1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/InstructionSimplify.h" 47 #include "llvm/Analysis/LoopInfo.h" 48 #include "llvm/Analysis/LoopPass.h" 49 #include "llvm/Analysis/ScalarEvolution.h" 50 #include "llvm/Analysis/ScalarEvolutionExpander.h" 51 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 52 #include "llvm/Analysis/ValueTracking.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/PatternMatch.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/LoopUtils.h" 68 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 69 #include "llvm/Transforms/Utils/UnrollLoop.h" 70 #include <array> 71 72 using namespace llvm; 73 74 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 75 cl::init(64)); 76 77 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 78 cl::init(false)); 79 80 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 81 cl::init(false)); 82 83 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 84 cl::Hidden, cl::init(10)); 85 86 #define DEBUG_TYPE "irce" 87 88 namespace { 89 90 /// An inductive range check is conditional branch in a loop with 91 /// 92 /// 1. a very cold successor (i.e. the branch jumps to that successor very 93 /// rarely) 94 /// 95 /// and 96 /// 97 /// 2. a condition that is provably true for some contiguous range of values 98 /// taken by the containing loop's induction variable. 99 /// 100 class InductiveRangeCheck { 101 // Classifies a range check 102 enum RangeCheckKind : unsigned { 103 // Range check of the form "0 <= I". 104 RANGE_CHECK_LOWER = 1, 105 106 // Range check of the form "I < L" where L is known positive. 107 RANGE_CHECK_UPPER = 2, 108 109 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 110 // conditions. 111 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 112 113 // Unrecognized range check condition. 114 RANGE_CHECK_UNKNOWN = (unsigned)-1 115 }; 116 117 static StringRef rangeCheckKindToStr(RangeCheckKind); 118 119 const SCEV *Offset; 120 const SCEV *Scale; 121 Value *Length; 122 BranchInst *Branch; 123 RangeCheckKind Kind; 124 125 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 126 ScalarEvolution &SE, Value *&Index, 127 Value *&Length); 128 129 static InductiveRangeCheck::RangeCheckKind 130 parseRangeCheck(Loop *L, ScalarEvolution &SE, Value *Condition, 131 const SCEV *&Index, Value *&UpperLimit); 132 133 InductiveRangeCheck() : 134 Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { } 135 136 public: 137 const SCEV *getOffset() const { return Offset; } 138 const SCEV *getScale() const { return Scale; } 139 Value *getLength() const { return Length; } 140 141 void print(raw_ostream &OS) const { 142 OS << "InductiveRangeCheck:\n"; 143 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 144 OS << " Offset: "; 145 Offset->print(OS); 146 OS << " Scale: "; 147 Scale->print(OS); 148 OS << " Length: "; 149 if (Length) 150 Length->print(OS); 151 else 152 OS << "(null)"; 153 OS << "\n Branch: "; 154 getBranch()->print(OS); 155 OS << "\n"; 156 } 157 158 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 159 void dump() { 160 print(dbgs()); 161 } 162 #endif 163 164 BranchInst *getBranch() const { return Branch; } 165 166 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 167 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 168 169 class Range { 170 const SCEV *Begin; 171 const SCEV *End; 172 173 public: 174 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 175 assert(Begin->getType() == End->getType() && "ill-typed range!"); 176 } 177 178 Type *getType() const { return Begin->getType(); } 179 const SCEV *getBegin() const { return Begin; } 180 const SCEV *getEnd() const { return End; } 181 }; 182 183 typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy; 184 185 /// This is the value the condition of the branch needs to evaluate to for the 186 /// branch to take the hot successor (see (1) above). 187 bool getPassingDirection() { return true; } 188 189 /// Computes a range for the induction variable (IndVar) in which the range 190 /// check is redundant and can be constant-folded away. The induction 191 /// variable is not required to be the canonical {0,+,1} induction variable. 192 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 193 const SCEVAddRecExpr *IndVar, 194 IRBuilder<> &B) const; 195 196 /// Create an inductive range check out of BI if possible, else return 197 /// nullptr. 198 static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI, 199 Loop *L, ScalarEvolution &SE, 200 BranchProbabilityInfo &BPI); 201 }; 202 203 class InductiveRangeCheckElimination : public LoopPass { 204 InductiveRangeCheck::AllocatorTy Allocator; 205 206 public: 207 static char ID; 208 InductiveRangeCheckElimination() : LoopPass(ID) { 209 initializeInductiveRangeCheckEliminationPass( 210 *PassRegistry::getPassRegistry()); 211 } 212 213 void getAnalysisUsage(AnalysisUsage &AU) const override { 214 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 215 getLoopAnalysisUsage(AU); 216 } 217 218 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 219 }; 220 221 char InductiveRangeCheckElimination::ID = 0; 222 } 223 224 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", 225 "Inductive range check elimination", false, false) 226 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 227 INITIALIZE_PASS_DEPENDENCY(LoopPass) 228 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", 229 "Inductive range check elimination", false, false) 230 231 StringRef InductiveRangeCheck::rangeCheckKindToStr( 232 InductiveRangeCheck::RangeCheckKind RCK) { 233 switch (RCK) { 234 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 235 return "RANGE_CHECK_UNKNOWN"; 236 237 case InductiveRangeCheck::RANGE_CHECK_UPPER: 238 return "RANGE_CHECK_UPPER"; 239 240 case InductiveRangeCheck::RANGE_CHECK_LOWER: 241 return "RANGE_CHECK_LOWER"; 242 243 case InductiveRangeCheck::RANGE_CHECK_BOTH: 244 return "RANGE_CHECK_BOTH"; 245 } 246 247 llvm_unreachable("unknown range check type!"); 248 } 249 250 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 251 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 252 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 253 /// range checked, and set `Length` to the upper limit `Index` is being range 254 /// checked with if (and only if) the range check type is stronger or equal to 255 /// RANGE_CHECK_UPPER. 256 /// 257 InductiveRangeCheck::RangeCheckKind 258 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 259 ScalarEvolution &SE, Value *&Index, 260 Value *&Length) { 261 262 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { 263 const SCEV *S = SE.getSCEV(V); 264 if (isa<SCEVCouldNotCompute>(S)) 265 return false; 266 267 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && 268 SE.isKnownNonNegative(S); 269 }; 270 271 using namespace llvm::PatternMatch; 272 273 ICmpInst::Predicate Pred = ICI->getPredicate(); 274 Value *LHS = ICI->getOperand(0); 275 Value *RHS = ICI->getOperand(1); 276 277 switch (Pred) { 278 default: 279 return RANGE_CHECK_UNKNOWN; 280 281 case ICmpInst::ICMP_SLE: 282 std::swap(LHS, RHS); 283 // fallthrough 284 case ICmpInst::ICMP_SGE: 285 if (match(RHS, m_ConstantInt<0>())) { 286 Index = LHS; 287 return RANGE_CHECK_LOWER; 288 } 289 return RANGE_CHECK_UNKNOWN; 290 291 case ICmpInst::ICMP_SLT: 292 std::swap(LHS, RHS); 293 // fallthrough 294 case ICmpInst::ICMP_SGT: 295 if (match(RHS, m_ConstantInt<-1>())) { 296 Index = LHS; 297 return RANGE_CHECK_LOWER; 298 } 299 300 if (IsNonNegativeAndNotLoopVarying(LHS)) { 301 Index = RHS; 302 Length = LHS; 303 return RANGE_CHECK_UPPER; 304 } 305 return RANGE_CHECK_UNKNOWN; 306 307 case ICmpInst::ICMP_ULT: 308 std::swap(LHS, RHS); 309 // fallthrough 310 case ICmpInst::ICMP_UGT: 311 if (IsNonNegativeAndNotLoopVarying(LHS)) { 312 Index = RHS; 313 Length = LHS; 314 return RANGE_CHECK_BOTH; 315 } 316 return RANGE_CHECK_UNKNOWN; 317 } 318 319 llvm_unreachable("default clause returns!"); 320 } 321 322 /// Parses an arbitrary condition into a range check. `Length` is set only if 323 /// the range check is recognized to be `RANGE_CHECK_UPPER` or stronger. 324 InductiveRangeCheck::RangeCheckKind 325 InductiveRangeCheck::parseRangeCheck(Loop *L, ScalarEvolution &SE, 326 Value *Condition, const SCEV *&Index, 327 Value *&Length) { 328 using namespace llvm::PatternMatch; 329 330 Value *A = nullptr; 331 Value *B = nullptr; 332 333 if (match(Condition, m_And(m_Value(A), m_Value(B)))) { 334 Value *IndexA = nullptr, *IndexB = nullptr; 335 Value *LengthA = nullptr, *LengthB = nullptr; 336 ICmpInst *ICmpA = dyn_cast<ICmpInst>(A), *ICmpB = dyn_cast<ICmpInst>(B); 337 338 if (!ICmpA || !ICmpB) 339 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 340 341 auto RCKindA = parseRangeCheckICmp(L, ICmpA, SE, IndexA, LengthA); 342 auto RCKindB = parseRangeCheckICmp(L, ICmpB, SE, IndexB, LengthB); 343 344 if (RCKindA == InductiveRangeCheck::RANGE_CHECK_UNKNOWN || 345 RCKindB == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 346 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 347 348 if (IndexA != IndexB) 349 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 350 351 if (LengthA != nullptr && LengthB != nullptr && LengthA != LengthB) 352 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 353 354 Index = SE.getSCEV(IndexA); 355 if (isa<SCEVCouldNotCompute>(Index)) 356 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 357 358 Length = LengthA == nullptr ? LengthB : LengthA; 359 360 return (InductiveRangeCheck::RangeCheckKind)(RCKindA | RCKindB); 361 } 362 363 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 364 Value *IndexVal = nullptr; 365 366 auto RCKind = parseRangeCheckICmp(L, ICI, SE, IndexVal, Length); 367 368 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 369 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 370 371 Index = SE.getSCEV(IndexVal); 372 if (isa<SCEVCouldNotCompute>(Index)) 373 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 374 375 return RCKind; 376 } 377 378 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; 379 } 380 381 382 InductiveRangeCheck * 383 InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI, 384 Loop *L, ScalarEvolution &SE, 385 BranchProbabilityInfo &BPI) { 386 387 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 388 return nullptr; 389 390 BranchProbability LikelyTaken(15, 16); 391 392 if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken) 393 return nullptr; 394 395 Value *Length = nullptr; 396 const SCEV *IndexSCEV = nullptr; 397 398 auto RCKind = InductiveRangeCheck::parseRangeCheck(L, SE, BI->getCondition(), 399 IndexSCEV, Length); 400 401 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 402 return nullptr; 403 404 assert(IndexSCEV && "contract with SplitRangeCheckCondition!"); 405 assert((!(RCKind & InductiveRangeCheck::RANGE_CHECK_UPPER) || Length) && 406 "contract with SplitRangeCheckCondition!"); 407 408 const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV); 409 bool IsAffineIndex = 410 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 411 412 if (!IsAffineIndex) 413 return nullptr; 414 415 InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck; 416 IRC->Length = Length; 417 IRC->Offset = IndexAddRec->getStart(); 418 IRC->Scale = IndexAddRec->getStepRecurrence(SE); 419 IRC->Branch = BI; 420 IRC->Kind = RCKind; 421 return IRC; 422 } 423 424 namespace { 425 426 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 427 // except that it is more lightweight and can track the state of a loop through 428 // changing and potentially invalid IR. This structure also formalizes the 429 // kinds of loops we can deal with -- ones that have a single latch that is also 430 // an exiting block *and* have a canonical induction variable. 431 struct LoopStructure { 432 const char *Tag; 433 434 BasicBlock *Header; 435 BasicBlock *Latch; 436 437 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 438 // successor is `LatchExit', the exit block of the loop. 439 BranchInst *LatchBr; 440 BasicBlock *LatchExit; 441 unsigned LatchBrExitIdx; 442 443 Value *IndVarNext; 444 Value *IndVarStart; 445 Value *LoopExitAt; 446 bool IndVarIncreasing; 447 448 LoopStructure() 449 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr), 450 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr), 451 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {} 452 453 template <typename M> LoopStructure map(M Map) const { 454 LoopStructure Result; 455 Result.Tag = Tag; 456 Result.Header = cast<BasicBlock>(Map(Header)); 457 Result.Latch = cast<BasicBlock>(Map(Latch)); 458 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 459 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 460 Result.LatchBrExitIdx = LatchBrExitIdx; 461 Result.IndVarNext = Map(IndVarNext); 462 Result.IndVarStart = Map(IndVarStart); 463 Result.LoopExitAt = Map(LoopExitAt); 464 Result.IndVarIncreasing = IndVarIncreasing; 465 return Result; 466 } 467 468 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 469 BranchProbabilityInfo &BPI, 470 Loop &, 471 const char *&); 472 }; 473 474 /// This class is used to constrain loops to run within a given iteration space. 475 /// The algorithm this class implements is given a Loop and a range [Begin, 476 /// End). The algorithm then tries to break out a "main loop" out of the loop 477 /// it is given in a way that the "main loop" runs with the induction variable 478 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 479 /// loops to run any remaining iterations. The pre loop runs any iterations in 480 /// which the induction variable is < Begin, and the post loop runs any 481 /// iterations in which the induction variable is >= End. 482 /// 483 class LoopConstrainer { 484 // The representation of a clone of the original loop we started out with. 485 struct ClonedLoop { 486 // The cloned blocks 487 std::vector<BasicBlock *> Blocks; 488 489 // `Map` maps values in the clonee into values in the cloned version 490 ValueToValueMapTy Map; 491 492 // An instance of `LoopStructure` for the cloned loop 493 LoopStructure Structure; 494 }; 495 496 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 497 // more details on what these fields mean. 498 struct RewrittenRangeInfo { 499 BasicBlock *PseudoExit; 500 BasicBlock *ExitSelector; 501 std::vector<PHINode *> PHIValuesAtPseudoExit; 502 PHINode *IndVarEnd; 503 504 RewrittenRangeInfo() 505 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {} 506 }; 507 508 // Calculated subranges we restrict the iteration space of the main loop to. 509 // See the implementation of `calculateSubRanges' for more details on how 510 // these fields are computed. `LowLimit` is None if there is no restriction 511 // on low end of the restricted iteration space of the main loop. `HighLimit` 512 // is None if there is no restriction on high end of the restricted iteration 513 // space of the main loop. 514 515 struct SubRanges { 516 Optional<const SCEV *> LowLimit; 517 Optional<const SCEV *> HighLimit; 518 }; 519 520 // A utility function that does a `replaceUsesOfWith' on the incoming block 521 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 522 // incoming block list with `ReplaceBy'. 523 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 524 BasicBlock *ReplaceBy); 525 526 // Compute a safe set of limits for the main loop to run in -- effectively the 527 // intersection of `Range' and the iteration space of the original loop. 528 // Return None if unable to compute the set of subranges. 529 // 530 Optional<SubRanges> calculateSubRanges() const; 531 532 // Clone `OriginalLoop' and return the result in CLResult. The IR after 533 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 534 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 535 // but there is no such edge. 536 // 537 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 538 539 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 540 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 541 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 542 // `OriginalHeaderCount'. 543 // 544 // If there are iterations left to execute, control is made to jump to 545 // `ContinuationBlock', otherwise they take the normal loop exit. The 546 // returned `RewrittenRangeInfo' object is populated as follows: 547 // 548 // .PseudoExit is a basic block that unconditionally branches to 549 // `ContinuationBlock'. 550 // 551 // .ExitSelector is a basic block that decides, on exit from the loop, 552 // whether to branch to the "true" exit or to `PseudoExit'. 553 // 554 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 555 // for each PHINode in the loop header on taking the pseudo exit. 556 // 557 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 558 // preheader because it is made to branch to the loop header only 559 // conditionally. 560 // 561 RewrittenRangeInfo 562 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 563 Value *ExitLoopAt, 564 BasicBlock *ContinuationBlock) const; 565 566 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 567 // function creates a new preheader for `LS' and returns it. 568 // 569 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 570 const char *Tag) const; 571 572 // `ContinuationBlockAndPreheader' was the continuation block for some call to 573 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 574 // This function rewrites the PHI nodes in `LS.Header' to start with the 575 // correct value. 576 void rewriteIncomingValuesForPHIs( 577 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 578 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 579 580 // Even though we do not preserve any passes at this time, we at least need to 581 // keep the parent loop structure consistent. The `LPPassManager' seems to 582 // verify this after running a loop pass. This function adds the list of 583 // blocks denoted by BBs to this loops parent loop if required. 584 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 585 586 // Some global state. 587 Function &F; 588 LLVMContext &Ctx; 589 ScalarEvolution &SE; 590 591 // Information about the original loop we started out with. 592 Loop &OriginalLoop; 593 LoopInfo &OriginalLoopInfo; 594 const SCEV *LatchTakenCount; 595 BasicBlock *OriginalPreheader; 596 597 // The preheader of the main loop. This may or may not be different from 598 // `OriginalPreheader'. 599 BasicBlock *MainLoopPreheader; 600 601 // The range we need to run the main loop in. 602 InductiveRangeCheck::Range Range; 603 604 // The structure of the main loop (see comment at the beginning of this class 605 // for a definition) 606 LoopStructure MainLoopStructure; 607 608 public: 609 LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS, 610 ScalarEvolution &SE, InductiveRangeCheck::Range R) 611 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 612 SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr), 613 OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R), 614 MainLoopStructure(LS) {} 615 616 // Entry point for the algorithm. Returns true on success. 617 bool run(); 618 }; 619 620 } 621 622 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 623 BasicBlock *ReplaceBy) { 624 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 625 if (PN->getIncomingBlock(i) == Block) 626 PN->setIncomingBlock(i, ReplaceBy); 627 } 628 629 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) { 630 APInt SMax = 631 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 632 return SE.getSignedRange(S).contains(SMax) && 633 SE.getUnsignedRange(S).contains(SMax); 634 } 635 636 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) { 637 APInt SMin = 638 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 639 return SE.getSignedRange(S).contains(SMin) && 640 SE.getUnsignedRange(S).contains(SMin); 641 } 642 643 Optional<LoopStructure> 644 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI, 645 Loop &L, const char *&FailureReason) { 646 assert(L.isLoopSimplifyForm() && "should follow from addRequired<>"); 647 648 BasicBlock *Latch = L.getLoopLatch(); 649 if (!L.isLoopExiting(Latch)) { 650 FailureReason = "no loop latch"; 651 return None; 652 } 653 654 BasicBlock *Header = L.getHeader(); 655 BasicBlock *Preheader = L.getLoopPreheader(); 656 if (!Preheader) { 657 FailureReason = "no preheader"; 658 return None; 659 } 660 661 BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin()); 662 if (!LatchBr || LatchBr->isUnconditional()) { 663 FailureReason = "latch terminator not conditional branch"; 664 return None; 665 } 666 667 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 668 669 BranchProbability ExitProbability = 670 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 671 672 if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 673 FailureReason = "short running loop, not profitable"; 674 return None; 675 } 676 677 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 678 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 679 FailureReason = "latch terminator branch not conditional on integral icmp"; 680 return None; 681 } 682 683 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 684 if (isa<SCEVCouldNotCompute>(LatchCount)) { 685 FailureReason = "could not compute latch count"; 686 return None; 687 } 688 689 ICmpInst::Predicate Pred = ICI->getPredicate(); 690 Value *LeftValue = ICI->getOperand(0); 691 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 692 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 693 694 Value *RightValue = ICI->getOperand(1); 695 const SCEV *RightSCEV = SE.getSCEV(RightValue); 696 697 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 698 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 699 if (isa<SCEVAddRecExpr>(RightSCEV)) { 700 std::swap(LeftSCEV, RightSCEV); 701 std::swap(LeftValue, RightValue); 702 Pred = ICmpInst::getSwappedPredicate(Pred); 703 } else { 704 FailureReason = "no add recurrences in the icmp"; 705 return None; 706 } 707 } 708 709 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 710 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 711 return true; 712 713 IntegerType *Ty = cast<IntegerType>(AR->getType()); 714 IntegerType *WideTy = 715 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 716 717 const SCEVAddRecExpr *ExtendAfterOp = 718 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 719 if (ExtendAfterOp) { 720 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 721 const SCEV *ExtendedStep = 722 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 723 724 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 725 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 726 727 if (NoSignedWrap) 728 return true; 729 } 730 731 // We may have proved this when computing the sign extension above. 732 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 733 }; 734 735 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) { 736 if (!AR->isAffine()) 737 return false; 738 739 // Currently we only work with induction variables that have been proved to 740 // not wrap. This restriction can potentially be lifted in the future. 741 742 if (!HasNoSignedWrap(AR)) 743 return false; 744 745 if (const SCEVConstant *StepExpr = 746 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 747 ConstantInt *StepCI = StepExpr->getValue(); 748 if (StepCI->isOne() || StepCI->isMinusOne()) { 749 IsIncreasing = StepCI->isOne(); 750 return true; 751 } 752 } 753 754 return false; 755 }; 756 757 // `ICI` is interpreted as taking the backedge if the *next* value of the 758 // induction variable satisfies some constraint. 759 760 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV); 761 bool IsIncreasing = false; 762 if (!IsInductionVar(IndVarNext, IsIncreasing)) { 763 FailureReason = "LHS in icmp not induction variable"; 764 return None; 765 } 766 767 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 768 // TODO: generalize the predicates here to also match their unsigned variants. 769 if (IsIncreasing) { 770 bool FoundExpectedPred = 771 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) || 772 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0); 773 774 if (!FoundExpectedPred) { 775 FailureReason = "expected icmp slt semantically, found something else"; 776 return None; 777 } 778 779 if (LatchBrExitIdx == 0) { 780 if (CanBeSMax(SE, RightSCEV)) { 781 // TODO: this restriction is easily removable -- we just have to 782 // remember that the icmp was an slt and not an sle. 783 FailureReason = "limit may overflow when coercing sle to slt"; 784 return None; 785 } 786 787 IRBuilder<> B(&*Preheader->rbegin()); 788 RightValue = B.CreateAdd(RightValue, One); 789 } 790 791 } else { 792 bool FoundExpectedPred = 793 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) || 794 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0); 795 796 if (!FoundExpectedPred) { 797 FailureReason = "expected icmp sgt semantically, found something else"; 798 return None; 799 } 800 801 if (LatchBrExitIdx == 0) { 802 if (CanBeSMin(SE, RightSCEV)) { 803 // TODO: this restriction is easily removable -- we just have to 804 // remember that the icmp was an sgt and not an sge. 805 FailureReason = "limit may overflow when coercing sge to sgt"; 806 return None; 807 } 808 809 IRBuilder<> B(&*Preheader->rbegin()); 810 RightValue = B.CreateSub(RightValue, One); 811 } 812 } 813 814 const SCEV *StartNext = IndVarNext->getStart(); 815 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE)); 816 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 817 818 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 819 820 assert(SE.getLoopDisposition(LatchCount, &L) == 821 ScalarEvolution::LoopInvariant && 822 "loop variant exit count doesn't make sense!"); 823 824 assert(!L.contains(LatchExit) && "expected an exit block!"); 825 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 826 Value *IndVarStartV = 827 SCEVExpander(SE, DL, "irce") 828 .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin()); 829 IndVarStartV->setName("indvar.start"); 830 831 LoopStructure Result; 832 833 Result.Tag = "main"; 834 Result.Header = Header; 835 Result.Latch = Latch; 836 Result.LatchBr = LatchBr; 837 Result.LatchExit = LatchExit; 838 Result.LatchBrExitIdx = LatchBrExitIdx; 839 Result.IndVarStart = IndVarStartV; 840 Result.IndVarNext = LeftValue; 841 Result.IndVarIncreasing = IsIncreasing; 842 Result.LoopExitAt = RightValue; 843 844 FailureReason = nullptr; 845 846 return Result; 847 } 848 849 Optional<LoopConstrainer::SubRanges> 850 LoopConstrainer::calculateSubRanges() const { 851 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 852 853 if (Range.getType() != Ty) 854 return None; 855 856 LoopConstrainer::SubRanges Result; 857 858 // I think we can be more aggressive here and make this nuw / nsw if the 859 // addition that feeds into the icmp for the latch's terminating branch is nuw 860 // / nsw. In any case, a wrapping 2's complement addition is safe. 861 ConstantInt *One = ConstantInt::get(Ty, 1); 862 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 863 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 864 865 bool Increasing = MainLoopStructure.IndVarIncreasing; 866 867 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the 868 // range of values the induction variable takes. 869 870 const SCEV *Smallest = nullptr, *Greatest = nullptr; 871 872 if (Increasing) { 873 Smallest = Start; 874 Greatest = End; 875 } else { 876 // These two computations may sign-overflow. Here is why that is okay: 877 // 878 // We know that the induction variable does not sign-overflow on any 879 // iteration except the last one, and it starts at `Start` and ends at 880 // `End`, decrementing by one every time. 881 // 882 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 883 // induction variable is decreasing we know that that the smallest value 884 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 885 // 886 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 887 // that case, `Clamp` will always return `Smallest` and 888 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 889 // will be an empty range. Returning an empty range is always safe. 890 // 891 892 Smallest = SE.getAddExpr(End, SE.getSCEV(One)); 893 Greatest = SE.getAddExpr(Start, SE.getSCEV(One)); 894 } 895 896 auto Clamp = [this, Smallest, Greatest](const SCEV *S) { 897 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)); 898 }; 899 900 // In some cases we can prove that we don't need a pre or post loop 901 902 bool ProvablyNoPreloop = 903 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest); 904 if (!ProvablyNoPreloop) 905 Result.LowLimit = Clamp(Range.getBegin()); 906 907 bool ProvablyNoPostLoop = 908 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd()); 909 if (!ProvablyNoPostLoop) 910 Result.HighLimit = Clamp(Range.getEnd()); 911 912 return Result; 913 } 914 915 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 916 const char *Tag) const { 917 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 918 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 919 Result.Blocks.push_back(Clone); 920 Result.Map[BB] = Clone; 921 } 922 923 auto GetClonedValue = [&Result](Value *V) { 924 assert(V && "null values not in domain!"); 925 auto It = Result.Map.find(V); 926 if (It == Result.Map.end()) 927 return V; 928 return static_cast<Value *>(It->second); 929 }; 930 931 Result.Structure = MainLoopStructure.map(GetClonedValue); 932 Result.Structure.Tag = Tag; 933 934 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 935 BasicBlock *ClonedBB = Result.Blocks[i]; 936 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 937 938 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 939 940 for (Instruction &I : *ClonedBB) 941 RemapInstruction(&I, Result.Map, 942 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 943 944 // Exit blocks will now have one more predecessor and their PHI nodes need 945 // to be edited to reflect that. No phi nodes need to be introduced because 946 // the loop is in LCSSA. 947 948 for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB); 949 SBBI != SBBE; ++SBBI) { 950 951 if (OriginalLoop.contains(*SBBI)) 952 continue; // not an exit block 953 954 for (Instruction &I : **SBBI) { 955 if (!isa<PHINode>(&I)) 956 break; 957 958 PHINode *PN = cast<PHINode>(&I); 959 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); 960 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); 961 } 962 } 963 } 964 } 965 966 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 967 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 968 BasicBlock *ContinuationBlock) const { 969 970 // We start with a loop with a single latch: 971 // 972 // +--------------------+ 973 // | | 974 // | preheader | 975 // | | 976 // +--------+-----------+ 977 // | ----------------\ 978 // | / | 979 // +--------v----v------+ | 980 // | | | 981 // | header | | 982 // | | | 983 // +--------------------+ | 984 // | 985 // ..... | 986 // | 987 // +--------------------+ | 988 // | | | 989 // | latch >----------/ 990 // | | 991 // +-------v------------+ 992 // | 993 // | 994 // | +--------------------+ 995 // | | | 996 // +---> original exit | 997 // | | 998 // +--------------------+ 999 // 1000 // We change the control flow to look like 1001 // 1002 // 1003 // +--------------------+ 1004 // | | 1005 // | preheader >-------------------------+ 1006 // | | | 1007 // +--------v-----------+ | 1008 // | /-------------+ | 1009 // | / | | 1010 // +--------v--v--------+ | | 1011 // | | | | 1012 // | header | | +--------+ | 1013 // | | | | | | 1014 // +--------------------+ | | +-----v-----v-----------+ 1015 // | | | | 1016 // | | | .pseudo.exit | 1017 // | | | | 1018 // | | +-----------v-----------+ 1019 // | | | 1020 // ..... | | | 1021 // | | +--------v-------------+ 1022 // +--------------------+ | | | | 1023 // | | | | | ContinuationBlock | 1024 // | latch >------+ | | | 1025 // | | | +----------------------+ 1026 // +---------v----------+ | 1027 // | | 1028 // | | 1029 // | +---------------^-----+ 1030 // | | | 1031 // +-----> .exit.selector | 1032 // | | 1033 // +----------v----------+ 1034 // | 1035 // +--------------------+ | 1036 // | | | 1037 // | original exit <----+ 1038 // | | 1039 // +--------------------+ 1040 // 1041 1042 RewrittenRangeInfo RRI; 1043 1044 auto BBInsertLocation = std::next(Function::iterator(LS.Latch)); 1045 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1046 &F, &*BBInsertLocation); 1047 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1048 &*BBInsertLocation); 1049 1050 BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin()); 1051 bool Increasing = LS.IndVarIncreasing; 1052 1053 IRBuilder<> B(PreheaderJump); 1054 1055 // EnterLoopCond - is it okay to start executing this `LS'? 1056 Value *EnterLoopCond = Increasing 1057 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1058 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt); 1059 1060 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1061 PreheaderJump->eraseFromParent(); 1062 1063 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1064 B.SetInsertPoint(LS.LatchBr); 1065 Value *TakeBackedgeLoopCond = 1066 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt) 1067 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt); 1068 Value *CondForBranch = LS.LatchBrExitIdx == 1 1069 ? TakeBackedgeLoopCond 1070 : B.CreateNot(TakeBackedgeLoopCond); 1071 1072 LS.LatchBr->setCondition(CondForBranch); 1073 1074 B.SetInsertPoint(RRI.ExitSelector); 1075 1076 // IterationsLeft - are there any more iterations left, given the original 1077 // upper bound on the induction variable? If not, we branch to the "real" 1078 // exit. 1079 Value *IterationsLeft = Increasing 1080 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt) 1081 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt); 1082 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1083 1084 BranchInst *BranchToContinuation = 1085 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1086 1087 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1088 // each of the PHI nodes in the loop header. This feeds into the initial 1089 // value of the same PHI nodes if/when we continue execution. 1090 for (Instruction &I : *LS.Header) { 1091 if (!isa<PHINode>(&I)) 1092 break; 1093 1094 PHINode *PN = cast<PHINode>(&I); 1095 1096 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", 1097 BranchToContinuation); 1098 1099 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); 1100 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), 1101 RRI.ExitSelector); 1102 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1103 } 1104 1105 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end", 1106 BranchToContinuation); 1107 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1108 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector); 1109 1110 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1111 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1112 for (Instruction &I : *LS.LatchExit) { 1113 if (PHINode *PN = dyn_cast<PHINode>(&I)) 1114 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); 1115 else 1116 break; 1117 } 1118 1119 return RRI; 1120 } 1121 1122 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1123 LoopStructure &LS, BasicBlock *ContinuationBlock, 1124 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1125 1126 unsigned PHIIndex = 0; 1127 for (Instruction &I : *LS.Header) { 1128 if (!isa<PHINode>(&I)) 1129 break; 1130 1131 PHINode *PN = cast<PHINode>(&I); 1132 1133 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1134 if (PN->getIncomingBlock(i) == ContinuationBlock) 1135 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1136 } 1137 1138 LS.IndVarStart = RRI.IndVarEnd; 1139 } 1140 1141 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1142 BasicBlock *OldPreheader, 1143 const char *Tag) const { 1144 1145 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1146 BranchInst::Create(LS.Header, Preheader); 1147 1148 for (Instruction &I : *LS.Header) { 1149 if (!isa<PHINode>(&I)) 1150 break; 1151 1152 PHINode *PN = cast<PHINode>(&I); 1153 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1154 replacePHIBlock(PN, OldPreheader, Preheader); 1155 } 1156 1157 return Preheader; 1158 } 1159 1160 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1161 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1162 if (!ParentLoop) 1163 return; 1164 1165 for (BasicBlock *BB : BBs) 1166 ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo); 1167 } 1168 1169 bool LoopConstrainer::run() { 1170 BasicBlock *Preheader = nullptr; 1171 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1172 Preheader = OriginalLoop.getLoopPreheader(); 1173 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1174 "preconditions!"); 1175 1176 OriginalPreheader = Preheader; 1177 MainLoopPreheader = Preheader; 1178 1179 Optional<SubRanges> MaybeSR = calculateSubRanges(); 1180 if (!MaybeSR.hasValue()) { 1181 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1182 return false; 1183 } 1184 1185 SubRanges SR = MaybeSR.getValue(); 1186 bool Increasing = MainLoopStructure.IndVarIncreasing; 1187 IntegerType *IVTy = 1188 cast<IntegerType>(MainLoopStructure.IndVarNext->getType()); 1189 1190 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1191 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1192 1193 // It would have been better to make `PreLoop' and `PostLoop' 1194 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1195 // constructor. 1196 ClonedLoop PreLoop, PostLoop; 1197 bool NeedsPreLoop = 1198 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1199 bool NeedsPostLoop = 1200 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1201 1202 Value *ExitPreLoopAt = nullptr; 1203 Value *ExitMainLoopAt = nullptr; 1204 const SCEVConstant *MinusOneS = 1205 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1206 1207 if (NeedsPreLoop) { 1208 const SCEV *ExitPreLoopAtSCEV = nullptr; 1209 1210 if (Increasing) 1211 ExitPreLoopAtSCEV = *SR.LowLimit; 1212 else { 1213 if (CanBeSMin(SE, *SR.HighLimit)) { 1214 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1215 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1216 << "\n"); 1217 return false; 1218 } 1219 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1220 } 1221 1222 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1223 ExitPreLoopAt->setName("exit.preloop.at"); 1224 } 1225 1226 if (NeedsPostLoop) { 1227 const SCEV *ExitMainLoopAtSCEV = nullptr; 1228 1229 if (Increasing) 1230 ExitMainLoopAtSCEV = *SR.HighLimit; 1231 else { 1232 if (CanBeSMin(SE, *SR.LowLimit)) { 1233 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1234 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1235 << "\n"); 1236 return false; 1237 } 1238 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1239 } 1240 1241 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1242 ExitMainLoopAt->setName("exit.mainloop.at"); 1243 } 1244 1245 // We clone these ahead of time so that we don't have to deal with changing 1246 // and temporarily invalid IR as we transform the loops. 1247 if (NeedsPreLoop) 1248 cloneLoop(PreLoop, "preloop"); 1249 if (NeedsPostLoop) 1250 cloneLoop(PostLoop, "postloop"); 1251 1252 RewrittenRangeInfo PreLoopRRI; 1253 1254 if (NeedsPreLoop) { 1255 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1256 PreLoop.Structure.Header); 1257 1258 MainLoopPreheader = 1259 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1260 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1261 ExitPreLoopAt, MainLoopPreheader); 1262 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1263 PreLoopRRI); 1264 } 1265 1266 BasicBlock *PostLoopPreheader = nullptr; 1267 RewrittenRangeInfo PostLoopRRI; 1268 1269 if (NeedsPostLoop) { 1270 PostLoopPreheader = 1271 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1272 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1273 ExitMainLoopAt, PostLoopPreheader); 1274 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1275 PostLoopRRI); 1276 } 1277 1278 BasicBlock *NewMainLoopPreheader = 1279 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1280 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1281 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1282 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1283 1284 // Some of the above may be nullptr, filter them out before passing to 1285 // addToParentLoopIfNeeded. 1286 auto NewBlocksEnd = 1287 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1288 1289 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1290 addToParentLoopIfNeeded(PreLoop.Blocks); 1291 addToParentLoopIfNeeded(PostLoop.Blocks); 1292 1293 return true; 1294 } 1295 1296 /// Computes and returns a range of values for the induction variable (IndVar) 1297 /// in which the range check can be safely elided. If it cannot compute such a 1298 /// range, returns None. 1299 Optional<InductiveRangeCheck::Range> 1300 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE, 1301 const SCEVAddRecExpr *IndVar, 1302 IRBuilder<> &) const { 1303 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1304 // variable, that may or may not exist as a real llvm::Value in the loop) and 1305 // this inductive range check is a range check on the "C + D * I" ("C" is 1306 // getOffset() and "D" is getScale()). We rewrite the value being range 1307 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1308 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code 1309 // can be generalized as needed. 1310 // 1311 // The actual inequalities we solve are of the form 1312 // 1313 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1314 // 1315 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions 1316 // and subtractions are twos-complement wrapping and comparisons are signed. 1317 // 1318 // Proof: 1319 // 1320 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows 1321 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows 1322 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have 1323 // overflown. 1324 // 1325 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. 1326 // Hence 0 <= (IndVar + M) < L 1327 1328 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = 1329 // 127, IndVar = 126 and L = -2 in an i8 world. 1330 1331 if (!IndVar->isAffine()) 1332 return None; 1333 1334 const SCEV *A = IndVar->getStart(); 1335 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1336 if (!B) 1337 return None; 1338 1339 const SCEV *C = getOffset(); 1340 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale()); 1341 if (D != B) 1342 return None; 1343 1344 ConstantInt *ConstD = D->getValue(); 1345 if (!(ConstD->isMinusOne() || ConstD->isOne())) 1346 return None; 1347 1348 const SCEV *M = SE.getMinusSCEV(C, A); 1349 1350 const SCEV *Begin = SE.getNegativeSCEV(M); 1351 const SCEV *UpperLimit = nullptr; 1352 1353 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 1354 // We can potentially do much better here. 1355 if (Value *V = getLength()) { 1356 UpperLimit = SE.getSCEV(V); 1357 } else { 1358 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 1359 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1360 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1361 } 1362 1363 const SCEV *End = SE.getMinusSCEV(UpperLimit, M); 1364 return InductiveRangeCheck::Range(Begin, End); 1365 } 1366 1367 static Optional<InductiveRangeCheck::Range> 1368 IntersectRange(ScalarEvolution &SE, 1369 const Optional<InductiveRangeCheck::Range> &R1, 1370 const InductiveRangeCheck::Range &R2, IRBuilder<> &B) { 1371 if (!R1.hasValue()) 1372 return R2; 1373 auto &R1Value = R1.getValue(); 1374 1375 // TODO: we could widen the smaller range and have this work; but for now we 1376 // bail out to keep things simple. 1377 if (R1Value.getType() != R2.getType()) 1378 return None; 1379 1380 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1381 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1382 1383 return InductiveRangeCheck::Range(NewBegin, NewEnd); 1384 } 1385 1386 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1387 if (L->getBlocks().size() >= LoopSizeCutoff) { 1388 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1389 return false; 1390 } 1391 1392 BasicBlock *Preheader = L->getLoopPreheader(); 1393 if (!Preheader) { 1394 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1395 return false; 1396 } 1397 1398 LLVMContext &Context = Preheader->getContext(); 1399 InductiveRangeCheck::AllocatorTy IRCAlloc; 1400 SmallVector<InductiveRangeCheck *, 16> RangeChecks; 1401 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1402 BranchProbabilityInfo &BPI = 1403 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1404 1405 for (auto BBI : L->getBlocks()) 1406 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1407 if (InductiveRangeCheck *IRC = 1408 InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI)) 1409 RangeChecks.push_back(IRC); 1410 1411 if (RangeChecks.empty()) 1412 return false; 1413 1414 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1415 OS << "irce: looking at loop "; L->print(OS); 1416 OS << "irce: loop has " << RangeChecks.size() 1417 << " inductive range checks: \n"; 1418 for (InductiveRangeCheck *IRC : RangeChecks) 1419 IRC->print(OS); 1420 }; 1421 1422 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1423 1424 if (PrintRangeChecks) 1425 PrintRecognizedRangeChecks(errs()); 1426 1427 const char *FailureReason = nullptr; 1428 Optional<LoopStructure> MaybeLoopStructure = 1429 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1430 if (!MaybeLoopStructure.hasValue()) { 1431 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1432 << "\n";); 1433 return false; 1434 } 1435 LoopStructure LS = MaybeLoopStructure.getValue(); 1436 bool Increasing = LS.IndVarIncreasing; 1437 const SCEV *MinusOne = 1438 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true); 1439 const SCEVAddRecExpr *IndVar = 1440 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne)); 1441 1442 Optional<InductiveRangeCheck::Range> SafeIterRange; 1443 Instruction *ExprInsertPt = Preheader->getTerminator(); 1444 1445 SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate; 1446 1447 IRBuilder<> B(ExprInsertPt); 1448 for (InductiveRangeCheck *IRC : RangeChecks) { 1449 auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B); 1450 if (Result.hasValue()) { 1451 auto MaybeSafeIterRange = 1452 IntersectRange(SE, SafeIterRange, Result.getValue(), B); 1453 if (MaybeSafeIterRange.hasValue()) { 1454 RangeChecksToEliminate.push_back(IRC); 1455 SafeIterRange = MaybeSafeIterRange.getValue(); 1456 } 1457 } 1458 } 1459 1460 if (!SafeIterRange.hasValue()) 1461 return false; 1462 1463 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS, 1464 SE, SafeIterRange.getValue()); 1465 bool Changed = LC.run(); 1466 1467 if (Changed) { 1468 auto PrintConstrainedLoopInfo = [L]() { 1469 dbgs() << "irce: in function "; 1470 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1471 dbgs() << "constrained "; 1472 L->print(dbgs()); 1473 }; 1474 1475 DEBUG(PrintConstrainedLoopInfo()); 1476 1477 if (PrintChangedLoops) 1478 PrintConstrainedLoopInfo(); 1479 1480 // Optimize away the now-redundant range checks. 1481 1482 for (InductiveRangeCheck *IRC : RangeChecksToEliminate) { 1483 ConstantInt *FoldedRangeCheck = IRC->getPassingDirection() 1484 ? ConstantInt::getTrue(Context) 1485 : ConstantInt::getFalse(Context); 1486 IRC->getBranch()->setCondition(FoldedRangeCheck); 1487 } 1488 } 1489 1490 return Changed; 1491 } 1492 1493 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1494 return new InductiveRangeCheckElimination; 1495 } 1496