1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/ScalarEvolution.h"
49 #include "llvm/Analysis/ScalarEvolutionExpander.h"
50 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Cloning.h"
62 #include "llvm/Transforms/Utils/LoopUtils.h"
63 #include "llvm/Transforms/Utils/LoopSimplify.h"
64 
65 using namespace llvm;
66 
67 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
68                                         cl::init(64));
69 
70 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
71                                        cl::init(false));
72 
73 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
74                                       cl::init(false));
75 
76 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
77                                           cl::Hidden, cl::init(10));
78 
79 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
80                                              cl::Hidden, cl::init(false));
81 
82 static const char *ClonedLoopTag = "irce.loop.clone";
83 
84 #define DEBUG_TYPE "irce"
85 
86 namespace {
87 
88 /// An inductive range check is conditional branch in a loop with
89 ///
90 ///  1. a very cold successor (i.e. the branch jumps to that successor very
91 ///     rarely)
92 ///
93 ///  and
94 ///
95 ///  2. a condition that is provably true for some contiguous range of values
96 ///     taken by the containing loop's induction variable.
97 ///
98 class InductiveRangeCheck {
99   // Classifies a range check
100   enum RangeCheckKind : unsigned {
101     // Range check of the form "0 <= I".
102     RANGE_CHECK_LOWER = 1,
103 
104     // Range check of the form "I < L" where L is known positive.
105     RANGE_CHECK_UPPER = 2,
106 
107     // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
108     // conditions.
109     RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
110 
111     // Unrecognized range check condition.
112     RANGE_CHECK_UNKNOWN = (unsigned)-1
113   };
114 
115   static StringRef rangeCheckKindToStr(RangeCheckKind);
116 
117   const SCEV *Offset = nullptr;
118   const SCEV *Scale = nullptr;
119   Value *Length = nullptr;
120   Use *CheckUse = nullptr;
121   RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
122 
123   static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
124                                             ScalarEvolution &SE, Value *&Index,
125                                             Value *&Length);
126 
127   static void
128   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
129                              SmallVectorImpl<InductiveRangeCheck> &Checks,
130                              SmallPtrSetImpl<Value *> &Visited);
131 
132 public:
133   const SCEV *getOffset() const { return Offset; }
134   const SCEV *getScale() const { return Scale; }
135   Value *getLength() const { return Length; }
136 
137   void print(raw_ostream &OS) const {
138     OS << "InductiveRangeCheck:\n";
139     OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
140     OS << "  Offset: ";
141     Offset->print(OS);
142     OS << "  Scale: ";
143     Scale->print(OS);
144     OS << "  Length: ";
145     if (Length)
146       Length->print(OS);
147     else
148       OS << "(null)";
149     OS << "\n  CheckUse: ";
150     getCheckUse()->getUser()->print(OS);
151     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
152   }
153 
154   LLVM_DUMP_METHOD
155   void dump() {
156     print(dbgs());
157   }
158 
159   Use *getCheckUse() const { return CheckUse; }
160 
161   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
162   /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
163 
164   class Range {
165     const SCEV *Begin;
166     const SCEV *End;
167 
168   public:
169     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
170       assert(Begin->getType() == End->getType() && "ill-typed range!");
171     }
172 
173     Type *getType() const { return Begin->getType(); }
174     const SCEV *getBegin() const { return Begin; }
175     const SCEV *getEnd() const { return End; }
176   };
177 
178   /// This is the value the condition of the branch needs to evaluate to for the
179   /// branch to take the hot successor (see (1) above).
180   bool getPassingDirection() { return true; }
181 
182   /// Computes a range for the induction variable (IndVar) in which the range
183   /// check is redundant and can be constant-folded away.  The induction
184   /// variable is not required to be the canonical {0,+,1} induction variable.
185   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
186                                             const SCEVAddRecExpr *IndVar) const;
187 
188   /// Parse out a set of inductive range checks from \p BI and append them to \p
189   /// Checks.
190   ///
191   /// NB! There may be conditions feeding into \p BI that aren't inductive range
192   /// checks, and hence don't end up in \p Checks.
193   static void
194   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
195                                BranchProbabilityInfo &BPI,
196                                SmallVectorImpl<InductiveRangeCheck> &Checks);
197 };
198 
199 class InductiveRangeCheckElimination : public LoopPass {
200 public:
201   static char ID;
202   InductiveRangeCheckElimination() : LoopPass(ID) {
203     initializeInductiveRangeCheckEliminationPass(
204         *PassRegistry::getPassRegistry());
205   }
206 
207   void getAnalysisUsage(AnalysisUsage &AU) const override {
208     AU.addRequired<BranchProbabilityInfoWrapperPass>();
209     getLoopAnalysisUsage(AU);
210   }
211 
212   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
213 };
214 
215 char InductiveRangeCheckElimination::ID = 0;
216 }
217 
218 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
219                       "Inductive range check elimination", false, false)
220 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
221 INITIALIZE_PASS_DEPENDENCY(LoopPass)
222 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
223                     "Inductive range check elimination", false, false)
224 
225 StringRef InductiveRangeCheck::rangeCheckKindToStr(
226     InductiveRangeCheck::RangeCheckKind RCK) {
227   switch (RCK) {
228   case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
229     return "RANGE_CHECK_UNKNOWN";
230 
231   case InductiveRangeCheck::RANGE_CHECK_UPPER:
232     return "RANGE_CHECK_UPPER";
233 
234   case InductiveRangeCheck::RANGE_CHECK_LOWER:
235     return "RANGE_CHECK_LOWER";
236 
237   case InductiveRangeCheck::RANGE_CHECK_BOTH:
238     return "RANGE_CHECK_BOTH";
239   }
240 
241   llvm_unreachable("unknown range check type!");
242 }
243 
244 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
245 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
246 /// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
247 /// range checked, and set `Length` to the upper limit `Index` is being range
248 /// checked with if (and only if) the range check type is stronger or equal to
249 /// RANGE_CHECK_UPPER.
250 ///
251 InductiveRangeCheck::RangeCheckKind
252 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
253                                          ScalarEvolution &SE, Value *&Index,
254                                          Value *&Length) {
255 
256   auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
257     const SCEV *S = SE.getSCEV(V);
258     if (isa<SCEVCouldNotCompute>(S))
259       return false;
260 
261     return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
262            SE.isKnownNonNegative(S);
263   };
264 
265   using namespace llvm::PatternMatch;
266 
267   ICmpInst::Predicate Pred = ICI->getPredicate();
268   Value *LHS = ICI->getOperand(0);
269   Value *RHS = ICI->getOperand(1);
270 
271   switch (Pred) {
272   default:
273     return RANGE_CHECK_UNKNOWN;
274 
275   case ICmpInst::ICMP_SLE:
276     std::swap(LHS, RHS);
277     LLVM_FALLTHROUGH;
278   case ICmpInst::ICMP_SGE:
279     if (match(RHS, m_ConstantInt<0>())) {
280       Index = LHS;
281       return RANGE_CHECK_LOWER;
282     }
283     return RANGE_CHECK_UNKNOWN;
284 
285   case ICmpInst::ICMP_SLT:
286     std::swap(LHS, RHS);
287     LLVM_FALLTHROUGH;
288   case ICmpInst::ICMP_SGT:
289     if (match(RHS, m_ConstantInt<-1>())) {
290       Index = LHS;
291       return RANGE_CHECK_LOWER;
292     }
293 
294     if (IsNonNegativeAndNotLoopVarying(LHS)) {
295       Index = RHS;
296       Length = LHS;
297       return RANGE_CHECK_UPPER;
298     }
299     return RANGE_CHECK_UNKNOWN;
300 
301   case ICmpInst::ICMP_ULT:
302     std::swap(LHS, RHS);
303     LLVM_FALLTHROUGH;
304   case ICmpInst::ICMP_UGT:
305     if (IsNonNegativeAndNotLoopVarying(LHS)) {
306       Index = RHS;
307       Length = LHS;
308       return RANGE_CHECK_BOTH;
309     }
310     return RANGE_CHECK_UNKNOWN;
311   }
312 
313   llvm_unreachable("default clause returns!");
314 }
315 
316 void InductiveRangeCheck::extractRangeChecksFromCond(
317     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
318     SmallVectorImpl<InductiveRangeCheck> &Checks,
319     SmallPtrSetImpl<Value *> &Visited) {
320   using namespace llvm::PatternMatch;
321 
322   Value *Condition = ConditionUse.get();
323   if (!Visited.insert(Condition).second)
324     return;
325 
326   if (match(Condition, m_And(m_Value(), m_Value()))) {
327     SmallVector<InductiveRangeCheck, 8> SubChecks;
328     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
329                                SubChecks, Visited);
330     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
331                                SubChecks, Visited);
332 
333     if (SubChecks.size() == 2) {
334       // Handle a special case where we know how to merge two checks separately
335       // checking the upper and lower bounds into a full range check.
336       const auto &RChkA = SubChecks[0];
337       const auto &RChkB = SubChecks[1];
338       if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
339           RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
340 
341         // If RChkA.Kind == RChkB.Kind then we just found two identical checks.
342         // But if one of them is a RANGE_CHECK_LOWER and the other is a
343         // RANGE_CHECK_UPPER (only possibility if they're different) then
344         // together they form a RANGE_CHECK_BOTH.
345         SubChecks[0].Kind =
346             (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
347         SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
348         SubChecks[0].CheckUse = &ConditionUse;
349 
350         // We updated one of the checks in place, now erase the other.
351         SubChecks.pop_back();
352       }
353     }
354 
355     Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
356     return;
357   }
358 
359   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
360   if (!ICI)
361     return;
362 
363   Value *Length = nullptr, *Index;
364   auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
365   if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
366     return;
367 
368   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
369   bool IsAffineIndex =
370       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
371 
372   if (!IsAffineIndex)
373     return;
374 
375   InductiveRangeCheck IRC;
376   IRC.Length = Length;
377   IRC.Offset = IndexAddRec->getStart();
378   IRC.Scale = IndexAddRec->getStepRecurrence(SE);
379   IRC.CheckUse = &ConditionUse;
380   IRC.Kind = RCKind;
381   Checks.push_back(IRC);
382 }
383 
384 void InductiveRangeCheck::extractRangeChecksFromBranch(
385     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
386     SmallVectorImpl<InductiveRangeCheck> &Checks) {
387 
388   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
389     return;
390 
391   BranchProbability LikelyTaken(15, 16);
392 
393   if (!SkipProfitabilityChecks &&
394       BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
395     return;
396 
397   SmallPtrSet<Value *, 8> Visited;
398   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
399                                                   Checks, Visited);
400 }
401 
402 namespace {
403 
404 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
405 // except that it is more lightweight and can track the state of a loop through
406 // changing and potentially invalid IR.  This structure also formalizes the
407 // kinds of loops we can deal with -- ones that have a single latch that is also
408 // an exiting block *and* have a canonical induction variable.
409 struct LoopStructure {
410   const char *Tag;
411 
412   BasicBlock *Header;
413   BasicBlock *Latch;
414 
415   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
416   // successor is `LatchExit', the exit block of the loop.
417   BranchInst *LatchBr;
418   BasicBlock *LatchExit;
419   unsigned LatchBrExitIdx;
420 
421   Value *IndVarNext;
422   Value *IndVarStart;
423   Value *LoopExitAt;
424   bool IndVarIncreasing;
425 
426   LoopStructure()
427       : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
428         LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
429         IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
430 
431   template <typename M> LoopStructure map(M Map) const {
432     LoopStructure Result;
433     Result.Tag = Tag;
434     Result.Header = cast<BasicBlock>(Map(Header));
435     Result.Latch = cast<BasicBlock>(Map(Latch));
436     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
437     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
438     Result.LatchBrExitIdx = LatchBrExitIdx;
439     Result.IndVarNext = Map(IndVarNext);
440     Result.IndVarStart = Map(IndVarStart);
441     Result.LoopExitAt = Map(LoopExitAt);
442     Result.IndVarIncreasing = IndVarIncreasing;
443     return Result;
444   }
445 
446   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
447                                                     BranchProbabilityInfo &BPI,
448                                                     Loop &,
449                                                     const char *&);
450 };
451 
452 /// This class is used to constrain loops to run within a given iteration space.
453 /// The algorithm this class implements is given a Loop and a range [Begin,
454 /// End).  The algorithm then tries to break out a "main loop" out of the loop
455 /// it is given in a way that the "main loop" runs with the induction variable
456 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
457 /// loops to run any remaining iterations.  The pre loop runs any iterations in
458 /// which the induction variable is < Begin, and the post loop runs any
459 /// iterations in which the induction variable is >= End.
460 ///
461 class LoopConstrainer {
462   // The representation of a clone of the original loop we started out with.
463   struct ClonedLoop {
464     // The cloned blocks
465     std::vector<BasicBlock *> Blocks;
466 
467     // `Map` maps values in the clonee into values in the cloned version
468     ValueToValueMapTy Map;
469 
470     // An instance of `LoopStructure` for the cloned loop
471     LoopStructure Structure;
472   };
473 
474   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
475   // more details on what these fields mean.
476   struct RewrittenRangeInfo {
477     BasicBlock *PseudoExit;
478     BasicBlock *ExitSelector;
479     std::vector<PHINode *> PHIValuesAtPseudoExit;
480     PHINode *IndVarEnd;
481 
482     RewrittenRangeInfo()
483         : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
484   };
485 
486   // Calculated subranges we restrict the iteration space of the main loop to.
487   // See the implementation of `calculateSubRanges' for more details on how
488   // these fields are computed.  `LowLimit` is None if there is no restriction
489   // on low end of the restricted iteration space of the main loop.  `HighLimit`
490   // is None if there is no restriction on high end of the restricted iteration
491   // space of the main loop.
492 
493   struct SubRanges {
494     Optional<const SCEV *> LowLimit;
495     Optional<const SCEV *> HighLimit;
496   };
497 
498   // A utility function that does a `replaceUsesOfWith' on the incoming block
499   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
500   // incoming block list with `ReplaceBy'.
501   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
502                               BasicBlock *ReplaceBy);
503 
504   // Compute a safe set of limits for the main loop to run in -- effectively the
505   // intersection of `Range' and the iteration space of the original loop.
506   // Return None if unable to compute the set of subranges.
507   //
508   Optional<SubRanges> calculateSubRanges() const;
509 
510   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
511   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
512   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
513   // but there is no such edge.
514   //
515   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
516 
517   // Create the appropriate loop structure needed to describe a cloned copy of
518   // `Original`.  The clone is described by `VM`.
519   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
520                                   ValueToValueMapTy &VM);
521 
522   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
523   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
524   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
525   // `OriginalHeaderCount'.
526   //
527   // If there are iterations left to execute, control is made to jump to
528   // `ContinuationBlock', otherwise they take the normal loop exit.  The
529   // returned `RewrittenRangeInfo' object is populated as follows:
530   //
531   //  .PseudoExit is a basic block that unconditionally branches to
532   //      `ContinuationBlock'.
533   //
534   //  .ExitSelector is a basic block that decides, on exit from the loop,
535   //      whether to branch to the "true" exit or to `PseudoExit'.
536   //
537   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
538   //      for each PHINode in the loop header on taking the pseudo exit.
539   //
540   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
541   // preheader because it is made to branch to the loop header only
542   // conditionally.
543   //
544   RewrittenRangeInfo
545   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
546                           Value *ExitLoopAt,
547                           BasicBlock *ContinuationBlock) const;
548 
549   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
550   // function creates a new preheader for `LS' and returns it.
551   //
552   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
553                               const char *Tag) const;
554 
555   // `ContinuationBlockAndPreheader' was the continuation block for some call to
556   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
557   // This function rewrites the PHI nodes in `LS.Header' to start with the
558   // correct value.
559   void rewriteIncomingValuesForPHIs(
560       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
561       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
562 
563   // Even though we do not preserve any passes at this time, we at least need to
564   // keep the parent loop structure consistent.  The `LPPassManager' seems to
565   // verify this after running a loop pass.  This function adds the list of
566   // blocks denoted by BBs to this loops parent loop if required.
567   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
568 
569   // Some global state.
570   Function &F;
571   LLVMContext &Ctx;
572   ScalarEvolution &SE;
573   DominatorTree &DT;
574   LPPassManager &LPM;
575   LoopInfo &LI;
576 
577   // Information about the original loop we started out with.
578   Loop &OriginalLoop;
579   const SCEV *LatchTakenCount;
580   BasicBlock *OriginalPreheader;
581 
582   // The preheader of the main loop.  This may or may not be different from
583   // `OriginalPreheader'.
584   BasicBlock *MainLoopPreheader;
585 
586   // The range we need to run the main loop in.
587   InductiveRangeCheck::Range Range;
588 
589   // The structure of the main loop (see comment at the beginning of this class
590   // for a definition)
591   LoopStructure MainLoopStructure;
592 
593 public:
594   LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM,
595                   const LoopStructure &LS, ScalarEvolution &SE,
596                   DominatorTree &DT, InductiveRangeCheck::Range R)
597       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
598         SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L),
599         LatchTakenCount(nullptr), OriginalPreheader(nullptr),
600         MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {}
601 
602   // Entry point for the algorithm.  Returns true on success.
603   bool run();
604 };
605 
606 }
607 
608 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
609                                       BasicBlock *ReplaceBy) {
610   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
611     if (PN->getIncomingBlock(i) == Block)
612       PN->setIncomingBlock(i, ReplaceBy);
613 }
614 
615 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
616   APInt SMax =
617       APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
618   return SE.getSignedRange(S).contains(SMax) &&
619          SE.getUnsignedRange(S).contains(SMax);
620 }
621 
622 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
623   APInt SMin =
624       APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
625   return SE.getSignedRange(S).contains(SMin) &&
626          SE.getUnsignedRange(S).contains(SMin);
627 }
628 
629 Optional<LoopStructure>
630 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
631                                   Loop &L, const char *&FailureReason) {
632   if (!L.isLoopSimplifyForm()) {
633     FailureReason = "loop not in LoopSimplify form";
634     return None;
635   }
636 
637   BasicBlock *Latch = L.getLoopLatch();
638   assert(Latch && "Simplified loops only have one latch!");
639 
640   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
641     FailureReason = "loop has already been cloned";
642     return None;
643   }
644 
645   if (!L.isLoopExiting(Latch)) {
646     FailureReason = "no loop latch";
647     return None;
648   }
649 
650   BasicBlock *Header = L.getHeader();
651   BasicBlock *Preheader = L.getLoopPreheader();
652   if (!Preheader) {
653     FailureReason = "no preheader";
654     return None;
655   }
656 
657   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
658   if (!LatchBr || LatchBr->isUnconditional()) {
659     FailureReason = "latch terminator not conditional branch";
660     return None;
661   }
662 
663   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
664 
665   BranchProbability ExitProbability =
666     BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
667 
668   if (!SkipProfitabilityChecks &&
669       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
670     FailureReason = "short running loop, not profitable";
671     return None;
672   }
673 
674   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
675   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
676     FailureReason = "latch terminator branch not conditional on integral icmp";
677     return None;
678   }
679 
680   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
681   if (isa<SCEVCouldNotCompute>(LatchCount)) {
682     FailureReason = "could not compute latch count";
683     return None;
684   }
685 
686   ICmpInst::Predicate Pred = ICI->getPredicate();
687   Value *LeftValue = ICI->getOperand(0);
688   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
689   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
690 
691   Value *RightValue = ICI->getOperand(1);
692   const SCEV *RightSCEV = SE.getSCEV(RightValue);
693 
694   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
695   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
696     if (isa<SCEVAddRecExpr>(RightSCEV)) {
697       std::swap(LeftSCEV, RightSCEV);
698       std::swap(LeftValue, RightValue);
699       Pred = ICmpInst::getSwappedPredicate(Pred);
700     } else {
701       FailureReason = "no add recurrences in the icmp";
702       return None;
703     }
704   }
705 
706   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
707     if (AR->getNoWrapFlags(SCEV::FlagNSW))
708       return true;
709 
710     IntegerType *Ty = cast<IntegerType>(AR->getType());
711     IntegerType *WideTy =
712         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
713 
714     const SCEVAddRecExpr *ExtendAfterOp =
715         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
716     if (ExtendAfterOp) {
717       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
718       const SCEV *ExtendedStep =
719           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
720 
721       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
722                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
723 
724       if (NoSignedWrap)
725         return true;
726     }
727 
728     // We may have proved this when computing the sign extension above.
729     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
730   };
731 
732   auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
733     if (!AR->isAffine())
734       return false;
735 
736     // Currently we only work with induction variables that have been proved to
737     // not wrap.  This restriction can potentially be lifted in the future.
738 
739     if (!HasNoSignedWrap(AR))
740       return false;
741 
742     if (const SCEVConstant *StepExpr =
743             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
744       ConstantInt *StepCI = StepExpr->getValue();
745       if (StepCI->isOne() || StepCI->isMinusOne()) {
746         IsIncreasing = StepCI->isOne();
747         return true;
748       }
749     }
750 
751     return false;
752   };
753 
754   // `ICI` is interpreted as taking the backedge if the *next* value of the
755   // induction variable satisfies some constraint.
756 
757   const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
758   bool IsIncreasing = false;
759   if (!IsInductionVar(IndVarNext, IsIncreasing)) {
760     FailureReason = "LHS in icmp not induction variable";
761     return None;
762   }
763 
764   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
765   // TODO: generalize the predicates here to also match their unsigned variants.
766   if (IsIncreasing) {
767     bool FoundExpectedPred =
768         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
769         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
770 
771     if (!FoundExpectedPred) {
772       FailureReason = "expected icmp slt semantically, found something else";
773       return None;
774     }
775 
776     if (LatchBrExitIdx == 0) {
777       if (CanBeSMax(SE, RightSCEV)) {
778         // TODO: this restriction is easily removable -- we just have to
779         // remember that the icmp was an slt and not an sle.
780         FailureReason = "limit may overflow when coercing sle to slt";
781         return None;
782       }
783 
784       IRBuilder<> B(Preheader->getTerminator());
785       RightValue = B.CreateAdd(RightValue, One);
786     }
787 
788   } else {
789     bool FoundExpectedPred =
790         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
791         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
792 
793     if (!FoundExpectedPred) {
794       FailureReason = "expected icmp sgt semantically, found something else";
795       return None;
796     }
797 
798     if (LatchBrExitIdx == 0) {
799       if (CanBeSMin(SE, RightSCEV)) {
800         // TODO: this restriction is easily removable -- we just have to
801         // remember that the icmp was an sgt and not an sge.
802         FailureReason = "limit may overflow when coercing sge to sgt";
803         return None;
804       }
805 
806       IRBuilder<> B(Preheader->getTerminator());
807       RightValue = B.CreateSub(RightValue, One);
808     }
809   }
810 
811   const SCEV *StartNext = IndVarNext->getStart();
812   const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
813   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
814 
815   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
816 
817   assert(SE.getLoopDisposition(LatchCount, &L) ==
818              ScalarEvolution::LoopInvariant &&
819          "loop variant exit count doesn't make sense!");
820 
821   assert(!L.contains(LatchExit) && "expected an exit block!");
822   const DataLayout &DL = Preheader->getModule()->getDataLayout();
823   Value *IndVarStartV =
824       SCEVExpander(SE, DL, "irce")
825           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
826   IndVarStartV->setName("indvar.start");
827 
828   LoopStructure Result;
829 
830   Result.Tag = "main";
831   Result.Header = Header;
832   Result.Latch = Latch;
833   Result.LatchBr = LatchBr;
834   Result.LatchExit = LatchExit;
835   Result.LatchBrExitIdx = LatchBrExitIdx;
836   Result.IndVarStart = IndVarStartV;
837   Result.IndVarNext = LeftValue;
838   Result.IndVarIncreasing = IsIncreasing;
839   Result.LoopExitAt = RightValue;
840 
841   FailureReason = nullptr;
842 
843   return Result;
844 }
845 
846 Optional<LoopConstrainer::SubRanges>
847 LoopConstrainer::calculateSubRanges() const {
848   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
849 
850   if (Range.getType() != Ty)
851     return None;
852 
853   LoopConstrainer::SubRanges Result;
854 
855   // I think we can be more aggressive here and make this nuw / nsw if the
856   // addition that feeds into the icmp for the latch's terminating branch is nuw
857   // / nsw.  In any case, a wrapping 2's complement addition is safe.
858   ConstantInt *One = ConstantInt::get(Ty, 1);
859   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
860   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
861 
862   bool Increasing = MainLoopStructure.IndVarIncreasing;
863 
864   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
865   // range of values the induction variable takes.
866 
867   const SCEV *Smallest = nullptr, *Greatest = nullptr;
868 
869   if (Increasing) {
870     Smallest = Start;
871     Greatest = End;
872   } else {
873     // These two computations may sign-overflow.  Here is why that is okay:
874     //
875     // We know that the induction variable does not sign-overflow on any
876     // iteration except the last one, and it starts at `Start` and ends at
877     // `End`, decrementing by one every time.
878     //
879     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
880     //    induction variable is decreasing we know that that the smallest value
881     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
882     //
883     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
884     //    that case, `Clamp` will always return `Smallest` and
885     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
886     //    will be an empty range.  Returning an empty range is always safe.
887     //
888 
889     Smallest = SE.getAddExpr(End, SE.getSCEV(One));
890     Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
891   }
892 
893   auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
894     return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
895   };
896 
897   // In some cases we can prove that we don't need a pre or post loop
898 
899   bool ProvablyNoPreloop =
900       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
901   if (!ProvablyNoPreloop)
902     Result.LowLimit = Clamp(Range.getBegin());
903 
904   bool ProvablyNoPostLoop =
905       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
906   if (!ProvablyNoPostLoop)
907     Result.HighLimit = Clamp(Range.getEnd());
908 
909   return Result;
910 }
911 
912 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
913                                 const char *Tag) const {
914   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
915     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
916     Result.Blocks.push_back(Clone);
917     Result.Map[BB] = Clone;
918   }
919 
920   auto GetClonedValue = [&Result](Value *V) {
921     assert(V && "null values not in domain!");
922     auto It = Result.Map.find(V);
923     if (It == Result.Map.end())
924       return V;
925     return static_cast<Value *>(It->second);
926   };
927 
928   auto *ClonedLatch =
929       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
930   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
931                                             MDNode::get(Ctx, {}));
932 
933   Result.Structure = MainLoopStructure.map(GetClonedValue);
934   Result.Structure.Tag = Tag;
935 
936   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
937     BasicBlock *ClonedBB = Result.Blocks[i];
938     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
939 
940     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
941 
942     for (Instruction &I : *ClonedBB)
943       RemapInstruction(&I, Result.Map,
944                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
945 
946     // Exit blocks will now have one more predecessor and their PHI nodes need
947     // to be edited to reflect that.  No phi nodes need to be introduced because
948     // the loop is in LCSSA.
949 
950     for (auto *SBB : successors(OriginalBB)) {
951       if (OriginalLoop.contains(SBB))
952         continue; // not an exit block
953 
954       for (Instruction &I : *SBB) {
955         auto *PN = dyn_cast<PHINode>(&I);
956         if (!PN)
957           break;
958 
959         Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
960         PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
961       }
962     }
963   }
964 }
965 
966 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
967     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
968     BasicBlock *ContinuationBlock) const {
969 
970   // We start with a loop with a single latch:
971   //
972   //    +--------------------+
973   //    |                    |
974   //    |     preheader      |
975   //    |                    |
976   //    +--------+-----------+
977   //             |      ----------------\
978   //             |     /                |
979   //    +--------v----v------+          |
980   //    |                    |          |
981   //    |      header        |          |
982   //    |                    |          |
983   //    +--------------------+          |
984   //                                    |
985   //            .....                   |
986   //                                    |
987   //    +--------------------+          |
988   //    |                    |          |
989   //    |       latch        >----------/
990   //    |                    |
991   //    +-------v------------+
992   //            |
993   //            |
994   //            |   +--------------------+
995   //            |   |                    |
996   //            +--->   original exit    |
997   //                |                    |
998   //                +--------------------+
999   //
1000   // We change the control flow to look like
1001   //
1002   //
1003   //    +--------------------+
1004   //    |                    |
1005   //    |     preheader      >-------------------------+
1006   //    |                    |                         |
1007   //    +--------v-----------+                         |
1008   //             |    /-------------+                  |
1009   //             |   /              |                  |
1010   //    +--------v--v--------+      |                  |
1011   //    |                    |      |                  |
1012   //    |      header        |      |   +--------+     |
1013   //    |                    |      |   |        |     |
1014   //    +--------------------+      |   |  +-----v-----v-----------+
1015   //                                |   |  |                       |
1016   //                                |   |  |     .pseudo.exit      |
1017   //                                |   |  |                       |
1018   //                                |   |  +-----------v-----------+
1019   //                                |   |              |
1020   //            .....               |   |              |
1021   //                                |   |     +--------v-------------+
1022   //    +--------------------+      |   |     |                      |
1023   //    |                    |      |   |     |   ContinuationBlock  |
1024   //    |       latch        >------+   |     |                      |
1025   //    |                    |          |     +----------------------+
1026   //    +---------v----------+          |
1027   //              |                     |
1028   //              |                     |
1029   //              |     +---------------^-----+
1030   //              |     |                     |
1031   //              +----->    .exit.selector   |
1032   //                    |                     |
1033   //                    +----------v----------+
1034   //                               |
1035   //     +--------------------+    |
1036   //     |                    |    |
1037   //     |   original exit    <----+
1038   //     |                    |
1039   //     +--------------------+
1040   //
1041 
1042   RewrittenRangeInfo RRI;
1043 
1044   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1045   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1046                                         &F, BBInsertLocation);
1047   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1048                                       BBInsertLocation);
1049 
1050   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1051   bool Increasing = LS.IndVarIncreasing;
1052 
1053   IRBuilder<> B(PreheaderJump);
1054 
1055   // EnterLoopCond - is it okay to start executing this `LS'?
1056   Value *EnterLoopCond = Increasing
1057                              ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1058                              : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1059 
1060   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1061   PreheaderJump->eraseFromParent();
1062 
1063   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1064   B.SetInsertPoint(LS.LatchBr);
1065   Value *TakeBackedgeLoopCond =
1066       Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1067                  : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1068   Value *CondForBranch = LS.LatchBrExitIdx == 1
1069                              ? TakeBackedgeLoopCond
1070                              : B.CreateNot(TakeBackedgeLoopCond);
1071 
1072   LS.LatchBr->setCondition(CondForBranch);
1073 
1074   B.SetInsertPoint(RRI.ExitSelector);
1075 
1076   // IterationsLeft - are there any more iterations left, given the original
1077   // upper bound on the induction variable?  If not, we branch to the "real"
1078   // exit.
1079   Value *IterationsLeft = Increasing
1080                               ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1081                               : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
1082   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1083 
1084   BranchInst *BranchToContinuation =
1085       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1086 
1087   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1088   // each of the PHI nodes in the loop header.  This feeds into the initial
1089   // value of the same PHI nodes if/when we continue execution.
1090   for (Instruction &I : *LS.Header) {
1091     auto *PN = dyn_cast<PHINode>(&I);
1092     if (!PN)
1093       break;
1094 
1095     PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1096                                       BranchToContinuation);
1097 
1098     NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1099     NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1100                         RRI.ExitSelector);
1101     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1102   }
1103 
1104   RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1105                                   BranchToContinuation);
1106   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1107   RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1108 
1109   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1110   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1111   for (Instruction &I : *LS.LatchExit) {
1112     if (PHINode *PN = dyn_cast<PHINode>(&I))
1113       replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1114     else
1115       break;
1116   }
1117 
1118   return RRI;
1119 }
1120 
1121 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1122     LoopStructure &LS, BasicBlock *ContinuationBlock,
1123     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1124 
1125   unsigned PHIIndex = 0;
1126   for (Instruction &I : *LS.Header) {
1127     auto *PN = dyn_cast<PHINode>(&I);
1128     if (!PN)
1129       break;
1130 
1131     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1132       if (PN->getIncomingBlock(i) == ContinuationBlock)
1133         PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1134   }
1135 
1136   LS.IndVarStart = RRI.IndVarEnd;
1137 }
1138 
1139 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1140                                              BasicBlock *OldPreheader,
1141                                              const char *Tag) const {
1142 
1143   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1144   BranchInst::Create(LS.Header, Preheader);
1145 
1146   for (Instruction &I : *LS.Header) {
1147     auto *PN = dyn_cast<PHINode>(&I);
1148     if (!PN)
1149       break;
1150 
1151     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1152       replacePHIBlock(PN, OldPreheader, Preheader);
1153   }
1154 
1155   return Preheader;
1156 }
1157 
1158 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1159   Loop *ParentLoop = OriginalLoop.getParentLoop();
1160   if (!ParentLoop)
1161     return;
1162 
1163   for (BasicBlock *BB : BBs)
1164     ParentLoop->addBasicBlockToLoop(BB, LI);
1165 }
1166 
1167 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1168                                                  ValueToValueMapTy &VM) {
1169   Loop &New = LPM.addLoop(Parent);
1170 
1171   // Add all of the blocks in Original to the new loop.
1172   for (auto *BB : Original->blocks())
1173     if (LI.getLoopFor(BB) == Original)
1174       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1175 
1176   // Add all of the subloops to the new loop.
1177   for (Loop *SubLoop : *Original)
1178     createClonedLoopStructure(SubLoop, &New, VM);
1179 
1180   return &New;
1181 }
1182 
1183 bool LoopConstrainer::run() {
1184   BasicBlock *Preheader = nullptr;
1185   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1186   Preheader = OriginalLoop.getLoopPreheader();
1187   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1188          "preconditions!");
1189 
1190   OriginalPreheader = Preheader;
1191   MainLoopPreheader = Preheader;
1192 
1193   Optional<SubRanges> MaybeSR = calculateSubRanges();
1194   if (!MaybeSR.hasValue()) {
1195     DEBUG(dbgs() << "irce: could not compute subranges\n");
1196     return false;
1197   }
1198 
1199   SubRanges SR = MaybeSR.getValue();
1200   bool Increasing = MainLoopStructure.IndVarIncreasing;
1201   IntegerType *IVTy =
1202       cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1203 
1204   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1205   Instruction *InsertPt = OriginalPreheader->getTerminator();
1206 
1207   // It would have been better to make `PreLoop' and `PostLoop'
1208   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1209   // constructor.
1210   ClonedLoop PreLoop, PostLoop;
1211   bool NeedsPreLoop =
1212       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1213   bool NeedsPostLoop =
1214       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1215 
1216   Value *ExitPreLoopAt = nullptr;
1217   Value *ExitMainLoopAt = nullptr;
1218   const SCEVConstant *MinusOneS =
1219       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1220 
1221   if (NeedsPreLoop) {
1222     const SCEV *ExitPreLoopAtSCEV = nullptr;
1223 
1224     if (Increasing)
1225       ExitPreLoopAtSCEV = *SR.LowLimit;
1226     else {
1227       if (CanBeSMin(SE, *SR.HighLimit)) {
1228         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1229                      << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
1230                      << "\n");
1231         return false;
1232       }
1233       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1234     }
1235 
1236     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1237     ExitPreLoopAt->setName("exit.preloop.at");
1238   }
1239 
1240   if (NeedsPostLoop) {
1241     const SCEV *ExitMainLoopAtSCEV = nullptr;
1242 
1243     if (Increasing)
1244       ExitMainLoopAtSCEV = *SR.HighLimit;
1245     else {
1246       if (CanBeSMin(SE, *SR.LowLimit)) {
1247         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1248                      << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
1249                      << "\n");
1250         return false;
1251       }
1252       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1253     }
1254 
1255     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1256     ExitMainLoopAt->setName("exit.mainloop.at");
1257   }
1258 
1259   // We clone these ahead of time so that we don't have to deal with changing
1260   // and temporarily invalid IR as we transform the loops.
1261   if (NeedsPreLoop)
1262     cloneLoop(PreLoop, "preloop");
1263   if (NeedsPostLoop)
1264     cloneLoop(PostLoop, "postloop");
1265 
1266   RewrittenRangeInfo PreLoopRRI;
1267 
1268   if (NeedsPreLoop) {
1269     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1270                                                   PreLoop.Structure.Header);
1271 
1272     MainLoopPreheader =
1273         createPreheader(MainLoopStructure, Preheader, "mainloop");
1274     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1275                                          ExitPreLoopAt, MainLoopPreheader);
1276     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1277                                  PreLoopRRI);
1278   }
1279 
1280   BasicBlock *PostLoopPreheader = nullptr;
1281   RewrittenRangeInfo PostLoopRRI;
1282 
1283   if (NeedsPostLoop) {
1284     PostLoopPreheader =
1285         createPreheader(PostLoop.Structure, Preheader, "postloop");
1286     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1287                                           ExitMainLoopAt, PostLoopPreheader);
1288     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1289                                  PostLoopRRI);
1290   }
1291 
1292   BasicBlock *NewMainLoopPreheader =
1293       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1294   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1295                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1296                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1297 
1298   // Some of the above may be nullptr, filter them out before passing to
1299   // addToParentLoopIfNeeded.
1300   auto NewBlocksEnd =
1301       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1302 
1303   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1304 
1305   DT.recalculate(F);
1306 
1307   if (!PreLoop.Blocks.empty()) {
1308     auto *L = createClonedLoopStructure(
1309         &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map);
1310     formLCSSARecursively(*L, DT, &LI, &SE);
1311     simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
1312   }
1313 
1314   if (!PostLoop.Blocks.empty()) {
1315     auto *L = createClonedLoopStructure(
1316         &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map);
1317     formLCSSARecursively(*L, DT, &LI, &SE);
1318     simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
1319   }
1320 
1321   formLCSSARecursively(OriginalLoop, DT, &LI, &SE);
1322   simplifyLoop(&OriginalLoop, &DT, &LI, &SE, nullptr, true);
1323 
1324   return true;
1325 }
1326 
1327 /// Computes and returns a range of values for the induction variable (IndVar)
1328 /// in which the range check can be safely elided.  If it cannot compute such a
1329 /// range, returns None.
1330 Optional<InductiveRangeCheck::Range>
1331 InductiveRangeCheck::computeSafeIterationSpace(
1332     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
1333   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1334   // variable, that may or may not exist as a real llvm::Value in the loop) and
1335   // this inductive range check is a range check on the "C + D * I" ("C" is
1336   // getOffset() and "D" is getScale()).  We rewrite the value being range
1337   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1338   // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1339   // can be generalized as needed.
1340   //
1341   // The actual inequalities we solve are of the form
1342   //
1343   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1344   //
1345   // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
1346   // and subtractions are twos-complement wrapping and comparisons are signed.
1347   //
1348   // Proof:
1349   //
1350   //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1351   //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
1352   //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
1353   //   overflown.
1354   //
1355   //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
1356   //   Hence 0 <= (IndVar + M) < L
1357 
1358   // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1359   // 127, IndVar = 126 and L = -2 in an i8 world.
1360 
1361   if (!IndVar->isAffine())
1362     return None;
1363 
1364   const SCEV *A = IndVar->getStart();
1365   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1366   if (!B)
1367     return None;
1368 
1369   const SCEV *C = getOffset();
1370   const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1371   if (D != B)
1372     return None;
1373 
1374   ConstantInt *ConstD = D->getValue();
1375   if (!(ConstD->isMinusOne() || ConstD->isOne()))
1376     return None;
1377 
1378   const SCEV *M = SE.getMinusSCEV(C, A);
1379 
1380   const SCEV *Begin = SE.getNegativeSCEV(M);
1381   const SCEV *UpperLimit = nullptr;
1382 
1383   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1384   // We can potentially do much better here.
1385   if (Value *V = getLength()) {
1386     UpperLimit = SE.getSCEV(V);
1387   } else {
1388     assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1389     unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1390     UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1391   }
1392 
1393   const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
1394   return InductiveRangeCheck::Range(Begin, End);
1395 }
1396 
1397 static Optional<InductiveRangeCheck::Range>
1398 IntersectRange(ScalarEvolution &SE,
1399                const Optional<InductiveRangeCheck::Range> &R1,
1400                const InductiveRangeCheck::Range &R2) {
1401   if (!R1.hasValue())
1402     return R2;
1403   auto &R1Value = R1.getValue();
1404 
1405   // TODO: we could widen the smaller range and have this work; but for now we
1406   // bail out to keep things simple.
1407   if (R1Value.getType() != R2.getType())
1408     return None;
1409 
1410   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1411   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1412 
1413   return InductiveRangeCheck::Range(NewBegin, NewEnd);
1414 }
1415 
1416 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1417   if (skipLoop(L))
1418     return false;
1419 
1420   if (L->getBlocks().size() >= LoopSizeCutoff) {
1421     DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1422     return false;
1423   }
1424 
1425   BasicBlock *Preheader = L->getLoopPreheader();
1426   if (!Preheader) {
1427     DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1428     return false;
1429   }
1430 
1431   LLVMContext &Context = Preheader->getContext();
1432   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1433   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1434   BranchProbabilityInfo &BPI =
1435       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1436 
1437   for (auto BBI : L->getBlocks())
1438     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1439       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1440                                                         RangeChecks);
1441 
1442   if (RangeChecks.empty())
1443     return false;
1444 
1445   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1446     OS << "irce: looking at loop "; L->print(OS);
1447     OS << "irce: loop has " << RangeChecks.size()
1448        << " inductive range checks: \n";
1449     for (InductiveRangeCheck &IRC : RangeChecks)
1450       IRC.print(OS);
1451   };
1452 
1453   DEBUG(PrintRecognizedRangeChecks(dbgs()));
1454 
1455   if (PrintRangeChecks)
1456     PrintRecognizedRangeChecks(errs());
1457 
1458   const char *FailureReason = nullptr;
1459   Optional<LoopStructure> MaybeLoopStructure =
1460       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1461   if (!MaybeLoopStructure.hasValue()) {
1462     DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1463                  << "\n";);
1464     return false;
1465   }
1466   LoopStructure LS = MaybeLoopStructure.getValue();
1467   bool Increasing = LS.IndVarIncreasing;
1468   const SCEV *MinusOne =
1469       SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1470   const SCEVAddRecExpr *IndVar =
1471       cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1472 
1473   Optional<InductiveRangeCheck::Range> SafeIterRange;
1474   Instruction *ExprInsertPt = Preheader->getTerminator();
1475 
1476   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1477 
1478   IRBuilder<> B(ExprInsertPt);
1479   for (InductiveRangeCheck &IRC : RangeChecks) {
1480     auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
1481     if (Result.hasValue()) {
1482       auto MaybeSafeIterRange =
1483           IntersectRange(SE, SafeIterRange, Result.getValue());
1484       if (MaybeSafeIterRange.hasValue()) {
1485         RangeChecksToEliminate.push_back(IRC);
1486         SafeIterRange = MaybeSafeIterRange.getValue();
1487       }
1488     }
1489   }
1490 
1491   if (!SafeIterRange.hasValue())
1492     return false;
1493 
1494   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1495   LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM,
1496                      LS, SE, DT, SafeIterRange.getValue());
1497   bool Changed = LC.run();
1498 
1499   if (Changed) {
1500     auto PrintConstrainedLoopInfo = [L]() {
1501       dbgs() << "irce: in function ";
1502       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1503       dbgs() << "constrained ";
1504       L->print(dbgs());
1505     };
1506 
1507     DEBUG(PrintConstrainedLoopInfo());
1508 
1509     if (PrintChangedLoops)
1510       PrintConstrainedLoopInfo();
1511 
1512     // Optimize away the now-redundant range checks.
1513 
1514     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1515       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1516                                           ? ConstantInt::getTrue(Context)
1517                                           : ConstantInt::getFalse(Context);
1518       IRC.getCheckUse()->set(FoldedRangeCheck);
1519     }
1520   }
1521 
1522   return Changed;
1523 }
1524 
1525 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1526   return new InductiveRangeCheckElimination;
1527 }
1528