1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 11 // three disjoint ranges. It does that in a way such that the loop running in 12 // the middle loop provably does not need range checks. As an example, it will 13 // convert 14 // 15 // len = < known positive > 16 // for (i = 0; i < n; i++) { 17 // if (0 <= i && i < len) { 18 // do_something(); 19 // } else { 20 // throw_out_of_bounds(); 21 // } 22 // } 23 // 24 // to 25 // 26 // len = < known positive > 27 // limit = smin(n, len) 28 // // no first segment 29 // for (i = 0; i < limit; i++) { 30 // if (0 <= i && i < len) { // this check is fully redundant 31 // do_something(); 32 // } else { 33 // throw_out_of_bounds(); 34 // } 35 // } 36 // for (i = limit; i < n; i++) { 37 // if (0 <= i && i < len) { 38 // do_something(); 39 // } else { 40 // throw_out_of_bounds(); 41 // } 42 // } 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" 47 #include "llvm/ADT/APInt.h" 48 #include "llvm/ADT/ArrayRef.h" 49 #include "llvm/ADT/None.h" 50 #include "llvm/ADT/Optional.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/ADT/StringRef.h" 54 #include "llvm/ADT/Twine.h" 55 #include "llvm/Analysis/BranchProbabilityInfo.h" 56 #include "llvm/Analysis/LoopAnalysisManager.h" 57 #include "llvm/Analysis/LoopInfo.h" 58 #include "llvm/Analysis/LoopPass.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpander.h" 61 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DerivedTypes.h" 66 #include "llvm/IR/Dominators.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/IRBuilder.h" 69 #include "llvm/IR/InstrTypes.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/Metadata.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/PatternMatch.h" 74 #include "llvm/IR/Type.h" 75 #include "llvm/IR/Use.h" 76 #include "llvm/IR/User.h" 77 #include "llvm/IR/Value.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Scalar.h" 87 #include "llvm/Transforms/Utils/Cloning.h" 88 #include "llvm/Transforms/Utils/LoopSimplify.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Utils/ValueMapper.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <iterator> 94 #include <limits> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 using namespace llvm::PatternMatch; 100 101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 102 cl::init(64)); 103 104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 105 cl::init(false)); 106 107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 108 cl::init(false)); 109 110 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 111 cl::Hidden, cl::init(10)); 112 113 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 114 cl::Hidden, cl::init(false)); 115 116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", 117 cl::Hidden, cl::init(true)); 118 119 static const char *ClonedLoopTag = "irce.loop.clone"; 120 121 #define DEBUG_TYPE "irce" 122 123 namespace { 124 125 /// An inductive range check is conditional branch in a loop with 126 /// 127 /// 1. a very cold successor (i.e. the branch jumps to that successor very 128 /// rarely) 129 /// 130 /// and 131 /// 132 /// 2. a condition that is provably true for some contiguous range of values 133 /// taken by the containing loop's induction variable. 134 /// 135 class InductiveRangeCheck { 136 // Classifies a range check 137 enum RangeCheckKind : unsigned { 138 // Range check of the form "0 <= I". 139 RANGE_CHECK_LOWER = 1, 140 141 // Range check of the form "I < L" where L is known positive. 142 RANGE_CHECK_UPPER = 2, 143 144 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 145 // conditions. 146 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 147 148 // Unrecognized range check condition. 149 RANGE_CHECK_UNKNOWN = (unsigned)-1 150 }; 151 152 static StringRef rangeCheckKindToStr(RangeCheckKind); 153 154 const SCEV *Begin = nullptr; 155 const SCEV *Step = nullptr; 156 const SCEV *End = nullptr; 157 Use *CheckUse = nullptr; 158 RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; 159 bool IsSigned = true; 160 161 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 162 ScalarEvolution &SE, Value *&Index, 163 Value *&Length, bool &IsSigned); 164 165 static void 166 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 167 SmallVectorImpl<InductiveRangeCheck> &Checks, 168 SmallPtrSetImpl<Value *> &Visited); 169 170 public: 171 const SCEV *getBegin() const { return Begin; } 172 const SCEV *getStep() const { return Step; } 173 const SCEV *getEnd() const { return End; } 174 bool isSigned() const { return IsSigned; } 175 176 void print(raw_ostream &OS) const { 177 OS << "InductiveRangeCheck:\n"; 178 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 179 OS << " Begin: "; 180 Begin->print(OS); 181 OS << " Step: "; 182 Step->print(OS); 183 OS << " End: "; 184 End->print(OS); 185 OS << "\n CheckUse: "; 186 getCheckUse()->getUser()->print(OS); 187 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 188 } 189 190 LLVM_DUMP_METHOD 191 void dump() { 192 print(dbgs()); 193 } 194 195 Use *getCheckUse() const { return CheckUse; } 196 197 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 198 /// R.getEnd() le R.getBegin(), then R denotes the empty range. 199 200 class Range { 201 const SCEV *Begin; 202 const SCEV *End; 203 204 public: 205 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 206 assert(Begin->getType() == End->getType() && "ill-typed range!"); 207 } 208 209 Type *getType() const { return Begin->getType(); } 210 const SCEV *getBegin() const { return Begin; } 211 const SCEV *getEnd() const { return End; } 212 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { 213 if (Begin == End) 214 return true; 215 if (IsSigned) 216 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); 217 else 218 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); 219 } 220 }; 221 222 /// This is the value the condition of the branch needs to evaluate to for the 223 /// branch to take the hot successor (see (1) above). 224 bool getPassingDirection() { return true; } 225 226 /// Computes a range for the induction variable (IndVar) in which the range 227 /// check is redundant and can be constant-folded away. The induction 228 /// variable is not required to be the canonical {0,+,1} induction variable. 229 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 230 const SCEVAddRecExpr *IndVar, 231 bool IsLatchSigned) const; 232 233 /// Parse out a set of inductive range checks from \p BI and append them to \p 234 /// Checks. 235 /// 236 /// NB! There may be conditions feeding into \p BI that aren't inductive range 237 /// checks, and hence don't end up in \p Checks. 238 static void 239 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 240 BranchProbabilityInfo *BPI, 241 SmallVectorImpl<InductiveRangeCheck> &Checks); 242 }; 243 244 class InductiveRangeCheckElimination { 245 ScalarEvolution &SE; 246 BranchProbabilityInfo *BPI; 247 DominatorTree &DT; 248 LoopInfo &LI; 249 250 public: 251 InductiveRangeCheckElimination(ScalarEvolution &SE, 252 BranchProbabilityInfo *BPI, DominatorTree &DT, 253 LoopInfo &LI) 254 : SE(SE), BPI(BPI), DT(DT), LI(LI) {} 255 256 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop); 257 }; 258 259 class IRCELegacyPass : public LoopPass { 260 public: 261 static char ID; 262 263 IRCELegacyPass() : LoopPass(ID) { 264 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry()); 265 } 266 267 void getAnalysisUsage(AnalysisUsage &AU) const override { 268 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 269 getLoopAnalysisUsage(AU); 270 } 271 272 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 273 }; 274 275 } // end anonymous namespace 276 277 char IRCELegacyPass::ID = 0; 278 279 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce", 280 "Inductive range check elimination", false, false) 281 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 282 INITIALIZE_PASS_DEPENDENCY(LoopPass) 283 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination", 284 false, false) 285 286 StringRef InductiveRangeCheck::rangeCheckKindToStr( 287 InductiveRangeCheck::RangeCheckKind RCK) { 288 switch (RCK) { 289 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 290 return "RANGE_CHECK_UNKNOWN"; 291 292 case InductiveRangeCheck::RANGE_CHECK_UPPER: 293 return "RANGE_CHECK_UPPER"; 294 295 case InductiveRangeCheck::RANGE_CHECK_LOWER: 296 return "RANGE_CHECK_LOWER"; 297 298 case InductiveRangeCheck::RANGE_CHECK_BOTH: 299 return "RANGE_CHECK_BOTH"; 300 } 301 302 llvm_unreachable("unknown range check type!"); 303 } 304 305 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 306 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 307 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 308 /// range checked, and set `Length` to the upper limit `Index` is being range 309 /// checked with if (and only if) the range check type is stronger or equal to 310 /// RANGE_CHECK_UPPER. 311 InductiveRangeCheck::RangeCheckKind 312 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 313 ScalarEvolution &SE, Value *&Index, 314 Value *&Length, bool &IsSigned) { 315 auto IsLoopInvariant = [&SE, L](Value *V) { 316 return SE.isLoopInvariant(SE.getSCEV(V), L); 317 }; 318 319 ICmpInst::Predicate Pred = ICI->getPredicate(); 320 Value *LHS = ICI->getOperand(0); 321 Value *RHS = ICI->getOperand(1); 322 323 switch (Pred) { 324 default: 325 return RANGE_CHECK_UNKNOWN; 326 327 case ICmpInst::ICMP_SLE: 328 std::swap(LHS, RHS); 329 LLVM_FALLTHROUGH; 330 case ICmpInst::ICMP_SGE: 331 IsSigned = true; 332 if (match(RHS, m_ConstantInt<0>())) { 333 Index = LHS; 334 return RANGE_CHECK_LOWER; 335 } 336 return RANGE_CHECK_UNKNOWN; 337 338 case ICmpInst::ICMP_SLT: 339 std::swap(LHS, RHS); 340 LLVM_FALLTHROUGH; 341 case ICmpInst::ICMP_SGT: 342 IsSigned = true; 343 if (match(RHS, m_ConstantInt<-1>())) { 344 Index = LHS; 345 return RANGE_CHECK_LOWER; 346 } 347 348 if (IsLoopInvariant(LHS)) { 349 Index = RHS; 350 Length = LHS; 351 return RANGE_CHECK_UPPER; 352 } 353 return RANGE_CHECK_UNKNOWN; 354 355 case ICmpInst::ICMP_ULT: 356 std::swap(LHS, RHS); 357 LLVM_FALLTHROUGH; 358 case ICmpInst::ICMP_UGT: 359 IsSigned = false; 360 if (IsLoopInvariant(LHS)) { 361 Index = RHS; 362 Length = LHS; 363 return RANGE_CHECK_BOTH; 364 } 365 return RANGE_CHECK_UNKNOWN; 366 } 367 368 llvm_unreachable("default clause returns!"); 369 } 370 371 void InductiveRangeCheck::extractRangeChecksFromCond( 372 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 373 SmallVectorImpl<InductiveRangeCheck> &Checks, 374 SmallPtrSetImpl<Value *> &Visited) { 375 Value *Condition = ConditionUse.get(); 376 if (!Visited.insert(Condition).second) 377 return; 378 379 // TODO: Do the same for OR, XOR, NOT etc? 380 if (match(Condition, m_And(m_Value(), m_Value()))) { 381 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 382 Checks, Visited); 383 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 384 Checks, Visited); 385 return; 386 } 387 388 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 389 if (!ICI) 390 return; 391 392 Value *Length = nullptr, *Index; 393 bool IsSigned; 394 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned); 395 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 396 return; 397 398 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 399 bool IsAffineIndex = 400 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 401 402 if (!IsAffineIndex) 403 return; 404 405 const SCEV *End = nullptr; 406 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 407 // We can potentially do much better here. 408 if (Length) 409 End = SE.getSCEV(Length); 410 else { 411 assert(RCKind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 412 // So far we can only reach this point for Signed range check. This may 413 // change in future. In this case we will need to pick Unsigned max for the 414 // unsigned range check. 415 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth(); 416 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 417 End = SIntMax; 418 } 419 420 InductiveRangeCheck IRC; 421 IRC.End = End; 422 IRC.Begin = IndexAddRec->getStart(); 423 IRC.Step = IndexAddRec->getStepRecurrence(SE); 424 IRC.CheckUse = &ConditionUse; 425 IRC.Kind = RCKind; 426 IRC.IsSigned = IsSigned; 427 Checks.push_back(IRC); 428 } 429 430 void InductiveRangeCheck::extractRangeChecksFromBranch( 431 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, 432 SmallVectorImpl<InductiveRangeCheck> &Checks) { 433 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 434 return; 435 436 BranchProbability LikelyTaken(15, 16); 437 438 if (!SkipProfitabilityChecks && BPI && 439 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 440 return; 441 442 SmallPtrSet<Value *, 8> Visited; 443 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 444 Checks, Visited); 445 } 446 447 // Add metadata to the loop L to disable loop optimizations. Callers need to 448 // confirm that optimizing loop L is not beneficial. 449 static void DisableAllLoopOptsOnLoop(Loop &L) { 450 // We do not care about any existing loopID related metadata for L, since we 451 // are setting all loop metadata to false. 452 LLVMContext &Context = L.getHeader()->getContext(); 453 // Reserve first location for self reference to the LoopID metadata node. 454 MDNode *Dummy = MDNode::get(Context, {}); 455 MDNode *DisableUnroll = MDNode::get( 456 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 457 Metadata *FalseVal = 458 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 459 MDNode *DisableVectorize = MDNode::get( 460 Context, 461 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 462 MDNode *DisableLICMVersioning = MDNode::get( 463 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 464 MDNode *DisableDistribution= MDNode::get( 465 Context, 466 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 467 MDNode *NewLoopID = 468 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 469 DisableLICMVersioning, DisableDistribution}); 470 // Set operand 0 to refer to the loop id itself. 471 NewLoopID->replaceOperandWith(0, NewLoopID); 472 L.setLoopID(NewLoopID); 473 } 474 475 namespace { 476 477 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 478 // except that it is more lightweight and can track the state of a loop through 479 // changing and potentially invalid IR. This structure also formalizes the 480 // kinds of loops we can deal with -- ones that have a single latch that is also 481 // an exiting block *and* have a canonical induction variable. 482 struct LoopStructure { 483 const char *Tag = ""; 484 485 BasicBlock *Header = nullptr; 486 BasicBlock *Latch = nullptr; 487 488 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 489 // successor is `LatchExit', the exit block of the loop. 490 BranchInst *LatchBr = nullptr; 491 BasicBlock *LatchExit = nullptr; 492 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max(); 493 494 // The loop represented by this instance of LoopStructure is semantically 495 // equivalent to: 496 // 497 // intN_ty inc = IndVarIncreasing ? 1 : -1; 498 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 499 // 500 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 501 // ... body ... 502 503 Value *IndVarBase = nullptr; 504 Value *IndVarStart = nullptr; 505 Value *IndVarStep = nullptr; 506 Value *LoopExitAt = nullptr; 507 bool IndVarIncreasing = false; 508 bool IsSignedPredicate = true; 509 510 LoopStructure() = default; 511 512 template <typename M> LoopStructure map(M Map) const { 513 LoopStructure Result; 514 Result.Tag = Tag; 515 Result.Header = cast<BasicBlock>(Map(Header)); 516 Result.Latch = cast<BasicBlock>(Map(Latch)); 517 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 518 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 519 Result.LatchBrExitIdx = LatchBrExitIdx; 520 Result.IndVarBase = Map(IndVarBase); 521 Result.IndVarStart = Map(IndVarStart); 522 Result.IndVarStep = Map(IndVarStep); 523 Result.LoopExitAt = Map(LoopExitAt); 524 Result.IndVarIncreasing = IndVarIncreasing; 525 Result.IsSignedPredicate = IsSignedPredicate; 526 return Result; 527 } 528 529 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 530 BranchProbabilityInfo *BPI, 531 Loop &, const char *&); 532 }; 533 534 /// This class is used to constrain loops to run within a given iteration space. 535 /// The algorithm this class implements is given a Loop and a range [Begin, 536 /// End). The algorithm then tries to break out a "main loop" out of the loop 537 /// it is given in a way that the "main loop" runs with the induction variable 538 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 539 /// loops to run any remaining iterations. The pre loop runs any iterations in 540 /// which the induction variable is < Begin, and the post loop runs any 541 /// iterations in which the induction variable is >= End. 542 class LoopConstrainer { 543 // The representation of a clone of the original loop we started out with. 544 struct ClonedLoop { 545 // The cloned blocks 546 std::vector<BasicBlock *> Blocks; 547 548 // `Map` maps values in the clonee into values in the cloned version 549 ValueToValueMapTy Map; 550 551 // An instance of `LoopStructure` for the cloned loop 552 LoopStructure Structure; 553 }; 554 555 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 556 // more details on what these fields mean. 557 struct RewrittenRangeInfo { 558 BasicBlock *PseudoExit = nullptr; 559 BasicBlock *ExitSelector = nullptr; 560 std::vector<PHINode *> PHIValuesAtPseudoExit; 561 PHINode *IndVarEnd = nullptr; 562 563 RewrittenRangeInfo() = default; 564 }; 565 566 // Calculated subranges we restrict the iteration space of the main loop to. 567 // See the implementation of `calculateSubRanges' for more details on how 568 // these fields are computed. `LowLimit` is None if there is no restriction 569 // on low end of the restricted iteration space of the main loop. `HighLimit` 570 // is None if there is no restriction on high end of the restricted iteration 571 // space of the main loop. 572 573 struct SubRanges { 574 Optional<const SCEV *> LowLimit; 575 Optional<const SCEV *> HighLimit; 576 }; 577 578 // A utility function that does a `replaceUsesOfWith' on the incoming block 579 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 580 // incoming block list with `ReplaceBy'. 581 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 582 BasicBlock *ReplaceBy); 583 584 // Compute a safe set of limits for the main loop to run in -- effectively the 585 // intersection of `Range' and the iteration space of the original loop. 586 // Return None if unable to compute the set of subranges. 587 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 588 589 // Clone `OriginalLoop' and return the result in CLResult. The IR after 590 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 591 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 592 // but there is no such edge. 593 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 594 595 // Create the appropriate loop structure needed to describe a cloned copy of 596 // `Original`. The clone is described by `VM`. 597 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 598 ValueToValueMapTy &VM, bool IsSubloop); 599 600 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 601 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 602 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 603 // `OriginalHeaderCount'. 604 // 605 // If there are iterations left to execute, control is made to jump to 606 // `ContinuationBlock', otherwise they take the normal loop exit. The 607 // returned `RewrittenRangeInfo' object is populated as follows: 608 // 609 // .PseudoExit is a basic block that unconditionally branches to 610 // `ContinuationBlock'. 611 // 612 // .ExitSelector is a basic block that decides, on exit from the loop, 613 // whether to branch to the "true" exit or to `PseudoExit'. 614 // 615 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 616 // for each PHINode in the loop header on taking the pseudo exit. 617 // 618 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 619 // preheader because it is made to branch to the loop header only 620 // conditionally. 621 RewrittenRangeInfo 622 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 623 Value *ExitLoopAt, 624 BasicBlock *ContinuationBlock) const; 625 626 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 627 // function creates a new preheader for `LS' and returns it. 628 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 629 const char *Tag) const; 630 631 // `ContinuationBlockAndPreheader' was the continuation block for some call to 632 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 633 // This function rewrites the PHI nodes in `LS.Header' to start with the 634 // correct value. 635 void rewriteIncomingValuesForPHIs( 636 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 637 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 638 639 // Even though we do not preserve any passes at this time, we at least need to 640 // keep the parent loop structure consistent. The `LPPassManager' seems to 641 // verify this after running a loop pass. This function adds the list of 642 // blocks denoted by BBs to this loops parent loop if required. 643 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 644 645 // Some global state. 646 Function &F; 647 LLVMContext &Ctx; 648 ScalarEvolution &SE; 649 DominatorTree &DT; 650 LoopInfo &LI; 651 function_ref<void(Loop *, bool)> LPMAddNewLoop; 652 653 // Information about the original loop we started out with. 654 Loop &OriginalLoop; 655 656 const SCEV *LatchTakenCount = nullptr; 657 BasicBlock *OriginalPreheader = nullptr; 658 659 // The preheader of the main loop. This may or may not be different from 660 // `OriginalPreheader'. 661 BasicBlock *MainLoopPreheader = nullptr; 662 663 // The range we need to run the main loop in. 664 InductiveRangeCheck::Range Range; 665 666 // The structure of the main loop (see comment at the beginning of this class 667 // for a definition) 668 LoopStructure MainLoopStructure; 669 670 public: 671 LoopConstrainer(Loop &L, LoopInfo &LI, 672 function_ref<void(Loop *, bool)> LPMAddNewLoop, 673 const LoopStructure &LS, ScalarEvolution &SE, 674 DominatorTree &DT, InductiveRangeCheck::Range R) 675 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 676 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), 677 Range(R), MainLoopStructure(LS) {} 678 679 // Entry point for the algorithm. Returns true on success. 680 bool run(); 681 }; 682 683 } // end anonymous namespace 684 685 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 686 BasicBlock *ReplaceBy) { 687 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 688 if (PN->getIncomingBlock(i) == Block) 689 PN->setIncomingBlock(i, ReplaceBy); 690 } 691 692 static bool CannotBeMaxInLoop(const SCEV *BoundSCEV, Loop *L, 693 ScalarEvolution &SE, bool Signed) { 694 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 695 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 696 APInt::getMaxValue(BitWidth); 697 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 698 return SE.isAvailableAtLoopEntry(BoundSCEV, L) && 699 SE.isLoopEntryGuardedByCond(L, Predicate, BoundSCEV, 700 SE.getConstant(Max)); 701 } 702 703 /// Given a loop with an deccreasing induction variable, is it possible to 704 /// safely calculate the bounds of a new loop using the given Predicate. 705 static bool isSafeDecreasingBound(const SCEV *Start, 706 const SCEV *BoundSCEV, const SCEV *Step, 707 ICmpInst::Predicate Pred, 708 unsigned LatchBrExitIdx, 709 Loop *L, ScalarEvolution &SE) { 710 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 711 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 712 return false; 713 714 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 715 return false; 716 717 assert(SE.isKnownNegative(Step) && "expecting negative step"); 718 719 DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n"); 720 DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 721 DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 722 DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 723 DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) << "\n"); 724 DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 725 726 bool IsSigned = ICmpInst::isSigned(Pred); 727 // The predicate that we need to check that the induction variable lies 728 // within bounds. 729 ICmpInst::Predicate BoundPred = 730 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 731 732 if (LatchBrExitIdx == 1) 733 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 734 735 assert(LatchBrExitIdx == 0 && 736 "LatchBrExitIdx should be either 0 or 1"); 737 738 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 739 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 740 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) : 741 APInt::getMinValue(BitWidth); 742 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne); 743 744 const SCEV *MinusOne = 745 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType())); 746 747 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) && 748 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit); 749 750 } 751 752 /// Given a loop with an increasing induction variable, is it possible to 753 /// safely calculate the bounds of a new loop using the given Predicate. 754 static bool isSafeIncreasingBound(const SCEV *Start, 755 const SCEV *BoundSCEV, const SCEV *Step, 756 ICmpInst::Predicate Pred, 757 unsigned LatchBrExitIdx, 758 Loop *L, ScalarEvolution &SE) { 759 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 760 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 761 return false; 762 763 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 764 return false; 765 766 DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n"); 767 DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 768 DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 769 DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 770 DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) << "\n"); 771 DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 772 773 bool IsSigned = ICmpInst::isSigned(Pred); 774 // The predicate that we need to check that the induction variable lies 775 // within bounds. 776 ICmpInst::Predicate BoundPred = 777 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 778 779 if (LatchBrExitIdx == 1) 780 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 781 782 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1"); 783 784 const SCEV *StepMinusOne = 785 SE.getMinusSCEV(Step, SE.getOne(Step->getType())); 786 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 787 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) : 788 APInt::getMaxValue(BitWidth); 789 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne); 790 791 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start, 792 SE.getAddExpr(BoundSCEV, Step)) && 793 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit)); 794 } 795 796 static bool CannotBeMinInLoop(const SCEV *BoundSCEV, Loop *L, 797 ScalarEvolution &SE, bool Signed) { 798 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 799 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 800 APInt::getMinValue(BitWidth); 801 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 802 return SE.isAvailableAtLoopEntry(BoundSCEV, L) && 803 SE.isLoopEntryGuardedByCond(L, Predicate, BoundSCEV, 804 SE.getConstant(Min)); 805 } 806 807 Optional<LoopStructure> 808 LoopStructure::parseLoopStructure(ScalarEvolution &SE, 809 BranchProbabilityInfo *BPI, Loop &L, 810 const char *&FailureReason) { 811 if (!L.isLoopSimplifyForm()) { 812 FailureReason = "loop not in LoopSimplify form"; 813 return None; 814 } 815 816 BasicBlock *Latch = L.getLoopLatch(); 817 assert(Latch && "Simplified loops only have one latch!"); 818 819 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 820 FailureReason = "loop has already been cloned"; 821 return None; 822 } 823 824 if (!L.isLoopExiting(Latch)) { 825 FailureReason = "no loop latch"; 826 return None; 827 } 828 829 BasicBlock *Header = L.getHeader(); 830 BasicBlock *Preheader = L.getLoopPreheader(); 831 if (!Preheader) { 832 FailureReason = "no preheader"; 833 return None; 834 } 835 836 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 837 if (!LatchBr || LatchBr->isUnconditional()) { 838 FailureReason = "latch terminator not conditional branch"; 839 return None; 840 } 841 842 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 843 844 BranchProbability ExitProbability = 845 BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx) 846 : BranchProbability::getZero(); 847 848 if (!SkipProfitabilityChecks && 849 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 850 FailureReason = "short running loop, not profitable"; 851 return None; 852 } 853 854 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 855 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 856 FailureReason = "latch terminator branch not conditional on integral icmp"; 857 return None; 858 } 859 860 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 861 if (isa<SCEVCouldNotCompute>(LatchCount)) { 862 FailureReason = "could not compute latch count"; 863 return None; 864 } 865 866 ICmpInst::Predicate Pred = ICI->getPredicate(); 867 Value *LeftValue = ICI->getOperand(0); 868 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 869 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 870 871 Value *RightValue = ICI->getOperand(1); 872 const SCEV *RightSCEV = SE.getSCEV(RightValue); 873 874 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 875 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 876 if (isa<SCEVAddRecExpr>(RightSCEV)) { 877 std::swap(LeftSCEV, RightSCEV); 878 std::swap(LeftValue, RightValue); 879 Pred = ICmpInst::getSwappedPredicate(Pred); 880 } else { 881 FailureReason = "no add recurrences in the icmp"; 882 return None; 883 } 884 } 885 886 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 887 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 888 return true; 889 890 IntegerType *Ty = cast<IntegerType>(AR->getType()); 891 IntegerType *WideTy = 892 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 893 894 const SCEVAddRecExpr *ExtendAfterOp = 895 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 896 if (ExtendAfterOp) { 897 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 898 const SCEV *ExtendedStep = 899 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 900 901 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 902 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 903 904 if (NoSignedWrap) 905 return true; 906 } 907 908 // We may have proved this when computing the sign extension above. 909 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 910 }; 911 912 // Here we check whether the suggested AddRec is an induction variable that 913 // can be handled (i.e. with known constant step), and if yes, calculate its 914 // step and identify whether it is increasing or decreasing. 915 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing, 916 ConstantInt *&StepCI) { 917 if (!AR->isAffine()) 918 return false; 919 920 // Currently we only work with induction variables that have been proved to 921 // not wrap. This restriction can potentially be lifted in the future. 922 923 if (!HasNoSignedWrap(AR)) 924 return false; 925 926 if (const SCEVConstant *StepExpr = 927 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 928 StepCI = StepExpr->getValue(); 929 assert(!StepCI->isZero() && "Zero step?"); 930 IsIncreasing = !StepCI->isNegative(); 931 return true; 932 } 933 934 return false; 935 }; 936 937 // `ICI` is interpreted as taking the backedge if the *next* value of the 938 // induction variable satisfies some constraint. 939 940 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 941 bool IsIncreasing = false; 942 bool IsSignedPredicate = true; 943 ConstantInt *StepCI; 944 if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) { 945 FailureReason = "LHS in icmp not induction variable"; 946 return None; 947 } 948 949 const SCEV *StartNext = IndVarBase->getStart(); 950 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 951 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 952 const SCEV *Step = SE.getSCEV(StepCI); 953 954 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 955 if (IsIncreasing) { 956 bool DecreasedRightValueByOne = false; 957 if (StepCI->isOne()) { 958 // Try to turn eq/ne predicates to those we can work with. 959 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 960 // while (++i != len) { while (++i < len) { 961 // ... ---> ... 962 // } } 963 // If both parts are known non-negative, it is profitable to use 964 // unsigned comparison in increasing loop. This allows us to make the 965 // comparison check against "RightSCEV + 1" more optimistic. 966 if (SE.isKnownNonNegative(IndVarStart) && 967 SE.isKnownNonNegative(RightSCEV)) 968 Pred = ICmpInst::ICMP_ULT; 969 else 970 Pred = ICmpInst::ICMP_SLT; 971 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 972 // while (true) { while (true) { 973 // if (++i == len) ---> if (++i > len - 1) 974 // break; break; 975 // ... ... 976 // } } 977 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 978 CannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) { 979 Pred = ICmpInst::ICMP_UGT; 980 RightSCEV = SE.getMinusSCEV(RightSCEV, 981 SE.getOne(RightSCEV->getType())); 982 DecreasedRightValueByOne = true; 983 } else if (CannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) { 984 Pred = ICmpInst::ICMP_SGT; 985 RightSCEV = SE.getMinusSCEV(RightSCEV, 986 SE.getOne(RightSCEV->getType())); 987 DecreasedRightValueByOne = true; 988 } 989 } 990 } 991 992 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 993 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 994 bool FoundExpectedPred = 995 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 996 997 if (!FoundExpectedPred) { 998 FailureReason = "expected icmp slt semantically, found something else"; 999 return None; 1000 } 1001 1002 IsSignedPredicate = ICmpInst::isSigned(Pred); 1003 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 1004 FailureReason = "unsigned latch conditions are explicitly prohibited"; 1005 return None; 1006 } 1007 1008 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred, 1009 LatchBrExitIdx, &L, SE)) { 1010 FailureReason = "Unsafe loop bounds"; 1011 return None; 1012 } 1013 if (LatchBrExitIdx == 0) { 1014 // We need to increase the right value unless we have already decreased 1015 // it virtually when we replaced EQ with SGT. 1016 if (!DecreasedRightValueByOne) { 1017 IRBuilder<> B(Preheader->getTerminator()); 1018 RightValue = B.CreateAdd(RightValue, One); 1019 } 1020 } else { 1021 assert(!DecreasedRightValueByOne && 1022 "Right value can be decreased only for LatchBrExitIdx == 0!"); 1023 } 1024 } else { 1025 bool IncreasedRightValueByOne = false; 1026 if (StepCI->isMinusOne()) { 1027 // Try to turn eq/ne predicates to those we can work with. 1028 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 1029 // while (--i != len) { while (--i > len) { 1030 // ... ---> ... 1031 // } } 1032 // We intentionally don't turn the predicate into UGT even if we know 1033 // that both operands are non-negative, because it will only pessimize 1034 // our check against "RightSCEV - 1". 1035 Pred = ICmpInst::ICMP_SGT; 1036 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 1037 // while (true) { while (true) { 1038 // if (--i == len) ---> if (--i < len + 1) 1039 // break; break; 1040 // ... ... 1041 // } } 1042 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 1043 CannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) { 1044 Pred = ICmpInst::ICMP_ULT; 1045 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 1046 IncreasedRightValueByOne = true; 1047 } else if (CannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) { 1048 Pred = ICmpInst::ICMP_SLT; 1049 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 1050 IncreasedRightValueByOne = true; 1051 } 1052 } 1053 } 1054 1055 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 1056 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 1057 1058 bool FoundExpectedPred = 1059 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 1060 1061 if (!FoundExpectedPred) { 1062 FailureReason = "expected icmp sgt semantically, found something else"; 1063 return None; 1064 } 1065 1066 IsSignedPredicate = 1067 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 1068 1069 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 1070 FailureReason = "unsigned latch conditions are explicitly prohibited"; 1071 return None; 1072 } 1073 1074 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred, 1075 LatchBrExitIdx, &L, SE)) { 1076 FailureReason = "Unsafe bounds"; 1077 return None; 1078 } 1079 1080 if (LatchBrExitIdx == 0) { 1081 // We need to decrease the right value unless we have already increased 1082 // it virtually when we replaced EQ with SLT. 1083 if (!IncreasedRightValueByOne) { 1084 IRBuilder<> B(Preheader->getTerminator()); 1085 RightValue = B.CreateSub(RightValue, One); 1086 } 1087 } else { 1088 assert(!IncreasedRightValueByOne && 1089 "Right value can be increased only for LatchBrExitIdx == 0!"); 1090 } 1091 } 1092 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1093 1094 assert(SE.getLoopDisposition(LatchCount, &L) == 1095 ScalarEvolution::LoopInvariant && 1096 "loop variant exit count doesn't make sense!"); 1097 1098 assert(!L.contains(LatchExit) && "expected an exit block!"); 1099 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1100 Value *IndVarStartV = 1101 SCEVExpander(SE, DL, "irce") 1102 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 1103 IndVarStartV->setName("indvar.start"); 1104 1105 LoopStructure Result; 1106 1107 Result.Tag = "main"; 1108 Result.Header = Header; 1109 Result.Latch = Latch; 1110 Result.LatchBr = LatchBr; 1111 Result.LatchExit = LatchExit; 1112 Result.LatchBrExitIdx = LatchBrExitIdx; 1113 Result.IndVarStart = IndVarStartV; 1114 Result.IndVarStep = StepCI; 1115 Result.IndVarBase = LeftValue; 1116 Result.IndVarIncreasing = IsIncreasing; 1117 Result.LoopExitAt = RightValue; 1118 Result.IsSignedPredicate = IsSignedPredicate; 1119 1120 FailureReason = nullptr; 1121 1122 return Result; 1123 } 1124 1125 Optional<LoopConstrainer::SubRanges> 1126 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1127 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1128 1129 if (Range.getType() != Ty) 1130 return None; 1131 1132 LoopConstrainer::SubRanges Result; 1133 1134 // I think we can be more aggressive here and make this nuw / nsw if the 1135 // addition that feeds into the icmp for the latch's terminating branch is nuw 1136 // / nsw. In any case, a wrapping 2's complement addition is safe. 1137 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 1138 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 1139 1140 bool Increasing = MainLoopStructure.IndVarIncreasing; 1141 1142 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1143 // [Smallest, GreatestSeen] is the range of values the induction variable 1144 // takes. 1145 1146 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1147 1148 const SCEV *One = SE.getOne(Ty); 1149 if (Increasing) { 1150 Smallest = Start; 1151 Greatest = End; 1152 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1153 GreatestSeen = SE.getMinusSCEV(End, One); 1154 } else { 1155 // These two computations may sign-overflow. Here is why that is okay: 1156 // 1157 // We know that the induction variable does not sign-overflow on any 1158 // iteration except the last one, and it starts at `Start` and ends at 1159 // `End`, decrementing by one every time. 1160 // 1161 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1162 // induction variable is decreasing we know that that the smallest value 1163 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1164 // 1165 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1166 // that case, `Clamp` will always return `Smallest` and 1167 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1168 // will be an empty range. Returning an empty range is always safe. 1169 1170 Smallest = SE.getAddExpr(End, One); 1171 Greatest = SE.getAddExpr(Start, One); 1172 GreatestSeen = Start; 1173 } 1174 1175 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1176 return IsSignedPredicate 1177 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1178 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1179 }; 1180 1181 // In some cases we can prove that we don't need a pre or post loop. 1182 ICmpInst::Predicate PredLE = 1183 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1184 ICmpInst::Predicate PredLT = 1185 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1186 1187 bool ProvablyNoPreloop = 1188 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1189 if (!ProvablyNoPreloop) 1190 Result.LowLimit = Clamp(Range.getBegin()); 1191 1192 bool ProvablyNoPostLoop = 1193 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1194 if (!ProvablyNoPostLoop) 1195 Result.HighLimit = Clamp(Range.getEnd()); 1196 1197 return Result; 1198 } 1199 1200 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1201 const char *Tag) const { 1202 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1203 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1204 Result.Blocks.push_back(Clone); 1205 Result.Map[BB] = Clone; 1206 } 1207 1208 auto GetClonedValue = [&Result](Value *V) { 1209 assert(V && "null values not in domain!"); 1210 auto It = Result.Map.find(V); 1211 if (It == Result.Map.end()) 1212 return V; 1213 return static_cast<Value *>(It->second); 1214 }; 1215 1216 auto *ClonedLatch = 1217 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1218 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1219 MDNode::get(Ctx, {})); 1220 1221 Result.Structure = MainLoopStructure.map(GetClonedValue); 1222 Result.Structure.Tag = Tag; 1223 1224 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1225 BasicBlock *ClonedBB = Result.Blocks[i]; 1226 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1227 1228 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1229 1230 for (Instruction &I : *ClonedBB) 1231 RemapInstruction(&I, Result.Map, 1232 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1233 1234 // Exit blocks will now have one more predecessor and their PHI nodes need 1235 // to be edited to reflect that. No phi nodes need to be introduced because 1236 // the loop is in LCSSA. 1237 1238 for (auto *SBB : successors(OriginalBB)) { 1239 if (OriginalLoop.contains(SBB)) 1240 continue; // not an exit block 1241 1242 for (PHINode &PN : SBB->phis()) { 1243 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); 1244 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1245 } 1246 } 1247 } 1248 } 1249 1250 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1251 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1252 BasicBlock *ContinuationBlock) const { 1253 // We start with a loop with a single latch: 1254 // 1255 // +--------------------+ 1256 // | | 1257 // | preheader | 1258 // | | 1259 // +--------+-----------+ 1260 // | ----------------\ 1261 // | / | 1262 // +--------v----v------+ | 1263 // | | | 1264 // | header | | 1265 // | | | 1266 // +--------------------+ | 1267 // | 1268 // ..... | 1269 // | 1270 // +--------------------+ | 1271 // | | | 1272 // | latch >----------/ 1273 // | | 1274 // +-------v------------+ 1275 // | 1276 // | 1277 // | +--------------------+ 1278 // | | | 1279 // +---> original exit | 1280 // | | 1281 // +--------------------+ 1282 // 1283 // We change the control flow to look like 1284 // 1285 // 1286 // +--------------------+ 1287 // | | 1288 // | preheader >-------------------------+ 1289 // | | | 1290 // +--------v-----------+ | 1291 // | /-------------+ | 1292 // | / | | 1293 // +--------v--v--------+ | | 1294 // | | | | 1295 // | header | | +--------+ | 1296 // | | | | | | 1297 // +--------------------+ | | +-----v-----v-----------+ 1298 // | | | | 1299 // | | | .pseudo.exit | 1300 // | | | | 1301 // | | +-----------v-----------+ 1302 // | | | 1303 // ..... | | | 1304 // | | +--------v-------------+ 1305 // +--------------------+ | | | | 1306 // | | | | | ContinuationBlock | 1307 // | latch >------+ | | | 1308 // | | | +----------------------+ 1309 // +---------v----------+ | 1310 // | | 1311 // | | 1312 // | +---------------^-----+ 1313 // | | | 1314 // +-----> .exit.selector | 1315 // | | 1316 // +----------v----------+ 1317 // | 1318 // +--------------------+ | 1319 // | | | 1320 // | original exit <----+ 1321 // | | 1322 // +--------------------+ 1323 1324 RewrittenRangeInfo RRI; 1325 1326 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1327 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1328 &F, BBInsertLocation); 1329 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1330 BBInsertLocation); 1331 1332 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1333 bool Increasing = LS.IndVarIncreasing; 1334 bool IsSignedPredicate = LS.IsSignedPredicate; 1335 1336 IRBuilder<> B(PreheaderJump); 1337 1338 // EnterLoopCond - is it okay to start executing this `LS'? 1339 Value *EnterLoopCond = nullptr; 1340 if (Increasing) 1341 EnterLoopCond = IsSignedPredicate 1342 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1343 : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt); 1344 else 1345 EnterLoopCond = IsSignedPredicate 1346 ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt) 1347 : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt); 1348 1349 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1350 PreheaderJump->eraseFromParent(); 1351 1352 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1353 B.SetInsertPoint(LS.LatchBr); 1354 Value *TakeBackedgeLoopCond = nullptr; 1355 if (Increasing) 1356 TakeBackedgeLoopCond = IsSignedPredicate 1357 ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt) 1358 : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt); 1359 else 1360 TakeBackedgeLoopCond = IsSignedPredicate 1361 ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt) 1362 : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt); 1363 Value *CondForBranch = LS.LatchBrExitIdx == 1 1364 ? TakeBackedgeLoopCond 1365 : B.CreateNot(TakeBackedgeLoopCond); 1366 1367 LS.LatchBr->setCondition(CondForBranch); 1368 1369 B.SetInsertPoint(RRI.ExitSelector); 1370 1371 // IterationsLeft - are there any more iterations left, given the original 1372 // upper bound on the induction variable? If not, we branch to the "real" 1373 // exit. 1374 Value *IterationsLeft = nullptr; 1375 if (Increasing) 1376 IterationsLeft = IsSignedPredicate 1377 ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt) 1378 : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt); 1379 else 1380 IterationsLeft = IsSignedPredicate 1381 ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt) 1382 : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt); 1383 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1384 1385 BranchInst *BranchToContinuation = 1386 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1387 1388 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1389 // each of the PHI nodes in the loop header. This feeds into the initial 1390 // value of the same PHI nodes if/when we continue execution. 1391 for (PHINode &PN : LS.Header->phis()) { 1392 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", 1393 BranchToContinuation); 1394 1395 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); 1396 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), 1397 RRI.ExitSelector); 1398 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1399 } 1400 1401 RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end", 1402 BranchToContinuation); 1403 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1404 RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector); 1405 1406 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1407 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1408 for (PHINode &PN : LS.LatchExit->phis()) 1409 replacePHIBlock(&PN, LS.Latch, RRI.ExitSelector); 1410 1411 return RRI; 1412 } 1413 1414 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1415 LoopStructure &LS, BasicBlock *ContinuationBlock, 1416 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1417 unsigned PHIIndex = 0; 1418 for (PHINode &PN : LS.Header->phis()) 1419 for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) 1420 if (PN.getIncomingBlock(i) == ContinuationBlock) 1421 PN.setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1422 1423 LS.IndVarStart = RRI.IndVarEnd; 1424 } 1425 1426 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1427 BasicBlock *OldPreheader, 1428 const char *Tag) const { 1429 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1430 BranchInst::Create(LS.Header, Preheader); 1431 1432 for (PHINode &PN : LS.Header->phis()) 1433 for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) 1434 replacePHIBlock(&PN, OldPreheader, Preheader); 1435 1436 return Preheader; 1437 } 1438 1439 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1440 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1441 if (!ParentLoop) 1442 return; 1443 1444 for (BasicBlock *BB : BBs) 1445 ParentLoop->addBasicBlockToLoop(BB, LI); 1446 } 1447 1448 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1449 ValueToValueMapTy &VM, 1450 bool IsSubloop) { 1451 Loop &New = *LI.AllocateLoop(); 1452 if (Parent) 1453 Parent->addChildLoop(&New); 1454 else 1455 LI.addTopLevelLoop(&New); 1456 LPMAddNewLoop(&New, IsSubloop); 1457 1458 // Add all of the blocks in Original to the new loop. 1459 for (auto *BB : Original->blocks()) 1460 if (LI.getLoopFor(BB) == Original) 1461 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1462 1463 // Add all of the subloops to the new loop. 1464 for (Loop *SubLoop : *Original) 1465 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true); 1466 1467 return &New; 1468 } 1469 1470 bool LoopConstrainer::run() { 1471 BasicBlock *Preheader = nullptr; 1472 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1473 Preheader = OriginalLoop.getLoopPreheader(); 1474 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1475 "preconditions!"); 1476 1477 OriginalPreheader = Preheader; 1478 MainLoopPreheader = Preheader; 1479 1480 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1481 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1482 if (!MaybeSR.hasValue()) { 1483 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1484 return false; 1485 } 1486 1487 SubRanges SR = MaybeSR.getValue(); 1488 bool Increasing = MainLoopStructure.IndVarIncreasing; 1489 IntegerType *IVTy = 1490 cast<IntegerType>(MainLoopStructure.IndVarBase->getType()); 1491 1492 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1493 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1494 1495 // It would have been better to make `PreLoop' and `PostLoop' 1496 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1497 // constructor. 1498 ClonedLoop PreLoop, PostLoop; 1499 bool NeedsPreLoop = 1500 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1501 bool NeedsPostLoop = 1502 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1503 1504 Value *ExitPreLoopAt = nullptr; 1505 Value *ExitMainLoopAt = nullptr; 1506 const SCEVConstant *MinusOneS = 1507 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1508 1509 if (NeedsPreLoop) { 1510 const SCEV *ExitPreLoopAtSCEV = nullptr; 1511 1512 if (Increasing) 1513 ExitPreLoopAtSCEV = *SR.LowLimit; 1514 else { 1515 if (CannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE, 1516 IsSignedPredicate)) 1517 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1518 else { 1519 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1520 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1521 << "\n"); 1522 return false; 1523 } 1524 } 1525 1526 if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) { 1527 DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1528 << " preloop exit limit " << *ExitPreLoopAtSCEV 1529 << " at block " << InsertPt->getParent()->getName() << "\n"); 1530 return false; 1531 } 1532 1533 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1534 ExitPreLoopAt->setName("exit.preloop.at"); 1535 } 1536 1537 if (NeedsPostLoop) { 1538 const SCEV *ExitMainLoopAtSCEV = nullptr; 1539 1540 if (Increasing) 1541 ExitMainLoopAtSCEV = *SR.HighLimit; 1542 else { 1543 if (CannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE, 1544 IsSignedPredicate)) 1545 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1546 else { 1547 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1548 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1549 << "\n"); 1550 return false; 1551 } 1552 } 1553 1554 if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) { 1555 DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1556 << " main loop exit limit " << *ExitMainLoopAtSCEV 1557 << " at block " << InsertPt->getParent()->getName() << "\n"); 1558 return false; 1559 } 1560 1561 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1562 ExitMainLoopAt->setName("exit.mainloop.at"); 1563 } 1564 1565 // We clone these ahead of time so that we don't have to deal with changing 1566 // and temporarily invalid IR as we transform the loops. 1567 if (NeedsPreLoop) 1568 cloneLoop(PreLoop, "preloop"); 1569 if (NeedsPostLoop) 1570 cloneLoop(PostLoop, "postloop"); 1571 1572 RewrittenRangeInfo PreLoopRRI; 1573 1574 if (NeedsPreLoop) { 1575 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1576 PreLoop.Structure.Header); 1577 1578 MainLoopPreheader = 1579 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1580 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1581 ExitPreLoopAt, MainLoopPreheader); 1582 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1583 PreLoopRRI); 1584 } 1585 1586 BasicBlock *PostLoopPreheader = nullptr; 1587 RewrittenRangeInfo PostLoopRRI; 1588 1589 if (NeedsPostLoop) { 1590 PostLoopPreheader = 1591 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1592 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1593 ExitMainLoopAt, PostLoopPreheader); 1594 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1595 PostLoopRRI); 1596 } 1597 1598 BasicBlock *NewMainLoopPreheader = 1599 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1600 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1601 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1602 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1603 1604 // Some of the above may be nullptr, filter them out before passing to 1605 // addToParentLoopIfNeeded. 1606 auto NewBlocksEnd = 1607 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1608 1609 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1610 1611 DT.recalculate(F); 1612 1613 // We need to first add all the pre and post loop blocks into the loop 1614 // structures (as part of createClonedLoopStructure), and then update the 1615 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1616 // LI when LoopSimplifyForm is generated. 1617 Loop *PreL = nullptr, *PostL = nullptr; 1618 if (!PreLoop.Blocks.empty()) { 1619 PreL = createClonedLoopStructure(&OriginalLoop, 1620 OriginalLoop.getParentLoop(), PreLoop.Map, 1621 /* IsSubLoop */ false); 1622 } 1623 1624 if (!PostLoop.Blocks.empty()) { 1625 PostL = 1626 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(), 1627 PostLoop.Map, /* IsSubLoop */ false); 1628 } 1629 1630 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1631 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1632 formLCSSARecursively(*L, DT, &LI, &SE); 1633 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1634 // Pre/post loops are slow paths, we do not need to perform any loop 1635 // optimizations on them. 1636 if (!IsOriginalLoop) 1637 DisableAllLoopOptsOnLoop(*L); 1638 }; 1639 if (PreL) 1640 CanonicalizeLoop(PreL, false); 1641 if (PostL) 1642 CanonicalizeLoop(PostL, false); 1643 CanonicalizeLoop(&OriginalLoop, true); 1644 1645 return true; 1646 } 1647 1648 /// Computes and returns a range of values for the induction variable (IndVar) 1649 /// in which the range check can be safely elided. If it cannot compute such a 1650 /// range, returns None. 1651 Optional<InductiveRangeCheck::Range> 1652 InductiveRangeCheck::computeSafeIterationSpace( 1653 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, 1654 bool IsLatchSigned) const { 1655 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1656 // variable, that may or may not exist as a real llvm::Value in the loop) and 1657 // this inductive range check is a range check on the "C + D * I" ("C" is 1658 // getBegin() and "D" is getStep()). We rewrite the value being range 1659 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1660 // 1661 // The actual inequalities we solve are of the form 1662 // 1663 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1664 // 1665 // Here L stands for upper limit of the safe iteration space. 1666 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid 1667 // overflows when calculating (0 - M) and (L - M) we, depending on type of 1668 // IV's iteration space, limit the calculations by borders of the iteration 1669 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. 1670 // If we figured out that "anything greater than (-M) is safe", we strengthen 1671 // this to "everything greater than 0 is safe", assuming that values between 1672 // -M and 0 just do not exist in unsigned iteration space, and we don't want 1673 // to deal with overflown values. 1674 1675 if (!IndVar->isAffine()) 1676 return None; 1677 1678 const SCEV *A = IndVar->getStart(); 1679 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1680 if (!B) 1681 return None; 1682 assert(!B->isZero() && "Recurrence with zero step?"); 1683 1684 const SCEV *C = getBegin(); 1685 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep()); 1686 if (D != B) 1687 return None; 1688 1689 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1690 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1691 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1692 1693 // Subtract Y from X so that it does not go through border of the IV 1694 // iteration space. Mathematically, it is equivalent to: 1695 // 1696 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] 1697 // 1698 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to 1699 // any width of bit grid). But after we take min/max, the result is 1700 // guaranteed to be within [INT_MIN, INT_MAX]. 1701 // 1702 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min 1703 // values, depending on type of latch condition that defines IV iteration 1704 // space. 1705 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) { 1706 if (IsLatchSigned) { 1707 // X is a number from signed range, Y is interpreted as signed. 1708 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only 1709 // thing we should care about is that we didn't cross SINT_MAX. 1710 // So, if Y is positive, we subtract Y safely. 1711 // Rule 1: Y > 0 ---> Y. 1712 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely. 1713 // Rule 2: Y >=s (X - SINT_MAX) ---> Y. 1714 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX). 1715 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX). 1716 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases. 1717 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); 1718 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), 1719 SCEV::FlagNSW); 1720 } else 1721 // X is a number from unsigned range, Y is interpreted as signed. 1722 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only 1723 // thing we should care about is that we didn't cross zero. 1724 // So, if Y is negative, we subtract Y safely. 1725 // Rule 1: Y <s 0 ---> Y. 1726 // If 0 <= Y <= X, we subtract Y safely. 1727 // Rule 2: Y <=s X ---> Y. 1728 // If 0 <= X < Y, we should stop at 0 and can only subtract X. 1729 // Rule 3: Y >s X ---> X. 1730 // It gives us smin(X, Y) to subtract in all cases. 1731 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); 1732 }; 1733 const SCEV *M = SE.getMinusSCEV(C, A); 1734 const SCEV *Zero = SE.getZero(M->getType()); 1735 const SCEV *Begin = ClampedSubtract(Zero, M); 1736 const SCEV *End = ClampedSubtract(getEnd(), M); 1737 return InductiveRangeCheck::Range(Begin, End); 1738 } 1739 1740 static Optional<InductiveRangeCheck::Range> 1741 IntersectSignedRange(ScalarEvolution &SE, 1742 const Optional<InductiveRangeCheck::Range> &R1, 1743 const InductiveRangeCheck::Range &R2) { 1744 if (R2.isEmpty(SE, /* IsSigned */ true)) 1745 return None; 1746 if (!R1.hasValue()) 1747 return R2; 1748 auto &R1Value = R1.getValue(); 1749 // We never return empty ranges from this function, and R1 is supposed to be 1750 // a result of intersection. Thus, R1 is never empty. 1751 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && 1752 "We should never have empty R1!"); 1753 1754 // TODO: we could widen the smaller range and have this work; but for now we 1755 // bail out to keep things simple. 1756 if (R1Value.getType() != R2.getType()) 1757 return None; 1758 1759 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1760 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1761 1762 // If the resulting range is empty, just return None. 1763 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1764 if (Ret.isEmpty(SE, /* IsSigned */ true)) 1765 return None; 1766 return Ret; 1767 } 1768 1769 static Optional<InductiveRangeCheck::Range> 1770 IntersectUnsignedRange(ScalarEvolution &SE, 1771 const Optional<InductiveRangeCheck::Range> &R1, 1772 const InductiveRangeCheck::Range &R2) { 1773 if (R2.isEmpty(SE, /* IsSigned */ false)) 1774 return None; 1775 if (!R1.hasValue()) 1776 return R2; 1777 auto &R1Value = R1.getValue(); 1778 // We never return empty ranges from this function, and R1 is supposed to be 1779 // a result of intersection. Thus, R1 is never empty. 1780 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && 1781 "We should never have empty R1!"); 1782 1783 // TODO: we could widen the smaller range and have this work; but for now we 1784 // bail out to keep things simple. 1785 if (R1Value.getType() != R2.getType()) 1786 return None; 1787 1788 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); 1789 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); 1790 1791 // If the resulting range is empty, just return None. 1792 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1793 if (Ret.isEmpty(SE, /* IsSigned */ false)) 1794 return None; 1795 return Ret; 1796 } 1797 1798 PreservedAnalyses IRCEPass::run(Loop &L, LoopAnalysisManager &AM, 1799 LoopStandardAnalysisResults &AR, 1800 LPMUpdater &U) { 1801 Function *F = L.getHeader()->getParent(); 1802 const auto &FAM = 1803 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1804 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 1805 InductiveRangeCheckElimination IRCE(AR.SE, BPI, AR.DT, AR.LI); 1806 auto LPMAddNewLoop = [&U](Loop *NL, bool IsSubloop) { 1807 if (!IsSubloop) 1808 U.addSiblingLoops(NL); 1809 }; 1810 bool Changed = IRCE.run(&L, LPMAddNewLoop); 1811 if (!Changed) 1812 return PreservedAnalyses::all(); 1813 1814 return getLoopPassPreservedAnalyses(); 1815 } 1816 1817 bool IRCELegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 1818 if (skipLoop(L)) 1819 return false; 1820 1821 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1822 BranchProbabilityInfo &BPI = 1823 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1824 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1825 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1826 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI); 1827 auto LPMAddNewLoop = [&LPM](Loop *NL, bool /* IsSubLoop */) { 1828 LPM.addLoop(*NL); 1829 }; 1830 return IRCE.run(L, LPMAddNewLoop); 1831 } 1832 1833 bool InductiveRangeCheckElimination::run( 1834 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) { 1835 if (L->getBlocks().size() >= LoopSizeCutoff) { 1836 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n"); 1837 return false; 1838 } 1839 1840 BasicBlock *Preheader = L->getLoopPreheader(); 1841 if (!Preheader) { 1842 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1843 return false; 1844 } 1845 1846 LLVMContext &Context = Preheader->getContext(); 1847 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1848 1849 for (auto BBI : L->getBlocks()) 1850 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1851 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1852 RangeChecks); 1853 1854 if (RangeChecks.empty()) 1855 return false; 1856 1857 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1858 OS << "irce: looking at loop "; L->print(OS); 1859 OS << "irce: loop has " << RangeChecks.size() 1860 << " inductive range checks: \n"; 1861 for (InductiveRangeCheck &IRC : RangeChecks) 1862 IRC.print(OS); 1863 }; 1864 1865 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1866 1867 if (PrintRangeChecks) 1868 PrintRecognizedRangeChecks(errs()); 1869 1870 const char *FailureReason = nullptr; 1871 Optional<LoopStructure> MaybeLoopStructure = 1872 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1873 if (!MaybeLoopStructure.hasValue()) { 1874 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1875 << "\n";); 1876 return false; 1877 } 1878 LoopStructure LS = MaybeLoopStructure.getValue(); 1879 const SCEVAddRecExpr *IndVar = 1880 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1881 1882 Optional<InductiveRangeCheck::Range> SafeIterRange; 1883 Instruction *ExprInsertPt = Preheader->getTerminator(); 1884 1885 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1886 // Basing on the type of latch predicate, we interpret the IV iteration range 1887 // as signed or unsigned range. We use different min/max functions (signed or 1888 // unsigned) when intersecting this range with safe iteration ranges implied 1889 // by range checks. 1890 auto IntersectRange = 1891 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; 1892 1893 IRBuilder<> B(ExprInsertPt); 1894 for (InductiveRangeCheck &IRC : RangeChecks) { 1895 auto Result = IRC.computeSafeIterationSpace(SE, IndVar, 1896 LS.IsSignedPredicate); 1897 if (Result.hasValue()) { 1898 auto MaybeSafeIterRange = 1899 IntersectRange(SE, SafeIterRange, Result.getValue()); 1900 if (MaybeSafeIterRange.hasValue()) { 1901 assert( 1902 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) && 1903 "We should never return empty ranges!"); 1904 RangeChecksToEliminate.push_back(IRC); 1905 SafeIterRange = MaybeSafeIterRange.getValue(); 1906 } 1907 } 1908 } 1909 1910 if (!SafeIterRange.hasValue()) 1911 return false; 1912 1913 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, 1914 SafeIterRange.getValue()); 1915 bool Changed = LC.run(); 1916 1917 if (Changed) { 1918 auto PrintConstrainedLoopInfo = [L]() { 1919 dbgs() << "irce: in function "; 1920 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1921 dbgs() << "constrained "; 1922 L->print(dbgs()); 1923 }; 1924 1925 DEBUG(PrintConstrainedLoopInfo()); 1926 1927 if (PrintChangedLoops) 1928 PrintConstrainedLoopInfo(); 1929 1930 // Optimize away the now-redundant range checks. 1931 1932 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1933 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1934 ? ConstantInt::getTrue(Context) 1935 : ConstantInt::getFalse(Context); 1936 IRC.getCheckUse()->set(FoldedRangeCheck); 1937 } 1938 } 1939 1940 return Changed; 1941 } 1942 1943 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1944 return new IRCELegacyPass(); 1945 } 1946