1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 11 // three disjoint ranges. It does that in a way such that the loop running in 12 // the middle loop provably does not need range checks. As an example, it will 13 // convert 14 // 15 // len = < known positive > 16 // for (i = 0; i < n; i++) { 17 // if (0 <= i && i < len) { 18 // do_something(); 19 // } else { 20 // throw_out_of_bounds(); 21 // } 22 // } 23 // 24 // to 25 // 26 // len = < known positive > 27 // limit = smin(n, len) 28 // // no first segment 29 // for (i = 0; i < limit; i++) { 30 // if (0 <= i && i < len) { // this check is fully redundant 31 // do_something(); 32 // } else { 33 // throw_out_of_bounds(); 34 // } 35 // } 36 // for (i = limit; i < n; i++) { 37 // if (0 <= i && i < len) { 38 // do_something(); 39 // } else { 40 // throw_out_of_bounds(); 41 // } 42 // } 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/ADT/APInt.h" 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/None.h" 49 #include "llvm/ADT/Optional.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/ADT/StringRef.h" 53 #include "llvm/ADT/Twine.h" 54 #include "llvm/Analysis/BranchProbabilityInfo.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/LoopPass.h" 57 #include "llvm/Analysis/ScalarEvolution.h" 58 #include "llvm/Analysis/ScalarEvolutionExpander.h" 59 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/Constants.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/InstrTypes.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Metadata.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/PatternMatch.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/User.h" 75 #include "llvm/IR/Value.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Transforms/Scalar.h" 85 #include "llvm/Transforms/Utils/Cloning.h" 86 #include "llvm/Transforms/Utils/LoopSimplify.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Utils/ValueMapper.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <iterator> 92 #include <limits> 93 #include <utility> 94 #include <vector> 95 96 using namespace llvm; 97 using namespace llvm::PatternMatch; 98 99 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 100 cl::init(64)); 101 102 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 103 cl::init(false)); 104 105 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 106 cl::init(false)); 107 108 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 109 cl::Hidden, cl::init(10)); 110 111 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 112 cl::Hidden, cl::init(false)); 113 114 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", 115 cl::Hidden, cl::init(true)); 116 117 static const char *ClonedLoopTag = "irce.loop.clone"; 118 119 #define DEBUG_TYPE "irce" 120 121 namespace { 122 123 /// An inductive range check is conditional branch in a loop with 124 /// 125 /// 1. a very cold successor (i.e. the branch jumps to that successor very 126 /// rarely) 127 /// 128 /// and 129 /// 130 /// 2. a condition that is provably true for some contiguous range of values 131 /// taken by the containing loop's induction variable. 132 /// 133 class InductiveRangeCheck { 134 // Classifies a range check 135 enum RangeCheckKind : unsigned { 136 // Range check of the form "0 <= I". 137 RANGE_CHECK_LOWER = 1, 138 139 // Range check of the form "I < L" where L is known positive. 140 RANGE_CHECK_UPPER = 2, 141 142 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 143 // conditions. 144 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 145 146 // Unrecognized range check condition. 147 RANGE_CHECK_UNKNOWN = (unsigned)-1 148 }; 149 150 static StringRef rangeCheckKindToStr(RangeCheckKind); 151 152 const SCEV *Offset = nullptr; 153 const SCEV *Scale = nullptr; 154 Value *Length = nullptr; 155 Use *CheckUse = nullptr; 156 RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; 157 bool IsSigned = true; 158 159 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 160 ScalarEvolution &SE, Value *&Index, 161 Value *&Length, bool &IsSigned); 162 163 static void 164 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 165 SmallVectorImpl<InductiveRangeCheck> &Checks, 166 SmallPtrSetImpl<Value *> &Visited); 167 168 public: 169 const SCEV *getOffset() const { return Offset; } 170 const SCEV *getScale() const { return Scale; } 171 Value *getLength() const { return Length; } 172 bool isSigned() const { return IsSigned; } 173 174 void print(raw_ostream &OS) const { 175 OS << "InductiveRangeCheck:\n"; 176 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 177 OS << " Offset: "; 178 Offset->print(OS); 179 OS << " Scale: "; 180 Scale->print(OS); 181 OS << " Length: "; 182 if (Length) 183 Length->print(OS); 184 else 185 OS << "(null)"; 186 OS << "\n CheckUse: "; 187 getCheckUse()->getUser()->print(OS); 188 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 189 } 190 191 LLVM_DUMP_METHOD 192 void dump() { 193 print(dbgs()); 194 } 195 196 Use *getCheckUse() const { return CheckUse; } 197 198 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 199 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 200 201 class Range { 202 const SCEV *Begin; 203 const SCEV *End; 204 205 public: 206 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 207 assert(Begin->getType() == End->getType() && "ill-typed range!"); 208 } 209 210 Type *getType() const { return Begin->getType(); } 211 const SCEV *getBegin() const { return Begin; } 212 const SCEV *getEnd() const { return End; } 213 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { 214 if (Begin == End) 215 return true; 216 if (IsSigned) 217 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); 218 else 219 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); 220 } 221 }; 222 223 /// This is the value the condition of the branch needs to evaluate to for the 224 /// branch to take the hot successor (see (1) above). 225 bool getPassingDirection() { return true; } 226 227 /// Computes a range for the induction variable (IndVar) in which the range 228 /// check is redundant and can be constant-folded away. The induction 229 /// variable is not required to be the canonical {0,+,1} induction variable. 230 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 231 const SCEVAddRecExpr *IndVar) const; 232 233 /// Parse out a set of inductive range checks from \p BI and append them to \p 234 /// Checks. 235 /// 236 /// NB! There may be conditions feeding into \p BI that aren't inductive range 237 /// checks, and hence don't end up in \p Checks. 238 static void 239 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 240 BranchProbabilityInfo &BPI, 241 SmallVectorImpl<InductiveRangeCheck> &Checks); 242 }; 243 244 class InductiveRangeCheckElimination : public LoopPass { 245 public: 246 static char ID; 247 248 InductiveRangeCheckElimination() : LoopPass(ID) { 249 initializeInductiveRangeCheckEliminationPass( 250 *PassRegistry::getPassRegistry()); 251 } 252 253 void getAnalysisUsage(AnalysisUsage &AU) const override { 254 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 255 getLoopAnalysisUsage(AU); 256 } 257 258 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 259 }; 260 261 } // end anonymous namespace 262 263 char InductiveRangeCheckElimination::ID = 0; 264 265 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", 266 "Inductive range check elimination", false, false) 267 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 268 INITIALIZE_PASS_DEPENDENCY(LoopPass) 269 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", 270 "Inductive range check elimination", false, false) 271 272 StringRef InductiveRangeCheck::rangeCheckKindToStr( 273 InductiveRangeCheck::RangeCheckKind RCK) { 274 switch (RCK) { 275 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 276 return "RANGE_CHECK_UNKNOWN"; 277 278 case InductiveRangeCheck::RANGE_CHECK_UPPER: 279 return "RANGE_CHECK_UPPER"; 280 281 case InductiveRangeCheck::RANGE_CHECK_LOWER: 282 return "RANGE_CHECK_LOWER"; 283 284 case InductiveRangeCheck::RANGE_CHECK_BOTH: 285 return "RANGE_CHECK_BOTH"; 286 } 287 288 llvm_unreachable("unknown range check type!"); 289 } 290 291 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 292 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 293 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 294 /// range checked, and set `Length` to the upper limit `Index` is being range 295 /// checked with if (and only if) the range check type is stronger or equal to 296 /// RANGE_CHECK_UPPER. 297 InductiveRangeCheck::RangeCheckKind 298 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 299 ScalarEvolution &SE, Value *&Index, 300 Value *&Length, bool &IsSigned) { 301 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { 302 const SCEV *S = SE.getSCEV(V); 303 if (isa<SCEVCouldNotCompute>(S)) 304 return false; 305 306 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && 307 SE.isKnownNonNegative(S); 308 }; 309 310 ICmpInst::Predicate Pred = ICI->getPredicate(); 311 Value *LHS = ICI->getOperand(0); 312 Value *RHS = ICI->getOperand(1); 313 314 switch (Pred) { 315 default: 316 return RANGE_CHECK_UNKNOWN; 317 318 case ICmpInst::ICMP_SLE: 319 std::swap(LHS, RHS); 320 LLVM_FALLTHROUGH; 321 case ICmpInst::ICMP_SGE: 322 IsSigned = true; 323 if (match(RHS, m_ConstantInt<0>())) { 324 Index = LHS; 325 return RANGE_CHECK_LOWER; 326 } 327 return RANGE_CHECK_UNKNOWN; 328 329 case ICmpInst::ICMP_SLT: 330 std::swap(LHS, RHS); 331 LLVM_FALLTHROUGH; 332 case ICmpInst::ICMP_SGT: 333 IsSigned = true; 334 if (match(RHS, m_ConstantInt<-1>())) { 335 Index = LHS; 336 return RANGE_CHECK_LOWER; 337 } 338 339 if (IsNonNegativeAndNotLoopVarying(LHS)) { 340 Index = RHS; 341 Length = LHS; 342 return RANGE_CHECK_UPPER; 343 } 344 return RANGE_CHECK_UNKNOWN; 345 346 case ICmpInst::ICMP_ULT: 347 std::swap(LHS, RHS); 348 LLVM_FALLTHROUGH; 349 case ICmpInst::ICMP_UGT: 350 IsSigned = false; 351 if (IsNonNegativeAndNotLoopVarying(LHS)) { 352 Index = RHS; 353 Length = LHS; 354 return RANGE_CHECK_BOTH; 355 } 356 return RANGE_CHECK_UNKNOWN; 357 } 358 359 llvm_unreachable("default clause returns!"); 360 } 361 362 void InductiveRangeCheck::extractRangeChecksFromCond( 363 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 364 SmallVectorImpl<InductiveRangeCheck> &Checks, 365 SmallPtrSetImpl<Value *> &Visited) { 366 Value *Condition = ConditionUse.get(); 367 if (!Visited.insert(Condition).second) 368 return; 369 370 if (match(Condition, m_And(m_Value(), m_Value()))) { 371 SmallVector<InductiveRangeCheck, 8> SubChecks; 372 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 373 SubChecks, Visited); 374 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 375 SubChecks, Visited); 376 377 if (SubChecks.size() == 2) { 378 // Handle a special case where we know how to merge two checks separately 379 // checking the upper and lower bounds into a full range check. 380 const auto &RChkA = SubChecks[0]; 381 const auto &RChkB = SubChecks[1]; 382 if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) && 383 RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale && 384 RChkA.IsSigned == RChkB.IsSigned) { 385 // If RChkA.Kind == RChkB.Kind then we just found two identical checks. 386 // But if one of them is a RANGE_CHECK_LOWER and the other is a 387 // RANGE_CHECK_UPPER (only possibility if they're different) then 388 // together they form a RANGE_CHECK_BOTH. 389 SubChecks[0].Kind = 390 (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind); 391 SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length; 392 SubChecks[0].CheckUse = &ConditionUse; 393 SubChecks[0].IsSigned = RChkA.IsSigned; 394 395 // We updated one of the checks in place, now erase the other. 396 SubChecks.pop_back(); 397 } 398 } 399 400 Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end()); 401 return; 402 } 403 404 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 405 if (!ICI) 406 return; 407 408 Value *Length = nullptr, *Index; 409 bool IsSigned; 410 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned); 411 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 412 return; 413 414 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 415 bool IsAffineIndex = 416 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 417 418 if (!IsAffineIndex) 419 return; 420 421 InductiveRangeCheck IRC; 422 IRC.Length = Length; 423 IRC.Offset = IndexAddRec->getStart(); 424 IRC.Scale = IndexAddRec->getStepRecurrence(SE); 425 IRC.CheckUse = &ConditionUse; 426 IRC.Kind = RCKind; 427 IRC.IsSigned = IsSigned; 428 Checks.push_back(IRC); 429 } 430 431 void InductiveRangeCheck::extractRangeChecksFromBranch( 432 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI, 433 SmallVectorImpl<InductiveRangeCheck> &Checks) { 434 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 435 return; 436 437 BranchProbability LikelyTaken(15, 16); 438 439 if (!SkipProfitabilityChecks && 440 BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 441 return; 442 443 SmallPtrSet<Value *, 8> Visited; 444 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 445 Checks, Visited); 446 } 447 448 // Add metadata to the loop L to disable loop optimizations. Callers need to 449 // confirm that optimizing loop L is not beneficial. 450 static void DisableAllLoopOptsOnLoop(Loop &L) { 451 // We do not care about any existing loopID related metadata for L, since we 452 // are setting all loop metadata to false. 453 LLVMContext &Context = L.getHeader()->getContext(); 454 // Reserve first location for self reference to the LoopID metadata node. 455 MDNode *Dummy = MDNode::get(Context, {}); 456 MDNode *DisableUnroll = MDNode::get( 457 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 458 Metadata *FalseVal = 459 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 460 MDNode *DisableVectorize = MDNode::get( 461 Context, 462 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 463 MDNode *DisableLICMVersioning = MDNode::get( 464 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 465 MDNode *DisableDistribution= MDNode::get( 466 Context, 467 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 468 MDNode *NewLoopID = 469 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 470 DisableLICMVersioning, DisableDistribution}); 471 // Set operand 0 to refer to the loop id itself. 472 NewLoopID->replaceOperandWith(0, NewLoopID); 473 L.setLoopID(NewLoopID); 474 } 475 476 namespace { 477 478 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 479 // except that it is more lightweight and can track the state of a loop through 480 // changing and potentially invalid IR. This structure also formalizes the 481 // kinds of loops we can deal with -- ones that have a single latch that is also 482 // an exiting block *and* have a canonical induction variable. 483 struct LoopStructure { 484 const char *Tag = ""; 485 486 BasicBlock *Header = nullptr; 487 BasicBlock *Latch = nullptr; 488 489 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 490 // successor is `LatchExit', the exit block of the loop. 491 BranchInst *LatchBr = nullptr; 492 BasicBlock *LatchExit = nullptr; 493 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max(); 494 495 // The loop represented by this instance of LoopStructure is semantically 496 // equivalent to: 497 // 498 // intN_ty inc = IndVarIncreasing ? 1 : -1; 499 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 500 // 501 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 502 // ... body ... 503 504 Value *IndVarBase = nullptr; 505 Value *IndVarStart = nullptr; 506 Value *IndVarStep = nullptr; 507 Value *LoopExitAt = nullptr; 508 bool IndVarIncreasing = false; 509 bool IsSignedPredicate = true; 510 511 LoopStructure() = default; 512 513 template <typename M> LoopStructure map(M Map) const { 514 LoopStructure Result; 515 Result.Tag = Tag; 516 Result.Header = cast<BasicBlock>(Map(Header)); 517 Result.Latch = cast<BasicBlock>(Map(Latch)); 518 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 519 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 520 Result.LatchBrExitIdx = LatchBrExitIdx; 521 Result.IndVarBase = Map(IndVarBase); 522 Result.IndVarStart = Map(IndVarStart); 523 Result.IndVarStep = Map(IndVarStep); 524 Result.LoopExitAt = Map(LoopExitAt); 525 Result.IndVarIncreasing = IndVarIncreasing; 526 Result.IsSignedPredicate = IsSignedPredicate; 527 return Result; 528 } 529 530 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 531 BranchProbabilityInfo &BPI, 532 Loop &, 533 const char *&); 534 }; 535 536 /// This class is used to constrain loops to run within a given iteration space. 537 /// The algorithm this class implements is given a Loop and a range [Begin, 538 /// End). The algorithm then tries to break out a "main loop" out of the loop 539 /// it is given in a way that the "main loop" runs with the induction variable 540 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 541 /// loops to run any remaining iterations. The pre loop runs any iterations in 542 /// which the induction variable is < Begin, and the post loop runs any 543 /// iterations in which the induction variable is >= End. 544 class LoopConstrainer { 545 // The representation of a clone of the original loop we started out with. 546 struct ClonedLoop { 547 // The cloned blocks 548 std::vector<BasicBlock *> Blocks; 549 550 // `Map` maps values in the clonee into values in the cloned version 551 ValueToValueMapTy Map; 552 553 // An instance of `LoopStructure` for the cloned loop 554 LoopStructure Structure; 555 }; 556 557 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 558 // more details on what these fields mean. 559 struct RewrittenRangeInfo { 560 BasicBlock *PseudoExit = nullptr; 561 BasicBlock *ExitSelector = nullptr; 562 std::vector<PHINode *> PHIValuesAtPseudoExit; 563 PHINode *IndVarEnd = nullptr; 564 565 RewrittenRangeInfo() = default; 566 }; 567 568 // Calculated subranges we restrict the iteration space of the main loop to. 569 // See the implementation of `calculateSubRanges' for more details on how 570 // these fields are computed. `LowLimit` is None if there is no restriction 571 // on low end of the restricted iteration space of the main loop. `HighLimit` 572 // is None if there is no restriction on high end of the restricted iteration 573 // space of the main loop. 574 575 struct SubRanges { 576 Optional<const SCEV *> LowLimit; 577 Optional<const SCEV *> HighLimit; 578 }; 579 580 // A utility function that does a `replaceUsesOfWith' on the incoming block 581 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 582 // incoming block list with `ReplaceBy'. 583 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 584 BasicBlock *ReplaceBy); 585 586 // Compute a safe set of limits for the main loop to run in -- effectively the 587 // intersection of `Range' and the iteration space of the original loop. 588 // Return None if unable to compute the set of subranges. 589 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 590 591 // Clone `OriginalLoop' and return the result in CLResult. The IR after 592 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 593 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 594 // but there is no such edge. 595 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 596 597 // Create the appropriate loop structure needed to describe a cloned copy of 598 // `Original`. The clone is described by `VM`. 599 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 600 ValueToValueMapTy &VM); 601 602 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 603 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 604 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 605 // `OriginalHeaderCount'. 606 // 607 // If there are iterations left to execute, control is made to jump to 608 // `ContinuationBlock', otherwise they take the normal loop exit. The 609 // returned `RewrittenRangeInfo' object is populated as follows: 610 // 611 // .PseudoExit is a basic block that unconditionally branches to 612 // `ContinuationBlock'. 613 // 614 // .ExitSelector is a basic block that decides, on exit from the loop, 615 // whether to branch to the "true" exit or to `PseudoExit'. 616 // 617 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 618 // for each PHINode in the loop header on taking the pseudo exit. 619 // 620 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 621 // preheader because it is made to branch to the loop header only 622 // conditionally. 623 RewrittenRangeInfo 624 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 625 Value *ExitLoopAt, 626 BasicBlock *ContinuationBlock) const; 627 628 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 629 // function creates a new preheader for `LS' and returns it. 630 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 631 const char *Tag) const; 632 633 // `ContinuationBlockAndPreheader' was the continuation block for some call to 634 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 635 // This function rewrites the PHI nodes in `LS.Header' to start with the 636 // correct value. 637 void rewriteIncomingValuesForPHIs( 638 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 639 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 640 641 // Even though we do not preserve any passes at this time, we at least need to 642 // keep the parent loop structure consistent. The `LPPassManager' seems to 643 // verify this after running a loop pass. This function adds the list of 644 // blocks denoted by BBs to this loops parent loop if required. 645 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 646 647 // Some global state. 648 Function &F; 649 LLVMContext &Ctx; 650 ScalarEvolution &SE; 651 DominatorTree &DT; 652 LPPassManager &LPM; 653 LoopInfo &LI; 654 655 // Information about the original loop we started out with. 656 Loop &OriginalLoop; 657 658 const SCEV *LatchTakenCount = nullptr; 659 BasicBlock *OriginalPreheader = nullptr; 660 661 // The preheader of the main loop. This may or may not be different from 662 // `OriginalPreheader'. 663 BasicBlock *MainLoopPreheader = nullptr; 664 665 // The range we need to run the main loop in. 666 InductiveRangeCheck::Range Range; 667 668 // The structure of the main loop (see comment at the beginning of this class 669 // for a definition) 670 LoopStructure MainLoopStructure; 671 672 public: 673 LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM, 674 const LoopStructure &LS, ScalarEvolution &SE, 675 DominatorTree &DT, InductiveRangeCheck::Range R) 676 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 677 SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L), Range(R), 678 MainLoopStructure(LS) {} 679 680 // Entry point for the algorithm. Returns true on success. 681 bool run(); 682 }; 683 684 } // end anonymous namespace 685 686 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 687 BasicBlock *ReplaceBy) { 688 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 689 if (PN->getIncomingBlock(i) == Block) 690 PN->setIncomingBlock(i, ReplaceBy); 691 } 692 693 static bool CanBeMax(ScalarEvolution &SE, const SCEV *S, bool Signed) { 694 APInt Max = Signed ? 695 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()) : 696 APInt::getMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 697 return SE.getSignedRange(S).contains(Max) && 698 SE.getUnsignedRange(S).contains(Max); 699 } 700 701 static bool SumCanReachMax(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, 702 bool Signed) { 703 // S1 < INT_MAX - S2 ===> S1 + S2 < INT_MAX. 704 assert(SE.isKnownNonNegative(S2) && 705 "We expected the 2nd arg to be non-negative!"); 706 const SCEV *Max = SE.getConstant( 707 Signed ? APInt::getSignedMaxValue( 708 cast<IntegerType>(S1->getType())->getBitWidth()) 709 : APInt::getMaxValue( 710 cast<IntegerType>(S1->getType())->getBitWidth())); 711 const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); 712 return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 713 S1, CapForS1); 714 } 715 716 static bool CanBeMin(ScalarEvolution &SE, const SCEV *S, bool Signed) { 717 APInt Min = Signed ? 718 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()) : 719 APInt::getMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 720 return SE.getSignedRange(S).contains(Min) && 721 SE.getUnsignedRange(S).contains(Min); 722 } 723 724 static bool SumCanReachMin(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, 725 bool Signed) { 726 // S1 > INT_MIN - S2 ===> S1 + S2 > INT_MIN. 727 assert(SE.isKnownNonPositive(S2) && 728 "We expected the 2nd arg to be non-positive!"); 729 const SCEV *Max = SE.getConstant( 730 Signed ? APInt::getSignedMinValue( 731 cast<IntegerType>(S1->getType())->getBitWidth()) 732 : APInt::getMinValue( 733 cast<IntegerType>(S1->getType())->getBitWidth())); 734 const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); 735 return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, 736 S1, CapForS1); 737 } 738 739 Optional<LoopStructure> 740 LoopStructure::parseLoopStructure(ScalarEvolution &SE, 741 BranchProbabilityInfo &BPI, 742 Loop &L, const char *&FailureReason) { 743 if (!L.isLoopSimplifyForm()) { 744 FailureReason = "loop not in LoopSimplify form"; 745 return None; 746 } 747 748 BasicBlock *Latch = L.getLoopLatch(); 749 assert(Latch && "Simplified loops only have one latch!"); 750 751 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 752 FailureReason = "loop has already been cloned"; 753 return None; 754 } 755 756 if (!L.isLoopExiting(Latch)) { 757 FailureReason = "no loop latch"; 758 return None; 759 } 760 761 BasicBlock *Header = L.getHeader(); 762 BasicBlock *Preheader = L.getLoopPreheader(); 763 if (!Preheader) { 764 FailureReason = "no preheader"; 765 return None; 766 } 767 768 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 769 if (!LatchBr || LatchBr->isUnconditional()) { 770 FailureReason = "latch terminator not conditional branch"; 771 return None; 772 } 773 774 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 775 776 BranchProbability ExitProbability = 777 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 778 779 if (!SkipProfitabilityChecks && 780 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 781 FailureReason = "short running loop, not profitable"; 782 return None; 783 } 784 785 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 786 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 787 FailureReason = "latch terminator branch not conditional on integral icmp"; 788 return None; 789 } 790 791 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 792 if (isa<SCEVCouldNotCompute>(LatchCount)) { 793 FailureReason = "could not compute latch count"; 794 return None; 795 } 796 797 ICmpInst::Predicate Pred = ICI->getPredicate(); 798 Value *LeftValue = ICI->getOperand(0); 799 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 800 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 801 802 Value *RightValue = ICI->getOperand(1); 803 const SCEV *RightSCEV = SE.getSCEV(RightValue); 804 805 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 806 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 807 if (isa<SCEVAddRecExpr>(RightSCEV)) { 808 std::swap(LeftSCEV, RightSCEV); 809 std::swap(LeftValue, RightValue); 810 Pred = ICmpInst::getSwappedPredicate(Pred); 811 } else { 812 FailureReason = "no add recurrences in the icmp"; 813 return None; 814 } 815 } 816 817 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 818 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 819 return true; 820 821 IntegerType *Ty = cast<IntegerType>(AR->getType()); 822 IntegerType *WideTy = 823 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 824 825 const SCEVAddRecExpr *ExtendAfterOp = 826 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 827 if (ExtendAfterOp) { 828 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 829 const SCEV *ExtendedStep = 830 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 831 832 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 833 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 834 835 if (NoSignedWrap) 836 return true; 837 } 838 839 // We may have proved this when computing the sign extension above. 840 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 841 }; 842 843 // Here we check whether the suggested AddRec is an induction variable that 844 // can be handled (i.e. with known constant step), and if yes, calculate its 845 // step and identify whether it is increasing or decreasing. 846 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing, 847 ConstantInt *&StepCI) { 848 if (!AR->isAffine()) 849 return false; 850 851 // Currently we only work with induction variables that have been proved to 852 // not wrap. This restriction can potentially be lifted in the future. 853 854 if (!HasNoSignedWrap(AR)) 855 return false; 856 857 if (const SCEVConstant *StepExpr = 858 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 859 StepCI = StepExpr->getValue(); 860 assert(!StepCI->isZero() && "Zero step?"); 861 IsIncreasing = !StepCI->isNegative(); 862 return true; 863 } 864 865 return false; 866 }; 867 868 // `ICI` is interpreted as taking the backedge if the *next* value of the 869 // induction variable satisfies some constraint. 870 871 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 872 bool IsIncreasing = false; 873 bool IsSignedPredicate = true; 874 ConstantInt *StepCI; 875 if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) { 876 FailureReason = "LHS in icmp not induction variable"; 877 return None; 878 } 879 880 const SCEV *StartNext = IndVarBase->getStart(); 881 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 882 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 883 const SCEV *Step = SE.getSCEV(StepCI); 884 885 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 886 if (IsIncreasing) { 887 bool DecreasedRightValueByOne = false; 888 if (StepCI->isOne()) { 889 // Try to turn eq/ne predicates to those we can work with. 890 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 891 // while (++i != len) { while (++i < len) { 892 // ... ---> ... 893 // } } 894 // If both parts are known non-negative, it is profitable to use 895 // unsigned comparison in increasing loop. This allows us to make the 896 // comparison check against "RightSCEV + 1" more optimistic. 897 if (SE.isKnownNonNegative(IndVarStart) && 898 SE.isKnownNonNegative(RightSCEV)) 899 Pred = ICmpInst::ICMP_ULT; 900 else 901 Pred = ICmpInst::ICMP_SLT; 902 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 903 !CanBeMin(SE, RightSCEV, /* IsSignedPredicate */ true)) { 904 // while (true) { while (true) { 905 // if (++i == len) ---> if (++i > len - 1) 906 // break; break; 907 // ... ... 908 // } } 909 // TODO: Insert ICMP_UGT if both are non-negative? 910 Pred = ICmpInst::ICMP_SGT; 911 RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); 912 DecreasedRightValueByOne = true; 913 } 914 } 915 916 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 917 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 918 bool FoundExpectedPred = 919 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 920 921 if (!FoundExpectedPred) { 922 FailureReason = "expected icmp slt semantically, found something else"; 923 return None; 924 } 925 926 IsSignedPredicate = 927 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 928 929 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 930 FailureReason = "unsigned latch conditions are explicitly prohibited"; 931 return None; 932 } 933 934 // The predicate that we need to check that the induction variable lies 935 // within bounds. 936 ICmpInst::Predicate BoundPred = 937 IsSignedPredicate ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 938 939 if (LatchBrExitIdx == 0) { 940 const SCEV *StepMinusOne = SE.getMinusSCEV(Step, 941 SE.getOne(Step->getType())); 942 if (SumCanReachMax(SE, RightSCEV, StepMinusOne, IsSignedPredicate)) { 943 // TODO: this restriction is easily removable -- we just have to 944 // remember that the icmp was an slt and not an sle. 945 FailureReason = "limit may overflow when coercing le to lt"; 946 return None; 947 } 948 949 if (!SE.isLoopEntryGuardedByCond( 950 &L, BoundPred, IndVarStart, 951 SE.getAddExpr(RightSCEV, Step))) { 952 FailureReason = "Induction variable start not bounded by upper limit"; 953 return None; 954 } 955 956 // We need to increase the right value unless we have already decreased 957 // it virtually when we replaced EQ with SGT. 958 if (!DecreasedRightValueByOne) { 959 IRBuilder<> B(Preheader->getTerminator()); 960 RightValue = B.CreateAdd(RightValue, One); 961 } 962 } else { 963 if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { 964 FailureReason = "Induction variable start not bounded by upper limit"; 965 return None; 966 } 967 assert(!DecreasedRightValueByOne && 968 "Right value can be decreased only for LatchBrExitIdx == 0!"); 969 } 970 } else { 971 bool IncreasedRightValueByOne = false; 972 if (StepCI->isMinusOne()) { 973 // Try to turn eq/ne predicates to those we can work with. 974 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 975 // while (--i != len) { while (--i > len) { 976 // ... ---> ... 977 // } } 978 // We intentionally don't turn the predicate into UGT even if we know 979 // that both operands are non-negative, because it will only pessimize 980 // our check against "RightSCEV - 1". 981 Pred = ICmpInst::ICMP_SGT; 982 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 983 !CanBeMax(SE, RightSCEV, /* IsSignedPredicate */ true)) { 984 // while (true) { while (true) { 985 // if (--i == len) ---> if (--i < len + 1) 986 // break; break; 987 // ... ... 988 // } } 989 // TODO: Insert ICMP_ULT if both are non-negative? 990 Pred = ICmpInst::ICMP_SLT; 991 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 992 IncreasedRightValueByOne = true; 993 } 994 } 995 996 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 997 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 998 999 bool FoundExpectedPred = 1000 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 1001 1002 if (!FoundExpectedPred) { 1003 FailureReason = "expected icmp sgt semantically, found something else"; 1004 return None; 1005 } 1006 1007 IsSignedPredicate = 1008 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 1009 1010 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 1011 FailureReason = "unsigned latch conditions are explicitly prohibited"; 1012 return None; 1013 } 1014 1015 // The predicate that we need to check that the induction variable lies 1016 // within bounds. 1017 ICmpInst::Predicate BoundPred = 1018 IsSignedPredicate ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 1019 1020 if (LatchBrExitIdx == 0) { 1021 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 1022 if (SumCanReachMin(SE, RightSCEV, StepPlusOne, IsSignedPredicate)) { 1023 // TODO: this restriction is easily removable -- we just have to 1024 // remember that the icmp was an sgt and not an sge. 1025 FailureReason = "limit may overflow when coercing ge to gt"; 1026 return None; 1027 } 1028 1029 if (!SE.isLoopEntryGuardedByCond( 1030 &L, BoundPred, IndVarStart, 1031 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) { 1032 FailureReason = "Induction variable start not bounded by lower limit"; 1033 return None; 1034 } 1035 1036 // We need to decrease the right value unless we have already increased 1037 // it virtually when we replaced EQ with SLT. 1038 if (!IncreasedRightValueByOne) { 1039 IRBuilder<> B(Preheader->getTerminator()); 1040 RightValue = B.CreateSub(RightValue, One); 1041 } 1042 } else { 1043 if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { 1044 FailureReason = "Induction variable start not bounded by lower limit"; 1045 return None; 1046 } 1047 assert(!IncreasedRightValueByOne && 1048 "Right value can be increased only for LatchBrExitIdx == 0!"); 1049 } 1050 } 1051 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1052 1053 assert(SE.getLoopDisposition(LatchCount, &L) == 1054 ScalarEvolution::LoopInvariant && 1055 "loop variant exit count doesn't make sense!"); 1056 1057 assert(!L.contains(LatchExit) && "expected an exit block!"); 1058 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1059 Value *IndVarStartV = 1060 SCEVExpander(SE, DL, "irce") 1061 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 1062 IndVarStartV->setName("indvar.start"); 1063 1064 LoopStructure Result; 1065 1066 Result.Tag = "main"; 1067 Result.Header = Header; 1068 Result.Latch = Latch; 1069 Result.LatchBr = LatchBr; 1070 Result.LatchExit = LatchExit; 1071 Result.LatchBrExitIdx = LatchBrExitIdx; 1072 Result.IndVarStart = IndVarStartV; 1073 Result.IndVarStep = StepCI; 1074 Result.IndVarBase = LeftValue; 1075 Result.IndVarIncreasing = IsIncreasing; 1076 Result.LoopExitAt = RightValue; 1077 Result.IsSignedPredicate = IsSignedPredicate; 1078 1079 FailureReason = nullptr; 1080 1081 return Result; 1082 } 1083 1084 Optional<LoopConstrainer::SubRanges> 1085 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1086 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1087 1088 if (Range.getType() != Ty) 1089 return None; 1090 1091 LoopConstrainer::SubRanges Result; 1092 1093 // I think we can be more aggressive here and make this nuw / nsw if the 1094 // addition that feeds into the icmp for the latch's terminating branch is nuw 1095 // / nsw. In any case, a wrapping 2's complement addition is safe. 1096 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 1097 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 1098 1099 bool Increasing = MainLoopStructure.IndVarIncreasing; 1100 1101 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1102 // [Smallest, GreatestSeen] is the range of values the induction variable 1103 // takes. 1104 1105 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1106 1107 const SCEV *One = SE.getOne(Ty); 1108 if (Increasing) { 1109 Smallest = Start; 1110 Greatest = End; 1111 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1112 GreatestSeen = SE.getMinusSCEV(End, One); 1113 } else { 1114 // These two computations may sign-overflow. Here is why that is okay: 1115 // 1116 // We know that the induction variable does not sign-overflow on any 1117 // iteration except the last one, and it starts at `Start` and ends at 1118 // `End`, decrementing by one every time. 1119 // 1120 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1121 // induction variable is decreasing we know that that the smallest value 1122 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1123 // 1124 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1125 // that case, `Clamp` will always return `Smallest` and 1126 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1127 // will be an empty range. Returning an empty range is always safe. 1128 1129 Smallest = SE.getAddExpr(End, One); 1130 Greatest = SE.getAddExpr(Start, One); 1131 GreatestSeen = Start; 1132 } 1133 1134 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1135 bool MaybeNegativeValues = IsSignedPredicate || !SE.isKnownNonNegative(S); 1136 return MaybeNegativeValues 1137 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1138 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1139 }; 1140 1141 // In some cases we can prove that we don't need a pre or post loop. 1142 ICmpInst::Predicate PredLE = 1143 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1144 ICmpInst::Predicate PredLT = 1145 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1146 1147 bool ProvablyNoPreloop = 1148 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1149 if (!ProvablyNoPreloop) 1150 Result.LowLimit = Clamp(Range.getBegin()); 1151 1152 bool ProvablyNoPostLoop = 1153 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1154 if (!ProvablyNoPostLoop) 1155 Result.HighLimit = Clamp(Range.getEnd()); 1156 1157 return Result; 1158 } 1159 1160 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1161 const char *Tag) const { 1162 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1163 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1164 Result.Blocks.push_back(Clone); 1165 Result.Map[BB] = Clone; 1166 } 1167 1168 auto GetClonedValue = [&Result](Value *V) { 1169 assert(V && "null values not in domain!"); 1170 auto It = Result.Map.find(V); 1171 if (It == Result.Map.end()) 1172 return V; 1173 return static_cast<Value *>(It->second); 1174 }; 1175 1176 auto *ClonedLatch = 1177 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1178 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1179 MDNode::get(Ctx, {})); 1180 1181 Result.Structure = MainLoopStructure.map(GetClonedValue); 1182 Result.Structure.Tag = Tag; 1183 1184 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1185 BasicBlock *ClonedBB = Result.Blocks[i]; 1186 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1187 1188 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1189 1190 for (Instruction &I : *ClonedBB) 1191 RemapInstruction(&I, Result.Map, 1192 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1193 1194 // Exit blocks will now have one more predecessor and their PHI nodes need 1195 // to be edited to reflect that. No phi nodes need to be introduced because 1196 // the loop is in LCSSA. 1197 1198 for (auto *SBB : successors(OriginalBB)) { 1199 if (OriginalLoop.contains(SBB)) 1200 continue; // not an exit block 1201 1202 for (Instruction &I : *SBB) { 1203 auto *PN = dyn_cast<PHINode>(&I); 1204 if (!PN) 1205 break; 1206 1207 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); 1208 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1209 } 1210 } 1211 } 1212 } 1213 1214 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1215 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1216 BasicBlock *ContinuationBlock) const { 1217 // We start with a loop with a single latch: 1218 // 1219 // +--------------------+ 1220 // | | 1221 // | preheader | 1222 // | | 1223 // +--------+-----------+ 1224 // | ----------------\ 1225 // | / | 1226 // +--------v----v------+ | 1227 // | | | 1228 // | header | | 1229 // | | | 1230 // +--------------------+ | 1231 // | 1232 // ..... | 1233 // | 1234 // +--------------------+ | 1235 // | | | 1236 // | latch >----------/ 1237 // | | 1238 // +-------v------------+ 1239 // | 1240 // | 1241 // | +--------------------+ 1242 // | | | 1243 // +---> original exit | 1244 // | | 1245 // +--------------------+ 1246 // 1247 // We change the control flow to look like 1248 // 1249 // 1250 // +--------------------+ 1251 // | | 1252 // | preheader >-------------------------+ 1253 // | | | 1254 // +--------v-----------+ | 1255 // | /-------------+ | 1256 // | / | | 1257 // +--------v--v--------+ | | 1258 // | | | | 1259 // | header | | +--------+ | 1260 // | | | | | | 1261 // +--------------------+ | | +-----v-----v-----------+ 1262 // | | | | 1263 // | | | .pseudo.exit | 1264 // | | | | 1265 // | | +-----------v-----------+ 1266 // | | | 1267 // ..... | | | 1268 // | | +--------v-------------+ 1269 // +--------------------+ | | | | 1270 // | | | | | ContinuationBlock | 1271 // | latch >------+ | | | 1272 // | | | +----------------------+ 1273 // +---------v----------+ | 1274 // | | 1275 // | | 1276 // | +---------------^-----+ 1277 // | | | 1278 // +-----> .exit.selector | 1279 // | | 1280 // +----------v----------+ 1281 // | 1282 // +--------------------+ | 1283 // | | | 1284 // | original exit <----+ 1285 // | | 1286 // +--------------------+ 1287 1288 RewrittenRangeInfo RRI; 1289 1290 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1291 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1292 &F, BBInsertLocation); 1293 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1294 BBInsertLocation); 1295 1296 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1297 bool Increasing = LS.IndVarIncreasing; 1298 bool IsSignedPredicate = LS.IsSignedPredicate; 1299 1300 IRBuilder<> B(PreheaderJump); 1301 1302 // EnterLoopCond - is it okay to start executing this `LS'? 1303 Value *EnterLoopCond = nullptr; 1304 if (Increasing) 1305 EnterLoopCond = IsSignedPredicate 1306 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1307 : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt); 1308 else 1309 EnterLoopCond = IsSignedPredicate 1310 ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt) 1311 : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt); 1312 1313 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1314 PreheaderJump->eraseFromParent(); 1315 1316 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1317 B.SetInsertPoint(LS.LatchBr); 1318 Value *TakeBackedgeLoopCond = nullptr; 1319 if (Increasing) 1320 TakeBackedgeLoopCond = IsSignedPredicate 1321 ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt) 1322 : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt); 1323 else 1324 TakeBackedgeLoopCond = IsSignedPredicate 1325 ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt) 1326 : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt); 1327 Value *CondForBranch = LS.LatchBrExitIdx == 1 1328 ? TakeBackedgeLoopCond 1329 : B.CreateNot(TakeBackedgeLoopCond); 1330 1331 LS.LatchBr->setCondition(CondForBranch); 1332 1333 B.SetInsertPoint(RRI.ExitSelector); 1334 1335 // IterationsLeft - are there any more iterations left, given the original 1336 // upper bound on the induction variable? If not, we branch to the "real" 1337 // exit. 1338 Value *IterationsLeft = nullptr; 1339 if (Increasing) 1340 IterationsLeft = IsSignedPredicate 1341 ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt) 1342 : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt); 1343 else 1344 IterationsLeft = IsSignedPredicate 1345 ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt) 1346 : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt); 1347 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1348 1349 BranchInst *BranchToContinuation = 1350 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1351 1352 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1353 // each of the PHI nodes in the loop header. This feeds into the initial 1354 // value of the same PHI nodes if/when we continue execution. 1355 for (Instruction &I : *LS.Header) { 1356 auto *PN = dyn_cast<PHINode>(&I); 1357 if (!PN) 1358 break; 1359 1360 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", 1361 BranchToContinuation); 1362 1363 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); 1364 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), 1365 RRI.ExitSelector); 1366 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1367 } 1368 1369 RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end", 1370 BranchToContinuation); 1371 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1372 RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector); 1373 1374 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1375 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1376 for (Instruction &I : *LS.LatchExit) { 1377 if (PHINode *PN = dyn_cast<PHINode>(&I)) 1378 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); 1379 else 1380 break; 1381 } 1382 1383 return RRI; 1384 } 1385 1386 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1387 LoopStructure &LS, BasicBlock *ContinuationBlock, 1388 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1389 unsigned PHIIndex = 0; 1390 for (Instruction &I : *LS.Header) { 1391 auto *PN = dyn_cast<PHINode>(&I); 1392 if (!PN) 1393 break; 1394 1395 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1396 if (PN->getIncomingBlock(i) == ContinuationBlock) 1397 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1398 } 1399 1400 LS.IndVarStart = RRI.IndVarEnd; 1401 } 1402 1403 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1404 BasicBlock *OldPreheader, 1405 const char *Tag) const { 1406 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1407 BranchInst::Create(LS.Header, Preheader); 1408 1409 for (Instruction &I : *LS.Header) { 1410 auto *PN = dyn_cast<PHINode>(&I); 1411 if (!PN) 1412 break; 1413 1414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1415 replacePHIBlock(PN, OldPreheader, Preheader); 1416 } 1417 1418 return Preheader; 1419 } 1420 1421 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1422 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1423 if (!ParentLoop) 1424 return; 1425 1426 for (BasicBlock *BB : BBs) 1427 ParentLoop->addBasicBlockToLoop(BB, LI); 1428 } 1429 1430 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1431 ValueToValueMapTy &VM) { 1432 Loop &New = *LI.AllocateLoop(); 1433 if (Parent) 1434 Parent->addChildLoop(&New); 1435 else 1436 LI.addTopLevelLoop(&New); 1437 LPM.addLoop(New); 1438 1439 // Add all of the blocks in Original to the new loop. 1440 for (auto *BB : Original->blocks()) 1441 if (LI.getLoopFor(BB) == Original) 1442 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1443 1444 // Add all of the subloops to the new loop. 1445 for (Loop *SubLoop : *Original) 1446 createClonedLoopStructure(SubLoop, &New, VM); 1447 1448 return &New; 1449 } 1450 1451 bool LoopConstrainer::run() { 1452 BasicBlock *Preheader = nullptr; 1453 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1454 Preheader = OriginalLoop.getLoopPreheader(); 1455 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1456 "preconditions!"); 1457 1458 OriginalPreheader = Preheader; 1459 MainLoopPreheader = Preheader; 1460 1461 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1462 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1463 if (!MaybeSR.hasValue()) { 1464 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1465 return false; 1466 } 1467 1468 SubRanges SR = MaybeSR.getValue(); 1469 bool Increasing = MainLoopStructure.IndVarIncreasing; 1470 IntegerType *IVTy = 1471 cast<IntegerType>(MainLoopStructure.IndVarBase->getType()); 1472 1473 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1474 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1475 1476 // It would have been better to make `PreLoop' and `PostLoop' 1477 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1478 // constructor. 1479 ClonedLoop PreLoop, PostLoop; 1480 bool NeedsPreLoop = 1481 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1482 bool NeedsPostLoop = 1483 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1484 1485 Value *ExitPreLoopAt = nullptr; 1486 Value *ExitMainLoopAt = nullptr; 1487 const SCEVConstant *MinusOneS = 1488 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1489 1490 if (NeedsPreLoop) { 1491 const SCEV *ExitPreLoopAtSCEV = nullptr; 1492 1493 if (Increasing) 1494 ExitPreLoopAtSCEV = *SR.LowLimit; 1495 else { 1496 if (CanBeMin(SE, *SR.HighLimit, IsSignedPredicate)) { 1497 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1498 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1499 << "\n"); 1500 return false; 1501 } 1502 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1503 } 1504 1505 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1506 ExitPreLoopAt->setName("exit.preloop.at"); 1507 } 1508 1509 if (NeedsPostLoop) { 1510 const SCEV *ExitMainLoopAtSCEV = nullptr; 1511 1512 if (Increasing) 1513 ExitMainLoopAtSCEV = *SR.HighLimit; 1514 else { 1515 if (CanBeMin(SE, *SR.LowLimit, IsSignedPredicate)) { 1516 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1517 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1518 << "\n"); 1519 return false; 1520 } 1521 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1522 } 1523 1524 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1525 ExitMainLoopAt->setName("exit.mainloop.at"); 1526 } 1527 1528 // We clone these ahead of time so that we don't have to deal with changing 1529 // and temporarily invalid IR as we transform the loops. 1530 if (NeedsPreLoop) 1531 cloneLoop(PreLoop, "preloop"); 1532 if (NeedsPostLoop) 1533 cloneLoop(PostLoop, "postloop"); 1534 1535 RewrittenRangeInfo PreLoopRRI; 1536 1537 if (NeedsPreLoop) { 1538 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1539 PreLoop.Structure.Header); 1540 1541 MainLoopPreheader = 1542 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1543 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1544 ExitPreLoopAt, MainLoopPreheader); 1545 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1546 PreLoopRRI); 1547 } 1548 1549 BasicBlock *PostLoopPreheader = nullptr; 1550 RewrittenRangeInfo PostLoopRRI; 1551 1552 if (NeedsPostLoop) { 1553 PostLoopPreheader = 1554 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1555 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1556 ExitMainLoopAt, PostLoopPreheader); 1557 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1558 PostLoopRRI); 1559 } 1560 1561 BasicBlock *NewMainLoopPreheader = 1562 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1563 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1564 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1565 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1566 1567 // Some of the above may be nullptr, filter them out before passing to 1568 // addToParentLoopIfNeeded. 1569 auto NewBlocksEnd = 1570 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1571 1572 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1573 1574 DT.recalculate(F); 1575 1576 // We need to first add all the pre and post loop blocks into the loop 1577 // structures (as part of createClonedLoopStructure), and then update the 1578 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1579 // LI when LoopSimplifyForm is generated. 1580 Loop *PreL = nullptr, *PostL = nullptr; 1581 if (!PreLoop.Blocks.empty()) { 1582 PreL = createClonedLoopStructure( 1583 &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map); 1584 } 1585 1586 if (!PostLoop.Blocks.empty()) { 1587 PostL = createClonedLoopStructure( 1588 &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map); 1589 } 1590 1591 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1592 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1593 formLCSSARecursively(*L, DT, &LI, &SE); 1594 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1595 // Pre/post loops are slow paths, we do not need to perform any loop 1596 // optimizations on them. 1597 if (!IsOriginalLoop) 1598 DisableAllLoopOptsOnLoop(*L); 1599 }; 1600 if (PreL) 1601 CanonicalizeLoop(PreL, false); 1602 if (PostL) 1603 CanonicalizeLoop(PostL, false); 1604 CanonicalizeLoop(&OriginalLoop, true); 1605 1606 return true; 1607 } 1608 1609 /// Computes and returns a range of values for the induction variable (IndVar) 1610 /// in which the range check can be safely elided. If it cannot compute such a 1611 /// range, returns None. 1612 Optional<InductiveRangeCheck::Range> 1613 InductiveRangeCheck::computeSafeIterationSpace( 1614 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const { 1615 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1616 // variable, that may or may not exist as a real llvm::Value in the loop) and 1617 // this inductive range check is a range check on the "C + D * I" ("C" is 1618 // getOffset() and "D" is getScale()). We rewrite the value being range 1619 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1620 // 1621 // The actual inequalities we solve are of the form 1622 // 1623 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1624 // 1625 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions 1626 // and subtractions are twos-complement wrapping and comparisons are signed. 1627 // 1628 // Proof: 1629 // 1630 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows 1631 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows 1632 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have 1633 // overflown. 1634 // 1635 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. 1636 // Hence 0 <= (IndVar + M) < L 1637 1638 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = 1639 // 127, IndVar = 126 and L = -2 in an i8 world. 1640 1641 if (!IndVar->isAffine()) 1642 return None; 1643 1644 const SCEV *A = IndVar->getStart(); 1645 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1646 if (!B) 1647 return None; 1648 assert(!B->isZero() && "Recurrence with zero step?"); 1649 1650 const SCEV *C = getOffset(); 1651 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale()); 1652 if (D != B) 1653 return None; 1654 1655 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1656 1657 const SCEV *M = SE.getMinusSCEV(C, A); 1658 const SCEV *Begin = SE.getNegativeSCEV(M); 1659 const SCEV *UpperLimit = nullptr; 1660 1661 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 1662 // We can potentially do much better here. 1663 if (Value *V = getLength()) { 1664 UpperLimit = SE.getSCEV(V); 1665 } else { 1666 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 1667 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1668 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1669 } 1670 1671 const SCEV *End = SE.getMinusSCEV(UpperLimit, M); 1672 return InductiveRangeCheck::Range(Begin, End); 1673 } 1674 1675 static Optional<InductiveRangeCheck::Range> 1676 IntersectSignedRange(ScalarEvolution &SE, 1677 const Optional<InductiveRangeCheck::Range> &R1, 1678 const InductiveRangeCheck::Range &R2) { 1679 if (R2.isEmpty(SE, /* IsSigned */ true)) 1680 return None; 1681 if (!R1.hasValue()) 1682 return R2; 1683 auto &R1Value = R1.getValue(); 1684 // We never return empty ranges from this function, and R1 is supposed to be 1685 // a result of intersection. Thus, R1 is never empty. 1686 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && 1687 "We should never have empty R1!"); 1688 1689 // TODO: we could widen the smaller range and have this work; but for now we 1690 // bail out to keep things simple. 1691 if (R1Value.getType() != R2.getType()) 1692 return None; 1693 1694 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1695 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1696 1697 // If the resulting range is empty, just return None. 1698 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1699 if (Ret.isEmpty(SE, /* IsSigned */ true)) 1700 return None; 1701 return Ret; 1702 } 1703 1704 static Optional<InductiveRangeCheck::Range> 1705 IntersectUnsignedRange(ScalarEvolution &SE, 1706 const Optional<InductiveRangeCheck::Range> &R1, 1707 const InductiveRangeCheck::Range &R2) { 1708 if (R2.isEmpty(SE, /* IsSigned */ false)) 1709 return None; 1710 if (!R1.hasValue()) 1711 return R2; 1712 auto &R1Value = R1.getValue(); 1713 // We never return empty ranges from this function, and R1 is supposed to be 1714 // a result of intersection. Thus, R1 is never empty. 1715 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && 1716 "We should never have empty R1!"); 1717 1718 // TODO: we could widen the smaller range and have this work; but for now we 1719 // bail out to keep things simple. 1720 if (R1Value.getType() != R2.getType()) 1721 return None; 1722 1723 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); 1724 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); 1725 1726 // If the resulting range is empty, just return None. 1727 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1728 if (Ret.isEmpty(SE, /* IsSigned */ false)) 1729 return None; 1730 return Ret; 1731 } 1732 1733 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1734 if (skipLoop(L)) 1735 return false; 1736 1737 if (L->getBlocks().size() >= LoopSizeCutoff) { 1738 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1739 return false; 1740 } 1741 1742 BasicBlock *Preheader = L->getLoopPreheader(); 1743 if (!Preheader) { 1744 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1745 return false; 1746 } 1747 1748 LLVMContext &Context = Preheader->getContext(); 1749 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1750 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1751 BranchProbabilityInfo &BPI = 1752 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1753 1754 for (auto BBI : L->getBlocks()) 1755 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1756 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1757 RangeChecks); 1758 1759 if (RangeChecks.empty()) 1760 return false; 1761 1762 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1763 OS << "irce: looking at loop "; L->print(OS); 1764 OS << "irce: loop has " << RangeChecks.size() 1765 << " inductive range checks: \n"; 1766 for (InductiveRangeCheck &IRC : RangeChecks) 1767 IRC.print(OS); 1768 }; 1769 1770 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1771 1772 if (PrintRangeChecks) 1773 PrintRecognizedRangeChecks(errs()); 1774 1775 const char *FailureReason = nullptr; 1776 Optional<LoopStructure> MaybeLoopStructure = 1777 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1778 if (!MaybeLoopStructure.hasValue()) { 1779 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1780 << "\n";); 1781 return false; 1782 } 1783 LoopStructure LS = MaybeLoopStructure.getValue(); 1784 const SCEVAddRecExpr *IndVar = 1785 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1786 1787 Optional<InductiveRangeCheck::Range> SafeIterRange; 1788 Instruction *ExprInsertPt = Preheader->getTerminator(); 1789 1790 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1791 auto RangeIsNonNegative = [&](InductiveRangeCheck::Range &R) { 1792 return SE.isKnownNonNegative(R.getBegin()) && 1793 SE.isKnownNonNegative(R.getEnd()); 1794 }; 1795 // Basing on the type of latch predicate, we interpret the IV iteration range 1796 // as signed or unsigned range. We use different min/max functions (signed or 1797 // unsigned) when intersecting this range with safe iteration ranges implied 1798 // by range checks. 1799 auto IntersectRange = 1800 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; 1801 1802 IRBuilder<> B(ExprInsertPt); 1803 for (InductiveRangeCheck &IRC : RangeChecks) { 1804 auto Result = IRC.computeSafeIterationSpace(SE, IndVar); 1805 if (Result.hasValue()) { 1806 // Intersecting a signed and an unsigned ranges may produce incorrect 1807 // results because we can use neither signed nor unsigned min/max for 1808 // reliably correct intersection if a range contains negative values 1809 // which are either actually negative or big positive. Intersection is 1810 // safe in two following cases: 1811 // 1. Both ranges are signed/unsigned, then we use signed/unsigned min/max 1812 // respectively for their intersection; 1813 // 2. IRC safe iteration space only contains values from [0, SINT_MAX]. 1814 // The interpretation of these values is unambiguous. 1815 // We take the type of IV iteration range as a reference (we will 1816 // intersect it with the resulting range of all IRC's later in 1817 // calculateSubRanges). Only ranges of IRC of the same type are considered 1818 // for removal unless we prove that its range doesn't contain ambiguous 1819 // values. 1820 if (IRC.isSigned() != LS.IsSignedPredicate && 1821 !RangeIsNonNegative(Result.getValue())) 1822 continue; 1823 auto MaybeSafeIterRange = 1824 IntersectRange(SE, SafeIterRange, Result.getValue()); 1825 if (MaybeSafeIterRange.hasValue()) { 1826 assert( 1827 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) && 1828 "We should never return empty ranges!"); 1829 RangeChecksToEliminate.push_back(IRC); 1830 SafeIterRange = MaybeSafeIterRange.getValue(); 1831 } 1832 } 1833 } 1834 1835 if (!SafeIterRange.hasValue()) 1836 return false; 1837 1838 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1839 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM, 1840 LS, SE, DT, SafeIterRange.getValue()); 1841 bool Changed = LC.run(); 1842 1843 if (Changed) { 1844 auto PrintConstrainedLoopInfo = [L]() { 1845 dbgs() << "irce: in function "; 1846 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1847 dbgs() << "constrained "; 1848 L->print(dbgs()); 1849 }; 1850 1851 DEBUG(PrintConstrainedLoopInfo()); 1852 1853 if (PrintChangedLoops) 1854 PrintConstrainedLoopInfo(); 1855 1856 // Optimize away the now-redundant range checks. 1857 1858 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1859 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1860 ? ConstantInt::getTrue(Context) 1861 : ConstantInt::getFalse(Context); 1862 IRC.getCheckUse()->set(FoldedRangeCheck); 1863 } 1864 } 1865 1866 return Changed; 1867 } 1868 1869 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1870 return new InductiveRangeCheckElimination; 1871 } 1872