1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/LoopInfo.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/ScalarEvolution.h" 49 #include "llvm/Analysis/ScalarEvolutionExpander.h" 50 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/LoopUtils.h" 63 #include "llvm/Transforms/Utils/LoopSimplify.h" 64 65 using namespace llvm; 66 67 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 68 cl::init(64)); 69 70 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 71 cl::init(false)); 72 73 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 74 cl::init(false)); 75 76 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 77 cl::Hidden, cl::init(10)); 78 79 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 80 cl::Hidden, cl::init(false)); 81 82 static const char *ClonedLoopTag = "irce.loop.clone"; 83 84 #define DEBUG_TYPE "irce" 85 86 namespace { 87 88 /// An inductive range check is conditional branch in a loop with 89 /// 90 /// 1. a very cold successor (i.e. the branch jumps to that successor very 91 /// rarely) 92 /// 93 /// and 94 /// 95 /// 2. a condition that is provably true for some contiguous range of values 96 /// taken by the containing loop's induction variable. 97 /// 98 class InductiveRangeCheck { 99 // Classifies a range check 100 enum RangeCheckKind : unsigned { 101 // Range check of the form "0 <= I". 102 RANGE_CHECK_LOWER = 1, 103 104 // Range check of the form "I < L" where L is known positive. 105 RANGE_CHECK_UPPER = 2, 106 107 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 108 // conditions. 109 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 110 111 // Unrecognized range check condition. 112 RANGE_CHECK_UNKNOWN = (unsigned)-1 113 }; 114 115 static StringRef rangeCheckKindToStr(RangeCheckKind); 116 117 const SCEV *Offset = nullptr; 118 const SCEV *Scale = nullptr; 119 Value *Length = nullptr; 120 Use *CheckUse = nullptr; 121 RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; 122 123 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 124 ScalarEvolution &SE, Value *&Index, 125 Value *&Length); 126 127 static void 128 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 129 SmallVectorImpl<InductiveRangeCheck> &Checks, 130 SmallPtrSetImpl<Value *> &Visited); 131 132 public: 133 const SCEV *getOffset() const { return Offset; } 134 const SCEV *getScale() const { return Scale; } 135 Value *getLength() const { return Length; } 136 137 void print(raw_ostream &OS) const { 138 OS << "InductiveRangeCheck:\n"; 139 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 140 OS << " Offset: "; 141 Offset->print(OS); 142 OS << " Scale: "; 143 Scale->print(OS); 144 OS << " Length: "; 145 if (Length) 146 Length->print(OS); 147 else 148 OS << "(null)"; 149 OS << "\n CheckUse: "; 150 getCheckUse()->getUser()->print(OS); 151 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 152 } 153 154 LLVM_DUMP_METHOD 155 void dump() { 156 print(dbgs()); 157 } 158 159 Use *getCheckUse() const { return CheckUse; } 160 161 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 162 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 163 164 class Range { 165 const SCEV *Begin; 166 const SCEV *End; 167 168 public: 169 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 170 assert(Begin->getType() == End->getType() && "ill-typed range!"); 171 } 172 173 Type *getType() const { return Begin->getType(); } 174 const SCEV *getBegin() const { return Begin; } 175 const SCEV *getEnd() const { return End; } 176 }; 177 178 /// This is the value the condition of the branch needs to evaluate to for the 179 /// branch to take the hot successor (see (1) above). 180 bool getPassingDirection() { return true; } 181 182 /// Computes a range for the induction variable (IndVar) in which the range 183 /// check is redundant and can be constant-folded away. The induction 184 /// variable is not required to be the canonical {0,+,1} induction variable. 185 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 186 const SCEVAddRecExpr *IndVar) const; 187 188 /// Parse out a set of inductive range checks from \p BI and append them to \p 189 /// Checks. 190 /// 191 /// NB! There may be conditions feeding into \p BI that aren't inductive range 192 /// checks, and hence don't end up in \p Checks. 193 static void 194 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 195 BranchProbabilityInfo &BPI, 196 SmallVectorImpl<InductiveRangeCheck> &Checks); 197 }; 198 199 class InductiveRangeCheckElimination : public LoopPass { 200 public: 201 static char ID; 202 InductiveRangeCheckElimination() : LoopPass(ID) { 203 initializeInductiveRangeCheckEliminationPass( 204 *PassRegistry::getPassRegistry()); 205 } 206 207 void getAnalysisUsage(AnalysisUsage &AU) const override { 208 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 209 getLoopAnalysisUsage(AU); 210 } 211 212 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 213 }; 214 215 char InductiveRangeCheckElimination::ID = 0; 216 } 217 218 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", 219 "Inductive range check elimination", false, false) 220 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 221 INITIALIZE_PASS_DEPENDENCY(LoopPass) 222 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", 223 "Inductive range check elimination", false, false) 224 225 StringRef InductiveRangeCheck::rangeCheckKindToStr( 226 InductiveRangeCheck::RangeCheckKind RCK) { 227 switch (RCK) { 228 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 229 return "RANGE_CHECK_UNKNOWN"; 230 231 case InductiveRangeCheck::RANGE_CHECK_UPPER: 232 return "RANGE_CHECK_UPPER"; 233 234 case InductiveRangeCheck::RANGE_CHECK_LOWER: 235 return "RANGE_CHECK_LOWER"; 236 237 case InductiveRangeCheck::RANGE_CHECK_BOTH: 238 return "RANGE_CHECK_BOTH"; 239 } 240 241 llvm_unreachable("unknown range check type!"); 242 } 243 244 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 245 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 246 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 247 /// range checked, and set `Length` to the upper limit `Index` is being range 248 /// checked with if (and only if) the range check type is stronger or equal to 249 /// RANGE_CHECK_UPPER. 250 /// 251 InductiveRangeCheck::RangeCheckKind 252 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 253 ScalarEvolution &SE, Value *&Index, 254 Value *&Length) { 255 256 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { 257 const SCEV *S = SE.getSCEV(V); 258 if (isa<SCEVCouldNotCompute>(S)) 259 return false; 260 261 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && 262 SE.isKnownNonNegative(S); 263 }; 264 265 using namespace llvm::PatternMatch; 266 267 ICmpInst::Predicate Pred = ICI->getPredicate(); 268 Value *LHS = ICI->getOperand(0); 269 Value *RHS = ICI->getOperand(1); 270 271 switch (Pred) { 272 default: 273 return RANGE_CHECK_UNKNOWN; 274 275 case ICmpInst::ICMP_SLE: 276 std::swap(LHS, RHS); 277 LLVM_FALLTHROUGH; 278 case ICmpInst::ICMP_SGE: 279 if (match(RHS, m_ConstantInt<0>())) { 280 Index = LHS; 281 return RANGE_CHECK_LOWER; 282 } 283 return RANGE_CHECK_UNKNOWN; 284 285 case ICmpInst::ICMP_SLT: 286 std::swap(LHS, RHS); 287 LLVM_FALLTHROUGH; 288 case ICmpInst::ICMP_SGT: 289 if (match(RHS, m_ConstantInt<-1>())) { 290 Index = LHS; 291 return RANGE_CHECK_LOWER; 292 } 293 294 if (IsNonNegativeAndNotLoopVarying(LHS)) { 295 Index = RHS; 296 Length = LHS; 297 return RANGE_CHECK_UPPER; 298 } 299 return RANGE_CHECK_UNKNOWN; 300 301 case ICmpInst::ICMP_ULT: 302 std::swap(LHS, RHS); 303 LLVM_FALLTHROUGH; 304 case ICmpInst::ICMP_UGT: 305 if (IsNonNegativeAndNotLoopVarying(LHS)) { 306 Index = RHS; 307 Length = LHS; 308 return RANGE_CHECK_BOTH; 309 } 310 return RANGE_CHECK_UNKNOWN; 311 } 312 313 llvm_unreachable("default clause returns!"); 314 } 315 316 void InductiveRangeCheck::extractRangeChecksFromCond( 317 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 318 SmallVectorImpl<InductiveRangeCheck> &Checks, 319 SmallPtrSetImpl<Value *> &Visited) { 320 using namespace llvm::PatternMatch; 321 322 Value *Condition = ConditionUse.get(); 323 if (!Visited.insert(Condition).second) 324 return; 325 326 if (match(Condition, m_And(m_Value(), m_Value()))) { 327 SmallVector<InductiveRangeCheck, 8> SubChecks; 328 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 329 SubChecks, Visited); 330 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 331 SubChecks, Visited); 332 333 if (SubChecks.size() == 2) { 334 // Handle a special case where we know how to merge two checks separately 335 // checking the upper and lower bounds into a full range check. 336 const auto &RChkA = SubChecks[0]; 337 const auto &RChkB = SubChecks[1]; 338 if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) && 339 RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) { 340 341 // If RChkA.Kind == RChkB.Kind then we just found two identical checks. 342 // But if one of them is a RANGE_CHECK_LOWER and the other is a 343 // RANGE_CHECK_UPPER (only possibility if they're different) then 344 // together they form a RANGE_CHECK_BOTH. 345 SubChecks[0].Kind = 346 (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind); 347 SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length; 348 SubChecks[0].CheckUse = &ConditionUse; 349 350 // We updated one of the checks in place, now erase the other. 351 SubChecks.pop_back(); 352 } 353 } 354 355 Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end()); 356 return; 357 } 358 359 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 360 if (!ICI) 361 return; 362 363 Value *Length = nullptr, *Index; 364 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length); 365 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 366 return; 367 368 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 369 bool IsAffineIndex = 370 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 371 372 if (!IsAffineIndex) 373 return; 374 375 InductiveRangeCheck IRC; 376 IRC.Length = Length; 377 IRC.Offset = IndexAddRec->getStart(); 378 IRC.Scale = IndexAddRec->getStepRecurrence(SE); 379 IRC.CheckUse = &ConditionUse; 380 IRC.Kind = RCKind; 381 Checks.push_back(IRC); 382 } 383 384 void InductiveRangeCheck::extractRangeChecksFromBranch( 385 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI, 386 SmallVectorImpl<InductiveRangeCheck> &Checks) { 387 388 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 389 return; 390 391 BranchProbability LikelyTaken(15, 16); 392 393 if (!SkipProfitabilityChecks && 394 BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 395 return; 396 397 SmallPtrSet<Value *, 8> Visited; 398 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 399 Checks, Visited); 400 } 401 402 namespace { 403 404 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 405 // except that it is more lightweight and can track the state of a loop through 406 // changing and potentially invalid IR. This structure also formalizes the 407 // kinds of loops we can deal with -- ones that have a single latch that is also 408 // an exiting block *and* have a canonical induction variable. 409 struct LoopStructure { 410 const char *Tag; 411 412 BasicBlock *Header; 413 BasicBlock *Latch; 414 415 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 416 // successor is `LatchExit', the exit block of the loop. 417 BranchInst *LatchBr; 418 BasicBlock *LatchExit; 419 unsigned LatchBrExitIdx; 420 421 Value *IndVarNext; 422 Value *IndVarStart; 423 Value *LoopExitAt; 424 bool IndVarIncreasing; 425 426 LoopStructure() 427 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr), 428 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr), 429 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {} 430 431 template <typename M> LoopStructure map(M Map) const { 432 LoopStructure Result; 433 Result.Tag = Tag; 434 Result.Header = cast<BasicBlock>(Map(Header)); 435 Result.Latch = cast<BasicBlock>(Map(Latch)); 436 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 437 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 438 Result.LatchBrExitIdx = LatchBrExitIdx; 439 Result.IndVarNext = Map(IndVarNext); 440 Result.IndVarStart = Map(IndVarStart); 441 Result.LoopExitAt = Map(LoopExitAt); 442 Result.IndVarIncreasing = IndVarIncreasing; 443 return Result; 444 } 445 446 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 447 BranchProbabilityInfo &BPI, 448 Loop &, 449 const char *&); 450 }; 451 452 /// This class is used to constrain loops to run within a given iteration space. 453 /// The algorithm this class implements is given a Loop and a range [Begin, 454 /// End). The algorithm then tries to break out a "main loop" out of the loop 455 /// it is given in a way that the "main loop" runs with the induction variable 456 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 457 /// loops to run any remaining iterations. The pre loop runs any iterations in 458 /// which the induction variable is < Begin, and the post loop runs any 459 /// iterations in which the induction variable is >= End. 460 /// 461 class LoopConstrainer { 462 // The representation of a clone of the original loop we started out with. 463 struct ClonedLoop { 464 // The cloned blocks 465 std::vector<BasicBlock *> Blocks; 466 467 // `Map` maps values in the clonee into values in the cloned version 468 ValueToValueMapTy Map; 469 470 // An instance of `LoopStructure` for the cloned loop 471 LoopStructure Structure; 472 }; 473 474 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 475 // more details on what these fields mean. 476 struct RewrittenRangeInfo { 477 BasicBlock *PseudoExit; 478 BasicBlock *ExitSelector; 479 std::vector<PHINode *> PHIValuesAtPseudoExit; 480 PHINode *IndVarEnd; 481 482 RewrittenRangeInfo() 483 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {} 484 }; 485 486 // Calculated subranges we restrict the iteration space of the main loop to. 487 // See the implementation of `calculateSubRanges' for more details on how 488 // these fields are computed. `LowLimit` is None if there is no restriction 489 // on low end of the restricted iteration space of the main loop. `HighLimit` 490 // is None if there is no restriction on high end of the restricted iteration 491 // space of the main loop. 492 493 struct SubRanges { 494 Optional<const SCEV *> LowLimit; 495 Optional<const SCEV *> HighLimit; 496 }; 497 498 // A utility function that does a `replaceUsesOfWith' on the incoming block 499 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 500 // incoming block list with `ReplaceBy'. 501 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 502 BasicBlock *ReplaceBy); 503 504 // Compute a safe set of limits for the main loop to run in -- effectively the 505 // intersection of `Range' and the iteration space of the original loop. 506 // Return None if unable to compute the set of subranges. 507 // 508 Optional<SubRanges> calculateSubRanges() const; 509 510 // Clone `OriginalLoop' and return the result in CLResult. The IR after 511 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 512 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 513 // but there is no such edge. 514 // 515 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 516 517 // Create the appropriate loop structure needed to describe a cloned copy of 518 // `Original`. The clone is described by `VM`. 519 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 520 ValueToValueMapTy &VM); 521 522 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 523 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 524 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 525 // `OriginalHeaderCount'. 526 // 527 // If there are iterations left to execute, control is made to jump to 528 // `ContinuationBlock', otherwise they take the normal loop exit. The 529 // returned `RewrittenRangeInfo' object is populated as follows: 530 // 531 // .PseudoExit is a basic block that unconditionally branches to 532 // `ContinuationBlock'. 533 // 534 // .ExitSelector is a basic block that decides, on exit from the loop, 535 // whether to branch to the "true" exit or to `PseudoExit'. 536 // 537 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 538 // for each PHINode in the loop header on taking the pseudo exit. 539 // 540 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 541 // preheader because it is made to branch to the loop header only 542 // conditionally. 543 // 544 RewrittenRangeInfo 545 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 546 Value *ExitLoopAt, 547 BasicBlock *ContinuationBlock) const; 548 549 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 550 // function creates a new preheader for `LS' and returns it. 551 // 552 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 553 const char *Tag) const; 554 555 // `ContinuationBlockAndPreheader' was the continuation block for some call to 556 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 557 // This function rewrites the PHI nodes in `LS.Header' to start with the 558 // correct value. 559 void rewriteIncomingValuesForPHIs( 560 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 561 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 562 563 // Even though we do not preserve any passes at this time, we at least need to 564 // keep the parent loop structure consistent. The `LPPassManager' seems to 565 // verify this after running a loop pass. This function adds the list of 566 // blocks denoted by BBs to this loops parent loop if required. 567 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 568 569 // Some global state. 570 Function &F; 571 LLVMContext &Ctx; 572 ScalarEvolution &SE; 573 DominatorTree &DT; 574 LPPassManager &LPM; 575 LoopInfo &LI; 576 577 // Information about the original loop we started out with. 578 Loop &OriginalLoop; 579 const SCEV *LatchTakenCount; 580 BasicBlock *OriginalPreheader; 581 582 // The preheader of the main loop. This may or may not be different from 583 // `OriginalPreheader'. 584 BasicBlock *MainLoopPreheader; 585 586 // The range we need to run the main loop in. 587 InductiveRangeCheck::Range Range; 588 589 // The structure of the main loop (see comment at the beginning of this class 590 // for a definition) 591 LoopStructure MainLoopStructure; 592 593 public: 594 LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM, 595 const LoopStructure &LS, ScalarEvolution &SE, 596 DominatorTree &DT, InductiveRangeCheck::Range R) 597 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 598 SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L), 599 LatchTakenCount(nullptr), OriginalPreheader(nullptr), 600 MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {} 601 602 // Entry point for the algorithm. Returns true on success. 603 bool run(); 604 }; 605 606 } 607 608 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 609 BasicBlock *ReplaceBy) { 610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 611 if (PN->getIncomingBlock(i) == Block) 612 PN->setIncomingBlock(i, ReplaceBy); 613 } 614 615 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) { 616 APInt SMax = 617 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 618 return SE.getSignedRange(S).contains(SMax) && 619 SE.getUnsignedRange(S).contains(SMax); 620 } 621 622 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) { 623 APInt SMin = 624 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 625 return SE.getSignedRange(S).contains(SMin) && 626 SE.getUnsignedRange(S).contains(SMin); 627 } 628 629 Optional<LoopStructure> 630 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI, 631 Loop &L, const char *&FailureReason) { 632 if (!L.isLoopSimplifyForm()) { 633 FailureReason = "loop not in LoopSimplify form"; 634 return None; 635 } 636 637 BasicBlock *Latch = L.getLoopLatch(); 638 assert(Latch && "Simplified loops only have one latch!"); 639 640 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 641 FailureReason = "loop has already been cloned"; 642 return None; 643 } 644 645 if (!L.isLoopExiting(Latch)) { 646 FailureReason = "no loop latch"; 647 return None; 648 } 649 650 BasicBlock *Header = L.getHeader(); 651 BasicBlock *Preheader = L.getLoopPreheader(); 652 if (!Preheader) { 653 FailureReason = "no preheader"; 654 return None; 655 } 656 657 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 658 if (!LatchBr || LatchBr->isUnconditional()) { 659 FailureReason = "latch terminator not conditional branch"; 660 return None; 661 } 662 663 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 664 665 BranchProbability ExitProbability = 666 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 667 668 if (!SkipProfitabilityChecks && 669 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 670 FailureReason = "short running loop, not profitable"; 671 return None; 672 } 673 674 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 675 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 676 FailureReason = "latch terminator branch not conditional on integral icmp"; 677 return None; 678 } 679 680 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 681 if (isa<SCEVCouldNotCompute>(LatchCount)) { 682 FailureReason = "could not compute latch count"; 683 return None; 684 } 685 686 ICmpInst::Predicate Pred = ICI->getPredicate(); 687 Value *LeftValue = ICI->getOperand(0); 688 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 689 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 690 691 Value *RightValue = ICI->getOperand(1); 692 const SCEV *RightSCEV = SE.getSCEV(RightValue); 693 694 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 695 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 696 if (isa<SCEVAddRecExpr>(RightSCEV)) { 697 std::swap(LeftSCEV, RightSCEV); 698 std::swap(LeftValue, RightValue); 699 Pred = ICmpInst::getSwappedPredicate(Pred); 700 } else { 701 FailureReason = "no add recurrences in the icmp"; 702 return None; 703 } 704 } 705 706 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 707 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 708 return true; 709 710 IntegerType *Ty = cast<IntegerType>(AR->getType()); 711 IntegerType *WideTy = 712 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 713 714 const SCEVAddRecExpr *ExtendAfterOp = 715 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 716 if (ExtendAfterOp) { 717 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 718 const SCEV *ExtendedStep = 719 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 720 721 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 722 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 723 724 if (NoSignedWrap) 725 return true; 726 } 727 728 // We may have proved this when computing the sign extension above. 729 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 730 }; 731 732 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) { 733 if (!AR->isAffine()) 734 return false; 735 736 // Currently we only work with induction variables that have been proved to 737 // not wrap. This restriction can potentially be lifted in the future. 738 739 if (!HasNoSignedWrap(AR)) 740 return false; 741 742 if (const SCEVConstant *StepExpr = 743 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 744 ConstantInt *StepCI = StepExpr->getValue(); 745 if (StepCI->isOne() || StepCI->isMinusOne()) { 746 IsIncreasing = StepCI->isOne(); 747 return true; 748 } 749 } 750 751 return false; 752 }; 753 754 // `ICI` is interpreted as taking the backedge if the *next* value of the 755 // induction variable satisfies some constraint. 756 757 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV); 758 bool IsIncreasing = false; 759 if (!IsInductionVar(IndVarNext, IsIncreasing)) { 760 FailureReason = "LHS in icmp not induction variable"; 761 return None; 762 } 763 764 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 765 // TODO: generalize the predicates here to also match their unsigned variants. 766 if (IsIncreasing) { 767 bool FoundExpectedPred = 768 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) || 769 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0); 770 771 if (!FoundExpectedPred) { 772 FailureReason = "expected icmp slt semantically, found something else"; 773 return None; 774 } 775 776 if (LatchBrExitIdx == 0) { 777 if (CanBeSMax(SE, RightSCEV)) { 778 // TODO: this restriction is easily removable -- we just have to 779 // remember that the icmp was an slt and not an sle. 780 FailureReason = "limit may overflow when coercing sle to slt"; 781 return None; 782 } 783 784 IRBuilder<> B(Preheader->getTerminator()); 785 RightValue = B.CreateAdd(RightValue, One); 786 } 787 788 } else { 789 bool FoundExpectedPred = 790 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) || 791 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0); 792 793 if (!FoundExpectedPred) { 794 FailureReason = "expected icmp sgt semantically, found something else"; 795 return None; 796 } 797 798 if (LatchBrExitIdx == 0) { 799 if (CanBeSMin(SE, RightSCEV)) { 800 // TODO: this restriction is easily removable -- we just have to 801 // remember that the icmp was an sgt and not an sge. 802 FailureReason = "limit may overflow when coercing sge to sgt"; 803 return None; 804 } 805 806 IRBuilder<> B(Preheader->getTerminator()); 807 RightValue = B.CreateSub(RightValue, One); 808 } 809 } 810 811 const SCEV *StartNext = IndVarNext->getStart(); 812 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE)); 813 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 814 815 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 816 817 assert(SE.getLoopDisposition(LatchCount, &L) == 818 ScalarEvolution::LoopInvariant && 819 "loop variant exit count doesn't make sense!"); 820 821 assert(!L.contains(LatchExit) && "expected an exit block!"); 822 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 823 Value *IndVarStartV = 824 SCEVExpander(SE, DL, "irce") 825 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 826 IndVarStartV->setName("indvar.start"); 827 828 LoopStructure Result; 829 830 Result.Tag = "main"; 831 Result.Header = Header; 832 Result.Latch = Latch; 833 Result.LatchBr = LatchBr; 834 Result.LatchExit = LatchExit; 835 Result.LatchBrExitIdx = LatchBrExitIdx; 836 Result.IndVarStart = IndVarStartV; 837 Result.IndVarNext = LeftValue; 838 Result.IndVarIncreasing = IsIncreasing; 839 Result.LoopExitAt = RightValue; 840 841 FailureReason = nullptr; 842 843 return Result; 844 } 845 846 Optional<LoopConstrainer::SubRanges> 847 LoopConstrainer::calculateSubRanges() const { 848 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 849 850 if (Range.getType() != Ty) 851 return None; 852 853 LoopConstrainer::SubRanges Result; 854 855 // I think we can be more aggressive here and make this nuw / nsw if the 856 // addition that feeds into the icmp for the latch's terminating branch is nuw 857 // / nsw. In any case, a wrapping 2's complement addition is safe. 858 ConstantInt *One = ConstantInt::get(Ty, 1); 859 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 860 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 861 862 bool Increasing = MainLoopStructure.IndVarIncreasing; 863 864 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the 865 // range of values the induction variable takes. 866 867 const SCEV *Smallest = nullptr, *Greatest = nullptr; 868 869 if (Increasing) { 870 Smallest = Start; 871 Greatest = End; 872 } else { 873 // These two computations may sign-overflow. Here is why that is okay: 874 // 875 // We know that the induction variable does not sign-overflow on any 876 // iteration except the last one, and it starts at `Start` and ends at 877 // `End`, decrementing by one every time. 878 // 879 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 880 // induction variable is decreasing we know that that the smallest value 881 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 882 // 883 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 884 // that case, `Clamp` will always return `Smallest` and 885 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 886 // will be an empty range. Returning an empty range is always safe. 887 // 888 889 Smallest = SE.getAddExpr(End, SE.getSCEV(One)); 890 Greatest = SE.getAddExpr(Start, SE.getSCEV(One)); 891 } 892 893 auto Clamp = [this, Smallest, Greatest](const SCEV *S) { 894 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)); 895 }; 896 897 // In some cases we can prove that we don't need a pre or post loop 898 899 bool ProvablyNoPreloop = 900 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest); 901 if (!ProvablyNoPreloop) 902 Result.LowLimit = Clamp(Range.getBegin()); 903 904 bool ProvablyNoPostLoop = 905 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd()); 906 if (!ProvablyNoPostLoop) 907 Result.HighLimit = Clamp(Range.getEnd()); 908 909 return Result; 910 } 911 912 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 913 const char *Tag) const { 914 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 915 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 916 Result.Blocks.push_back(Clone); 917 Result.Map[BB] = Clone; 918 } 919 920 auto GetClonedValue = [&Result](Value *V) { 921 assert(V && "null values not in domain!"); 922 auto It = Result.Map.find(V); 923 if (It == Result.Map.end()) 924 return V; 925 return static_cast<Value *>(It->second); 926 }; 927 928 auto *ClonedLatch = 929 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 930 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 931 MDNode::get(Ctx, {})); 932 933 Result.Structure = MainLoopStructure.map(GetClonedValue); 934 Result.Structure.Tag = Tag; 935 936 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 937 BasicBlock *ClonedBB = Result.Blocks[i]; 938 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 939 940 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 941 942 for (Instruction &I : *ClonedBB) 943 RemapInstruction(&I, Result.Map, 944 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 945 946 // Exit blocks will now have one more predecessor and their PHI nodes need 947 // to be edited to reflect that. No phi nodes need to be introduced because 948 // the loop is in LCSSA. 949 950 for (auto *SBB : successors(OriginalBB)) { 951 if (OriginalLoop.contains(SBB)) 952 continue; // not an exit block 953 954 for (Instruction &I : *SBB) { 955 auto *PN = dyn_cast<PHINode>(&I); 956 if (!PN) 957 break; 958 959 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); 960 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); 961 } 962 } 963 } 964 } 965 966 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 967 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 968 BasicBlock *ContinuationBlock) const { 969 970 // We start with a loop with a single latch: 971 // 972 // +--------------------+ 973 // | | 974 // | preheader | 975 // | | 976 // +--------+-----------+ 977 // | ----------------\ 978 // | / | 979 // +--------v----v------+ | 980 // | | | 981 // | header | | 982 // | | | 983 // +--------------------+ | 984 // | 985 // ..... | 986 // | 987 // +--------------------+ | 988 // | | | 989 // | latch >----------/ 990 // | | 991 // +-------v------------+ 992 // | 993 // | 994 // | +--------------------+ 995 // | | | 996 // +---> original exit | 997 // | | 998 // +--------------------+ 999 // 1000 // We change the control flow to look like 1001 // 1002 // 1003 // +--------------------+ 1004 // | | 1005 // | preheader >-------------------------+ 1006 // | | | 1007 // +--------v-----------+ | 1008 // | /-------------+ | 1009 // | / | | 1010 // +--------v--v--------+ | | 1011 // | | | | 1012 // | header | | +--------+ | 1013 // | | | | | | 1014 // +--------------------+ | | +-----v-----v-----------+ 1015 // | | | | 1016 // | | | .pseudo.exit | 1017 // | | | | 1018 // | | +-----------v-----------+ 1019 // | | | 1020 // ..... | | | 1021 // | | +--------v-------------+ 1022 // +--------------------+ | | | | 1023 // | | | | | ContinuationBlock | 1024 // | latch >------+ | | | 1025 // | | | +----------------------+ 1026 // +---------v----------+ | 1027 // | | 1028 // | | 1029 // | +---------------^-----+ 1030 // | | | 1031 // +-----> .exit.selector | 1032 // | | 1033 // +----------v----------+ 1034 // | 1035 // +--------------------+ | 1036 // | | | 1037 // | original exit <----+ 1038 // | | 1039 // +--------------------+ 1040 // 1041 1042 RewrittenRangeInfo RRI; 1043 1044 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1045 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1046 &F, BBInsertLocation); 1047 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1048 BBInsertLocation); 1049 1050 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1051 bool Increasing = LS.IndVarIncreasing; 1052 1053 IRBuilder<> B(PreheaderJump); 1054 1055 // EnterLoopCond - is it okay to start executing this `LS'? 1056 Value *EnterLoopCond = Increasing 1057 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1058 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt); 1059 1060 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1061 PreheaderJump->eraseFromParent(); 1062 1063 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1064 B.SetInsertPoint(LS.LatchBr); 1065 Value *TakeBackedgeLoopCond = 1066 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt) 1067 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt); 1068 Value *CondForBranch = LS.LatchBrExitIdx == 1 1069 ? TakeBackedgeLoopCond 1070 : B.CreateNot(TakeBackedgeLoopCond); 1071 1072 LS.LatchBr->setCondition(CondForBranch); 1073 1074 B.SetInsertPoint(RRI.ExitSelector); 1075 1076 // IterationsLeft - are there any more iterations left, given the original 1077 // upper bound on the induction variable? If not, we branch to the "real" 1078 // exit. 1079 Value *IterationsLeft = Increasing 1080 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt) 1081 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt); 1082 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1083 1084 BranchInst *BranchToContinuation = 1085 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1086 1087 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1088 // each of the PHI nodes in the loop header. This feeds into the initial 1089 // value of the same PHI nodes if/when we continue execution. 1090 for (Instruction &I : *LS.Header) { 1091 auto *PN = dyn_cast<PHINode>(&I); 1092 if (!PN) 1093 break; 1094 1095 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", 1096 BranchToContinuation); 1097 1098 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); 1099 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), 1100 RRI.ExitSelector); 1101 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1102 } 1103 1104 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end", 1105 BranchToContinuation); 1106 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1107 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector); 1108 1109 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1110 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1111 for (Instruction &I : *LS.LatchExit) { 1112 if (PHINode *PN = dyn_cast<PHINode>(&I)) 1113 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); 1114 else 1115 break; 1116 } 1117 1118 return RRI; 1119 } 1120 1121 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1122 LoopStructure &LS, BasicBlock *ContinuationBlock, 1123 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1124 1125 unsigned PHIIndex = 0; 1126 for (Instruction &I : *LS.Header) { 1127 auto *PN = dyn_cast<PHINode>(&I); 1128 if (!PN) 1129 break; 1130 1131 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1132 if (PN->getIncomingBlock(i) == ContinuationBlock) 1133 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1134 } 1135 1136 LS.IndVarStart = RRI.IndVarEnd; 1137 } 1138 1139 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1140 BasicBlock *OldPreheader, 1141 const char *Tag) const { 1142 1143 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1144 BranchInst::Create(LS.Header, Preheader); 1145 1146 for (Instruction &I : *LS.Header) { 1147 auto *PN = dyn_cast<PHINode>(&I); 1148 if (!PN) 1149 break; 1150 1151 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1152 replacePHIBlock(PN, OldPreheader, Preheader); 1153 } 1154 1155 return Preheader; 1156 } 1157 1158 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1159 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1160 if (!ParentLoop) 1161 return; 1162 1163 for (BasicBlock *BB : BBs) 1164 ParentLoop->addBasicBlockToLoop(BB, LI); 1165 } 1166 1167 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1168 ValueToValueMapTy &VM) { 1169 Loop &New = LPM.addLoop(Parent); 1170 1171 // Add all of the blocks in Original to the new loop. 1172 for (auto *BB : Original->blocks()) 1173 if (LI.getLoopFor(BB) == Original) 1174 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1175 1176 // Add all of the subloops to the new loop. 1177 for (Loop *SubLoop : *Original) 1178 createClonedLoopStructure(SubLoop, &New, VM); 1179 1180 return &New; 1181 } 1182 1183 bool LoopConstrainer::run() { 1184 BasicBlock *Preheader = nullptr; 1185 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1186 Preheader = OriginalLoop.getLoopPreheader(); 1187 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1188 "preconditions!"); 1189 1190 OriginalPreheader = Preheader; 1191 MainLoopPreheader = Preheader; 1192 1193 Optional<SubRanges> MaybeSR = calculateSubRanges(); 1194 if (!MaybeSR.hasValue()) { 1195 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1196 return false; 1197 } 1198 1199 SubRanges SR = MaybeSR.getValue(); 1200 bool Increasing = MainLoopStructure.IndVarIncreasing; 1201 IntegerType *IVTy = 1202 cast<IntegerType>(MainLoopStructure.IndVarNext->getType()); 1203 1204 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1205 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1206 1207 // It would have been better to make `PreLoop' and `PostLoop' 1208 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1209 // constructor. 1210 ClonedLoop PreLoop, PostLoop; 1211 bool NeedsPreLoop = 1212 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1213 bool NeedsPostLoop = 1214 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1215 1216 Value *ExitPreLoopAt = nullptr; 1217 Value *ExitMainLoopAt = nullptr; 1218 const SCEVConstant *MinusOneS = 1219 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1220 1221 if (NeedsPreLoop) { 1222 const SCEV *ExitPreLoopAtSCEV = nullptr; 1223 1224 if (Increasing) 1225 ExitPreLoopAtSCEV = *SR.LowLimit; 1226 else { 1227 if (CanBeSMin(SE, *SR.HighLimit)) { 1228 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1229 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1230 << "\n"); 1231 return false; 1232 } 1233 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1234 } 1235 1236 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1237 ExitPreLoopAt->setName("exit.preloop.at"); 1238 } 1239 1240 if (NeedsPostLoop) { 1241 const SCEV *ExitMainLoopAtSCEV = nullptr; 1242 1243 if (Increasing) 1244 ExitMainLoopAtSCEV = *SR.HighLimit; 1245 else { 1246 if (CanBeSMin(SE, *SR.LowLimit)) { 1247 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1248 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1249 << "\n"); 1250 return false; 1251 } 1252 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1253 } 1254 1255 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1256 ExitMainLoopAt->setName("exit.mainloop.at"); 1257 } 1258 1259 // We clone these ahead of time so that we don't have to deal with changing 1260 // and temporarily invalid IR as we transform the loops. 1261 if (NeedsPreLoop) 1262 cloneLoop(PreLoop, "preloop"); 1263 if (NeedsPostLoop) 1264 cloneLoop(PostLoop, "postloop"); 1265 1266 RewrittenRangeInfo PreLoopRRI; 1267 1268 if (NeedsPreLoop) { 1269 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1270 PreLoop.Structure.Header); 1271 1272 MainLoopPreheader = 1273 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1274 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1275 ExitPreLoopAt, MainLoopPreheader); 1276 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1277 PreLoopRRI); 1278 } 1279 1280 BasicBlock *PostLoopPreheader = nullptr; 1281 RewrittenRangeInfo PostLoopRRI; 1282 1283 if (NeedsPostLoop) { 1284 PostLoopPreheader = 1285 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1286 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1287 ExitMainLoopAt, PostLoopPreheader); 1288 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1289 PostLoopRRI); 1290 } 1291 1292 BasicBlock *NewMainLoopPreheader = 1293 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1294 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1295 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1296 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1297 1298 // Some of the above may be nullptr, filter them out before passing to 1299 // addToParentLoopIfNeeded. 1300 auto NewBlocksEnd = 1301 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1302 1303 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1304 1305 DT.recalculate(F); 1306 1307 if (!PreLoop.Blocks.empty()) { 1308 auto *L = createClonedLoopStructure( 1309 &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map); 1310 formLCSSARecursively(*L, DT, &LI, &SE); 1311 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1312 } 1313 1314 if (!PostLoop.Blocks.empty()) { 1315 auto *L = createClonedLoopStructure( 1316 &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map); 1317 formLCSSARecursively(*L, DT, &LI, &SE); 1318 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1319 } 1320 1321 formLCSSARecursively(OriginalLoop, DT, &LI, &SE); 1322 simplifyLoop(&OriginalLoop, &DT, &LI, &SE, nullptr, true); 1323 1324 return true; 1325 } 1326 1327 /// Computes and returns a range of values for the induction variable (IndVar) 1328 /// in which the range check can be safely elided. If it cannot compute such a 1329 /// range, returns None. 1330 Optional<InductiveRangeCheck::Range> 1331 InductiveRangeCheck::computeSafeIterationSpace( 1332 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const { 1333 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1334 // variable, that may or may not exist as a real llvm::Value in the loop) and 1335 // this inductive range check is a range check on the "C + D * I" ("C" is 1336 // getOffset() and "D" is getScale()). We rewrite the value being range 1337 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1338 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code 1339 // can be generalized as needed. 1340 // 1341 // The actual inequalities we solve are of the form 1342 // 1343 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1344 // 1345 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions 1346 // and subtractions are twos-complement wrapping and comparisons are signed. 1347 // 1348 // Proof: 1349 // 1350 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows 1351 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows 1352 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have 1353 // overflown. 1354 // 1355 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. 1356 // Hence 0 <= (IndVar + M) < L 1357 1358 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = 1359 // 127, IndVar = 126 and L = -2 in an i8 world. 1360 1361 if (!IndVar->isAffine()) 1362 return None; 1363 1364 const SCEV *A = IndVar->getStart(); 1365 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1366 if (!B) 1367 return None; 1368 1369 const SCEV *C = getOffset(); 1370 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale()); 1371 if (D != B) 1372 return None; 1373 1374 ConstantInt *ConstD = D->getValue(); 1375 if (!(ConstD->isMinusOne() || ConstD->isOne())) 1376 return None; 1377 1378 const SCEV *M = SE.getMinusSCEV(C, A); 1379 1380 const SCEV *Begin = SE.getNegativeSCEV(M); 1381 const SCEV *UpperLimit = nullptr; 1382 1383 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 1384 // We can potentially do much better here. 1385 if (Value *V = getLength()) { 1386 UpperLimit = SE.getSCEV(V); 1387 } else { 1388 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 1389 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1390 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1391 } 1392 1393 const SCEV *End = SE.getMinusSCEV(UpperLimit, M); 1394 return InductiveRangeCheck::Range(Begin, End); 1395 } 1396 1397 static Optional<InductiveRangeCheck::Range> 1398 IntersectRange(ScalarEvolution &SE, 1399 const Optional<InductiveRangeCheck::Range> &R1, 1400 const InductiveRangeCheck::Range &R2) { 1401 if (!R1.hasValue()) 1402 return R2; 1403 auto &R1Value = R1.getValue(); 1404 1405 // TODO: we could widen the smaller range and have this work; but for now we 1406 // bail out to keep things simple. 1407 if (R1Value.getType() != R2.getType()) 1408 return None; 1409 1410 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1411 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1412 1413 return InductiveRangeCheck::Range(NewBegin, NewEnd); 1414 } 1415 1416 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1417 if (skipLoop(L)) 1418 return false; 1419 1420 if (L->getBlocks().size() >= LoopSizeCutoff) { 1421 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1422 return false; 1423 } 1424 1425 BasicBlock *Preheader = L->getLoopPreheader(); 1426 if (!Preheader) { 1427 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1428 return false; 1429 } 1430 1431 LLVMContext &Context = Preheader->getContext(); 1432 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1433 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1434 BranchProbabilityInfo &BPI = 1435 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1436 1437 for (auto BBI : L->getBlocks()) 1438 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1439 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1440 RangeChecks); 1441 1442 if (RangeChecks.empty()) 1443 return false; 1444 1445 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1446 OS << "irce: looking at loop "; L->print(OS); 1447 OS << "irce: loop has " << RangeChecks.size() 1448 << " inductive range checks: \n"; 1449 for (InductiveRangeCheck &IRC : RangeChecks) 1450 IRC.print(OS); 1451 }; 1452 1453 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1454 1455 if (PrintRangeChecks) 1456 PrintRecognizedRangeChecks(errs()); 1457 1458 const char *FailureReason = nullptr; 1459 Optional<LoopStructure> MaybeLoopStructure = 1460 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1461 if (!MaybeLoopStructure.hasValue()) { 1462 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1463 << "\n";); 1464 return false; 1465 } 1466 LoopStructure LS = MaybeLoopStructure.getValue(); 1467 bool Increasing = LS.IndVarIncreasing; 1468 const SCEV *MinusOne = 1469 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true); 1470 const SCEVAddRecExpr *IndVar = 1471 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne)); 1472 1473 Optional<InductiveRangeCheck::Range> SafeIterRange; 1474 Instruction *ExprInsertPt = Preheader->getTerminator(); 1475 1476 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1477 1478 IRBuilder<> B(ExprInsertPt); 1479 for (InductiveRangeCheck &IRC : RangeChecks) { 1480 auto Result = IRC.computeSafeIterationSpace(SE, IndVar); 1481 if (Result.hasValue()) { 1482 auto MaybeSafeIterRange = 1483 IntersectRange(SE, SafeIterRange, Result.getValue()); 1484 if (MaybeSafeIterRange.hasValue()) { 1485 RangeChecksToEliminate.push_back(IRC); 1486 SafeIterRange = MaybeSafeIterRange.getValue(); 1487 } 1488 } 1489 } 1490 1491 if (!SafeIterRange.hasValue()) 1492 return false; 1493 1494 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1495 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM, 1496 LS, SE, DT, SafeIterRange.getValue()); 1497 bool Changed = LC.run(); 1498 1499 if (Changed) { 1500 auto PrintConstrainedLoopInfo = [L]() { 1501 dbgs() << "irce: in function "; 1502 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1503 dbgs() << "constrained "; 1504 L->print(dbgs()); 1505 }; 1506 1507 DEBUG(PrintConstrainedLoopInfo()); 1508 1509 if (PrintChangedLoops) 1510 PrintConstrainedLoopInfo(); 1511 1512 // Optimize away the now-redundant range checks. 1513 1514 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1515 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1516 ? ConstantInt::getTrue(Context) 1517 : ConstantInt::getFalse(Context); 1518 IRC.getCheckUse()->set(FoldedRangeCheck); 1519 } 1520 } 1521 1522 return Changed; 1523 } 1524 1525 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1526 return new InductiveRangeCheckElimination; 1527 } 1528