1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/InstructionSimplify.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Analysis/ScalarEvolution.h"
50 #include "llvm/Analysis/ScalarEvolutionExpander.h"
51 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
52 #include "llvm/Analysis/ValueTracking.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/LoopUtils.h"
68 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
69 #include "llvm/Transforms/Utils/UnrollLoop.h"
70 #include <array>
71 
72 using namespace llvm;
73 
74 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
75                                         cl::init(64));
76 
77 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
78                                        cl::init(false));
79 
80 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
81                                       cl::init(false));
82 
83 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
84                                           cl::Hidden, cl::init(10));
85 
86 #define DEBUG_TYPE "irce"
87 
88 namespace {
89 
90 /// An inductive range check is conditional branch in a loop with
91 ///
92 ///  1. a very cold successor (i.e. the branch jumps to that successor very
93 ///     rarely)
94 ///
95 ///  and
96 ///
97 ///  2. a condition that is provably true for some contiguous range of values
98 ///     taken by the containing loop's induction variable.
99 ///
100 class InductiveRangeCheck {
101   // Classifies a range check
102   enum RangeCheckKind : unsigned {
103     // Range check of the form "0 <= I".
104     RANGE_CHECK_LOWER = 1,
105 
106     // Range check of the form "I < L" where L is known positive.
107     RANGE_CHECK_UPPER = 2,
108 
109     // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
110     // conditions.
111     RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
112 
113     // Unrecognized range check condition.
114     RANGE_CHECK_UNKNOWN = (unsigned)-1
115   };
116 
117   static StringRef rangeCheckKindToStr(RangeCheckKind);
118 
119   const SCEV *Offset;
120   const SCEV *Scale;
121   Value *Length;
122   BranchInst *Branch;
123   RangeCheckKind Kind;
124 
125   static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
126                                             ScalarEvolution &SE, Value *&Index,
127                                             Value *&Length);
128 
129   static InductiveRangeCheck::RangeCheckKind
130   parseRangeCheck(Loop *L, ScalarEvolution &SE, Value *Condition,
131                   const SCEV *&Index, Value *&UpperLimit);
132 
133   InductiveRangeCheck() :
134     Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
135 
136 public:
137   const SCEV *getOffset() const { return Offset; }
138   const SCEV *getScale() const { return Scale; }
139   Value *getLength() const { return Length; }
140 
141   void print(raw_ostream &OS) const {
142     OS << "InductiveRangeCheck:\n";
143     OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
144     OS << "  Offset: ";
145     Offset->print(OS);
146     OS << "  Scale: ";
147     Scale->print(OS);
148     OS << "  Length: ";
149     if (Length)
150       Length->print(OS);
151     else
152       OS << "(null)";
153     OS << "\n  Branch: ";
154     getBranch()->print(OS);
155     OS << "\n";
156   }
157 
158 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
159   void dump() {
160     print(dbgs());
161   }
162 #endif
163 
164   BranchInst *getBranch() const { return Branch; }
165 
166   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
167   /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
168 
169   class Range {
170     const SCEV *Begin;
171     const SCEV *End;
172 
173   public:
174     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
175       assert(Begin->getType() == End->getType() && "ill-typed range!");
176     }
177 
178     Type *getType() const { return Begin->getType(); }
179     const SCEV *getBegin() const { return Begin; }
180     const SCEV *getEnd() const { return End; }
181   };
182 
183   typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
184 
185   /// This is the value the condition of the branch needs to evaluate to for the
186   /// branch to take the hot successor (see (1) above).
187   bool getPassingDirection() { return true; }
188 
189   /// Computes a range for the induction variable (IndVar) in which the range
190   /// check is redundant and can be constant-folded away.  The induction
191   /// variable is not required to be the canonical {0,+,1} induction variable.
192   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
193                                             const SCEVAddRecExpr *IndVar,
194                                             IRBuilder<> &B) const;
195 
196   /// Create an inductive range check out of BI if possible, else return
197   /// nullptr.
198   static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
199                                      Loop *L, ScalarEvolution &SE,
200                                      BranchProbabilityInfo &BPI);
201 };
202 
203 class InductiveRangeCheckElimination : public LoopPass {
204   InductiveRangeCheck::AllocatorTy Allocator;
205 
206 public:
207   static char ID;
208   InductiveRangeCheckElimination() : LoopPass(ID) {
209     initializeInductiveRangeCheckEliminationPass(
210         *PassRegistry::getPassRegistry());
211   }
212 
213   void getAnalysisUsage(AnalysisUsage &AU) const override {
214     AU.addRequired<BranchProbabilityInfoWrapperPass>();
215     getLoopAnalysisUsage(AU);
216   }
217 
218   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
219 };
220 
221 char InductiveRangeCheckElimination::ID = 0;
222 }
223 
224 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
225                       "Inductive range check elimination", false, false)
226 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
227 INITIALIZE_PASS_DEPENDENCY(LoopPass)
228 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
229                     "Inductive range check elimination", false, false)
230 
231 StringRef InductiveRangeCheck::rangeCheckKindToStr(
232     InductiveRangeCheck::RangeCheckKind RCK) {
233   switch (RCK) {
234   case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
235     return "RANGE_CHECK_UNKNOWN";
236 
237   case InductiveRangeCheck::RANGE_CHECK_UPPER:
238     return "RANGE_CHECK_UPPER";
239 
240   case InductiveRangeCheck::RANGE_CHECK_LOWER:
241     return "RANGE_CHECK_LOWER";
242 
243   case InductiveRangeCheck::RANGE_CHECK_BOTH:
244     return "RANGE_CHECK_BOTH";
245   }
246 
247   llvm_unreachable("unknown range check type!");
248 }
249 
250 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
251 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
252 /// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
253 /// range checked, and set `Length` to the upper limit `Index` is being range
254 /// checked with if (and only if) the range check type is stronger or equal to
255 /// RANGE_CHECK_UPPER.
256 ///
257 InductiveRangeCheck::RangeCheckKind
258 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
259                                          ScalarEvolution &SE, Value *&Index,
260                                          Value *&Length) {
261 
262   auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
263     const SCEV *S = SE.getSCEV(V);
264     if (isa<SCEVCouldNotCompute>(S))
265       return false;
266 
267     return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
268            SE.isKnownNonNegative(S);
269   };
270 
271   using namespace llvm::PatternMatch;
272 
273   ICmpInst::Predicate Pred = ICI->getPredicate();
274   Value *LHS = ICI->getOperand(0);
275   Value *RHS = ICI->getOperand(1);
276 
277   switch (Pred) {
278   default:
279     return RANGE_CHECK_UNKNOWN;
280 
281   case ICmpInst::ICMP_SLE:
282     std::swap(LHS, RHS);
283   // fallthrough
284   case ICmpInst::ICMP_SGE:
285     if (match(RHS, m_ConstantInt<0>())) {
286       Index = LHS;
287       return RANGE_CHECK_LOWER;
288     }
289     return RANGE_CHECK_UNKNOWN;
290 
291   case ICmpInst::ICMP_SLT:
292     std::swap(LHS, RHS);
293   // fallthrough
294   case ICmpInst::ICMP_SGT:
295     if (match(RHS, m_ConstantInt<-1>())) {
296       Index = LHS;
297       return RANGE_CHECK_LOWER;
298     }
299 
300     if (IsNonNegativeAndNotLoopVarying(LHS)) {
301       Index = RHS;
302       Length = LHS;
303       return RANGE_CHECK_UPPER;
304     }
305     return RANGE_CHECK_UNKNOWN;
306 
307   case ICmpInst::ICMP_ULT:
308     std::swap(LHS, RHS);
309   // fallthrough
310   case ICmpInst::ICMP_UGT:
311     if (IsNonNegativeAndNotLoopVarying(LHS)) {
312       Index = RHS;
313       Length = LHS;
314       return RANGE_CHECK_BOTH;
315     }
316     return RANGE_CHECK_UNKNOWN;
317   }
318 
319   llvm_unreachable("default clause returns!");
320 }
321 
322 /// Parses an arbitrary condition into a range check.  `Length` is set only if
323 /// the range check is recognized to be `RANGE_CHECK_UPPER` or stronger.
324 InductiveRangeCheck::RangeCheckKind
325 InductiveRangeCheck::parseRangeCheck(Loop *L, ScalarEvolution &SE,
326                                      Value *Condition, const SCEV *&Index,
327                                      Value *&Length) {
328   using namespace llvm::PatternMatch;
329 
330   Value *A = nullptr;
331   Value *B = nullptr;
332 
333   if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
334     Value *IndexA = nullptr, *IndexB = nullptr;
335     Value *LengthA = nullptr, *LengthB = nullptr;
336     ICmpInst *ICmpA = dyn_cast<ICmpInst>(A), *ICmpB = dyn_cast<ICmpInst>(B);
337 
338     if (!ICmpA || !ICmpB)
339       return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
340 
341     auto RCKindA = parseRangeCheckICmp(L, ICmpA, SE, IndexA, LengthA);
342     auto RCKindB = parseRangeCheckICmp(L, ICmpB, SE, IndexB, LengthB);
343 
344     if (RCKindA == InductiveRangeCheck::RANGE_CHECK_UNKNOWN ||
345         RCKindB == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
346       return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
347 
348     if (IndexA != IndexB)
349       return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
350 
351     if (LengthA != nullptr && LengthB != nullptr && LengthA != LengthB)
352       return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
353 
354     Index = SE.getSCEV(IndexA);
355     if (isa<SCEVCouldNotCompute>(Index))
356       return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
357 
358     Length = LengthA == nullptr ? LengthB : LengthA;
359 
360     return (InductiveRangeCheck::RangeCheckKind)(RCKindA | RCKindB);
361   }
362 
363   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
364     Value *IndexVal = nullptr;
365 
366     auto RCKind = parseRangeCheckICmp(L, ICI, SE, IndexVal, Length);
367 
368     if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
369       return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
370 
371     Index = SE.getSCEV(IndexVal);
372     if (isa<SCEVCouldNotCompute>(Index))
373       return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
374 
375     return RCKind;
376   }
377 
378   return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
379 }
380 
381 
382 InductiveRangeCheck *
383 InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
384                             Loop *L, ScalarEvolution &SE,
385                             BranchProbabilityInfo &BPI) {
386 
387   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
388     return nullptr;
389 
390   BranchProbability LikelyTaken(15, 16);
391 
392   if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
393     return nullptr;
394 
395   Value *Length = nullptr;
396   const SCEV *IndexSCEV = nullptr;
397 
398   auto RCKind = InductiveRangeCheck::parseRangeCheck(L, SE, BI->getCondition(),
399                                                      IndexSCEV, Length);
400 
401   if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
402     return nullptr;
403 
404   assert(IndexSCEV && "contract with SplitRangeCheckCondition!");
405   assert((!(RCKind & InductiveRangeCheck::RANGE_CHECK_UPPER) || Length) &&
406          "contract with SplitRangeCheckCondition!");
407 
408   const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
409   bool IsAffineIndex =
410       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
411 
412   if (!IsAffineIndex)
413     return nullptr;
414 
415   InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
416   IRC->Length = Length;
417   IRC->Offset = IndexAddRec->getStart();
418   IRC->Scale = IndexAddRec->getStepRecurrence(SE);
419   IRC->Branch = BI;
420   IRC->Kind = RCKind;
421   return IRC;
422 }
423 
424 namespace {
425 
426 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
427 // except that it is more lightweight and can track the state of a loop through
428 // changing and potentially invalid IR.  This structure also formalizes the
429 // kinds of loops we can deal with -- ones that have a single latch that is also
430 // an exiting block *and* have a canonical induction variable.
431 struct LoopStructure {
432   const char *Tag;
433 
434   BasicBlock *Header;
435   BasicBlock *Latch;
436 
437   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
438   // successor is `LatchExit', the exit block of the loop.
439   BranchInst *LatchBr;
440   BasicBlock *LatchExit;
441   unsigned LatchBrExitIdx;
442 
443   Value *IndVarNext;
444   Value *IndVarStart;
445   Value *LoopExitAt;
446   bool IndVarIncreasing;
447 
448   LoopStructure()
449       : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
450         LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
451         IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
452 
453   template <typename M> LoopStructure map(M Map) const {
454     LoopStructure Result;
455     Result.Tag = Tag;
456     Result.Header = cast<BasicBlock>(Map(Header));
457     Result.Latch = cast<BasicBlock>(Map(Latch));
458     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
459     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
460     Result.LatchBrExitIdx = LatchBrExitIdx;
461     Result.IndVarNext = Map(IndVarNext);
462     Result.IndVarStart = Map(IndVarStart);
463     Result.LoopExitAt = Map(LoopExitAt);
464     Result.IndVarIncreasing = IndVarIncreasing;
465     return Result;
466   }
467 
468   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
469                                                     BranchProbabilityInfo &BPI,
470                                                     Loop &,
471                                                     const char *&);
472 };
473 
474 /// This class is used to constrain loops to run within a given iteration space.
475 /// The algorithm this class implements is given a Loop and a range [Begin,
476 /// End).  The algorithm then tries to break out a "main loop" out of the loop
477 /// it is given in a way that the "main loop" runs with the induction variable
478 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
479 /// loops to run any remaining iterations.  The pre loop runs any iterations in
480 /// which the induction variable is < Begin, and the post loop runs any
481 /// iterations in which the induction variable is >= End.
482 ///
483 class LoopConstrainer {
484   // The representation of a clone of the original loop we started out with.
485   struct ClonedLoop {
486     // The cloned blocks
487     std::vector<BasicBlock *> Blocks;
488 
489     // `Map` maps values in the clonee into values in the cloned version
490     ValueToValueMapTy Map;
491 
492     // An instance of `LoopStructure` for the cloned loop
493     LoopStructure Structure;
494   };
495 
496   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
497   // more details on what these fields mean.
498   struct RewrittenRangeInfo {
499     BasicBlock *PseudoExit;
500     BasicBlock *ExitSelector;
501     std::vector<PHINode *> PHIValuesAtPseudoExit;
502     PHINode *IndVarEnd;
503 
504     RewrittenRangeInfo()
505         : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
506   };
507 
508   // Calculated subranges we restrict the iteration space of the main loop to.
509   // See the implementation of `calculateSubRanges' for more details on how
510   // these fields are computed.  `LowLimit` is None if there is no restriction
511   // on low end of the restricted iteration space of the main loop.  `HighLimit`
512   // is None if there is no restriction on high end of the restricted iteration
513   // space of the main loop.
514 
515   struct SubRanges {
516     Optional<const SCEV *> LowLimit;
517     Optional<const SCEV *> HighLimit;
518   };
519 
520   // A utility function that does a `replaceUsesOfWith' on the incoming block
521   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
522   // incoming block list with `ReplaceBy'.
523   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
524                               BasicBlock *ReplaceBy);
525 
526   // Compute a safe set of limits for the main loop to run in -- effectively the
527   // intersection of `Range' and the iteration space of the original loop.
528   // Return None if unable to compute the set of subranges.
529   //
530   Optional<SubRanges> calculateSubRanges() const;
531 
532   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
533   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
534   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
535   // but there is no such edge.
536   //
537   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
538 
539   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
540   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
541   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
542   // `OriginalHeaderCount'.
543   //
544   // If there are iterations left to execute, control is made to jump to
545   // `ContinuationBlock', otherwise they take the normal loop exit.  The
546   // returned `RewrittenRangeInfo' object is populated as follows:
547   //
548   //  .PseudoExit is a basic block that unconditionally branches to
549   //      `ContinuationBlock'.
550   //
551   //  .ExitSelector is a basic block that decides, on exit from the loop,
552   //      whether to branch to the "true" exit or to `PseudoExit'.
553   //
554   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
555   //      for each PHINode in the loop header on taking the pseudo exit.
556   //
557   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
558   // preheader because it is made to branch to the loop header only
559   // conditionally.
560   //
561   RewrittenRangeInfo
562   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
563                           Value *ExitLoopAt,
564                           BasicBlock *ContinuationBlock) const;
565 
566   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
567   // function creates a new preheader for `LS' and returns it.
568   //
569   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
570                               const char *Tag) const;
571 
572   // `ContinuationBlockAndPreheader' was the continuation block for some call to
573   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
574   // This function rewrites the PHI nodes in `LS.Header' to start with the
575   // correct value.
576   void rewriteIncomingValuesForPHIs(
577       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
578       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
579 
580   // Even though we do not preserve any passes at this time, we at least need to
581   // keep the parent loop structure consistent.  The `LPPassManager' seems to
582   // verify this after running a loop pass.  This function adds the list of
583   // blocks denoted by BBs to this loops parent loop if required.
584   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
585 
586   // Some global state.
587   Function &F;
588   LLVMContext &Ctx;
589   ScalarEvolution &SE;
590 
591   // Information about the original loop we started out with.
592   Loop &OriginalLoop;
593   LoopInfo &OriginalLoopInfo;
594   const SCEV *LatchTakenCount;
595   BasicBlock *OriginalPreheader;
596 
597   // The preheader of the main loop.  This may or may not be different from
598   // `OriginalPreheader'.
599   BasicBlock *MainLoopPreheader;
600 
601   // The range we need to run the main loop in.
602   InductiveRangeCheck::Range Range;
603 
604   // The structure of the main loop (see comment at the beginning of this class
605   // for a definition)
606   LoopStructure MainLoopStructure;
607 
608 public:
609   LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
610                   ScalarEvolution &SE, InductiveRangeCheck::Range R)
611       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
612         SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
613         OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
614         MainLoopStructure(LS) {}
615 
616   // Entry point for the algorithm.  Returns true on success.
617   bool run();
618 };
619 
620 }
621 
622 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
623                                       BasicBlock *ReplaceBy) {
624   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
625     if (PN->getIncomingBlock(i) == Block)
626       PN->setIncomingBlock(i, ReplaceBy);
627 }
628 
629 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
630   APInt SMax =
631       APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
632   return SE.getSignedRange(S).contains(SMax) &&
633          SE.getUnsignedRange(S).contains(SMax);
634 }
635 
636 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
637   APInt SMin =
638       APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
639   return SE.getSignedRange(S).contains(SMin) &&
640          SE.getUnsignedRange(S).contains(SMin);
641 }
642 
643 Optional<LoopStructure>
644 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
645                                   Loop &L, const char *&FailureReason) {
646   assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
647 
648   BasicBlock *Latch = L.getLoopLatch();
649   if (!L.isLoopExiting(Latch)) {
650     FailureReason = "no loop latch";
651     return None;
652   }
653 
654   BasicBlock *Header = L.getHeader();
655   BasicBlock *Preheader = L.getLoopPreheader();
656   if (!Preheader) {
657     FailureReason = "no preheader";
658     return None;
659   }
660 
661   BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
662   if (!LatchBr || LatchBr->isUnconditional()) {
663     FailureReason = "latch terminator not conditional branch";
664     return None;
665   }
666 
667   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
668 
669   BranchProbability ExitProbability =
670     BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
671 
672   if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
673     FailureReason = "short running loop, not profitable";
674     return None;
675   }
676 
677   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
678   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
679     FailureReason = "latch terminator branch not conditional on integral icmp";
680     return None;
681   }
682 
683   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
684   if (isa<SCEVCouldNotCompute>(LatchCount)) {
685     FailureReason = "could not compute latch count";
686     return None;
687   }
688 
689   ICmpInst::Predicate Pred = ICI->getPredicate();
690   Value *LeftValue = ICI->getOperand(0);
691   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
692   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
693 
694   Value *RightValue = ICI->getOperand(1);
695   const SCEV *RightSCEV = SE.getSCEV(RightValue);
696 
697   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
698   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
699     if (isa<SCEVAddRecExpr>(RightSCEV)) {
700       std::swap(LeftSCEV, RightSCEV);
701       std::swap(LeftValue, RightValue);
702       Pred = ICmpInst::getSwappedPredicate(Pred);
703     } else {
704       FailureReason = "no add recurrences in the icmp";
705       return None;
706     }
707   }
708 
709   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
710     if (AR->getNoWrapFlags(SCEV::FlagNSW))
711       return true;
712 
713     IntegerType *Ty = cast<IntegerType>(AR->getType());
714     IntegerType *WideTy =
715         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
716 
717     const SCEVAddRecExpr *ExtendAfterOp =
718         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
719     if (ExtendAfterOp) {
720       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
721       const SCEV *ExtendedStep =
722           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
723 
724       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
725                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
726 
727       if (NoSignedWrap)
728         return true;
729     }
730 
731     // We may have proved this when computing the sign extension above.
732     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
733   };
734 
735   auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
736     if (!AR->isAffine())
737       return false;
738 
739     // Currently we only work with induction variables that have been proved to
740     // not wrap.  This restriction can potentially be lifted in the future.
741 
742     if (!HasNoSignedWrap(AR))
743       return false;
744 
745     if (const SCEVConstant *StepExpr =
746             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
747       ConstantInt *StepCI = StepExpr->getValue();
748       if (StepCI->isOne() || StepCI->isMinusOne()) {
749         IsIncreasing = StepCI->isOne();
750         return true;
751       }
752     }
753 
754     return false;
755   };
756 
757   // `ICI` is interpreted as taking the backedge if the *next* value of the
758   // induction variable satisfies some constraint.
759 
760   const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
761   bool IsIncreasing = false;
762   if (!IsInductionVar(IndVarNext, IsIncreasing)) {
763     FailureReason = "LHS in icmp not induction variable";
764     return None;
765   }
766 
767   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
768   // TODO: generalize the predicates here to also match their unsigned variants.
769   if (IsIncreasing) {
770     bool FoundExpectedPred =
771         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
772         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
773 
774     if (!FoundExpectedPred) {
775       FailureReason = "expected icmp slt semantically, found something else";
776       return None;
777     }
778 
779     if (LatchBrExitIdx == 0) {
780       if (CanBeSMax(SE, RightSCEV)) {
781         // TODO: this restriction is easily removable -- we just have to
782         // remember that the icmp was an slt and not an sle.
783         FailureReason = "limit may overflow when coercing sle to slt";
784         return None;
785       }
786 
787       IRBuilder<> B(&*Preheader->rbegin());
788       RightValue = B.CreateAdd(RightValue, One);
789     }
790 
791   } else {
792     bool FoundExpectedPred =
793         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
794         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
795 
796     if (!FoundExpectedPred) {
797       FailureReason = "expected icmp sgt semantically, found something else";
798       return None;
799     }
800 
801     if (LatchBrExitIdx == 0) {
802       if (CanBeSMin(SE, RightSCEV)) {
803         // TODO: this restriction is easily removable -- we just have to
804         // remember that the icmp was an sgt and not an sge.
805         FailureReason = "limit may overflow when coercing sge to sgt";
806         return None;
807       }
808 
809       IRBuilder<> B(&*Preheader->rbegin());
810       RightValue = B.CreateSub(RightValue, One);
811     }
812   }
813 
814   const SCEV *StartNext = IndVarNext->getStart();
815   const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
816   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
817 
818   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
819 
820   assert(SE.getLoopDisposition(LatchCount, &L) ==
821              ScalarEvolution::LoopInvariant &&
822          "loop variant exit count doesn't make sense!");
823 
824   assert(!L.contains(LatchExit) && "expected an exit block!");
825   const DataLayout &DL = Preheader->getModule()->getDataLayout();
826   Value *IndVarStartV =
827       SCEVExpander(SE, DL, "irce")
828           .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin());
829   IndVarStartV->setName("indvar.start");
830 
831   LoopStructure Result;
832 
833   Result.Tag = "main";
834   Result.Header = Header;
835   Result.Latch = Latch;
836   Result.LatchBr = LatchBr;
837   Result.LatchExit = LatchExit;
838   Result.LatchBrExitIdx = LatchBrExitIdx;
839   Result.IndVarStart = IndVarStartV;
840   Result.IndVarNext = LeftValue;
841   Result.IndVarIncreasing = IsIncreasing;
842   Result.LoopExitAt = RightValue;
843 
844   FailureReason = nullptr;
845 
846   return Result;
847 }
848 
849 Optional<LoopConstrainer::SubRanges>
850 LoopConstrainer::calculateSubRanges() const {
851   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
852 
853   if (Range.getType() != Ty)
854     return None;
855 
856   LoopConstrainer::SubRanges Result;
857 
858   // I think we can be more aggressive here and make this nuw / nsw if the
859   // addition that feeds into the icmp for the latch's terminating branch is nuw
860   // / nsw.  In any case, a wrapping 2's complement addition is safe.
861   ConstantInt *One = ConstantInt::get(Ty, 1);
862   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
863   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
864 
865   bool Increasing = MainLoopStructure.IndVarIncreasing;
866 
867   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
868   // range of values the induction variable takes.
869 
870   const SCEV *Smallest = nullptr, *Greatest = nullptr;
871 
872   if (Increasing) {
873     Smallest = Start;
874     Greatest = End;
875   } else {
876     // These two computations may sign-overflow.  Here is why that is okay:
877     //
878     // We know that the induction variable does not sign-overflow on any
879     // iteration except the last one, and it starts at `Start` and ends at
880     // `End`, decrementing by one every time.
881     //
882     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
883     //    induction variable is decreasing we know that that the smallest value
884     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
885     //
886     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
887     //    that case, `Clamp` will always return `Smallest` and
888     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
889     //    will be an empty range.  Returning an empty range is always safe.
890     //
891 
892     Smallest = SE.getAddExpr(End, SE.getSCEV(One));
893     Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
894   }
895 
896   auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
897     return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
898   };
899 
900   // In some cases we can prove that we don't need a pre or post loop
901 
902   bool ProvablyNoPreloop =
903       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
904   if (!ProvablyNoPreloop)
905     Result.LowLimit = Clamp(Range.getBegin());
906 
907   bool ProvablyNoPostLoop =
908       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
909   if (!ProvablyNoPostLoop)
910     Result.HighLimit = Clamp(Range.getEnd());
911 
912   return Result;
913 }
914 
915 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
916                                 const char *Tag) const {
917   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
918     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
919     Result.Blocks.push_back(Clone);
920     Result.Map[BB] = Clone;
921   }
922 
923   auto GetClonedValue = [&Result](Value *V) {
924     assert(V && "null values not in domain!");
925     auto It = Result.Map.find(V);
926     if (It == Result.Map.end())
927       return V;
928     return static_cast<Value *>(It->second);
929   };
930 
931   Result.Structure = MainLoopStructure.map(GetClonedValue);
932   Result.Structure.Tag = Tag;
933 
934   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
935     BasicBlock *ClonedBB = Result.Blocks[i];
936     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
937 
938     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
939 
940     for (Instruction &I : *ClonedBB)
941       RemapInstruction(&I, Result.Map,
942                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
943 
944     // Exit blocks will now have one more predecessor and their PHI nodes need
945     // to be edited to reflect that.  No phi nodes need to be introduced because
946     // the loop is in LCSSA.
947 
948     for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
949          SBBI != SBBE; ++SBBI) {
950 
951       if (OriginalLoop.contains(*SBBI))
952         continue; // not an exit block
953 
954       for (Instruction &I : **SBBI) {
955         if (!isa<PHINode>(&I))
956           break;
957 
958         PHINode *PN = cast<PHINode>(&I);
959         Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
960         PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
961       }
962     }
963   }
964 }
965 
966 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
967     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
968     BasicBlock *ContinuationBlock) const {
969 
970   // We start with a loop with a single latch:
971   //
972   //    +--------------------+
973   //    |                    |
974   //    |     preheader      |
975   //    |                    |
976   //    +--------+-----------+
977   //             |      ----------------\
978   //             |     /                |
979   //    +--------v----v------+          |
980   //    |                    |          |
981   //    |      header        |          |
982   //    |                    |          |
983   //    +--------------------+          |
984   //                                    |
985   //            .....                   |
986   //                                    |
987   //    +--------------------+          |
988   //    |                    |          |
989   //    |       latch        >----------/
990   //    |                    |
991   //    +-------v------------+
992   //            |
993   //            |
994   //            |   +--------------------+
995   //            |   |                    |
996   //            +--->   original exit    |
997   //                |                    |
998   //                +--------------------+
999   //
1000   // We change the control flow to look like
1001   //
1002   //
1003   //    +--------------------+
1004   //    |                    |
1005   //    |     preheader      >-------------------------+
1006   //    |                    |                         |
1007   //    +--------v-----------+                         |
1008   //             |    /-------------+                  |
1009   //             |   /              |                  |
1010   //    +--------v--v--------+      |                  |
1011   //    |                    |      |                  |
1012   //    |      header        |      |   +--------+     |
1013   //    |                    |      |   |        |     |
1014   //    +--------------------+      |   |  +-----v-----v-----------+
1015   //                                |   |  |                       |
1016   //                                |   |  |     .pseudo.exit      |
1017   //                                |   |  |                       |
1018   //                                |   |  +-----------v-----------+
1019   //                                |   |              |
1020   //            .....               |   |              |
1021   //                                |   |     +--------v-------------+
1022   //    +--------------------+      |   |     |                      |
1023   //    |                    |      |   |     |   ContinuationBlock  |
1024   //    |       latch        >------+   |     |                      |
1025   //    |                    |          |     +----------------------+
1026   //    +---------v----------+          |
1027   //              |                     |
1028   //              |                     |
1029   //              |     +---------------^-----+
1030   //              |     |                     |
1031   //              +----->    .exit.selector   |
1032   //                    |                     |
1033   //                    +----------v----------+
1034   //                               |
1035   //     +--------------------+    |
1036   //     |                    |    |
1037   //     |   original exit    <----+
1038   //     |                    |
1039   //     +--------------------+
1040   //
1041 
1042   RewrittenRangeInfo RRI;
1043 
1044   auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
1045   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1046                                         &F, &*BBInsertLocation);
1047   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1048                                       &*BBInsertLocation);
1049 
1050   BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
1051   bool Increasing = LS.IndVarIncreasing;
1052 
1053   IRBuilder<> B(PreheaderJump);
1054 
1055   // EnterLoopCond - is it okay to start executing this `LS'?
1056   Value *EnterLoopCond = Increasing
1057                              ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1058                              : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1059 
1060   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1061   PreheaderJump->eraseFromParent();
1062 
1063   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1064   B.SetInsertPoint(LS.LatchBr);
1065   Value *TakeBackedgeLoopCond =
1066       Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1067                  : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1068   Value *CondForBranch = LS.LatchBrExitIdx == 1
1069                              ? TakeBackedgeLoopCond
1070                              : B.CreateNot(TakeBackedgeLoopCond);
1071 
1072   LS.LatchBr->setCondition(CondForBranch);
1073 
1074   B.SetInsertPoint(RRI.ExitSelector);
1075 
1076   // IterationsLeft - are there any more iterations left, given the original
1077   // upper bound on the induction variable?  If not, we branch to the "real"
1078   // exit.
1079   Value *IterationsLeft = Increasing
1080                               ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1081                               : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
1082   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1083 
1084   BranchInst *BranchToContinuation =
1085       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1086 
1087   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1088   // each of the PHI nodes in the loop header.  This feeds into the initial
1089   // value of the same PHI nodes if/when we continue execution.
1090   for (Instruction &I : *LS.Header) {
1091     if (!isa<PHINode>(&I))
1092       break;
1093 
1094     PHINode *PN = cast<PHINode>(&I);
1095 
1096     PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1097                                       BranchToContinuation);
1098 
1099     NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1100     NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1101                         RRI.ExitSelector);
1102     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1103   }
1104 
1105   RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1106                                   BranchToContinuation);
1107   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1108   RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1109 
1110   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1111   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1112   for (Instruction &I : *LS.LatchExit) {
1113     if (PHINode *PN = dyn_cast<PHINode>(&I))
1114       replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1115     else
1116       break;
1117   }
1118 
1119   return RRI;
1120 }
1121 
1122 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1123     LoopStructure &LS, BasicBlock *ContinuationBlock,
1124     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1125 
1126   unsigned PHIIndex = 0;
1127   for (Instruction &I : *LS.Header) {
1128     if (!isa<PHINode>(&I))
1129       break;
1130 
1131     PHINode *PN = cast<PHINode>(&I);
1132 
1133     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1134       if (PN->getIncomingBlock(i) == ContinuationBlock)
1135         PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1136   }
1137 
1138   LS.IndVarStart = RRI.IndVarEnd;
1139 }
1140 
1141 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1142                                              BasicBlock *OldPreheader,
1143                                              const char *Tag) const {
1144 
1145   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1146   BranchInst::Create(LS.Header, Preheader);
1147 
1148   for (Instruction &I : *LS.Header) {
1149     if (!isa<PHINode>(&I))
1150       break;
1151 
1152     PHINode *PN = cast<PHINode>(&I);
1153     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1154       replacePHIBlock(PN, OldPreheader, Preheader);
1155   }
1156 
1157   return Preheader;
1158 }
1159 
1160 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1161   Loop *ParentLoop = OriginalLoop.getParentLoop();
1162   if (!ParentLoop)
1163     return;
1164 
1165   for (BasicBlock *BB : BBs)
1166     ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
1167 }
1168 
1169 bool LoopConstrainer::run() {
1170   BasicBlock *Preheader = nullptr;
1171   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1172   Preheader = OriginalLoop.getLoopPreheader();
1173   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1174          "preconditions!");
1175 
1176   OriginalPreheader = Preheader;
1177   MainLoopPreheader = Preheader;
1178 
1179   Optional<SubRanges> MaybeSR = calculateSubRanges();
1180   if (!MaybeSR.hasValue()) {
1181     DEBUG(dbgs() << "irce: could not compute subranges\n");
1182     return false;
1183   }
1184 
1185   SubRanges SR = MaybeSR.getValue();
1186   bool Increasing = MainLoopStructure.IndVarIncreasing;
1187   IntegerType *IVTy =
1188       cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1189 
1190   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1191   Instruction *InsertPt = OriginalPreheader->getTerminator();
1192 
1193   // It would have been better to make `PreLoop' and `PostLoop'
1194   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1195   // constructor.
1196   ClonedLoop PreLoop, PostLoop;
1197   bool NeedsPreLoop =
1198       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1199   bool NeedsPostLoop =
1200       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1201 
1202   Value *ExitPreLoopAt = nullptr;
1203   Value *ExitMainLoopAt = nullptr;
1204   const SCEVConstant *MinusOneS =
1205       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1206 
1207   if (NeedsPreLoop) {
1208     const SCEV *ExitPreLoopAtSCEV = nullptr;
1209 
1210     if (Increasing)
1211       ExitPreLoopAtSCEV = *SR.LowLimit;
1212     else {
1213       if (CanBeSMin(SE, *SR.HighLimit)) {
1214         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1215                      << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
1216                      << "\n");
1217         return false;
1218       }
1219       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1220     }
1221 
1222     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1223     ExitPreLoopAt->setName("exit.preloop.at");
1224   }
1225 
1226   if (NeedsPostLoop) {
1227     const SCEV *ExitMainLoopAtSCEV = nullptr;
1228 
1229     if (Increasing)
1230       ExitMainLoopAtSCEV = *SR.HighLimit;
1231     else {
1232       if (CanBeSMin(SE, *SR.LowLimit)) {
1233         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1234                      << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
1235                      << "\n");
1236         return false;
1237       }
1238       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1239     }
1240 
1241     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1242     ExitMainLoopAt->setName("exit.mainloop.at");
1243   }
1244 
1245   // We clone these ahead of time so that we don't have to deal with changing
1246   // and temporarily invalid IR as we transform the loops.
1247   if (NeedsPreLoop)
1248     cloneLoop(PreLoop, "preloop");
1249   if (NeedsPostLoop)
1250     cloneLoop(PostLoop, "postloop");
1251 
1252   RewrittenRangeInfo PreLoopRRI;
1253 
1254   if (NeedsPreLoop) {
1255     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1256                                                   PreLoop.Structure.Header);
1257 
1258     MainLoopPreheader =
1259         createPreheader(MainLoopStructure, Preheader, "mainloop");
1260     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1261                                          ExitPreLoopAt, MainLoopPreheader);
1262     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1263                                  PreLoopRRI);
1264   }
1265 
1266   BasicBlock *PostLoopPreheader = nullptr;
1267   RewrittenRangeInfo PostLoopRRI;
1268 
1269   if (NeedsPostLoop) {
1270     PostLoopPreheader =
1271         createPreheader(PostLoop.Structure, Preheader, "postloop");
1272     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1273                                           ExitMainLoopAt, PostLoopPreheader);
1274     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1275                                  PostLoopRRI);
1276   }
1277 
1278   BasicBlock *NewMainLoopPreheader =
1279       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1280   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1281                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1282                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1283 
1284   // Some of the above may be nullptr, filter them out before passing to
1285   // addToParentLoopIfNeeded.
1286   auto NewBlocksEnd =
1287       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1288 
1289   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1290   addToParentLoopIfNeeded(PreLoop.Blocks);
1291   addToParentLoopIfNeeded(PostLoop.Blocks);
1292 
1293   return true;
1294 }
1295 
1296 /// Computes and returns a range of values for the induction variable (IndVar)
1297 /// in which the range check can be safely elided.  If it cannot compute such a
1298 /// range, returns None.
1299 Optional<InductiveRangeCheck::Range>
1300 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
1301                                                const SCEVAddRecExpr *IndVar,
1302                                                IRBuilder<> &) const {
1303   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1304   // variable, that may or may not exist as a real llvm::Value in the loop) and
1305   // this inductive range check is a range check on the "C + D * I" ("C" is
1306   // getOffset() and "D" is getScale()).  We rewrite the value being range
1307   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1308   // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1309   // can be generalized as needed.
1310   //
1311   // The actual inequalities we solve are of the form
1312   //
1313   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1314   //
1315   // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
1316   // and subtractions are twos-complement wrapping and comparisons are signed.
1317   //
1318   // Proof:
1319   //
1320   //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1321   //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
1322   //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
1323   //   overflown.
1324   //
1325   //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
1326   //   Hence 0 <= (IndVar + M) < L
1327 
1328   // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1329   // 127, IndVar = 126 and L = -2 in an i8 world.
1330 
1331   if (!IndVar->isAffine())
1332     return None;
1333 
1334   const SCEV *A = IndVar->getStart();
1335   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1336   if (!B)
1337     return None;
1338 
1339   const SCEV *C = getOffset();
1340   const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1341   if (D != B)
1342     return None;
1343 
1344   ConstantInt *ConstD = D->getValue();
1345   if (!(ConstD->isMinusOne() || ConstD->isOne()))
1346     return None;
1347 
1348   const SCEV *M = SE.getMinusSCEV(C, A);
1349 
1350   const SCEV *Begin = SE.getNegativeSCEV(M);
1351   const SCEV *UpperLimit = nullptr;
1352 
1353   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1354   // We can potentially do much better here.
1355   if (Value *V = getLength()) {
1356     UpperLimit = SE.getSCEV(V);
1357   } else {
1358     assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1359     unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1360     UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1361   }
1362 
1363   const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
1364   return InductiveRangeCheck::Range(Begin, End);
1365 }
1366 
1367 static Optional<InductiveRangeCheck::Range>
1368 IntersectRange(ScalarEvolution &SE,
1369                const Optional<InductiveRangeCheck::Range> &R1,
1370                const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
1371   if (!R1.hasValue())
1372     return R2;
1373   auto &R1Value = R1.getValue();
1374 
1375   // TODO: we could widen the smaller range and have this work; but for now we
1376   // bail out to keep things simple.
1377   if (R1Value.getType() != R2.getType())
1378     return None;
1379 
1380   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1381   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1382 
1383   return InductiveRangeCheck::Range(NewBegin, NewEnd);
1384 }
1385 
1386 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1387   if (L->getBlocks().size() >= LoopSizeCutoff) {
1388     DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1389     return false;
1390   }
1391 
1392   BasicBlock *Preheader = L->getLoopPreheader();
1393   if (!Preheader) {
1394     DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1395     return false;
1396   }
1397 
1398   LLVMContext &Context = Preheader->getContext();
1399   InductiveRangeCheck::AllocatorTy IRCAlloc;
1400   SmallVector<InductiveRangeCheck *, 16> RangeChecks;
1401   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1402   BranchProbabilityInfo &BPI =
1403       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1404 
1405   for (auto BBI : L->getBlocks())
1406     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1407       if (InductiveRangeCheck *IRC =
1408           InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
1409         RangeChecks.push_back(IRC);
1410 
1411   if (RangeChecks.empty())
1412     return false;
1413 
1414   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1415     OS << "irce: looking at loop "; L->print(OS);
1416     OS << "irce: loop has " << RangeChecks.size()
1417        << " inductive range checks: \n";
1418     for (InductiveRangeCheck *IRC : RangeChecks)
1419       IRC->print(OS);
1420   };
1421 
1422   DEBUG(PrintRecognizedRangeChecks(dbgs()));
1423 
1424   if (PrintRangeChecks)
1425     PrintRecognizedRangeChecks(errs());
1426 
1427   const char *FailureReason = nullptr;
1428   Optional<LoopStructure> MaybeLoopStructure =
1429       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1430   if (!MaybeLoopStructure.hasValue()) {
1431     DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1432                  << "\n";);
1433     return false;
1434   }
1435   LoopStructure LS = MaybeLoopStructure.getValue();
1436   bool Increasing = LS.IndVarIncreasing;
1437   const SCEV *MinusOne =
1438       SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1439   const SCEVAddRecExpr *IndVar =
1440       cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1441 
1442   Optional<InductiveRangeCheck::Range> SafeIterRange;
1443   Instruction *ExprInsertPt = Preheader->getTerminator();
1444 
1445   SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
1446 
1447   IRBuilder<> B(ExprInsertPt);
1448   for (InductiveRangeCheck *IRC : RangeChecks) {
1449     auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B);
1450     if (Result.hasValue()) {
1451       auto MaybeSafeIterRange =
1452         IntersectRange(SE, SafeIterRange, Result.getValue(), B);
1453       if (MaybeSafeIterRange.hasValue()) {
1454         RangeChecksToEliminate.push_back(IRC);
1455         SafeIterRange = MaybeSafeIterRange.getValue();
1456       }
1457     }
1458   }
1459 
1460   if (!SafeIterRange.hasValue())
1461     return false;
1462 
1463   LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
1464                      SE, SafeIterRange.getValue());
1465   bool Changed = LC.run();
1466 
1467   if (Changed) {
1468     auto PrintConstrainedLoopInfo = [L]() {
1469       dbgs() << "irce: in function ";
1470       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1471       dbgs() << "constrained ";
1472       L->print(dbgs());
1473     };
1474 
1475     DEBUG(PrintConstrainedLoopInfo());
1476 
1477     if (PrintChangedLoops)
1478       PrintConstrainedLoopInfo();
1479 
1480     // Optimize away the now-redundant range checks.
1481 
1482     for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
1483       ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
1484                                           ? ConstantInt::getTrue(Context)
1485                                           : ConstantInt::getFalse(Context);
1486       IRC->getBranch()->setCondition(FoldedRangeCheck);
1487     }
1488   }
1489 
1490   return Changed;
1491 }
1492 
1493 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1494   return new InductiveRangeCheckElimination;
1495 }
1496