1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringRef.h"
53 #include "llvm/ADT/Twine.h"
54 #include "llvm/Analysis/BranchProbabilityInfo.h"
55 #include "llvm/Analysis/LoopAnalysisManager.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopPass.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpander.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/PatternMatch.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Use.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Scalar.h"
87 #include "llvm/Transforms/Utils/Cloning.h"
88 #include "llvm/Transforms/Utils/LoopSimplify.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Utils/ValueMapper.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <iterator>
94 #include <limits>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 using namespace llvm::PatternMatch;
100 
101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
102                                         cl::init(64));
103 
104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
105                                        cl::init(false));
106 
107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
108                                       cl::init(false));
109 
110 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
111                                           cl::Hidden, cl::init(10));
112 
113 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
114                                              cl::Hidden, cl::init(false));
115 
116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
117                                                  cl::Hidden, cl::init(true));
118 
119 static cl::opt<bool> AllowNarrowLatchCondition(
120     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
121     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
122              "with narrow latch condition."));
123 
124 static const char *ClonedLoopTag = "irce.loop.clone";
125 
126 #define DEBUG_TYPE "irce"
127 
128 namespace {
129 
130 /// An inductive range check is conditional branch in a loop with
131 ///
132 ///  1. a very cold successor (i.e. the branch jumps to that successor very
133 ///     rarely)
134 ///
135 ///  and
136 ///
137 ///  2. a condition that is provably true for some contiguous range of values
138 ///     taken by the containing loop's induction variable.
139 ///
140 class InductiveRangeCheck {
141 
142   const SCEV *Begin = nullptr;
143   const SCEV *Step = nullptr;
144   const SCEV *End = nullptr;
145   Use *CheckUse = nullptr;
146   bool IsSigned = true;
147 
148   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
149                                   Value *&Index, Value *&Length,
150                                   bool &IsSigned);
151 
152   static void
153   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
154                              SmallVectorImpl<InductiveRangeCheck> &Checks,
155                              SmallPtrSetImpl<Value *> &Visited);
156 
157 public:
158   const SCEV *getBegin() const { return Begin; }
159   const SCEV *getStep() const { return Step; }
160   const SCEV *getEnd() const { return End; }
161   bool isSigned() const { return IsSigned; }
162 
163   void print(raw_ostream &OS) const {
164     OS << "InductiveRangeCheck:\n";
165     OS << "  Begin: ";
166     Begin->print(OS);
167     OS << "  Step: ";
168     Step->print(OS);
169     OS << "  End: ";
170     End->print(OS);
171     OS << "\n  CheckUse: ";
172     getCheckUse()->getUser()->print(OS);
173     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
174   }
175 
176   LLVM_DUMP_METHOD
177   void dump() {
178     print(dbgs());
179   }
180 
181   Use *getCheckUse() const { return CheckUse; }
182 
183   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
184   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
185 
186   class Range {
187     const SCEV *Begin;
188     const SCEV *End;
189 
190   public:
191     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
192       assert(Begin->getType() == End->getType() && "ill-typed range!");
193     }
194 
195     Type *getType() const { return Begin->getType(); }
196     const SCEV *getBegin() const { return Begin; }
197     const SCEV *getEnd() const { return End; }
198     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
199       if (Begin == End)
200         return true;
201       if (IsSigned)
202         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
203       else
204         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
205     }
206   };
207 
208   /// This is the value the condition of the branch needs to evaluate to for the
209   /// branch to take the hot successor (see (1) above).
210   bool getPassingDirection() { return true; }
211 
212   /// Computes a range for the induction variable (IndVar) in which the range
213   /// check is redundant and can be constant-folded away.  The induction
214   /// variable is not required to be the canonical {0,+,1} induction variable.
215   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
216                                             const SCEVAddRecExpr *IndVar,
217                                             bool IsLatchSigned) const;
218 
219   /// Parse out a set of inductive range checks from \p BI and append them to \p
220   /// Checks.
221   ///
222   /// NB! There may be conditions feeding into \p BI that aren't inductive range
223   /// checks, and hence don't end up in \p Checks.
224   static void
225   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
226                                BranchProbabilityInfo *BPI,
227                                SmallVectorImpl<InductiveRangeCheck> &Checks);
228 };
229 
230 class InductiveRangeCheckElimination {
231   ScalarEvolution &SE;
232   BranchProbabilityInfo *BPI;
233   DominatorTree &DT;
234   LoopInfo &LI;
235 
236 public:
237   InductiveRangeCheckElimination(ScalarEvolution &SE,
238                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
239                                  LoopInfo &LI)
240       : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
241 
242   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
243 };
244 
245 class IRCELegacyPass : public FunctionPass {
246 public:
247   static char ID;
248 
249   IRCELegacyPass() : FunctionPass(ID) {
250     initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
251   }
252 
253   void getAnalysisUsage(AnalysisUsage &AU) const override {
254     AU.addRequired<BranchProbabilityInfoWrapperPass>();
255     AU.addRequired<DominatorTreeWrapperPass>();
256     AU.addPreserved<DominatorTreeWrapperPass>();
257     AU.addRequired<LoopInfoWrapperPass>();
258     AU.addPreserved<LoopInfoWrapperPass>();
259     AU.addRequired<ScalarEvolutionWrapperPass>();
260     AU.addPreserved<ScalarEvolutionWrapperPass>();
261   }
262 
263   bool runOnFunction(Function &F) override;
264 };
265 
266 } // end anonymous namespace
267 
268 char IRCELegacyPass::ID = 0;
269 
270 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
271                       "Inductive range check elimination", false, false)
272 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
273 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
274 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
275 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
276 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
277                     false, false)
278 
279 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
280 /// be interpreted as a range check, return false and set `Index` and `Length`
281 /// to `nullptr`.  Otherwise set `Index` to the value being range checked, and
282 /// set `Length` to the upper limit `Index` is being range checked.
283 bool
284 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
285                                          ScalarEvolution &SE, Value *&Index,
286                                          Value *&Length, bool &IsSigned) {
287   auto IsLoopInvariant = [&SE, L](Value *V) {
288     return SE.isLoopInvariant(SE.getSCEV(V), L);
289   };
290 
291   ICmpInst::Predicate Pred = ICI->getPredicate();
292   Value *LHS = ICI->getOperand(0);
293   Value *RHS = ICI->getOperand(1);
294 
295   switch (Pred) {
296   default:
297     return false;
298 
299   case ICmpInst::ICMP_SLE:
300     std::swap(LHS, RHS);
301     LLVM_FALLTHROUGH;
302   case ICmpInst::ICMP_SGE:
303     IsSigned = true;
304     if (match(RHS, m_ConstantInt<0>())) {
305       Index = LHS;
306       return true; // Lower.
307     }
308     return false;
309 
310   case ICmpInst::ICMP_SLT:
311     std::swap(LHS, RHS);
312     LLVM_FALLTHROUGH;
313   case ICmpInst::ICMP_SGT:
314     IsSigned = true;
315     if (match(RHS, m_ConstantInt<-1>())) {
316       Index = LHS;
317       return true; // Lower.
318     }
319 
320     if (IsLoopInvariant(LHS)) {
321       Index = RHS;
322       Length = LHS;
323       return true; // Upper.
324     }
325     return false;
326 
327   case ICmpInst::ICMP_ULT:
328     std::swap(LHS, RHS);
329     LLVM_FALLTHROUGH;
330   case ICmpInst::ICMP_UGT:
331     IsSigned = false;
332     if (IsLoopInvariant(LHS)) {
333       Index = RHS;
334       Length = LHS;
335       return true; // Both lower and upper.
336     }
337     return false;
338   }
339 
340   llvm_unreachable("default clause returns!");
341 }
342 
343 void InductiveRangeCheck::extractRangeChecksFromCond(
344     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
345     SmallVectorImpl<InductiveRangeCheck> &Checks,
346     SmallPtrSetImpl<Value *> &Visited) {
347   Value *Condition = ConditionUse.get();
348   if (!Visited.insert(Condition).second)
349     return;
350 
351   // TODO: Do the same for OR, XOR, NOT etc?
352   if (match(Condition, m_And(m_Value(), m_Value()))) {
353     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
354                                Checks, Visited);
355     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
356                                Checks, Visited);
357     return;
358   }
359 
360   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
361   if (!ICI)
362     return;
363 
364   Value *Length = nullptr, *Index;
365   bool IsSigned;
366   if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
367     return;
368 
369   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
370   bool IsAffineIndex =
371       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
372 
373   if (!IsAffineIndex)
374     return;
375 
376   const SCEV *End = nullptr;
377   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
378   // We can potentially do much better here.
379   if (Length)
380     End = SE.getSCEV(Length);
381   else {
382     // So far we can only reach this point for Signed range check. This may
383     // change in future. In this case we will need to pick Unsigned max for the
384     // unsigned range check.
385     unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
386     const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
387     End = SIntMax;
388   }
389 
390   InductiveRangeCheck IRC;
391   IRC.End = End;
392   IRC.Begin = IndexAddRec->getStart();
393   IRC.Step = IndexAddRec->getStepRecurrence(SE);
394   IRC.CheckUse = &ConditionUse;
395   IRC.IsSigned = IsSigned;
396   Checks.push_back(IRC);
397 }
398 
399 void InductiveRangeCheck::extractRangeChecksFromBranch(
400     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
401     SmallVectorImpl<InductiveRangeCheck> &Checks) {
402   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
403     return;
404 
405   BranchProbability LikelyTaken(15, 16);
406 
407   if (!SkipProfitabilityChecks && BPI &&
408       BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
409     return;
410 
411   SmallPtrSet<Value *, 8> Visited;
412   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
413                                                   Checks, Visited);
414 }
415 
416 // Add metadata to the loop L to disable loop optimizations. Callers need to
417 // confirm that optimizing loop L is not beneficial.
418 static void DisableAllLoopOptsOnLoop(Loop &L) {
419   // We do not care about any existing loopID related metadata for L, since we
420   // are setting all loop metadata to false.
421   LLVMContext &Context = L.getHeader()->getContext();
422   // Reserve first location for self reference to the LoopID metadata node.
423   MDNode *Dummy = MDNode::get(Context, {});
424   MDNode *DisableUnroll = MDNode::get(
425       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
426   Metadata *FalseVal =
427       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
428   MDNode *DisableVectorize = MDNode::get(
429       Context,
430       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
431   MDNode *DisableLICMVersioning = MDNode::get(
432       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
433   MDNode *DisableDistribution= MDNode::get(
434       Context,
435       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
436   MDNode *NewLoopID =
437       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
438                             DisableLICMVersioning, DisableDistribution});
439   // Set operand 0 to refer to the loop id itself.
440   NewLoopID->replaceOperandWith(0, NewLoopID);
441   L.setLoopID(NewLoopID);
442 }
443 
444 namespace {
445 
446 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
447 // except that it is more lightweight and can track the state of a loop through
448 // changing and potentially invalid IR.  This structure also formalizes the
449 // kinds of loops we can deal with -- ones that have a single latch that is also
450 // an exiting block *and* have a canonical induction variable.
451 struct LoopStructure {
452   const char *Tag = "";
453 
454   BasicBlock *Header = nullptr;
455   BasicBlock *Latch = nullptr;
456 
457   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
458   // successor is `LatchExit', the exit block of the loop.
459   BranchInst *LatchBr = nullptr;
460   BasicBlock *LatchExit = nullptr;
461   unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
462 
463   // The loop represented by this instance of LoopStructure is semantically
464   // equivalent to:
465   //
466   // intN_ty inc = IndVarIncreasing ? 1 : -1;
467   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
468   //
469   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
470   //   ... body ...
471 
472   Value *IndVarBase = nullptr;
473   Value *IndVarStart = nullptr;
474   Value *IndVarStep = nullptr;
475   Value *LoopExitAt = nullptr;
476   bool IndVarIncreasing = false;
477   bool IsSignedPredicate = true;
478 
479   LoopStructure() = default;
480 
481   template <typename M> LoopStructure map(M Map) const {
482     LoopStructure Result;
483     Result.Tag = Tag;
484     Result.Header = cast<BasicBlock>(Map(Header));
485     Result.Latch = cast<BasicBlock>(Map(Latch));
486     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
487     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
488     Result.LatchBrExitIdx = LatchBrExitIdx;
489     Result.IndVarBase = Map(IndVarBase);
490     Result.IndVarStart = Map(IndVarStart);
491     Result.IndVarStep = Map(IndVarStep);
492     Result.LoopExitAt = Map(LoopExitAt);
493     Result.IndVarIncreasing = IndVarIncreasing;
494     Result.IsSignedPredicate = IsSignedPredicate;
495     return Result;
496   }
497 
498   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
499                                                     BranchProbabilityInfo *BPI,
500                                                     Loop &, const char *&);
501 };
502 
503 /// This class is used to constrain loops to run within a given iteration space.
504 /// The algorithm this class implements is given a Loop and a range [Begin,
505 /// End).  The algorithm then tries to break out a "main loop" out of the loop
506 /// it is given in a way that the "main loop" runs with the induction variable
507 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
508 /// loops to run any remaining iterations.  The pre loop runs any iterations in
509 /// which the induction variable is < Begin, and the post loop runs any
510 /// iterations in which the induction variable is >= End.
511 class LoopConstrainer {
512   // The representation of a clone of the original loop we started out with.
513   struct ClonedLoop {
514     // The cloned blocks
515     std::vector<BasicBlock *> Blocks;
516 
517     // `Map` maps values in the clonee into values in the cloned version
518     ValueToValueMapTy Map;
519 
520     // An instance of `LoopStructure` for the cloned loop
521     LoopStructure Structure;
522   };
523 
524   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
525   // more details on what these fields mean.
526   struct RewrittenRangeInfo {
527     BasicBlock *PseudoExit = nullptr;
528     BasicBlock *ExitSelector = nullptr;
529     std::vector<PHINode *> PHIValuesAtPseudoExit;
530     PHINode *IndVarEnd = nullptr;
531 
532     RewrittenRangeInfo() = default;
533   };
534 
535   // Calculated subranges we restrict the iteration space of the main loop to.
536   // See the implementation of `calculateSubRanges' for more details on how
537   // these fields are computed.  `LowLimit` is None if there is no restriction
538   // on low end of the restricted iteration space of the main loop.  `HighLimit`
539   // is None if there is no restriction on high end of the restricted iteration
540   // space of the main loop.
541 
542   struct SubRanges {
543     Optional<const SCEV *> LowLimit;
544     Optional<const SCEV *> HighLimit;
545   };
546 
547   // Compute a safe set of limits for the main loop to run in -- effectively the
548   // intersection of `Range' and the iteration space of the original loop.
549   // Return None if unable to compute the set of subranges.
550   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
551 
552   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
553   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
554   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
555   // but there is no such edge.
556   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
557 
558   // Create the appropriate loop structure needed to describe a cloned copy of
559   // `Original`.  The clone is described by `VM`.
560   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
561                                   ValueToValueMapTy &VM, bool IsSubloop);
562 
563   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
564   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
565   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
566   // `OriginalHeaderCount'.
567   //
568   // If there are iterations left to execute, control is made to jump to
569   // `ContinuationBlock', otherwise they take the normal loop exit.  The
570   // returned `RewrittenRangeInfo' object is populated as follows:
571   //
572   //  .PseudoExit is a basic block that unconditionally branches to
573   //      `ContinuationBlock'.
574   //
575   //  .ExitSelector is a basic block that decides, on exit from the loop,
576   //      whether to branch to the "true" exit or to `PseudoExit'.
577   //
578   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
579   //      for each PHINode in the loop header on taking the pseudo exit.
580   //
581   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
582   // preheader because it is made to branch to the loop header only
583   // conditionally.
584   RewrittenRangeInfo
585   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
586                           Value *ExitLoopAt,
587                           BasicBlock *ContinuationBlock) const;
588 
589   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
590   // function creates a new preheader for `LS' and returns it.
591   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
592                               const char *Tag) const;
593 
594   // `ContinuationBlockAndPreheader' was the continuation block for some call to
595   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
596   // This function rewrites the PHI nodes in `LS.Header' to start with the
597   // correct value.
598   void rewriteIncomingValuesForPHIs(
599       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
600       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
601 
602   // Even though we do not preserve any passes at this time, we at least need to
603   // keep the parent loop structure consistent.  The `LPPassManager' seems to
604   // verify this after running a loop pass.  This function adds the list of
605   // blocks denoted by BBs to this loops parent loop if required.
606   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
607 
608   // Some global state.
609   Function &F;
610   LLVMContext &Ctx;
611   ScalarEvolution &SE;
612   DominatorTree &DT;
613   LoopInfo &LI;
614   function_ref<void(Loop *, bool)> LPMAddNewLoop;
615 
616   // Information about the original loop we started out with.
617   Loop &OriginalLoop;
618 
619   const SCEV *LatchTakenCount = nullptr;
620   BasicBlock *OriginalPreheader = nullptr;
621 
622   // The preheader of the main loop.  This may or may not be different from
623   // `OriginalPreheader'.
624   BasicBlock *MainLoopPreheader = nullptr;
625 
626   // The range we need to run the main loop in.
627   InductiveRangeCheck::Range Range;
628 
629   // The structure of the main loop (see comment at the beginning of this class
630   // for a definition)
631   LoopStructure MainLoopStructure;
632 
633 public:
634   LoopConstrainer(Loop &L, LoopInfo &LI,
635                   function_ref<void(Loop *, bool)> LPMAddNewLoop,
636                   const LoopStructure &LS, ScalarEvolution &SE,
637                   DominatorTree &DT, InductiveRangeCheck::Range R)
638       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
639         SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
640         Range(R), MainLoopStructure(LS) {}
641 
642   // Entry point for the algorithm.  Returns true on success.
643   bool run();
644 };
645 
646 } // end anonymous namespace
647 
648 /// Given a loop with an deccreasing induction variable, is it possible to
649 /// safely calculate the bounds of a new loop using the given Predicate.
650 static bool isSafeDecreasingBound(const SCEV *Start,
651                                   const SCEV *BoundSCEV, const SCEV *Step,
652                                   ICmpInst::Predicate Pred,
653                                   unsigned LatchBrExitIdx,
654                                   Loop *L, ScalarEvolution &SE) {
655   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
656       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
657     return false;
658 
659   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
660     return false;
661 
662   assert(SE.isKnownNegative(Step) && "expecting negative step");
663 
664   LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
665   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
666   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
667   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
668   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
669                     << "\n");
670   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
671 
672   bool IsSigned = ICmpInst::isSigned(Pred);
673   // The predicate that we need to check that the induction variable lies
674   // within bounds.
675   ICmpInst::Predicate BoundPred =
676     IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
677 
678   if (LatchBrExitIdx == 1)
679     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
680 
681   assert(LatchBrExitIdx == 0 &&
682          "LatchBrExitIdx should be either 0 or 1");
683 
684   const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
685   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
686   APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
687     APInt::getMinValue(BitWidth);
688   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
689 
690   const SCEV *MinusOne =
691     SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
692 
693   return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
694          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
695 
696 }
697 
698 /// Given a loop with an increasing induction variable, is it possible to
699 /// safely calculate the bounds of a new loop using the given Predicate.
700 static bool isSafeIncreasingBound(const SCEV *Start,
701                                   const SCEV *BoundSCEV, const SCEV *Step,
702                                   ICmpInst::Predicate Pred,
703                                   unsigned LatchBrExitIdx,
704                                   Loop *L, ScalarEvolution &SE) {
705   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
706       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
707     return false;
708 
709   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
710     return false;
711 
712   LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
713   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
714   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
715   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
716   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
717                     << "\n");
718   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
719 
720   bool IsSigned = ICmpInst::isSigned(Pred);
721   // The predicate that we need to check that the induction variable lies
722   // within bounds.
723   ICmpInst::Predicate BoundPred =
724       IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
725 
726   if (LatchBrExitIdx == 1)
727     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
728 
729   assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
730 
731   const SCEV *StepMinusOne =
732     SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
733   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
734   APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
735     APInt::getMaxValue(BitWidth);
736   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
737 
738   return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
739                                       SE.getAddExpr(BoundSCEV, Step)) &&
740           SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
741 }
742 
743 Optional<LoopStructure>
744 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
745                                   BranchProbabilityInfo *BPI, Loop &L,
746                                   const char *&FailureReason) {
747   if (!L.isLoopSimplifyForm()) {
748     FailureReason = "loop not in LoopSimplify form";
749     return None;
750   }
751 
752   BasicBlock *Latch = L.getLoopLatch();
753   assert(Latch && "Simplified loops only have one latch!");
754 
755   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
756     FailureReason = "loop has already been cloned";
757     return None;
758   }
759 
760   if (!L.isLoopExiting(Latch)) {
761     FailureReason = "no loop latch";
762     return None;
763   }
764 
765   BasicBlock *Header = L.getHeader();
766   BasicBlock *Preheader = L.getLoopPreheader();
767   if (!Preheader) {
768     FailureReason = "no preheader";
769     return None;
770   }
771 
772   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
773   if (!LatchBr || LatchBr->isUnconditional()) {
774     FailureReason = "latch terminator not conditional branch";
775     return None;
776   }
777 
778   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
779 
780   BranchProbability ExitProbability =
781       BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
782           : BranchProbability::getZero();
783 
784   if (!SkipProfitabilityChecks &&
785       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
786     FailureReason = "short running loop, not profitable";
787     return None;
788   }
789 
790   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
791   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
792     FailureReason = "latch terminator branch not conditional on integral icmp";
793     return None;
794   }
795 
796   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
797   if (isa<SCEVCouldNotCompute>(LatchCount)) {
798     FailureReason = "could not compute latch count";
799     return None;
800   }
801 
802   ICmpInst::Predicate Pred = ICI->getPredicate();
803   Value *LeftValue = ICI->getOperand(0);
804   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
805   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
806 
807   Value *RightValue = ICI->getOperand(1);
808   const SCEV *RightSCEV = SE.getSCEV(RightValue);
809 
810   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
811   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
812     if (isa<SCEVAddRecExpr>(RightSCEV)) {
813       std::swap(LeftSCEV, RightSCEV);
814       std::swap(LeftValue, RightValue);
815       Pred = ICmpInst::getSwappedPredicate(Pred);
816     } else {
817       FailureReason = "no add recurrences in the icmp";
818       return None;
819     }
820   }
821 
822   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
823     if (AR->getNoWrapFlags(SCEV::FlagNSW))
824       return true;
825 
826     IntegerType *Ty = cast<IntegerType>(AR->getType());
827     IntegerType *WideTy =
828         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
829 
830     const SCEVAddRecExpr *ExtendAfterOp =
831         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
832     if (ExtendAfterOp) {
833       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
834       const SCEV *ExtendedStep =
835           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
836 
837       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
838                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
839 
840       if (NoSignedWrap)
841         return true;
842     }
843 
844     // We may have proved this when computing the sign extension above.
845     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
846   };
847 
848   // `ICI` is interpreted as taking the backedge if the *next* value of the
849   // induction variable satisfies some constraint.
850 
851   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
852   if (!IndVarBase->isAffine()) {
853     FailureReason = "LHS in icmp not induction variable";
854     return None;
855   }
856   const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
857   if (!isa<SCEVConstant>(StepRec)) {
858     FailureReason = "LHS in icmp not induction variable";
859     return None;
860   }
861   ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
862 
863   if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
864     FailureReason = "LHS in icmp needs nsw for equality predicates";
865     return None;
866   }
867 
868   assert(!StepCI->isZero() && "Zero step?");
869   bool IsIncreasing = !StepCI->isNegative();
870   bool IsSignedPredicate;
871   const SCEV *StartNext = IndVarBase->getStart();
872   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
873   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
874   const SCEV *Step = SE.getSCEV(StepCI);
875 
876   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
877   if (IsIncreasing) {
878     bool DecreasedRightValueByOne = false;
879     if (StepCI->isOne()) {
880       // Try to turn eq/ne predicates to those we can work with.
881       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
882         // while (++i != len) {         while (++i < len) {
883         //   ...                 --->     ...
884         // }                            }
885         // If both parts are known non-negative, it is profitable to use
886         // unsigned comparison in increasing loop. This allows us to make the
887         // comparison check against "RightSCEV + 1" more optimistic.
888         if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
889             isKnownNonNegativeInLoop(RightSCEV, &L, SE))
890           Pred = ICmpInst::ICMP_ULT;
891         else
892           Pred = ICmpInst::ICMP_SLT;
893       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
894         // while (true) {               while (true) {
895         //   if (++i == len)     --->     if (++i > len - 1)
896         //     break;                       break;
897         //   ...                          ...
898         // }                            }
899         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
900             cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
901           Pred = ICmpInst::ICMP_UGT;
902           RightSCEV = SE.getMinusSCEV(RightSCEV,
903                                       SE.getOne(RightSCEV->getType()));
904           DecreasedRightValueByOne = true;
905         } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
906           Pred = ICmpInst::ICMP_SGT;
907           RightSCEV = SE.getMinusSCEV(RightSCEV,
908                                       SE.getOne(RightSCEV->getType()));
909           DecreasedRightValueByOne = true;
910         }
911       }
912     }
913 
914     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
915     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
916     bool FoundExpectedPred =
917         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
918 
919     if (!FoundExpectedPred) {
920       FailureReason = "expected icmp slt semantically, found something else";
921       return None;
922     }
923 
924     IsSignedPredicate = ICmpInst::isSigned(Pred);
925     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
926       FailureReason = "unsigned latch conditions are explicitly prohibited";
927       return None;
928     }
929 
930     if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
931                                LatchBrExitIdx, &L, SE)) {
932       FailureReason = "Unsafe loop bounds";
933       return None;
934     }
935     if (LatchBrExitIdx == 0) {
936       // We need to increase the right value unless we have already decreased
937       // it virtually when we replaced EQ with SGT.
938       if (!DecreasedRightValueByOne) {
939         IRBuilder<> B(Preheader->getTerminator());
940         RightValue = B.CreateAdd(RightValue, One);
941       }
942     } else {
943       assert(!DecreasedRightValueByOne &&
944              "Right value can be decreased only for LatchBrExitIdx == 0!");
945     }
946   } else {
947     bool IncreasedRightValueByOne = false;
948     if (StepCI->isMinusOne()) {
949       // Try to turn eq/ne predicates to those we can work with.
950       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
951         // while (--i != len) {         while (--i > len) {
952         //   ...                 --->     ...
953         // }                            }
954         // We intentionally don't turn the predicate into UGT even if we know
955         // that both operands are non-negative, because it will only pessimize
956         // our check against "RightSCEV - 1".
957         Pred = ICmpInst::ICMP_SGT;
958       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
959         // while (true) {               while (true) {
960         //   if (--i == len)     --->     if (--i < len + 1)
961         //     break;                       break;
962         //   ...                          ...
963         // }                            }
964         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
965             cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
966           Pred = ICmpInst::ICMP_ULT;
967           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
968           IncreasedRightValueByOne = true;
969         } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
970           Pred = ICmpInst::ICMP_SLT;
971           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
972           IncreasedRightValueByOne = true;
973         }
974       }
975     }
976 
977     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
978     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
979 
980     bool FoundExpectedPred =
981         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
982 
983     if (!FoundExpectedPred) {
984       FailureReason = "expected icmp sgt semantically, found something else";
985       return None;
986     }
987 
988     IsSignedPredicate =
989         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
990 
991     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
992       FailureReason = "unsigned latch conditions are explicitly prohibited";
993       return None;
994     }
995 
996     if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
997                                LatchBrExitIdx, &L, SE)) {
998       FailureReason = "Unsafe bounds";
999       return None;
1000     }
1001 
1002     if (LatchBrExitIdx == 0) {
1003       // We need to decrease the right value unless we have already increased
1004       // it virtually when we replaced EQ with SLT.
1005       if (!IncreasedRightValueByOne) {
1006         IRBuilder<> B(Preheader->getTerminator());
1007         RightValue = B.CreateSub(RightValue, One);
1008       }
1009     } else {
1010       assert(!IncreasedRightValueByOne &&
1011              "Right value can be increased only for LatchBrExitIdx == 0!");
1012     }
1013   }
1014   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1015 
1016   assert(SE.getLoopDisposition(LatchCount, &L) ==
1017              ScalarEvolution::LoopInvariant &&
1018          "loop variant exit count doesn't make sense!");
1019 
1020   assert(!L.contains(LatchExit) && "expected an exit block!");
1021   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1022   Value *IndVarStartV =
1023       SCEVExpander(SE, DL, "irce")
1024           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
1025   IndVarStartV->setName("indvar.start");
1026 
1027   LoopStructure Result;
1028 
1029   Result.Tag = "main";
1030   Result.Header = Header;
1031   Result.Latch = Latch;
1032   Result.LatchBr = LatchBr;
1033   Result.LatchExit = LatchExit;
1034   Result.LatchBrExitIdx = LatchBrExitIdx;
1035   Result.IndVarStart = IndVarStartV;
1036   Result.IndVarStep = StepCI;
1037   Result.IndVarBase = LeftValue;
1038   Result.IndVarIncreasing = IsIncreasing;
1039   Result.LoopExitAt = RightValue;
1040   Result.IsSignedPredicate = IsSignedPredicate;
1041 
1042   FailureReason = nullptr;
1043 
1044   return Result;
1045 }
1046 
1047 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1048 /// signed or unsigned extension of \p S to type \p Ty.
1049 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1050                                 bool Signed) {
1051   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1052 }
1053 
1054 Optional<LoopConstrainer::SubRanges>
1055 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1056   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1057 
1058   auto *RTy = cast<IntegerType>(Range.getType());
1059 
1060   // We only support wide range checks and narrow latches.
1061   if (!AllowNarrowLatchCondition && RTy != Ty)
1062     return None;
1063   if (RTy->getBitWidth() < Ty->getBitWidth())
1064     return None;
1065 
1066   LoopConstrainer::SubRanges Result;
1067 
1068   // I think we can be more aggressive here and make this nuw / nsw if the
1069   // addition that feeds into the icmp for the latch's terminating branch is nuw
1070   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1071   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1072                                    RTy, SE, IsSignedPredicate);
1073   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1074                                  SE, IsSignedPredicate);
1075 
1076   bool Increasing = MainLoopStructure.IndVarIncreasing;
1077 
1078   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1079   // [Smallest, GreatestSeen] is the range of values the induction variable
1080   // takes.
1081 
1082   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1083 
1084   const SCEV *One = SE.getOne(RTy);
1085   if (Increasing) {
1086     Smallest = Start;
1087     Greatest = End;
1088     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1089     GreatestSeen = SE.getMinusSCEV(End, One);
1090   } else {
1091     // These two computations may sign-overflow.  Here is why that is okay:
1092     //
1093     // We know that the induction variable does not sign-overflow on any
1094     // iteration except the last one, and it starts at `Start` and ends at
1095     // `End`, decrementing by one every time.
1096     //
1097     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1098     //    induction variable is decreasing we know that that the smallest value
1099     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1100     //
1101     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1102     //    that case, `Clamp` will always return `Smallest` and
1103     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1104     //    will be an empty range.  Returning an empty range is always safe.
1105 
1106     Smallest = SE.getAddExpr(End, One);
1107     Greatest = SE.getAddExpr(Start, One);
1108     GreatestSeen = Start;
1109   }
1110 
1111   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1112     return IsSignedPredicate
1113                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1114                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1115   };
1116 
1117   // In some cases we can prove that we don't need a pre or post loop.
1118   ICmpInst::Predicate PredLE =
1119       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1120   ICmpInst::Predicate PredLT =
1121       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1122 
1123   bool ProvablyNoPreloop =
1124       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1125   if (!ProvablyNoPreloop)
1126     Result.LowLimit = Clamp(Range.getBegin());
1127 
1128   bool ProvablyNoPostLoop =
1129       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1130   if (!ProvablyNoPostLoop)
1131     Result.HighLimit = Clamp(Range.getEnd());
1132 
1133   return Result;
1134 }
1135 
1136 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1137                                 const char *Tag) const {
1138   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1139     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1140     Result.Blocks.push_back(Clone);
1141     Result.Map[BB] = Clone;
1142   }
1143 
1144   auto GetClonedValue = [&Result](Value *V) {
1145     assert(V && "null values not in domain!");
1146     auto It = Result.Map.find(V);
1147     if (It == Result.Map.end())
1148       return V;
1149     return static_cast<Value *>(It->second);
1150   };
1151 
1152   auto *ClonedLatch =
1153       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1154   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1155                                             MDNode::get(Ctx, {}));
1156 
1157   Result.Structure = MainLoopStructure.map(GetClonedValue);
1158   Result.Structure.Tag = Tag;
1159 
1160   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1161     BasicBlock *ClonedBB = Result.Blocks[i];
1162     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1163 
1164     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1165 
1166     for (Instruction &I : *ClonedBB)
1167       RemapInstruction(&I, Result.Map,
1168                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1169 
1170     // Exit blocks will now have one more predecessor and their PHI nodes need
1171     // to be edited to reflect that.  No phi nodes need to be introduced because
1172     // the loop is in LCSSA.
1173 
1174     for (auto *SBB : successors(OriginalBB)) {
1175       if (OriginalLoop.contains(SBB))
1176         continue; // not an exit block
1177 
1178       for (PHINode &PN : SBB->phis()) {
1179         Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1180         PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1181       }
1182     }
1183   }
1184 }
1185 
1186 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1187     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1188     BasicBlock *ContinuationBlock) const {
1189   // We start with a loop with a single latch:
1190   //
1191   //    +--------------------+
1192   //    |                    |
1193   //    |     preheader      |
1194   //    |                    |
1195   //    +--------+-----------+
1196   //             |      ----------------\
1197   //             |     /                |
1198   //    +--------v----v------+          |
1199   //    |                    |          |
1200   //    |      header        |          |
1201   //    |                    |          |
1202   //    +--------------------+          |
1203   //                                    |
1204   //            .....                   |
1205   //                                    |
1206   //    +--------------------+          |
1207   //    |                    |          |
1208   //    |       latch        >----------/
1209   //    |                    |
1210   //    +-------v------------+
1211   //            |
1212   //            |
1213   //            |   +--------------------+
1214   //            |   |                    |
1215   //            +--->   original exit    |
1216   //                |                    |
1217   //                +--------------------+
1218   //
1219   // We change the control flow to look like
1220   //
1221   //
1222   //    +--------------------+
1223   //    |                    |
1224   //    |     preheader      >-------------------------+
1225   //    |                    |                         |
1226   //    +--------v-----------+                         |
1227   //             |    /-------------+                  |
1228   //             |   /              |                  |
1229   //    +--------v--v--------+      |                  |
1230   //    |                    |      |                  |
1231   //    |      header        |      |   +--------+     |
1232   //    |                    |      |   |        |     |
1233   //    +--------------------+      |   |  +-----v-----v-----------+
1234   //                                |   |  |                       |
1235   //                                |   |  |     .pseudo.exit      |
1236   //                                |   |  |                       |
1237   //                                |   |  +-----------v-----------+
1238   //                                |   |              |
1239   //            .....               |   |              |
1240   //                                |   |     +--------v-------------+
1241   //    +--------------------+      |   |     |                      |
1242   //    |                    |      |   |     |   ContinuationBlock  |
1243   //    |       latch        >------+   |     |                      |
1244   //    |                    |          |     +----------------------+
1245   //    +---------v----------+          |
1246   //              |                     |
1247   //              |                     |
1248   //              |     +---------------^-----+
1249   //              |     |                     |
1250   //              +----->    .exit.selector   |
1251   //                    |                     |
1252   //                    +----------v----------+
1253   //                               |
1254   //     +--------------------+    |
1255   //     |                    |    |
1256   //     |   original exit    <----+
1257   //     |                    |
1258   //     +--------------------+
1259 
1260   RewrittenRangeInfo RRI;
1261 
1262   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1263   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1264                                         &F, BBInsertLocation);
1265   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1266                                       BBInsertLocation);
1267 
1268   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1269   bool Increasing = LS.IndVarIncreasing;
1270   bool IsSignedPredicate = LS.IsSignedPredicate;
1271 
1272   IRBuilder<> B(PreheaderJump);
1273   auto *RangeTy = Range.getBegin()->getType();
1274   auto NoopOrExt = [&](Value *V) {
1275     if (V->getType() == RangeTy)
1276       return V;
1277     return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1278                              : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1279   };
1280 
1281   // EnterLoopCond - is it okay to start executing this `LS'?
1282   Value *EnterLoopCond = nullptr;
1283   auto Pred =
1284       Increasing
1285           ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1286           : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1287   Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1288   EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1289 
1290   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1291   PreheaderJump->eraseFromParent();
1292 
1293   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1294   B.SetInsertPoint(LS.LatchBr);
1295   Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1296   Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1297 
1298   Value *CondForBranch = LS.LatchBrExitIdx == 1
1299                              ? TakeBackedgeLoopCond
1300                              : B.CreateNot(TakeBackedgeLoopCond);
1301 
1302   LS.LatchBr->setCondition(CondForBranch);
1303 
1304   B.SetInsertPoint(RRI.ExitSelector);
1305 
1306   // IterationsLeft - are there any more iterations left, given the original
1307   // upper bound on the induction variable?  If not, we branch to the "real"
1308   // exit.
1309   Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1310   Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1311   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1312 
1313   BranchInst *BranchToContinuation =
1314       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1315 
1316   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1317   // each of the PHI nodes in the loop header.  This feeds into the initial
1318   // value of the same PHI nodes if/when we continue execution.
1319   for (PHINode &PN : LS.Header->phis()) {
1320     PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1321                                       BranchToContinuation);
1322 
1323     NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1324     NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1325                         RRI.ExitSelector);
1326     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1327   }
1328 
1329   RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1330                                   BranchToContinuation);
1331   RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1332   RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1333 
1334   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1335   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1336   LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1337 
1338   return RRI;
1339 }
1340 
1341 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1342     LoopStructure &LS, BasicBlock *ContinuationBlock,
1343     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1344   unsigned PHIIndex = 0;
1345   for (PHINode &PN : LS.Header->phis())
1346     PN.setIncomingValueForBlock(ContinuationBlock,
1347                                 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1348 
1349   LS.IndVarStart = RRI.IndVarEnd;
1350 }
1351 
1352 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1353                                              BasicBlock *OldPreheader,
1354                                              const char *Tag) const {
1355   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1356   BranchInst::Create(LS.Header, Preheader);
1357 
1358   LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1359 
1360   return Preheader;
1361 }
1362 
1363 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1364   Loop *ParentLoop = OriginalLoop.getParentLoop();
1365   if (!ParentLoop)
1366     return;
1367 
1368   for (BasicBlock *BB : BBs)
1369     ParentLoop->addBasicBlockToLoop(BB, LI);
1370 }
1371 
1372 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1373                                                  ValueToValueMapTy &VM,
1374                                                  bool IsSubloop) {
1375   Loop &New = *LI.AllocateLoop();
1376   if (Parent)
1377     Parent->addChildLoop(&New);
1378   else
1379     LI.addTopLevelLoop(&New);
1380   LPMAddNewLoop(&New, IsSubloop);
1381 
1382   // Add all of the blocks in Original to the new loop.
1383   for (auto *BB : Original->blocks())
1384     if (LI.getLoopFor(BB) == Original)
1385       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1386 
1387   // Add all of the subloops to the new loop.
1388   for (Loop *SubLoop : *Original)
1389     createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1390 
1391   return &New;
1392 }
1393 
1394 bool LoopConstrainer::run() {
1395   BasicBlock *Preheader = nullptr;
1396   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1397   Preheader = OriginalLoop.getLoopPreheader();
1398   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1399          "preconditions!");
1400 
1401   OriginalPreheader = Preheader;
1402   MainLoopPreheader = Preheader;
1403 
1404   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1405   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1406   if (!MaybeSR.hasValue()) {
1407     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1408     return false;
1409   }
1410 
1411   SubRanges SR = MaybeSR.getValue();
1412   bool Increasing = MainLoopStructure.IndVarIncreasing;
1413   IntegerType *IVTy =
1414       cast<IntegerType>(Range.getBegin()->getType());
1415 
1416   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1417   Instruction *InsertPt = OriginalPreheader->getTerminator();
1418 
1419   // It would have been better to make `PreLoop' and `PostLoop'
1420   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1421   // constructor.
1422   ClonedLoop PreLoop, PostLoop;
1423   bool NeedsPreLoop =
1424       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1425   bool NeedsPostLoop =
1426       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1427 
1428   Value *ExitPreLoopAt = nullptr;
1429   Value *ExitMainLoopAt = nullptr;
1430   const SCEVConstant *MinusOneS =
1431       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1432 
1433   if (NeedsPreLoop) {
1434     const SCEV *ExitPreLoopAtSCEV = nullptr;
1435 
1436     if (Increasing)
1437       ExitPreLoopAtSCEV = *SR.LowLimit;
1438     else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1439                                IsSignedPredicate))
1440       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1441     else {
1442       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1443                         << "preloop exit limit.  HighLimit = "
1444                         << *(*SR.HighLimit) << "\n");
1445       return false;
1446     }
1447 
1448     if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1449       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1450                         << " preloop exit limit " << *ExitPreLoopAtSCEV
1451                         << " at block " << InsertPt->getParent()->getName()
1452                         << "\n");
1453       return false;
1454     }
1455 
1456     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1457     ExitPreLoopAt->setName("exit.preloop.at");
1458   }
1459 
1460   if (NeedsPostLoop) {
1461     const SCEV *ExitMainLoopAtSCEV = nullptr;
1462 
1463     if (Increasing)
1464       ExitMainLoopAtSCEV = *SR.HighLimit;
1465     else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1466                                IsSignedPredicate))
1467       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1468     else {
1469       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1470                         << "mainloop exit limit.  LowLimit = "
1471                         << *(*SR.LowLimit) << "\n");
1472       return false;
1473     }
1474 
1475     if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1476       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1477                         << " main loop exit limit " << *ExitMainLoopAtSCEV
1478                         << " at block " << InsertPt->getParent()->getName()
1479                         << "\n");
1480       return false;
1481     }
1482 
1483     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1484     ExitMainLoopAt->setName("exit.mainloop.at");
1485   }
1486 
1487   // We clone these ahead of time so that we don't have to deal with changing
1488   // and temporarily invalid IR as we transform the loops.
1489   if (NeedsPreLoop)
1490     cloneLoop(PreLoop, "preloop");
1491   if (NeedsPostLoop)
1492     cloneLoop(PostLoop, "postloop");
1493 
1494   RewrittenRangeInfo PreLoopRRI;
1495 
1496   if (NeedsPreLoop) {
1497     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1498                                                   PreLoop.Structure.Header);
1499 
1500     MainLoopPreheader =
1501         createPreheader(MainLoopStructure, Preheader, "mainloop");
1502     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1503                                          ExitPreLoopAt, MainLoopPreheader);
1504     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1505                                  PreLoopRRI);
1506   }
1507 
1508   BasicBlock *PostLoopPreheader = nullptr;
1509   RewrittenRangeInfo PostLoopRRI;
1510 
1511   if (NeedsPostLoop) {
1512     PostLoopPreheader =
1513         createPreheader(PostLoop.Structure, Preheader, "postloop");
1514     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1515                                           ExitMainLoopAt, PostLoopPreheader);
1516     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1517                                  PostLoopRRI);
1518   }
1519 
1520   BasicBlock *NewMainLoopPreheader =
1521       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1522   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1523                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1524                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1525 
1526   // Some of the above may be nullptr, filter them out before passing to
1527   // addToParentLoopIfNeeded.
1528   auto NewBlocksEnd =
1529       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1530 
1531   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1532 
1533   DT.recalculate(F);
1534 
1535   // We need to first add all the pre and post loop blocks into the loop
1536   // structures (as part of createClonedLoopStructure), and then update the
1537   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1538   // LI when LoopSimplifyForm is generated.
1539   Loop *PreL = nullptr, *PostL = nullptr;
1540   if (!PreLoop.Blocks.empty()) {
1541     PreL = createClonedLoopStructure(&OriginalLoop,
1542                                      OriginalLoop.getParentLoop(), PreLoop.Map,
1543                                      /* IsSubLoop */ false);
1544   }
1545 
1546   if (!PostLoop.Blocks.empty()) {
1547     PostL =
1548         createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1549                                   PostLoop.Map, /* IsSubLoop */ false);
1550   }
1551 
1552   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1553   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1554     formLCSSARecursively(*L, DT, &LI, &SE);
1555     simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1556     // Pre/post loops are slow paths, we do not need to perform any loop
1557     // optimizations on them.
1558     if (!IsOriginalLoop)
1559       DisableAllLoopOptsOnLoop(*L);
1560   };
1561   if (PreL)
1562     CanonicalizeLoop(PreL, false);
1563   if (PostL)
1564     CanonicalizeLoop(PostL, false);
1565   CanonicalizeLoop(&OriginalLoop, true);
1566 
1567   return true;
1568 }
1569 
1570 /// Computes and returns a range of values for the induction variable (IndVar)
1571 /// in which the range check can be safely elided.  If it cannot compute such a
1572 /// range, returns None.
1573 Optional<InductiveRangeCheck::Range>
1574 InductiveRangeCheck::computeSafeIterationSpace(
1575     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1576     bool IsLatchSigned) const {
1577   // We can deal when types of latch check and range checks don't match in case
1578   // if latch check is more narrow.
1579   auto *IVType = cast<IntegerType>(IndVar->getType());
1580   auto *RCType = cast<IntegerType>(getBegin()->getType());
1581   if (IVType->getBitWidth() > RCType->getBitWidth())
1582     return None;
1583   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1584   // variable, that may or may not exist as a real llvm::Value in the loop) and
1585   // this inductive range check is a range check on the "C + D * I" ("C" is
1586   // getBegin() and "D" is getStep()).  We rewrite the value being range
1587   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1588   //
1589   // The actual inequalities we solve are of the form
1590   //
1591   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1592   //
1593   // Here L stands for upper limit of the safe iteration space.
1594   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1595   // overflows when calculating (0 - M) and (L - M) we, depending on type of
1596   // IV's iteration space, limit the calculations by borders of the iteration
1597   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1598   // If we figured out that "anything greater than (-M) is safe", we strengthen
1599   // this to "everything greater than 0 is safe", assuming that values between
1600   // -M and 0 just do not exist in unsigned iteration space, and we don't want
1601   // to deal with overflown values.
1602 
1603   if (!IndVar->isAffine())
1604     return None;
1605 
1606   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1607   const SCEVConstant *B = dyn_cast<SCEVConstant>(
1608       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1609   if (!B)
1610     return None;
1611   assert(!B->isZero() && "Recurrence with zero step?");
1612 
1613   const SCEV *C = getBegin();
1614   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1615   if (D != B)
1616     return None;
1617 
1618   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1619   unsigned BitWidth = RCType->getBitWidth();
1620   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1621 
1622   // Subtract Y from X so that it does not go through border of the IV
1623   // iteration space. Mathematically, it is equivalent to:
1624   //
1625   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
1626   //
1627   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1628   // any width of bit grid). But after we take min/max, the result is
1629   // guaranteed to be within [INT_MIN, INT_MAX].
1630   //
1631   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1632   // values, depending on type of latch condition that defines IV iteration
1633   // space.
1634   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1635     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1636     // This is required to ensure that SINT_MAX - X does not overflow signed and
1637     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1638     // restriction and make it work for negative X either?
1639     if (IsLatchSigned) {
1640       // X is a number from signed range, Y is interpreted as signed.
1641       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1642       // thing we should care about is that we didn't cross SINT_MAX.
1643       // So, if Y is positive, we subtract Y safely.
1644       //   Rule 1: Y > 0 ---> Y.
1645       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1646       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1647       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1648       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1649       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1650       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1651       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1652                              SCEV::FlagNSW);
1653     } else
1654       // X is a number from unsigned range, Y is interpreted as signed.
1655       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1656       // thing we should care about is that we didn't cross zero.
1657       // So, if Y is negative, we subtract Y safely.
1658       //   Rule 1: Y <s 0 ---> Y.
1659       // If 0 <= Y <= X, we subtract Y safely.
1660       //   Rule 2: Y <=s X ---> Y.
1661       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1662       //   Rule 3: Y >s X ---> X.
1663       // It gives us smin(X, Y) to subtract in all cases.
1664       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1665   };
1666   const SCEV *M = SE.getMinusSCEV(C, A);
1667   const SCEV *Zero = SE.getZero(M->getType());
1668 
1669   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1670   auto SCEVCheckNonNegative = [&](const SCEV *X) {
1671     const Loop *L = IndVar->getLoop();
1672     const SCEV *One = SE.getOne(X->getType());
1673     // Can we trivially prove that X is a non-negative or negative value?
1674     if (isKnownNonNegativeInLoop(X, L, SE))
1675       return One;
1676     else if (isKnownNegativeInLoop(X, L, SE))
1677       return Zero;
1678     // If not, we will have to figure it out during the execution.
1679     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1680     const SCEV *NegOne = SE.getNegativeSCEV(One);
1681     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1682   };
1683   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1684   // X is non-negative (in sense of a signed value). We need to re-implement
1685   // this function in a way that it will correctly handle negative X as well.
1686   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1687   // end up with a negative X and produce wrong results. So currently we ensure
1688   // that if getEnd() is negative then both ends of the safe range are zero.
1689   // Note that this may pessimize elimination of unsigned range checks against
1690   // negative values.
1691   const SCEV *REnd = getEnd();
1692   const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1693 
1694   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1695   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1696   return InductiveRangeCheck::Range(Begin, End);
1697 }
1698 
1699 static Optional<InductiveRangeCheck::Range>
1700 IntersectSignedRange(ScalarEvolution &SE,
1701                      const Optional<InductiveRangeCheck::Range> &R1,
1702                      const InductiveRangeCheck::Range &R2) {
1703   if (R2.isEmpty(SE, /* IsSigned */ true))
1704     return None;
1705   if (!R1.hasValue())
1706     return R2;
1707   auto &R1Value = R1.getValue();
1708   // We never return empty ranges from this function, and R1 is supposed to be
1709   // a result of intersection. Thus, R1 is never empty.
1710   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1711          "We should never have empty R1!");
1712 
1713   // TODO: we could widen the smaller range and have this work; but for now we
1714   // bail out to keep things simple.
1715   if (R1Value.getType() != R2.getType())
1716     return None;
1717 
1718   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1719   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1720 
1721   // If the resulting range is empty, just return None.
1722   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1723   if (Ret.isEmpty(SE, /* IsSigned */ true))
1724     return None;
1725   return Ret;
1726 }
1727 
1728 static Optional<InductiveRangeCheck::Range>
1729 IntersectUnsignedRange(ScalarEvolution &SE,
1730                        const Optional<InductiveRangeCheck::Range> &R1,
1731                        const InductiveRangeCheck::Range &R2) {
1732   if (R2.isEmpty(SE, /* IsSigned */ false))
1733     return None;
1734   if (!R1.hasValue())
1735     return R2;
1736   auto &R1Value = R1.getValue();
1737   // We never return empty ranges from this function, and R1 is supposed to be
1738   // a result of intersection. Thus, R1 is never empty.
1739   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1740          "We should never have empty R1!");
1741 
1742   // TODO: we could widen the smaller range and have this work; but for now we
1743   // bail out to keep things simple.
1744   if (R1Value.getType() != R2.getType())
1745     return None;
1746 
1747   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1748   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1749 
1750   // If the resulting range is empty, just return None.
1751   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1752   if (Ret.isEmpty(SE, /* IsSigned */ false))
1753     return None;
1754   return Ret;
1755 }
1756 
1757 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1758   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1759   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1760   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1761 
1762   BranchProbabilityInfo BPI;
1763   BPI.calculate(F, LI);
1764   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1765 
1766   bool Changed = false;
1767 
1768   for (const auto &L : LI) {
1769     Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1770                             /*PreserveLCSSA=*/false);
1771     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1772   }
1773 
1774   SmallPriorityWorklist<Loop *, 4> Worklist;
1775   appendLoopsToWorklist(LI, Worklist);
1776   auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1777     if (!IsSubloop)
1778       appendLoopsToWorklist(*NL, Worklist);
1779   };
1780 
1781   while (!Worklist.empty()) {
1782     Loop *L = Worklist.pop_back_val();
1783     Changed |= IRCE.run(L, LPMAddNewLoop);
1784   }
1785 
1786   if (!Changed)
1787     return PreservedAnalyses::all();
1788   return getLoopPassPreservedAnalyses();
1789 }
1790 
1791 bool IRCELegacyPass::runOnFunction(Function &F) {
1792   if (skipFunction(F))
1793     return false;
1794 
1795   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1796   BranchProbabilityInfo &BPI =
1797       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1798   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1799   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1800   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1801 
1802   bool Changed = false;
1803 
1804   for (const auto &L : LI) {
1805     Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1806                             /*PreserveLCSSA=*/false);
1807     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1808   }
1809 
1810   SmallPriorityWorklist<Loop *, 4> Worklist;
1811   appendLoopsToWorklist(LI, Worklist);
1812   auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1813     if (!IsSubloop)
1814       appendLoopsToWorklist(*NL, Worklist);
1815   };
1816 
1817   while (!Worklist.empty()) {
1818     Loop *L = Worklist.pop_back_val();
1819     Changed |= IRCE.run(L, LPMAddNewLoop);
1820   }
1821   return Changed;
1822 }
1823 
1824 bool InductiveRangeCheckElimination::run(
1825     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1826   if (L->getBlocks().size() >= LoopSizeCutoff) {
1827     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1828     return false;
1829   }
1830 
1831   BasicBlock *Preheader = L->getLoopPreheader();
1832   if (!Preheader) {
1833     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1834     return false;
1835   }
1836 
1837   LLVMContext &Context = Preheader->getContext();
1838   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1839 
1840   for (auto BBI : L->getBlocks())
1841     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1842       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1843                                                         RangeChecks);
1844 
1845   if (RangeChecks.empty())
1846     return false;
1847 
1848   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1849     OS << "irce: looking at loop "; L->print(OS);
1850     OS << "irce: loop has " << RangeChecks.size()
1851        << " inductive range checks: \n";
1852     for (InductiveRangeCheck &IRC : RangeChecks)
1853       IRC.print(OS);
1854   };
1855 
1856   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1857 
1858   if (PrintRangeChecks)
1859     PrintRecognizedRangeChecks(errs());
1860 
1861   const char *FailureReason = nullptr;
1862   Optional<LoopStructure> MaybeLoopStructure =
1863       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1864   if (!MaybeLoopStructure.hasValue()) {
1865     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1866                       << FailureReason << "\n";);
1867     return false;
1868   }
1869   LoopStructure LS = MaybeLoopStructure.getValue();
1870   const SCEVAddRecExpr *IndVar =
1871       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1872 
1873   Optional<InductiveRangeCheck::Range> SafeIterRange;
1874   Instruction *ExprInsertPt = Preheader->getTerminator();
1875 
1876   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1877   // Basing on the type of latch predicate, we interpret the IV iteration range
1878   // as signed or unsigned range. We use different min/max functions (signed or
1879   // unsigned) when intersecting this range with safe iteration ranges implied
1880   // by range checks.
1881   auto IntersectRange =
1882       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1883 
1884   IRBuilder<> B(ExprInsertPt);
1885   for (InductiveRangeCheck &IRC : RangeChecks) {
1886     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1887                                                 LS.IsSignedPredicate);
1888     if (Result.hasValue()) {
1889       auto MaybeSafeIterRange =
1890           IntersectRange(SE, SafeIterRange, Result.getValue());
1891       if (MaybeSafeIterRange.hasValue()) {
1892         assert(
1893             !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1894             "We should never return empty ranges!");
1895         RangeChecksToEliminate.push_back(IRC);
1896         SafeIterRange = MaybeSafeIterRange.getValue();
1897       }
1898     }
1899   }
1900 
1901   if (!SafeIterRange.hasValue())
1902     return false;
1903 
1904   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1905                      SafeIterRange.getValue());
1906   bool Changed = LC.run();
1907 
1908   if (Changed) {
1909     auto PrintConstrainedLoopInfo = [L]() {
1910       dbgs() << "irce: in function ";
1911       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1912       dbgs() << "constrained ";
1913       L->print(dbgs());
1914     };
1915 
1916     LLVM_DEBUG(PrintConstrainedLoopInfo());
1917 
1918     if (PrintChangedLoops)
1919       PrintConstrainedLoopInfo();
1920 
1921     // Optimize away the now-redundant range checks.
1922 
1923     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1924       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1925                                           ? ConstantInt::getTrue(Context)
1926                                           : ConstantInt::getFalse(Context);
1927       IRC.getCheckUse()->set(FoldedRangeCheck);
1928     }
1929   }
1930 
1931   return Changed;
1932 }
1933 
1934 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1935   return new IRCELegacyPass();
1936 }
1937