1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" 46 #include "llvm/ADT/APInt.h" 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/None.h" 49 #include "llvm/ADT/Optional.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/ADT/StringRef.h" 53 #include "llvm/ADT/Twine.h" 54 #include "llvm/Analysis/BranchProbabilityInfo.h" 55 #include "llvm/Analysis/LoopAnalysisManager.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/LoopPass.h" 58 #include "llvm/Analysis/PostDominators.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/CFG.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Dominators.h" 66 #include "llvm/IR/Function.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/InstrTypes.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/Metadata.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/PatternMatch.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Scalar.h" 87 #include "llvm/Transforms/Utils/Cloning.h" 88 #include "llvm/Transforms/Utils/LoopSimplify.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 91 #include "llvm/Transforms/Utils/ValueMapper.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <iterator> 95 #include <limits> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 103 cl::init(64)); 104 105 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 106 cl::init(false)); 107 108 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 109 cl::init(false)); 110 111 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 112 cl::Hidden, cl::init(10)); 113 114 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 115 cl::Hidden, cl::init(false)); 116 117 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", 118 cl::Hidden, cl::init(true)); 119 120 static cl::opt<bool> AllowNarrowLatchCondition( 121 "irce-allow-narrow-latch", cl::Hidden, cl::init(true), 122 cl::desc("If set to true, IRCE may eliminate wide range checks in loops " 123 "with narrow latch condition.")); 124 125 static const char *ClonedLoopTag = "irce.loop.clone"; 126 127 #define DEBUG_TYPE "irce" 128 129 namespace { 130 131 /// An inductive range check is conditional branch in a loop with 132 /// 133 /// 1. a very cold successor (i.e. the branch jumps to that successor very 134 /// rarely) 135 /// 136 /// and 137 /// 138 /// 2. a condition that is provably true for some contiguous range of values 139 /// taken by the containing loop's induction variable. 140 /// 141 class InductiveRangeCheck { 142 143 const SCEV *Begin = nullptr; 144 const SCEV *Step = nullptr; 145 const SCEV *End = nullptr; 146 Use *CheckUse = nullptr; 147 bool IsSigned = true; 148 149 static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, 150 Value *&Index, Value *&Length, 151 bool &IsSigned); 152 153 static void 154 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 155 SmallVectorImpl<InductiveRangeCheck> &Checks, 156 SmallPtrSetImpl<Value *> &Visited); 157 158 public: 159 const SCEV *getBegin() const { return Begin; } 160 const SCEV *getStep() const { return Step; } 161 const SCEV *getEnd() const { return End; } 162 bool isSigned() const { return IsSigned; } 163 164 void print(raw_ostream &OS) const { 165 OS << "InductiveRangeCheck:\n"; 166 OS << " Begin: "; 167 Begin->print(OS); 168 OS << " Step: "; 169 Step->print(OS); 170 OS << " End: "; 171 End->print(OS); 172 OS << "\n CheckUse: "; 173 getCheckUse()->getUser()->print(OS); 174 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 175 } 176 177 LLVM_DUMP_METHOD 178 void dump() { 179 print(dbgs()); 180 } 181 182 Use *getCheckUse() const { return CheckUse; } 183 184 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 185 /// R.getEnd() le R.getBegin(), then R denotes the empty range. 186 187 class Range { 188 const SCEV *Begin; 189 const SCEV *End; 190 191 public: 192 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 193 assert(Begin->getType() == End->getType() && "ill-typed range!"); 194 } 195 196 Type *getType() const { return Begin->getType(); } 197 const SCEV *getBegin() const { return Begin; } 198 const SCEV *getEnd() const { return End; } 199 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { 200 if (Begin == End) 201 return true; 202 if (IsSigned) 203 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); 204 else 205 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); 206 } 207 }; 208 209 /// This is the value the condition of the branch needs to evaluate to for the 210 /// branch to take the hot successor (see (1) above). 211 bool getPassingDirection() { return true; } 212 213 /// Computes a range for the induction variable (IndVar) in which the range 214 /// check is redundant and can be constant-folded away. The induction 215 /// variable is not required to be the canonical {0,+,1} induction variable. 216 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 217 const SCEVAddRecExpr *IndVar, 218 bool IsLatchSigned) const; 219 220 /// Parse out a set of inductive range checks from \p BI and append them to \p 221 /// Checks. 222 /// 223 /// NB! There may be conditions feeding into \p BI that aren't inductive range 224 /// checks, and hence don't end up in \p Checks. 225 static void 226 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 227 BranchProbabilityInfo *BPI, 228 SmallVectorImpl<InductiveRangeCheck> &Checks); 229 }; 230 231 class InductiveRangeCheckElimination { 232 ScalarEvolution &SE; 233 BranchProbabilityInfo *BPI; 234 DominatorTree &DT; 235 LoopInfo &LI; 236 237 public: 238 InductiveRangeCheckElimination(ScalarEvolution &SE, 239 BranchProbabilityInfo *BPI, DominatorTree &DT, 240 LoopInfo &LI) 241 : SE(SE), BPI(BPI), DT(DT), LI(LI) {} 242 243 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop); 244 }; 245 246 class IRCELegacyPass : public FunctionPass { 247 public: 248 static char ID; 249 250 IRCELegacyPass() : FunctionPass(ID) { 251 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry()); 252 } 253 254 void getAnalysisUsage(AnalysisUsage &AU) const override { 255 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 256 AU.addRequired<DominatorTreeWrapperPass>(); 257 AU.addPreserved<DominatorTreeWrapperPass>(); 258 AU.addRequired<LoopInfoWrapperPass>(); 259 AU.addPreserved<LoopInfoWrapperPass>(); 260 AU.addRequired<ScalarEvolutionWrapperPass>(); 261 AU.addPreserved<ScalarEvolutionWrapperPass>(); 262 } 263 264 bool runOnFunction(Function &F) override; 265 }; 266 267 } // end anonymous namespace 268 269 char IRCELegacyPass::ID = 0; 270 271 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce", 272 "Inductive range check elimination", false, false) 273 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 274 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 275 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 276 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 277 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination", 278 false, false) 279 280 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 281 /// be interpreted as a range check, return false and set `Index` and `Length` 282 /// to `nullptr`. Otherwise set `Index` to the value being range checked, and 283 /// set `Length` to the upper limit `Index` is being range checked. 284 bool 285 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 286 ScalarEvolution &SE, Value *&Index, 287 Value *&Length, bool &IsSigned) { 288 auto IsLoopInvariant = [&SE, L](Value *V) { 289 return SE.isLoopInvariant(SE.getSCEV(V), L); 290 }; 291 292 ICmpInst::Predicate Pred = ICI->getPredicate(); 293 Value *LHS = ICI->getOperand(0); 294 Value *RHS = ICI->getOperand(1); 295 296 switch (Pred) { 297 default: 298 return false; 299 300 case ICmpInst::ICMP_SLE: 301 std::swap(LHS, RHS); 302 LLVM_FALLTHROUGH; 303 case ICmpInst::ICMP_SGE: 304 IsSigned = true; 305 if (match(RHS, m_ConstantInt<0>())) { 306 Index = LHS; 307 return true; // Lower. 308 } 309 return false; 310 311 case ICmpInst::ICMP_SLT: 312 std::swap(LHS, RHS); 313 LLVM_FALLTHROUGH; 314 case ICmpInst::ICMP_SGT: 315 IsSigned = true; 316 if (match(RHS, m_ConstantInt<-1>())) { 317 Index = LHS; 318 return true; // Lower. 319 } 320 321 if (IsLoopInvariant(LHS)) { 322 Index = RHS; 323 Length = LHS; 324 return true; // Upper. 325 } 326 return false; 327 328 case ICmpInst::ICMP_ULT: 329 std::swap(LHS, RHS); 330 LLVM_FALLTHROUGH; 331 case ICmpInst::ICMP_UGT: 332 IsSigned = false; 333 if (IsLoopInvariant(LHS)) { 334 Index = RHS; 335 Length = LHS; 336 return true; // Both lower and upper. 337 } 338 return false; 339 } 340 341 llvm_unreachable("default clause returns!"); 342 } 343 344 void InductiveRangeCheck::extractRangeChecksFromCond( 345 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 346 SmallVectorImpl<InductiveRangeCheck> &Checks, 347 SmallPtrSetImpl<Value *> &Visited) { 348 Value *Condition = ConditionUse.get(); 349 if (!Visited.insert(Condition).second) 350 return; 351 352 // TODO: Do the same for OR, XOR, NOT etc? 353 if (match(Condition, m_And(m_Value(), m_Value()))) { 354 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 355 Checks, Visited); 356 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 357 Checks, Visited); 358 return; 359 } 360 361 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 362 if (!ICI) 363 return; 364 365 Value *Length = nullptr, *Index; 366 bool IsSigned; 367 if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned)) 368 return; 369 370 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 371 bool IsAffineIndex = 372 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 373 374 if (!IsAffineIndex) 375 return; 376 377 const SCEV *End = nullptr; 378 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 379 // We can potentially do much better here. 380 if (Length) 381 End = SE.getSCEV(Length); 382 else { 383 // So far we can only reach this point for Signed range check. This may 384 // change in future. In this case we will need to pick Unsigned max for the 385 // unsigned range check. 386 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth(); 387 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 388 End = SIntMax; 389 } 390 391 InductiveRangeCheck IRC; 392 IRC.End = End; 393 IRC.Begin = IndexAddRec->getStart(); 394 IRC.Step = IndexAddRec->getStepRecurrence(SE); 395 IRC.CheckUse = &ConditionUse; 396 IRC.IsSigned = IsSigned; 397 Checks.push_back(IRC); 398 } 399 400 void InductiveRangeCheck::extractRangeChecksFromBranch( 401 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, 402 SmallVectorImpl<InductiveRangeCheck> &Checks) { 403 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 404 return; 405 406 BranchProbability LikelyTaken(15, 16); 407 408 if (!SkipProfitabilityChecks && BPI && 409 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 410 return; 411 412 SmallPtrSet<Value *, 8> Visited; 413 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 414 Checks, Visited); 415 } 416 417 // Add metadata to the loop L to disable loop optimizations. Callers need to 418 // confirm that optimizing loop L is not beneficial. 419 static void DisableAllLoopOptsOnLoop(Loop &L) { 420 // We do not care about any existing loopID related metadata for L, since we 421 // are setting all loop metadata to false. 422 LLVMContext &Context = L.getHeader()->getContext(); 423 // Reserve first location for self reference to the LoopID metadata node. 424 MDNode *Dummy = MDNode::get(Context, {}); 425 MDNode *DisableUnroll = MDNode::get( 426 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 427 Metadata *FalseVal = 428 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 429 MDNode *DisableVectorize = MDNode::get( 430 Context, 431 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 432 MDNode *DisableLICMVersioning = MDNode::get( 433 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 434 MDNode *DisableDistribution= MDNode::get( 435 Context, 436 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 437 MDNode *NewLoopID = 438 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 439 DisableLICMVersioning, DisableDistribution}); 440 // Set operand 0 to refer to the loop id itself. 441 NewLoopID->replaceOperandWith(0, NewLoopID); 442 L.setLoopID(NewLoopID); 443 } 444 445 namespace { 446 447 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 448 // except that it is more lightweight and can track the state of a loop through 449 // changing and potentially invalid IR. This structure also formalizes the 450 // kinds of loops we can deal with -- ones that have a single latch that is also 451 // an exiting block *and* have a canonical induction variable. 452 struct LoopStructure { 453 const char *Tag = ""; 454 455 BasicBlock *Header = nullptr; 456 BasicBlock *Latch = nullptr; 457 458 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 459 // successor is `LatchExit', the exit block of the loop. 460 BranchInst *LatchBr = nullptr; 461 BasicBlock *LatchExit = nullptr; 462 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max(); 463 464 // The loop represented by this instance of LoopStructure is semantically 465 // equivalent to: 466 // 467 // intN_ty inc = IndVarIncreasing ? 1 : -1; 468 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 469 // 470 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 471 // ... body ... 472 473 Value *IndVarBase = nullptr; 474 Value *IndVarStart = nullptr; 475 Value *IndVarStep = nullptr; 476 Value *LoopExitAt = nullptr; 477 bool IndVarIncreasing = false; 478 bool IsSignedPredicate = true; 479 480 LoopStructure() = default; 481 482 template <typename M> LoopStructure map(M Map) const { 483 LoopStructure Result; 484 Result.Tag = Tag; 485 Result.Header = cast<BasicBlock>(Map(Header)); 486 Result.Latch = cast<BasicBlock>(Map(Latch)); 487 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 488 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 489 Result.LatchBrExitIdx = LatchBrExitIdx; 490 Result.IndVarBase = Map(IndVarBase); 491 Result.IndVarStart = Map(IndVarStart); 492 Result.IndVarStep = Map(IndVarStep); 493 Result.LoopExitAt = Map(LoopExitAt); 494 Result.IndVarIncreasing = IndVarIncreasing; 495 Result.IsSignedPredicate = IsSignedPredicate; 496 return Result; 497 } 498 499 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 500 BranchProbabilityInfo *BPI, 501 Loop &, const char *&); 502 }; 503 504 /// This class is used to constrain loops to run within a given iteration space. 505 /// The algorithm this class implements is given a Loop and a range [Begin, 506 /// End). The algorithm then tries to break out a "main loop" out of the loop 507 /// it is given in a way that the "main loop" runs with the induction variable 508 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 509 /// loops to run any remaining iterations. The pre loop runs any iterations in 510 /// which the induction variable is < Begin, and the post loop runs any 511 /// iterations in which the induction variable is >= End. 512 class LoopConstrainer { 513 // The representation of a clone of the original loop we started out with. 514 struct ClonedLoop { 515 // The cloned blocks 516 std::vector<BasicBlock *> Blocks; 517 518 // `Map` maps values in the clonee into values in the cloned version 519 ValueToValueMapTy Map; 520 521 // An instance of `LoopStructure` for the cloned loop 522 LoopStructure Structure; 523 }; 524 525 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 526 // more details on what these fields mean. 527 struct RewrittenRangeInfo { 528 BasicBlock *PseudoExit = nullptr; 529 BasicBlock *ExitSelector = nullptr; 530 std::vector<PHINode *> PHIValuesAtPseudoExit; 531 PHINode *IndVarEnd = nullptr; 532 533 RewrittenRangeInfo() = default; 534 }; 535 536 // Calculated subranges we restrict the iteration space of the main loop to. 537 // See the implementation of `calculateSubRanges' for more details on how 538 // these fields are computed. `LowLimit` is None if there is no restriction 539 // on low end of the restricted iteration space of the main loop. `HighLimit` 540 // is None if there is no restriction on high end of the restricted iteration 541 // space of the main loop. 542 543 struct SubRanges { 544 Optional<const SCEV *> LowLimit; 545 Optional<const SCEV *> HighLimit; 546 }; 547 548 // Compute a safe set of limits for the main loop to run in -- effectively the 549 // intersection of `Range' and the iteration space of the original loop. 550 // Return None if unable to compute the set of subranges. 551 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 552 553 // Clone `OriginalLoop' and return the result in CLResult. The IR after 554 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 555 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 556 // but there is no such edge. 557 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 558 559 // Create the appropriate loop structure needed to describe a cloned copy of 560 // `Original`. The clone is described by `VM`. 561 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 562 ValueToValueMapTy &VM, bool IsSubloop); 563 564 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 565 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 566 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 567 // `OriginalHeaderCount'. 568 // 569 // If there are iterations left to execute, control is made to jump to 570 // `ContinuationBlock', otherwise they take the normal loop exit. The 571 // returned `RewrittenRangeInfo' object is populated as follows: 572 // 573 // .PseudoExit is a basic block that unconditionally branches to 574 // `ContinuationBlock'. 575 // 576 // .ExitSelector is a basic block that decides, on exit from the loop, 577 // whether to branch to the "true" exit or to `PseudoExit'. 578 // 579 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 580 // for each PHINode in the loop header on taking the pseudo exit. 581 // 582 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 583 // preheader because it is made to branch to the loop header only 584 // conditionally. 585 RewrittenRangeInfo 586 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 587 Value *ExitLoopAt, 588 BasicBlock *ContinuationBlock) const; 589 590 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 591 // function creates a new preheader for `LS' and returns it. 592 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 593 const char *Tag) const; 594 595 // `ContinuationBlockAndPreheader' was the continuation block for some call to 596 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 597 // This function rewrites the PHI nodes in `LS.Header' to start with the 598 // correct value. 599 void rewriteIncomingValuesForPHIs( 600 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 601 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 602 603 // Even though we do not preserve any passes at this time, we at least need to 604 // keep the parent loop structure consistent. The `LPPassManager' seems to 605 // verify this after running a loop pass. This function adds the list of 606 // blocks denoted by BBs to this loops parent loop if required. 607 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 608 609 // Some global state. 610 Function &F; 611 LLVMContext &Ctx; 612 ScalarEvolution &SE; 613 DominatorTree &DT; 614 LoopInfo &LI; 615 function_ref<void(Loop *, bool)> LPMAddNewLoop; 616 617 // Information about the original loop we started out with. 618 Loop &OriginalLoop; 619 620 const SCEV *LatchTakenCount = nullptr; 621 BasicBlock *OriginalPreheader = nullptr; 622 623 // The preheader of the main loop. This may or may not be different from 624 // `OriginalPreheader'. 625 BasicBlock *MainLoopPreheader = nullptr; 626 627 // The range we need to run the main loop in. 628 InductiveRangeCheck::Range Range; 629 630 // The structure of the main loop (see comment at the beginning of this class 631 // for a definition) 632 LoopStructure MainLoopStructure; 633 634 public: 635 LoopConstrainer(Loop &L, LoopInfo &LI, 636 function_ref<void(Loop *, bool)> LPMAddNewLoop, 637 const LoopStructure &LS, ScalarEvolution &SE, 638 DominatorTree &DT, InductiveRangeCheck::Range R) 639 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 640 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), 641 Range(R), MainLoopStructure(LS) {} 642 643 // Entry point for the algorithm. Returns true on success. 644 bool run(); 645 }; 646 647 } // end anonymous namespace 648 649 /// Given a loop with an deccreasing induction variable, is it possible to 650 /// safely calculate the bounds of a new loop using the given Predicate. 651 static bool isSafeDecreasingBound(const SCEV *Start, 652 const SCEV *BoundSCEV, const SCEV *Step, 653 ICmpInst::Predicate Pred, 654 unsigned LatchBrExitIdx, 655 Loop *L, ScalarEvolution &SE) { 656 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 657 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 658 return false; 659 660 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 661 return false; 662 663 assert(SE.isKnownNegative(Step) && "expecting negative step"); 664 665 LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n"); 666 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 667 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 668 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 669 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) 670 << "\n"); 671 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 672 673 bool IsSigned = ICmpInst::isSigned(Pred); 674 // The predicate that we need to check that the induction variable lies 675 // within bounds. 676 ICmpInst::Predicate BoundPred = 677 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 678 679 if (LatchBrExitIdx == 1) 680 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 681 682 assert(LatchBrExitIdx == 0 && 683 "LatchBrExitIdx should be either 0 or 1"); 684 685 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 686 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 687 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) : 688 APInt::getMinValue(BitWidth); 689 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne); 690 691 const SCEV *MinusOne = 692 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType())); 693 694 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) && 695 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit); 696 697 } 698 699 /// Given a loop with an increasing induction variable, is it possible to 700 /// safely calculate the bounds of a new loop using the given Predicate. 701 static bool isSafeIncreasingBound(const SCEV *Start, 702 const SCEV *BoundSCEV, const SCEV *Step, 703 ICmpInst::Predicate Pred, 704 unsigned LatchBrExitIdx, 705 Loop *L, ScalarEvolution &SE) { 706 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 707 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 708 return false; 709 710 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 711 return false; 712 713 LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n"); 714 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 715 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 716 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 717 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) 718 << "\n"); 719 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 720 721 bool IsSigned = ICmpInst::isSigned(Pred); 722 // The predicate that we need to check that the induction variable lies 723 // within bounds. 724 ICmpInst::Predicate BoundPred = 725 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 726 727 if (LatchBrExitIdx == 1) 728 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 729 730 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1"); 731 732 const SCEV *StepMinusOne = 733 SE.getMinusSCEV(Step, SE.getOne(Step->getType())); 734 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 735 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) : 736 APInt::getMaxValue(BitWidth); 737 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne); 738 739 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start, 740 SE.getAddExpr(BoundSCEV, Step)) && 741 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit)); 742 } 743 744 Optional<LoopStructure> 745 LoopStructure::parseLoopStructure(ScalarEvolution &SE, 746 BranchProbabilityInfo *BPI, Loop &L, 747 const char *&FailureReason) { 748 if (!L.isLoopSimplifyForm()) { 749 FailureReason = "loop not in LoopSimplify form"; 750 return None; 751 } 752 753 BasicBlock *Latch = L.getLoopLatch(); 754 assert(Latch && "Simplified loops only have one latch!"); 755 756 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 757 FailureReason = "loop has already been cloned"; 758 return None; 759 } 760 761 if (!L.isLoopExiting(Latch)) { 762 FailureReason = "no loop latch"; 763 return None; 764 } 765 766 BasicBlock *Header = L.getHeader(); 767 BasicBlock *Preheader = L.getLoopPreheader(); 768 if (!Preheader) { 769 FailureReason = "no preheader"; 770 return None; 771 } 772 773 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 774 if (!LatchBr || LatchBr->isUnconditional()) { 775 FailureReason = "latch terminator not conditional branch"; 776 return None; 777 } 778 779 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 780 781 BranchProbability ExitProbability = 782 BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx) 783 : BranchProbability::getZero(); 784 785 if (!SkipProfitabilityChecks && 786 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 787 FailureReason = "short running loop, not profitable"; 788 return None; 789 } 790 791 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 792 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 793 FailureReason = "latch terminator branch not conditional on integral icmp"; 794 return None; 795 } 796 797 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 798 if (isa<SCEVCouldNotCompute>(LatchCount)) { 799 FailureReason = "could not compute latch count"; 800 return None; 801 } 802 803 ICmpInst::Predicate Pred = ICI->getPredicate(); 804 Value *LeftValue = ICI->getOperand(0); 805 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 806 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 807 808 Value *RightValue = ICI->getOperand(1); 809 const SCEV *RightSCEV = SE.getSCEV(RightValue); 810 811 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 812 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 813 if (isa<SCEVAddRecExpr>(RightSCEV)) { 814 std::swap(LeftSCEV, RightSCEV); 815 std::swap(LeftValue, RightValue); 816 Pred = ICmpInst::getSwappedPredicate(Pred); 817 } else { 818 FailureReason = "no add recurrences in the icmp"; 819 return None; 820 } 821 } 822 823 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 824 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 825 return true; 826 827 IntegerType *Ty = cast<IntegerType>(AR->getType()); 828 IntegerType *WideTy = 829 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 830 831 const SCEVAddRecExpr *ExtendAfterOp = 832 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 833 if (ExtendAfterOp) { 834 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 835 const SCEV *ExtendedStep = 836 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 837 838 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 839 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 840 841 if (NoSignedWrap) 842 return true; 843 } 844 845 // We may have proved this when computing the sign extension above. 846 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 847 }; 848 849 // `ICI` is interpreted as taking the backedge if the *next* value of the 850 // induction variable satisfies some constraint. 851 852 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 853 if (!IndVarBase->isAffine()) { 854 FailureReason = "LHS in icmp not induction variable"; 855 return None; 856 } 857 const SCEV* StepRec = IndVarBase->getStepRecurrence(SE); 858 if (!isa<SCEVConstant>(StepRec)) { 859 FailureReason = "LHS in icmp not induction variable"; 860 return None; 861 } 862 ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue(); 863 864 if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) { 865 FailureReason = "LHS in icmp needs nsw for equality predicates"; 866 return None; 867 } 868 869 assert(!StepCI->isZero() && "Zero step?"); 870 bool IsIncreasing = !StepCI->isNegative(); 871 bool IsSignedPredicate; 872 const SCEV *StartNext = IndVarBase->getStart(); 873 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 874 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 875 const SCEV *Step = SE.getSCEV(StepCI); 876 877 const SCEV *FixedRightSCEV = nullptr; 878 879 // If RightValue resides within loop (but still being loop invariant), 880 // regenerate it as preheader. 881 if (auto *I = dyn_cast<Instruction>(RightValue)) 882 if (L.contains(I->getParent())) 883 FixedRightSCEV = RightSCEV; 884 885 if (IsIncreasing) { 886 bool DecreasedRightValueByOne = false; 887 if (StepCI->isOne()) { 888 // Try to turn eq/ne predicates to those we can work with. 889 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 890 // while (++i != len) { while (++i < len) { 891 // ... ---> ... 892 // } } 893 // If both parts are known non-negative, it is profitable to use 894 // unsigned comparison in increasing loop. This allows us to make the 895 // comparison check against "RightSCEV + 1" more optimistic. 896 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) && 897 isKnownNonNegativeInLoop(RightSCEV, &L, SE)) 898 Pred = ICmpInst::ICMP_ULT; 899 else 900 Pred = ICmpInst::ICMP_SLT; 901 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 902 // while (true) { while (true) { 903 // if (++i == len) ---> if (++i > len - 1) 904 // break; break; 905 // ... ... 906 // } } 907 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 908 cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) { 909 Pred = ICmpInst::ICMP_UGT; 910 RightSCEV = SE.getMinusSCEV(RightSCEV, 911 SE.getOne(RightSCEV->getType())); 912 DecreasedRightValueByOne = true; 913 } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) { 914 Pred = ICmpInst::ICMP_SGT; 915 RightSCEV = SE.getMinusSCEV(RightSCEV, 916 SE.getOne(RightSCEV->getType())); 917 DecreasedRightValueByOne = true; 918 } 919 } 920 } 921 922 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 923 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 924 bool FoundExpectedPred = 925 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 926 927 if (!FoundExpectedPred) { 928 FailureReason = "expected icmp slt semantically, found something else"; 929 return None; 930 } 931 932 IsSignedPredicate = ICmpInst::isSigned(Pred); 933 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 934 FailureReason = "unsigned latch conditions are explicitly prohibited"; 935 return None; 936 } 937 938 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred, 939 LatchBrExitIdx, &L, SE)) { 940 FailureReason = "Unsafe loop bounds"; 941 return None; 942 } 943 if (LatchBrExitIdx == 0) { 944 // We need to increase the right value unless we have already decreased 945 // it virtually when we replaced EQ with SGT. 946 if (!DecreasedRightValueByOne) 947 FixedRightSCEV = 948 SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 949 } else { 950 assert(!DecreasedRightValueByOne && 951 "Right value can be decreased only for LatchBrExitIdx == 0!"); 952 } 953 } else { 954 bool IncreasedRightValueByOne = false; 955 if (StepCI->isMinusOne()) { 956 // Try to turn eq/ne predicates to those we can work with. 957 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 958 // while (--i != len) { while (--i > len) { 959 // ... ---> ... 960 // } } 961 // We intentionally don't turn the predicate into UGT even if we know 962 // that both operands are non-negative, because it will only pessimize 963 // our check against "RightSCEV - 1". 964 Pred = ICmpInst::ICMP_SGT; 965 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 966 // while (true) { while (true) { 967 // if (--i == len) ---> if (--i < len + 1) 968 // break; break; 969 // ... ... 970 // } } 971 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 972 cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) { 973 Pred = ICmpInst::ICMP_ULT; 974 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 975 IncreasedRightValueByOne = true; 976 } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) { 977 Pred = ICmpInst::ICMP_SLT; 978 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 979 IncreasedRightValueByOne = true; 980 } 981 } 982 } 983 984 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 985 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 986 987 bool FoundExpectedPred = 988 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 989 990 if (!FoundExpectedPred) { 991 FailureReason = "expected icmp sgt semantically, found something else"; 992 return None; 993 } 994 995 IsSignedPredicate = 996 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 997 998 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 999 FailureReason = "unsigned latch conditions are explicitly prohibited"; 1000 return None; 1001 } 1002 1003 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred, 1004 LatchBrExitIdx, &L, SE)) { 1005 FailureReason = "Unsafe bounds"; 1006 return None; 1007 } 1008 1009 if (LatchBrExitIdx == 0) { 1010 // We need to decrease the right value unless we have already increased 1011 // it virtually when we replaced EQ with SLT. 1012 if (!IncreasedRightValueByOne) 1013 FixedRightSCEV = 1014 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); 1015 } else { 1016 assert(!IncreasedRightValueByOne && 1017 "Right value can be increased only for LatchBrExitIdx == 0!"); 1018 } 1019 } 1020 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1021 1022 assert(SE.getLoopDisposition(LatchCount, &L) == 1023 ScalarEvolution::LoopInvariant && 1024 "loop variant exit count doesn't make sense!"); 1025 1026 assert(!L.contains(LatchExit) && "expected an exit block!"); 1027 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1028 SCEVExpander Expander(SE, DL, "irce"); 1029 Instruction *Ins = Preheader->getTerminator(); 1030 1031 if (FixedRightSCEV) 1032 RightValue = 1033 Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins); 1034 1035 Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins); 1036 IndVarStartV->setName("indvar.start"); 1037 1038 LoopStructure Result; 1039 1040 Result.Tag = "main"; 1041 Result.Header = Header; 1042 Result.Latch = Latch; 1043 Result.LatchBr = LatchBr; 1044 Result.LatchExit = LatchExit; 1045 Result.LatchBrExitIdx = LatchBrExitIdx; 1046 Result.IndVarStart = IndVarStartV; 1047 Result.IndVarStep = StepCI; 1048 Result.IndVarBase = LeftValue; 1049 Result.IndVarIncreasing = IsIncreasing; 1050 Result.LoopExitAt = RightValue; 1051 Result.IsSignedPredicate = IsSignedPredicate; 1052 1053 FailureReason = nullptr; 1054 1055 return Result; 1056 } 1057 1058 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return 1059 /// signed or unsigned extension of \p S to type \p Ty. 1060 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE, 1061 bool Signed) { 1062 return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty); 1063 } 1064 1065 Optional<LoopConstrainer::SubRanges> 1066 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1067 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1068 1069 auto *RTy = cast<IntegerType>(Range.getType()); 1070 1071 // We only support wide range checks and narrow latches. 1072 if (!AllowNarrowLatchCondition && RTy != Ty) 1073 return None; 1074 if (RTy->getBitWidth() < Ty->getBitWidth()) 1075 return None; 1076 1077 LoopConstrainer::SubRanges Result; 1078 1079 // I think we can be more aggressive here and make this nuw / nsw if the 1080 // addition that feeds into the icmp for the latch's terminating branch is nuw 1081 // / nsw. In any case, a wrapping 2's complement addition is safe. 1082 const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart), 1083 RTy, SE, IsSignedPredicate); 1084 const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy, 1085 SE, IsSignedPredicate); 1086 1087 bool Increasing = MainLoopStructure.IndVarIncreasing; 1088 1089 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1090 // [Smallest, GreatestSeen] is the range of values the induction variable 1091 // takes. 1092 1093 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1094 1095 const SCEV *One = SE.getOne(RTy); 1096 if (Increasing) { 1097 Smallest = Start; 1098 Greatest = End; 1099 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1100 GreatestSeen = SE.getMinusSCEV(End, One); 1101 } else { 1102 // These two computations may sign-overflow. Here is why that is okay: 1103 // 1104 // We know that the induction variable does not sign-overflow on any 1105 // iteration except the last one, and it starts at `Start` and ends at 1106 // `End`, decrementing by one every time. 1107 // 1108 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1109 // induction variable is decreasing we know that that the smallest value 1110 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1111 // 1112 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1113 // that case, `Clamp` will always return `Smallest` and 1114 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1115 // will be an empty range. Returning an empty range is always safe. 1116 1117 Smallest = SE.getAddExpr(End, One); 1118 Greatest = SE.getAddExpr(Start, One); 1119 GreatestSeen = Start; 1120 } 1121 1122 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1123 return IsSignedPredicate 1124 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1125 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1126 }; 1127 1128 // In some cases we can prove that we don't need a pre or post loop. 1129 ICmpInst::Predicate PredLE = 1130 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1131 ICmpInst::Predicate PredLT = 1132 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1133 1134 bool ProvablyNoPreloop = 1135 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1136 if (!ProvablyNoPreloop) 1137 Result.LowLimit = Clamp(Range.getBegin()); 1138 1139 bool ProvablyNoPostLoop = 1140 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1141 if (!ProvablyNoPostLoop) 1142 Result.HighLimit = Clamp(Range.getEnd()); 1143 1144 return Result; 1145 } 1146 1147 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1148 const char *Tag) const { 1149 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1150 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1151 Result.Blocks.push_back(Clone); 1152 Result.Map[BB] = Clone; 1153 } 1154 1155 auto GetClonedValue = [&Result](Value *V) { 1156 assert(V && "null values not in domain!"); 1157 auto It = Result.Map.find(V); 1158 if (It == Result.Map.end()) 1159 return V; 1160 return static_cast<Value *>(It->second); 1161 }; 1162 1163 auto *ClonedLatch = 1164 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1165 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1166 MDNode::get(Ctx, {})); 1167 1168 Result.Structure = MainLoopStructure.map(GetClonedValue); 1169 Result.Structure.Tag = Tag; 1170 1171 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1172 BasicBlock *ClonedBB = Result.Blocks[i]; 1173 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1174 1175 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1176 1177 for (Instruction &I : *ClonedBB) 1178 RemapInstruction(&I, Result.Map, 1179 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1180 1181 // Exit blocks will now have one more predecessor and their PHI nodes need 1182 // to be edited to reflect that. No phi nodes need to be introduced because 1183 // the loop is in LCSSA. 1184 1185 for (auto *SBB : successors(OriginalBB)) { 1186 if (OriginalLoop.contains(SBB)) 1187 continue; // not an exit block 1188 1189 for (PHINode &PN : SBB->phis()) { 1190 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); 1191 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1192 } 1193 } 1194 } 1195 } 1196 1197 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1198 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1199 BasicBlock *ContinuationBlock) const { 1200 // We start with a loop with a single latch: 1201 // 1202 // +--------------------+ 1203 // | | 1204 // | preheader | 1205 // | | 1206 // +--------+-----------+ 1207 // | ----------------\ 1208 // | / | 1209 // +--------v----v------+ | 1210 // | | | 1211 // | header | | 1212 // | | | 1213 // +--------------------+ | 1214 // | 1215 // ..... | 1216 // | 1217 // +--------------------+ | 1218 // | | | 1219 // | latch >----------/ 1220 // | | 1221 // +-------v------------+ 1222 // | 1223 // | 1224 // | +--------------------+ 1225 // | | | 1226 // +---> original exit | 1227 // | | 1228 // +--------------------+ 1229 // 1230 // We change the control flow to look like 1231 // 1232 // 1233 // +--------------------+ 1234 // | | 1235 // | preheader >-------------------------+ 1236 // | | | 1237 // +--------v-----------+ | 1238 // | /-------------+ | 1239 // | / | | 1240 // +--------v--v--------+ | | 1241 // | | | | 1242 // | header | | +--------+ | 1243 // | | | | | | 1244 // +--------------------+ | | +-----v-----v-----------+ 1245 // | | | | 1246 // | | | .pseudo.exit | 1247 // | | | | 1248 // | | +-----------v-----------+ 1249 // | | | 1250 // ..... | | | 1251 // | | +--------v-------------+ 1252 // +--------------------+ | | | | 1253 // | | | | | ContinuationBlock | 1254 // | latch >------+ | | | 1255 // | | | +----------------------+ 1256 // +---------v----------+ | 1257 // | | 1258 // | | 1259 // | +---------------^-----+ 1260 // | | | 1261 // +-----> .exit.selector | 1262 // | | 1263 // +----------v----------+ 1264 // | 1265 // +--------------------+ | 1266 // | | | 1267 // | original exit <----+ 1268 // | | 1269 // +--------------------+ 1270 1271 RewrittenRangeInfo RRI; 1272 1273 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1274 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1275 &F, BBInsertLocation); 1276 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1277 BBInsertLocation); 1278 1279 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1280 bool Increasing = LS.IndVarIncreasing; 1281 bool IsSignedPredicate = LS.IsSignedPredicate; 1282 1283 IRBuilder<> B(PreheaderJump); 1284 auto *RangeTy = Range.getBegin()->getType(); 1285 auto NoopOrExt = [&](Value *V) { 1286 if (V->getType() == RangeTy) 1287 return V; 1288 return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName()) 1289 : B.CreateZExt(V, RangeTy, "wide." + V->getName()); 1290 }; 1291 1292 // EnterLoopCond - is it okay to start executing this `LS'? 1293 Value *EnterLoopCond = nullptr; 1294 auto Pred = 1295 Increasing 1296 ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT) 1297 : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); 1298 Value *IndVarStart = NoopOrExt(LS.IndVarStart); 1299 EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt); 1300 1301 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1302 PreheaderJump->eraseFromParent(); 1303 1304 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1305 B.SetInsertPoint(LS.LatchBr); 1306 Value *IndVarBase = NoopOrExt(LS.IndVarBase); 1307 Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt); 1308 1309 Value *CondForBranch = LS.LatchBrExitIdx == 1 1310 ? TakeBackedgeLoopCond 1311 : B.CreateNot(TakeBackedgeLoopCond); 1312 1313 LS.LatchBr->setCondition(CondForBranch); 1314 1315 B.SetInsertPoint(RRI.ExitSelector); 1316 1317 // IterationsLeft - are there any more iterations left, given the original 1318 // upper bound on the induction variable? If not, we branch to the "real" 1319 // exit. 1320 Value *LoopExitAt = NoopOrExt(LS.LoopExitAt); 1321 Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt); 1322 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1323 1324 BranchInst *BranchToContinuation = 1325 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1326 1327 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1328 // each of the PHI nodes in the loop header. This feeds into the initial 1329 // value of the same PHI nodes if/when we continue execution. 1330 for (PHINode &PN : LS.Header->phis()) { 1331 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", 1332 BranchToContinuation); 1333 1334 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); 1335 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), 1336 RRI.ExitSelector); 1337 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1338 } 1339 1340 RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end", 1341 BranchToContinuation); 1342 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader); 1343 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector); 1344 1345 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1346 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1347 LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector); 1348 1349 return RRI; 1350 } 1351 1352 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1353 LoopStructure &LS, BasicBlock *ContinuationBlock, 1354 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1355 unsigned PHIIndex = 0; 1356 for (PHINode &PN : LS.Header->phis()) 1357 PN.setIncomingValueForBlock(ContinuationBlock, 1358 RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1359 1360 LS.IndVarStart = RRI.IndVarEnd; 1361 } 1362 1363 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1364 BasicBlock *OldPreheader, 1365 const char *Tag) const { 1366 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1367 BranchInst::Create(LS.Header, Preheader); 1368 1369 LS.Header->replacePhiUsesWith(OldPreheader, Preheader); 1370 1371 return Preheader; 1372 } 1373 1374 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1375 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1376 if (!ParentLoop) 1377 return; 1378 1379 for (BasicBlock *BB : BBs) 1380 ParentLoop->addBasicBlockToLoop(BB, LI); 1381 } 1382 1383 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1384 ValueToValueMapTy &VM, 1385 bool IsSubloop) { 1386 Loop &New = *LI.AllocateLoop(); 1387 if (Parent) 1388 Parent->addChildLoop(&New); 1389 else 1390 LI.addTopLevelLoop(&New); 1391 LPMAddNewLoop(&New, IsSubloop); 1392 1393 // Add all of the blocks in Original to the new loop. 1394 for (auto *BB : Original->blocks()) 1395 if (LI.getLoopFor(BB) == Original) 1396 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1397 1398 // Add all of the subloops to the new loop. 1399 for (Loop *SubLoop : *Original) 1400 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true); 1401 1402 return &New; 1403 } 1404 1405 bool LoopConstrainer::run() { 1406 BasicBlock *Preheader = nullptr; 1407 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1408 Preheader = OriginalLoop.getLoopPreheader(); 1409 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1410 "preconditions!"); 1411 1412 OriginalPreheader = Preheader; 1413 MainLoopPreheader = Preheader; 1414 1415 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1416 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1417 if (!MaybeSR.hasValue()) { 1418 LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n"); 1419 return false; 1420 } 1421 1422 SubRanges SR = MaybeSR.getValue(); 1423 bool Increasing = MainLoopStructure.IndVarIncreasing; 1424 IntegerType *IVTy = 1425 cast<IntegerType>(Range.getBegin()->getType()); 1426 1427 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1428 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1429 1430 // It would have been better to make `PreLoop' and `PostLoop' 1431 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1432 // constructor. 1433 ClonedLoop PreLoop, PostLoop; 1434 bool NeedsPreLoop = 1435 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1436 bool NeedsPostLoop = 1437 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1438 1439 Value *ExitPreLoopAt = nullptr; 1440 Value *ExitMainLoopAt = nullptr; 1441 const SCEVConstant *MinusOneS = 1442 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1443 1444 if (NeedsPreLoop) { 1445 const SCEV *ExitPreLoopAtSCEV = nullptr; 1446 1447 if (Increasing) 1448 ExitPreLoopAtSCEV = *SR.LowLimit; 1449 else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE, 1450 IsSignedPredicate)) 1451 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1452 else { 1453 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1454 << "preloop exit limit. HighLimit = " 1455 << *(*SR.HighLimit) << "\n"); 1456 return false; 1457 } 1458 1459 if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) { 1460 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1461 << " preloop exit limit " << *ExitPreLoopAtSCEV 1462 << " at block " << InsertPt->getParent()->getName() 1463 << "\n"); 1464 return false; 1465 } 1466 1467 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1468 ExitPreLoopAt->setName("exit.preloop.at"); 1469 } 1470 1471 if (NeedsPostLoop) { 1472 const SCEV *ExitMainLoopAtSCEV = nullptr; 1473 1474 if (Increasing) 1475 ExitMainLoopAtSCEV = *SR.HighLimit; 1476 else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE, 1477 IsSignedPredicate)) 1478 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1479 else { 1480 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1481 << "mainloop exit limit. LowLimit = " 1482 << *(*SR.LowLimit) << "\n"); 1483 return false; 1484 } 1485 1486 if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) { 1487 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1488 << " main loop exit limit " << *ExitMainLoopAtSCEV 1489 << " at block " << InsertPt->getParent()->getName() 1490 << "\n"); 1491 return false; 1492 } 1493 1494 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1495 ExitMainLoopAt->setName("exit.mainloop.at"); 1496 } 1497 1498 // We clone these ahead of time so that we don't have to deal with changing 1499 // and temporarily invalid IR as we transform the loops. 1500 if (NeedsPreLoop) 1501 cloneLoop(PreLoop, "preloop"); 1502 if (NeedsPostLoop) 1503 cloneLoop(PostLoop, "postloop"); 1504 1505 RewrittenRangeInfo PreLoopRRI; 1506 1507 if (NeedsPreLoop) { 1508 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1509 PreLoop.Structure.Header); 1510 1511 MainLoopPreheader = 1512 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1513 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1514 ExitPreLoopAt, MainLoopPreheader); 1515 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1516 PreLoopRRI); 1517 } 1518 1519 BasicBlock *PostLoopPreheader = nullptr; 1520 RewrittenRangeInfo PostLoopRRI; 1521 1522 if (NeedsPostLoop) { 1523 PostLoopPreheader = 1524 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1525 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1526 ExitMainLoopAt, PostLoopPreheader); 1527 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1528 PostLoopRRI); 1529 } 1530 1531 BasicBlock *NewMainLoopPreheader = 1532 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1533 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1534 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1535 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1536 1537 // Some of the above may be nullptr, filter them out before passing to 1538 // addToParentLoopIfNeeded. 1539 auto NewBlocksEnd = 1540 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1541 1542 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1543 1544 DT.recalculate(F); 1545 1546 // We need to first add all the pre and post loop blocks into the loop 1547 // structures (as part of createClonedLoopStructure), and then update the 1548 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1549 // LI when LoopSimplifyForm is generated. 1550 Loop *PreL = nullptr, *PostL = nullptr; 1551 if (!PreLoop.Blocks.empty()) { 1552 PreL = createClonedLoopStructure(&OriginalLoop, 1553 OriginalLoop.getParentLoop(), PreLoop.Map, 1554 /* IsSubLoop */ false); 1555 } 1556 1557 if (!PostLoop.Blocks.empty()) { 1558 PostL = 1559 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(), 1560 PostLoop.Map, /* IsSubLoop */ false); 1561 } 1562 1563 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1564 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1565 formLCSSARecursively(*L, DT, &LI, &SE); 1566 simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true); 1567 // Pre/post loops are slow paths, we do not need to perform any loop 1568 // optimizations on them. 1569 if (!IsOriginalLoop) 1570 DisableAllLoopOptsOnLoop(*L); 1571 }; 1572 if (PreL) 1573 CanonicalizeLoop(PreL, false); 1574 if (PostL) 1575 CanonicalizeLoop(PostL, false); 1576 CanonicalizeLoop(&OriginalLoop, true); 1577 1578 return true; 1579 } 1580 1581 /// Computes and returns a range of values for the induction variable (IndVar) 1582 /// in which the range check can be safely elided. If it cannot compute such a 1583 /// range, returns None. 1584 Optional<InductiveRangeCheck::Range> 1585 InductiveRangeCheck::computeSafeIterationSpace( 1586 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, 1587 bool IsLatchSigned) const { 1588 // We can deal when types of latch check and range checks don't match in case 1589 // if latch check is more narrow. 1590 auto *IVType = cast<IntegerType>(IndVar->getType()); 1591 auto *RCType = cast<IntegerType>(getBegin()->getType()); 1592 if (IVType->getBitWidth() > RCType->getBitWidth()) 1593 return None; 1594 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1595 // variable, that may or may not exist as a real llvm::Value in the loop) and 1596 // this inductive range check is a range check on the "C + D * I" ("C" is 1597 // getBegin() and "D" is getStep()). We rewrite the value being range 1598 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1599 // 1600 // The actual inequalities we solve are of the form 1601 // 1602 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1603 // 1604 // Here L stands for upper limit of the safe iteration space. 1605 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid 1606 // overflows when calculating (0 - M) and (L - M) we, depending on type of 1607 // IV's iteration space, limit the calculations by borders of the iteration 1608 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. 1609 // If we figured out that "anything greater than (-M) is safe", we strengthen 1610 // this to "everything greater than 0 is safe", assuming that values between 1611 // -M and 0 just do not exist in unsigned iteration space, and we don't want 1612 // to deal with overflown values. 1613 1614 if (!IndVar->isAffine()) 1615 return None; 1616 1617 const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned); 1618 const SCEVConstant *B = dyn_cast<SCEVConstant>( 1619 NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned)); 1620 if (!B) 1621 return None; 1622 assert(!B->isZero() && "Recurrence with zero step?"); 1623 1624 const SCEV *C = getBegin(); 1625 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep()); 1626 if (D != B) 1627 return None; 1628 1629 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1630 unsigned BitWidth = RCType->getBitWidth(); 1631 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1632 1633 // Subtract Y from X so that it does not go through border of the IV 1634 // iteration space. Mathematically, it is equivalent to: 1635 // 1636 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] 1637 // 1638 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to 1639 // any width of bit grid). But after we take min/max, the result is 1640 // guaranteed to be within [INT_MIN, INT_MAX]. 1641 // 1642 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min 1643 // values, depending on type of latch condition that defines IV iteration 1644 // space. 1645 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) { 1646 // FIXME: The current implementation assumes that X is in [0, SINT_MAX]. 1647 // This is required to ensure that SINT_MAX - X does not overflow signed and 1648 // that X - Y does not overflow unsigned if Y is negative. Can we lift this 1649 // restriction and make it work for negative X either? 1650 if (IsLatchSigned) { 1651 // X is a number from signed range, Y is interpreted as signed. 1652 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only 1653 // thing we should care about is that we didn't cross SINT_MAX. 1654 // So, if Y is positive, we subtract Y safely. 1655 // Rule 1: Y > 0 ---> Y. 1656 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely. 1657 // Rule 2: Y >=s (X - SINT_MAX) ---> Y. 1658 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX). 1659 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX). 1660 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases. 1661 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); 1662 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), 1663 SCEV::FlagNSW); 1664 } else 1665 // X is a number from unsigned range, Y is interpreted as signed. 1666 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only 1667 // thing we should care about is that we didn't cross zero. 1668 // So, if Y is negative, we subtract Y safely. 1669 // Rule 1: Y <s 0 ---> Y. 1670 // If 0 <= Y <= X, we subtract Y safely. 1671 // Rule 2: Y <=s X ---> Y. 1672 // If 0 <= X < Y, we should stop at 0 and can only subtract X. 1673 // Rule 3: Y >s X ---> X. 1674 // It gives us smin(X, Y) to subtract in all cases. 1675 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); 1676 }; 1677 const SCEV *M = SE.getMinusSCEV(C, A); 1678 const SCEV *Zero = SE.getZero(M->getType()); 1679 1680 // This function returns SCEV equal to 1 if X is non-negative 0 otherwise. 1681 auto SCEVCheckNonNegative = [&](const SCEV *X) { 1682 const Loop *L = IndVar->getLoop(); 1683 const SCEV *One = SE.getOne(X->getType()); 1684 // Can we trivially prove that X is a non-negative or negative value? 1685 if (isKnownNonNegativeInLoop(X, L, SE)) 1686 return One; 1687 else if (isKnownNegativeInLoop(X, L, SE)) 1688 return Zero; 1689 // If not, we will have to figure it out during the execution. 1690 // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0. 1691 const SCEV *NegOne = SE.getNegativeSCEV(One); 1692 return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One); 1693 }; 1694 // FIXME: Current implementation of ClampedSubtract implicitly assumes that 1695 // X is non-negative (in sense of a signed value). We need to re-implement 1696 // this function in a way that it will correctly handle negative X as well. 1697 // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can 1698 // end up with a negative X and produce wrong results. So currently we ensure 1699 // that if getEnd() is negative then both ends of the safe range are zero. 1700 // Note that this may pessimize elimination of unsigned range checks against 1701 // negative values. 1702 const SCEV *REnd = getEnd(); 1703 const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd); 1704 1705 const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative); 1706 const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative); 1707 return InductiveRangeCheck::Range(Begin, End); 1708 } 1709 1710 static Optional<InductiveRangeCheck::Range> 1711 IntersectSignedRange(ScalarEvolution &SE, 1712 const Optional<InductiveRangeCheck::Range> &R1, 1713 const InductiveRangeCheck::Range &R2) { 1714 if (R2.isEmpty(SE, /* IsSigned */ true)) 1715 return None; 1716 if (!R1.hasValue()) 1717 return R2; 1718 auto &R1Value = R1.getValue(); 1719 // We never return empty ranges from this function, and R1 is supposed to be 1720 // a result of intersection. Thus, R1 is never empty. 1721 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && 1722 "We should never have empty R1!"); 1723 1724 // TODO: we could widen the smaller range and have this work; but for now we 1725 // bail out to keep things simple. 1726 if (R1Value.getType() != R2.getType()) 1727 return None; 1728 1729 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1730 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1731 1732 // If the resulting range is empty, just return None. 1733 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1734 if (Ret.isEmpty(SE, /* IsSigned */ true)) 1735 return None; 1736 return Ret; 1737 } 1738 1739 static Optional<InductiveRangeCheck::Range> 1740 IntersectUnsignedRange(ScalarEvolution &SE, 1741 const Optional<InductiveRangeCheck::Range> &R1, 1742 const InductiveRangeCheck::Range &R2) { 1743 if (R2.isEmpty(SE, /* IsSigned */ false)) 1744 return None; 1745 if (!R1.hasValue()) 1746 return R2; 1747 auto &R1Value = R1.getValue(); 1748 // We never return empty ranges from this function, and R1 is supposed to be 1749 // a result of intersection. Thus, R1 is never empty. 1750 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && 1751 "We should never have empty R1!"); 1752 1753 // TODO: we could widen the smaller range and have this work; but for now we 1754 // bail out to keep things simple. 1755 if (R1Value.getType() != R2.getType()) 1756 return None; 1757 1758 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); 1759 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); 1760 1761 // If the resulting range is empty, just return None. 1762 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1763 if (Ret.isEmpty(SE, /* IsSigned */ false)) 1764 return None; 1765 return Ret; 1766 } 1767 1768 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) { 1769 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1770 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1771 auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F); 1772 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1773 1774 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI); 1775 1776 bool Changed = false; 1777 1778 for (const auto &L : LI) { 1779 Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, 1780 /*PreserveLCSSA=*/false); 1781 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1782 } 1783 1784 SmallPriorityWorklist<Loop *, 4> Worklist; 1785 appendLoopsToWorklist(LI, Worklist); 1786 auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) { 1787 if (!IsSubloop) 1788 appendLoopsToWorklist(*NL, Worklist); 1789 }; 1790 1791 while (!Worklist.empty()) { 1792 Loop *L = Worklist.pop_back_val(); 1793 Changed |= IRCE.run(L, LPMAddNewLoop); 1794 } 1795 1796 if (!Changed) 1797 return PreservedAnalyses::all(); 1798 return getLoopPassPreservedAnalyses(); 1799 } 1800 1801 bool IRCELegacyPass::runOnFunction(Function &F) { 1802 if (skipFunction(F)) 1803 return false; 1804 1805 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1806 BranchProbabilityInfo &BPI = 1807 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1808 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1809 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1810 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI); 1811 1812 bool Changed = false; 1813 1814 for (const auto &L : LI) { 1815 Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, 1816 /*PreserveLCSSA=*/false); 1817 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1818 } 1819 1820 SmallPriorityWorklist<Loop *, 4> Worklist; 1821 appendLoopsToWorklist(LI, Worklist); 1822 auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) { 1823 if (!IsSubloop) 1824 appendLoopsToWorklist(*NL, Worklist); 1825 }; 1826 1827 while (!Worklist.empty()) { 1828 Loop *L = Worklist.pop_back_val(); 1829 Changed |= IRCE.run(L, LPMAddNewLoop); 1830 } 1831 return Changed; 1832 } 1833 1834 bool InductiveRangeCheckElimination::run( 1835 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) { 1836 if (L->getBlocks().size() >= LoopSizeCutoff) { 1837 LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n"); 1838 return false; 1839 } 1840 1841 BasicBlock *Preheader = L->getLoopPreheader(); 1842 if (!Preheader) { 1843 LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1844 return false; 1845 } 1846 1847 LLVMContext &Context = Preheader->getContext(); 1848 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1849 1850 for (auto BBI : L->getBlocks()) 1851 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1852 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1853 RangeChecks); 1854 1855 if (RangeChecks.empty()) 1856 return false; 1857 1858 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1859 OS << "irce: looking at loop "; L->print(OS); 1860 OS << "irce: loop has " << RangeChecks.size() 1861 << " inductive range checks: \n"; 1862 for (InductiveRangeCheck &IRC : RangeChecks) 1863 IRC.print(OS); 1864 }; 1865 1866 LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs())); 1867 1868 if (PrintRangeChecks) 1869 PrintRecognizedRangeChecks(errs()); 1870 1871 const char *FailureReason = nullptr; 1872 Optional<LoopStructure> MaybeLoopStructure = 1873 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1874 if (!MaybeLoopStructure.hasValue()) { 1875 LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: " 1876 << FailureReason << "\n";); 1877 return false; 1878 } 1879 LoopStructure LS = MaybeLoopStructure.getValue(); 1880 const SCEVAddRecExpr *IndVar = 1881 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1882 1883 Optional<InductiveRangeCheck::Range> SafeIterRange; 1884 Instruction *ExprInsertPt = Preheader->getTerminator(); 1885 1886 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1887 // Basing on the type of latch predicate, we interpret the IV iteration range 1888 // as signed or unsigned range. We use different min/max functions (signed or 1889 // unsigned) when intersecting this range with safe iteration ranges implied 1890 // by range checks. 1891 auto IntersectRange = 1892 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; 1893 1894 IRBuilder<> B(ExprInsertPt); 1895 for (InductiveRangeCheck &IRC : RangeChecks) { 1896 auto Result = IRC.computeSafeIterationSpace(SE, IndVar, 1897 LS.IsSignedPredicate); 1898 if (Result.hasValue()) { 1899 auto MaybeSafeIterRange = 1900 IntersectRange(SE, SafeIterRange, Result.getValue()); 1901 if (MaybeSafeIterRange.hasValue()) { 1902 assert( 1903 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) && 1904 "We should never return empty ranges!"); 1905 RangeChecksToEliminate.push_back(IRC); 1906 SafeIterRange = MaybeSafeIterRange.getValue(); 1907 } 1908 } 1909 } 1910 1911 if (!SafeIterRange.hasValue()) 1912 return false; 1913 1914 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, 1915 SafeIterRange.getValue()); 1916 bool Changed = LC.run(); 1917 1918 if (Changed) { 1919 auto PrintConstrainedLoopInfo = [L]() { 1920 dbgs() << "irce: in function "; 1921 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1922 dbgs() << "constrained "; 1923 L->print(dbgs()); 1924 }; 1925 1926 LLVM_DEBUG(PrintConstrainedLoopInfo()); 1927 1928 if (PrintChangedLoops) 1929 PrintConstrainedLoopInfo(); 1930 1931 // Optimize away the now-redundant range checks. 1932 1933 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1934 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1935 ? ConstantInt::getTrue(Context) 1936 : ConstantInt::getFalse(Context); 1937 IRC.getCheckUse()->set(FoldedRangeCheck); 1938 } 1939 } 1940 1941 return Changed; 1942 } 1943 1944 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1945 return new IRCELegacyPass(); 1946 } 1947