }
1015     } else {
1016       if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) {
1017         FailureReason = "Induction variable start not bounded by lower limit";
1018         return None;
1019       }
1020       assert(!IncreasedRightValueByOne &&
1021              "Right value can be increased only for LatchBrExitIdx == 0!");
1022     }
1023   }
1024   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1025 
1026   assert(SE.getLoopDisposition(LatchCount, &L) ==
1027              ScalarEvolution::LoopInvariant &&
1028          "loop variant exit count doesn't make sense!");
1029 
1030   assert(!L.contains(LatchExit) && "expected an exit block!");
1031   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1032   Value *IndVarStartV =
1033       SCEVExpander(SE, DL, "irce")
1034           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
1035   IndVarStartV->setName("indvar.start");
1036 
1037   LoopStructure Result;
1038 
1039   Result.Tag = "main";
1040   Result.Header = Header;
1041   Result.Latch = Latch;
1042   Result.LatchBr = LatchBr;
1043   Result.LatchExit = LatchExit;
1044   Result.LatchBrExitIdx = LatchBrExitIdx;
1045   Result.IndVarStart = IndVarStartV;
1046   Result.IndVarStep = StepCI;
1047   Result.IndVarBase = LeftValue;
1048   Result.IndVarIncreasing = IsIncreasing;
1049   Result.LoopExitAt = RightValue;
1050   Result.IsSignedPredicate = IsSignedPredicate;
1051 
1052   FailureReason = nullptr;
1053 
1054   return Result;
1055 }
1056 
1057 Optional<LoopConstrainer::SubRanges>
1058 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1059   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1060 
1061   if (Range.getType() != Ty)
1062     return None;
1063 
1064   LoopConstrainer::SubRanges Result;
1065 
1066   // I think we can be more aggressive here and make this nuw / nsw if the
1067   // addition that feeds into the icmp for the latch's terminating branch is nuw
1068   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1069   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
1070   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
1071 
1072   bool Increasing = MainLoopStructure.IndVarIncreasing;
1073 
1074   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1075   // [Smallest, GreatestSeen] is the range of values the induction variable
1076   // takes.
1077 
1078   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1079 
1080   const SCEV *One = SE.getOne(Ty);
1081   if (Increasing) {
1082     Smallest = Start;
1083     Greatest = End;
1084     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1085     GreatestSeen = SE.getMinusSCEV(End, One);
1086   } else {
1087     // These two computations may sign-overflow.  Here is why that is okay:
1088     //
1089     // We know that the induction variable does not sign-overflow on any
1090     // iteration except the last one, and it starts at `Start` and ends at
1091     // `End`, decrementing by one every time.
1092     //
1093     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1094     //    induction variable is decreasing we know that that the smallest value
1095     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1096     //
1097     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1098     //    that case, `Clamp` will always return `Smallest` and
1099     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1100     //    will be an empty range.  Returning an empty range is always safe.
1101     //
1102 
1103     Smallest = SE.getAddExpr(End, One);
1104     Greatest = SE.getAddExpr(Start, One);
1105     GreatestSeen = Start;
1106   }
1107 
1108   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1109     bool MaybeNegativeValues = IsSignedPredicate || !SE.isKnownNonNegative(S);
1110     return MaybeNegativeValues
1111                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1112                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1113   };
1114 
1115   // In some cases we can prove that we don't need a pre or post loop.
1116   ICmpInst::Predicate PredLE =
1117       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1118   ICmpInst::Predicate PredLT =
1119       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1120 
1121   bool ProvablyNoPreloop =
1122       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1123   if (!ProvablyNoPreloop)
1124     Result.LowLimit = Clamp(Range.getBegin());
1125 
1126   bool ProvablyNoPostLoop =
1127       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1128   if (!ProvablyNoPostLoop)
1129     Result.HighLimit = Clamp(Range.getEnd());
1130 
1131   return Result;
1132 }
1133 
1134 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1135                                 const char *Tag) const {
1136   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1137     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1138     Result.Blocks.push_back(Clone);
1139     Result.Map[BB] = Clone;
1140   }
1141 
1142   auto GetClonedValue = [&Result](Value *V) {
1143     assert(V && "null values not in domain!");
1144     auto It = Result.Map.find(V);
1145     if (It == Result.Map.end())
1146       return V;
1147     return static_cast<Value *>(It->second);
1148   };
1149 
1150   auto *ClonedLatch =
1151       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1152   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1153                                             MDNode::get(Ctx, {}));
1154 
1155   Result.Structure = MainLoopStructure.map(GetClonedValue);
1156   Result.Structure.Tag = Tag;
1157 
1158   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1159     BasicBlock *ClonedBB = Result.Blocks[i];
1160     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1161 
1162     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1163 
1164     for (Instruction &I : *ClonedBB)
1165       RemapInstruction(&I, Result.Map,
1166                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1167 
1168     // Exit blocks will now have one more predecessor and their PHI nodes need
1169     // to be edited to reflect that.  No phi nodes need to be introduced because
1170     // the loop is in LCSSA.
1171 
1172     for (auto *SBB : successors(OriginalBB)) {
1173       if (OriginalLoop.contains(SBB))
1174         continue; // not an exit block
1175 
1176       for (Instruction &I : *SBB) {
1177         auto *PN = dyn_cast<PHINode>(&I);
1178         if (!PN)
1179           break;
1180 
1181         Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
1182         PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1183       }
1184     }
1185   }
1186 }
1187 
1188 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1189     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1190     BasicBlock *ContinuationBlock) const {
1191 
1192   // We start with a loop with a single latch:
1193   //
1194   //    +--------------------+
1195   //    |                    |
1196   //    |     preheader      |
1197   //    |                    |
1198   //    +--------+-----------+
1199   //             |      ----------------\
1200   //             |     /                |
1201   //    +--------v----v------+          |
1202   //    |                    |          |
1203   //    |      header        |          |
1204   //    |                    |          |
1205   //    +--------------------+          |
1206   //                                    |
1207   //            .....                   |
1208   //                                    |
1209   //    +--------------------+          |
1210   //    |                    |          |
1211   //    |       latch        >----------/
1212   //    |                    |
1213   //    +-------v------------+
1214   //            |
1215   //            |
1216   //            |   +--------------------+
1217   //            |   |                    |
1218   //            +--->   original exit    |
1219   //                |                    |
1220   //                +--------------------+
1221   //
1222   // We change the control flow to look like
1223   //
1224   //
1225   //    +--------------------+
1226   //    |                    |
1227   //    |     preheader      >-------------------------+
1228   //    |                    |                         |
1229   //    +--------v-----------+                         |
1230   //             |    /-------------+                  |
1231   //             |   /              |                  |
1232   //    +--------v--v--------+      |                  |
1233   //    |                    |      |                  |
1234   //    |      header        |      |   +--------+     |
1235   //    |                    |      |   |        |     |
1236   //    +--------------------+      |   |  +-----v-----v-----------+
1237   //                                |   |  |                       |
1238   //                                |   |  |     .pseudo.exit      |
1239   //                                |   |  |                       |
1240   //                                |   |  +-----------v-----------+
1241   //                                |   |              |
1242   //            .....               |   |              |
1243   //                                |   |     +--------v-------------+
1244   //    +--------------------+      |   |     |                      |
1245   //    |                    |      |   |     |   ContinuationBlock  |
1246   //    |       latch        >------+   |     |                      |
1247   //    |                    |          |     +----------------------+
1248   //    +---------v----------+          |
1249   //              |                     |
1250   //              |                     |
1251   //              |     +---------------^-----+
1252   //              |     |                     |
1253   //              +----->    .exit.selector   |
1254   //                    |                     |
1255   //                    +----------v----------+
1256   //                               |
1257   //     +--------------------+    |
1258   //     |                    |    |
1259   //     |   original exit    <----+
1260   //     |                    |
1261   //     +--------------------+
1262   //
1263 
1264   RewrittenRangeInfo RRI;
1265 
1266   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1267   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1268                                         &F, BBInsertLocation);
1269   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1270                                       BBInsertLocation);
1271 
1272   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1273   bool Increasing = LS.IndVarIncreasing;
1274   bool IsSignedPredicate = LS.IsSignedPredicate;
1275 
1276   IRBuilder<> B(PreheaderJump);
1277 
1278   // EnterLoopCond - is it okay to start executing this `LS'?
1279   Value *EnterLoopCond = nullptr;
1280   if (Increasing)
1281     EnterLoopCond = IsSignedPredicate
1282                         ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1283                         : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt);
1284   else
1285     EnterLoopCond = IsSignedPredicate
1286                         ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt)
1287                         : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt);
1288 
1289   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1290   PreheaderJump->eraseFromParent();
1291 
1292   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1293   B.SetInsertPoint(LS.LatchBr);
1294   Value *TakeBackedgeLoopCond = nullptr;
1295   if (Increasing)
1296     TakeBackedgeLoopCond = IsSignedPredicate
1297                         ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt)
1298                         : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt);
1299   else
1300     TakeBackedgeLoopCond = IsSignedPredicate
1301                         ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt)
1302                         : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt);
1303   Value *CondForBranch = LS.LatchBrExitIdx == 1
1304                              ? TakeBackedgeLoopCond
1305                              : B.CreateNot(TakeBackedgeLoopCond);
1306 
1307   LS.LatchBr->setCondition(CondForBranch);
1308 
1309   B.SetInsertPoint(RRI.ExitSelector);
1310 
1311   // IterationsLeft - are there any more iterations left, given the original
1312   // upper bound on the induction variable?  If not, we branch to the "real"
1313   // exit.
1314   Value *IterationsLeft = nullptr;
1315   if (Increasing)
1316     IterationsLeft = IsSignedPredicate
1317                          ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt)
1318                          : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt);
1319   else
1320     IterationsLeft = IsSignedPredicate
1321                          ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt)
1322                          : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt);
1323   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1324 
1325   BranchInst *BranchToContinuation =
1326       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1327 
1328   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1329   // each of the PHI nodes in the loop header.  This feeds into the initial
1330   // value of the same PHI nodes if/when we continue execution.
1331   for (Instruction &I : *LS.Header) {
1332     auto *PN = dyn_cast<PHINode>(&I);
1333     if (!PN)
1334       break;
1335 
1336     PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1337                                       BranchToContinuation);
1338 
1339     NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1340     NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1341                         RRI.ExitSelector);
1342     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1343   }
1344 
1345   RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end",
1346                                   BranchToContinuation);
1347   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1348   RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector);
1349 
1350   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1351   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1352   for (Instruction &I : *LS.LatchExit) {
1353     if (PHINode *PN = dyn_cast<PHINode>(&I))
1354       replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1355     else
1356       break;
1357   }
1358 
1359   return RRI;
1360 }
1361 
1362 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1363     LoopStructure &LS, BasicBlock *ContinuationBlock,
1364     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1365 
1366   unsigned PHIIndex = 0;
1367   for (Instruction &I : *LS.Header) {
1368     auto *PN = dyn_cast<PHINode>(&I);
1369     if (!PN)
1370       break;
1371 
1372     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1373       if (PN->getIncomingBlock(i) == ContinuationBlock)
1374         PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1375   }
1376 
1377   LS.IndVarStart = RRI.IndVarEnd;
1378 }
1379 
1380 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1381                                              BasicBlock *OldPreheader,
1382                                              const char *Tag) const {
1383 
1384   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1385   BranchInst::Create(LS.Header, Preheader);
1386 
1387   for (Instruction &I : *LS.Header) {
1388     auto *PN = dyn_cast<PHINode>(&I);
1389     if (!PN)
1390       break;
1391 
1392     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1393       replacePHIBlock(PN, OldPreheader, Preheader);
1394   }
1395 
1396   return Preheader;
1397 }
1398 
1399 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1400   Loop *ParentLoop = OriginalLoop.getParentLoop();
1401   if (!ParentLoop)
1402     return;
1403 
1404   for (BasicBlock *BB : BBs)
1405     ParentLoop->addBasicBlockToLoop(BB, LI);
1406 }
1407 
1408 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1409                                                  ValueToValueMapTy &VM) {
1410   Loop &New = *LI.AllocateLoop();
1411   if (Parent)
1412     Parent->addChildLoop(&New);
1413   else
1414     LI.addTopLevelLoop(&New);
1415   LPM.addLoop(New);
1416 
1417   // Add all of the blocks in Original to the new loop.
1418   for (auto *BB : Original->blocks())
1419     if (LI.getLoopFor(BB) == Original)
1420       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1421 
1422   // Add all of the subloops to the new loop.
1423   for (Loop *SubLoop : *Original)
1424     createClonedLoopStructure(SubLoop, &New, VM);
1425 
1426   return &New;
1427 }
1428 
1429 bool LoopConstrainer::run() {
1430   BasicBlock *Preheader = nullptr;
1431   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1432   Preheader = OriginalLoop.getLoopPreheader();
1433   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1434          "preconditions!");
1435 
1436   OriginalPreheader = Preheader;
1437   MainLoopPreheader = Preheader;
1438 
1439   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1440   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1441   if (!MaybeSR.hasValue()) {
1442     DEBUG(dbgs() << "irce: could not compute subranges\n");
1443     return false;
1444   }
1445 
1446   SubRanges SR = MaybeSR.getValue();
1447   bool Increasing = MainLoopStructure.IndVarIncreasing;
1448   IntegerType *IVTy =
1449       cast<IntegerType>(MainLoopStructure.IndVarBase->getType());
1450 
1451   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1452   Instruction *InsertPt = OriginalPreheader->getTerminator();
1453 
1454   // It would have been better to make `PreLoop' and `PostLoop'
1455   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1456   // constructor.
1457   ClonedLoop PreLoop, PostLoop;
1458   bool NeedsPreLoop =
1459       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1460   bool NeedsPostLoop =
1461       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1462 
1463   Value *ExitPreLoopAt = nullptr;
1464   Value *ExitMainLoopAt = nullptr;
1465   const SCEVConstant *MinusOneS =
1466       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1467 
1468   if (NeedsPreLoop) {
1469     const SCEV *ExitPreLoopAtSCEV = nullptr;
1470 
1471     if (Increasing)
1472       ExitPreLoopAtSCEV = *SR.LowLimit;
1473     else {
1474       if (CanBeMin(SE, *SR.HighLimit, IsSignedPredicate)) {
1475         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1476                      << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
1477                      << "\n");
1478         return false;
1479       }
1480       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1481     }
1482 
1483     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1484     ExitPreLoopAt->setName("exit.preloop.at");
1485   }
1486 
1487   if (NeedsPostLoop) {
1488     const SCEV *ExitMainLoopAtSCEV = nullptr;
1489 
1490     if (Increasing)
1491       ExitMainLoopAtSCEV = *SR.HighLimit;
1492     else {
1493       if (CanBeMin(SE, *SR.LowLimit, IsSignedPredicate)) {
1494         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1495                      << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
1496                      << "\n");
1497         return false;
1498       }
1499       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1500     }
1501 
1502     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1503     ExitMainLoopAt->setName("exit.mainloop.at");
1504   }
1505 
1506   // We clone these ahead of time so that we don't have to deal with changing
1507   // and temporarily invalid IR as we transform the loops.
1508   if (NeedsPreLoop)
1509     cloneLoop(PreLoop, "preloop");
1510   if (NeedsPostLoop)
1511     cloneLoop(PostLoop, "postloop");
1512 
1513   RewrittenRangeInfo PreLoopRRI;
1514 
1515   if (NeedsPreLoop) {
1516     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1517                                                   PreLoop.Structure.Header);
1518 
1519     MainLoopPreheader =
1520         createPreheader(MainLoopStructure, Preheader, "mainloop");
1521     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1522                                          ExitPreLoopAt, MainLoopPreheader);
1523     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1524                                  PreLoopRRI);
1525   }
1526 
1527   BasicBlock *PostLoopPreheader = nullptr;
1528   RewrittenRangeInfo PostLoopRRI;
1529 
1530   if (NeedsPostLoop) {
1531     PostLoopPreheader =
1532         createPreheader(PostLoop.Structure, Preheader, "postloop");
1533     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1534                                           ExitMainLoopAt, PostLoopPreheader);
1535     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1536                                  PostLoopRRI);
1537   }
1538 
1539   BasicBlock *NewMainLoopPreheader =
1540       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1541   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1542                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1543                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1544 
1545   // Some of the above may be nullptr, filter them out before passing to
1546   // addToParentLoopIfNeeded.
1547   auto NewBlocksEnd =
1548       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1549 
1550   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1551 
1552   DT.recalculate(F);
1553 
1554   // We need to first add all the pre and post loop blocks into the loop
1555   // structures (as part of createClonedLoopStructure), and then update the
1556   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1557   // LI when LoopSimplifyForm is generated.
1558   Loop *PreL = nullptr, *PostL = nullptr;
1559   if (!PreLoop.Blocks.empty()) {
1560     PreL = createClonedLoopStructure(
1561         &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map);
1562   }
1563 
1564   if (!PostLoop.Blocks.empty()) {
1565     PostL = createClonedLoopStructure(
1566         &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map);
1567   }
1568 
1569   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1570   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1571     formLCSSARecursively(*L, DT, &LI, &SE);
1572     simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
1573     // Pre/post loops are slow paths, we do not need to perform any loop
1574     // optimizations on them.
1575     if (!IsOriginalLoop)
1576       DisableAllLoopOptsOnLoop(*L);
1577   };
1578   if (PreL)
1579     CanonicalizeLoop(PreL, false);
1580   if (PostL)
1581     CanonicalizeLoop(PostL, false);
1582   CanonicalizeLoop(&OriginalLoop, true);
1583 
1584   return true;
1585 }
1586 
1587 /// Computes and returns a range of values for the induction variable (IndVar)
1588 /// in which the range check can be safely elided.  If it cannot compute such a
1589 /// range, returns None.
1590 Optional<InductiveRangeCheck::Range>
1591 InductiveRangeCheck::computeSafeIterationSpace(
1592     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
1593   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1594   // variable, that may or may not exist as a real llvm::Value in the loop) and
1595   // this inductive range check is a range check on the "C + D * I" ("C" is
1596   // getOffset() and "D" is getScale()).  We rewrite the value being range
1597   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1598   //
1599   // The actual inequalities we solve are of the form
1600   //
1601   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1602   //
1603   // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
1604   // and subtractions are twos-complement wrapping and comparisons are signed.
1605   //
1606   // Proof:
1607   //
1608   //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1609   //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
1610   //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
1611   //   overflown.
1612   //
1613   //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
1614   //   Hence 0 <= (IndVar + M) < L
1615 
1616   // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1617   // 127, IndVar = 126 and L = -2 in an i8 world.
1618 
1619   if (!IndVar->isAffine())
1620     return None;
1621 
1622   const SCEV *A = IndVar->getStart();
1623   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1624   if (!B)
1625     return None;
1626   assert(!B->isZero() && "Recurrence with zero step?");
1627 
1628   const SCEV *C = getOffset();
1629   const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1630   if (D != B)
1631     return None;
1632 
1633   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1634 
1635   const SCEV *M = SE.getMinusSCEV(C, A);
1636   const SCEV *Begin = SE.getNegativeSCEV(M);
1637   const SCEV *UpperLimit = nullptr;
1638 
1639   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1640   // We can potentially do much better here.
1641   if (Value *V = getLength()) {
1642     UpperLimit = SE.getSCEV(V);
1643   } else {
1644     assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1645     unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1646     UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1647   }
1648 
1649   const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
1650   return InductiveRangeCheck::Range(Begin, End);
1651 }
1652 
1653 static Optional<InductiveRangeCheck::Range>
1654 IntersectRange(ScalarEvolution &SE,
1655                const Optional<InductiveRangeCheck::Range> &R1,
1656                const InductiveRangeCheck::Range &R2) {
1657   if (!R1.hasValue())
1658     return R2;
1659   auto &R1Value = R1.getValue();
1660 
1661   // TODO: we could widen the smaller range and have this work; but for now we
1662   // bail out to keep things simple.
1663   if (R1Value.getType() != R2.getType())
1664     return None;
1665 
1666   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1667   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1668 
1669   return InductiveRangeCheck::Range(NewBegin, NewEnd);
1670 }
1671 
1672 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1673   if (skipLoop(L))
1674     return false;
1675 
1676   if (L->getBlocks().size() >= LoopSizeCutoff) {
1677     DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1678     return false;
1679   }
1680 
1681   BasicBlock *Preheader = L->getLoopPreheader();
1682   if (!Preheader) {
1683     DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1684     return false;
1685   }
1686 
1687   LLVMContext &Context = Preheader->getContext();
1688   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1689   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1690   BranchProbabilityInfo &BPI =
1691       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1692 
1693   for (auto BBI : L->getBlocks())
1694     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1695       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1696                                                         RangeChecks);
1697 
1698   if (RangeChecks.empty())
1699     return false;
1700 
1701   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1702     OS << "irce: looking at loop "; L->print(OS);
1703     OS << "irce: loop has " << RangeChecks.size()
1704        << " inductive range checks: \n";
1705     for (InductiveRangeCheck &IRC : RangeChecks)
1706       IRC.print(OS);
1707   };
1708 
1709   DEBUG(PrintRecognizedRangeChecks(dbgs()));
1710 
1711   if (PrintRangeChecks)
1712     PrintRecognizedRangeChecks(errs());
1713 
1714   const char *FailureReason = nullptr;
1715   Optional<LoopStructure> MaybeLoopStructure =
1716       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1717   if (!MaybeLoopStructure.hasValue()) {
1718     DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1719                  << "\n";);
1720     return false;
1721   }
1722   LoopStructure LS = MaybeLoopStructure.getValue();
1723   const SCEVAddRecExpr *IndVar =
1724       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1725 
1726   Optional<InductiveRangeCheck::Range> SafeIterRange;
1727   Instruction *ExprInsertPt = Preheader->getTerminator();
1728 
1729   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1730 
1731   IRBuilder<> B(ExprInsertPt);
1732   for (InductiveRangeCheck &IRC : RangeChecks) {
1733     auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
1734     if (Result.hasValue()) {
1735       auto MaybeSafeIterRange =
1736           IntersectRange(SE, SafeIterRange, Result.getValue());
1737       if (MaybeSafeIterRange.hasValue()) {
1738         RangeChecksToEliminate.push_back(IRC);
1739         SafeIterRange = MaybeSafeIterRange.getValue();
1740       }
1741     }
1742   }
1743 
1744   if (!SafeIterRange.hasValue())
1745     return false;
1746 
1747   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1748   LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM,
1749                      LS, SE, DT, SafeIterRange.getValue());
1750   bool Changed = LC.run();
1751 
1752   if (Changed) {
1753     auto PrintConstrainedLoopInfo = [L]() {
1754       dbgs() << "irce: in function ";
1755       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1756       dbgs() << "constrained ";
1757       L->print(dbgs());
1758     };
1759 
1760     DEBUG(PrintConstrainedLoopInfo());
1761 
1762     if (PrintChangedLoops)
1763       PrintConstrainedLoopInfo();
1764 
1765     // Optimize away the now-redundant range checks.
1766 
1767     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1768       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1769                                           ? ConstantInt::getTrue(Context)
1770                                           : ConstantInt::getFalse(Context);
1771       IRC.getCheckUse()->set(FoldedRangeCheck);
1772     }
1773   }
1774 
1775   return Changed;
1776 }
1777 
1778 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1779   return new InductiveRangeCheckElimination;
1780 }
1781