1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/ScalarEvolution.h"
49 #include "llvm/Analysis/ScalarEvolutionExpander.h"
50 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Cloning.h"
62 #include "llvm/Transforms/Utils/LoopSimplify.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 
65 using namespace llvm;
66 
67 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
68                                         cl::init(64));
69 
70 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
71                                        cl::init(false));
72 
73 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
74                                       cl::init(false));
75 
76 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
77                                           cl::Hidden, cl::init(10));
78 
79 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
80                                              cl::Hidden, cl::init(false));
81 
82 static const char *ClonedLoopTag = "irce.loop.clone";
83 
84 #define DEBUG_TYPE "irce"
85 
86 namespace {
87 
88 /// An inductive range check is conditional branch in a loop with
89 ///
90 ///  1. a very cold successor (i.e. the branch jumps to that successor very
91 ///     rarely)
92 ///
93 ///  and
94 ///
95 ///  2. a condition that is provably true for some contiguous range of values
96 ///     taken by the containing loop's induction variable.
97 ///
98 class InductiveRangeCheck {
99   // Classifies a range check
100   enum RangeCheckKind : unsigned {
101     // Range check of the form "0 <= I".
102     RANGE_CHECK_LOWER = 1,
103 
104     // Range check of the form "I < L" where L is known positive.
105     RANGE_CHECK_UPPER = 2,
106 
107     // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
108     // conditions.
109     RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
110 
111     // Unrecognized range check condition.
112     RANGE_CHECK_UNKNOWN = (unsigned)-1
113   };
114 
115   static StringRef rangeCheckKindToStr(RangeCheckKind);
116 
117   const SCEV *Offset = nullptr;
118   const SCEV *Scale = nullptr;
119   Value *Length = nullptr;
120   Use *CheckUse = nullptr;
121   RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
122 
123   static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
124                                             ScalarEvolution &SE, Value *&Index,
125                                             Value *&Length);
126 
127   static void
128   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
129                              SmallVectorImpl<InductiveRangeCheck> &Checks,
130                              SmallPtrSetImpl<Value *> &Visited);
131 
132 public:
133   const SCEV *getOffset() const { return Offset; }
134   const SCEV *getScale() const { return Scale; }
135   Value *getLength() const { return Length; }
136 
137   void print(raw_ostream &OS) const {
138     OS << "InductiveRangeCheck:\n";
139     OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
140     OS << "  Offset: ";
141     Offset->print(OS);
142     OS << "  Scale: ";
143     Scale->print(OS);
144     OS << "  Length: ";
145     if (Length)
146       Length->print(OS);
147     else
148       OS << "(null)";
149     OS << "\n  CheckUse: ";
150     getCheckUse()->getUser()->print(OS);
151     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
152   }
153 
154   LLVM_DUMP_METHOD
155   void dump() {
156     print(dbgs());
157   }
158 
159   Use *getCheckUse() const { return CheckUse; }
160 
161   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
162   /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
163 
164   class Range {
165     const SCEV *Begin;
166     const SCEV *End;
167 
168   public:
169     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
170       assert(Begin->getType() == End->getType() && "ill-typed range!");
171     }
172 
173     Type *getType() const { return Begin->getType(); }
174     const SCEV *getBegin() const { return Begin; }
175     const SCEV *getEnd() const { return End; }
176   };
177 
178   /// This is the value the condition of the branch needs to evaluate to for the
179   /// branch to take the hot successor (see (1) above).
180   bool getPassingDirection() { return true; }
181 
182   /// Computes a range for the induction variable (IndVar) in which the range
183   /// check is redundant and can be constant-folded away.  The induction
184   /// variable is not required to be the canonical {0,+,1} induction variable.
185   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
186                                             const SCEVAddRecExpr *IndVar) const;
187 
188   /// Parse out a set of inductive range checks from \p BI and append them to \p
189   /// Checks.
190   ///
191   /// NB! There may be conditions feeding into \p BI that aren't inductive range
192   /// checks, and hence don't end up in \p Checks.
193   static void
194   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
195                                BranchProbabilityInfo &BPI,
196                                SmallVectorImpl<InductiveRangeCheck> &Checks);
197 };
198 
199 class InductiveRangeCheckElimination : public LoopPass {
200 public:
201   static char ID;
202   InductiveRangeCheckElimination() : LoopPass(ID) {
203     initializeInductiveRangeCheckEliminationPass(
204         *PassRegistry::getPassRegistry());
205   }
206 
207   void getAnalysisUsage(AnalysisUsage &AU) const override {
208     AU.addRequired<BranchProbabilityInfoWrapperPass>();
209     getLoopAnalysisUsage(AU);
210   }
211 
212   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
213 };
214 
215 char InductiveRangeCheckElimination::ID = 0;
216 }
217 
218 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
219                       "Inductive range check elimination", false, false)
220 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
221 INITIALIZE_PASS_DEPENDENCY(LoopPass)
222 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
223                     "Inductive range check elimination", false, false)
224 
225 StringRef InductiveRangeCheck::rangeCheckKindToStr(
226     InductiveRangeCheck::RangeCheckKind RCK) {
227   switch (RCK) {
228   case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
229     return "RANGE_CHECK_UNKNOWN";
230 
231   case InductiveRangeCheck::RANGE_CHECK_UPPER:
232     return "RANGE_CHECK_UPPER";
233 
234   case InductiveRangeCheck::RANGE_CHECK_LOWER:
235     return "RANGE_CHECK_LOWER";
236 
237   case InductiveRangeCheck::RANGE_CHECK_BOTH:
238     return "RANGE_CHECK_BOTH";
239   }
240 
241   llvm_unreachable("unknown range check type!");
242 }
243 
244 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
245 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
246 /// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
247 /// range checked, and set `Length` to the upper limit `Index` is being range
248 /// checked with if (and only if) the range check type is stronger or equal to
249 /// RANGE_CHECK_UPPER.
250 ///
251 InductiveRangeCheck::RangeCheckKind
252 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
253                                          ScalarEvolution &SE, Value *&Index,
254                                          Value *&Length) {
255 
256   auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
257     const SCEV *S = SE.getSCEV(V);
258     if (isa<SCEVCouldNotCompute>(S))
259       return false;
260 
261     return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
262            SE.isKnownNonNegative(S);
263   };
264 
265   using namespace llvm::PatternMatch;
266 
267   ICmpInst::Predicate Pred = ICI->getPredicate();
268   Value *LHS = ICI->getOperand(0);
269   Value *RHS = ICI->getOperand(1);
270 
271   switch (Pred) {
272   default:
273     return RANGE_CHECK_UNKNOWN;
274 
275   case ICmpInst::ICMP_SLE:
276     std::swap(LHS, RHS);
277     LLVM_FALLTHROUGH;
278   case ICmpInst::ICMP_SGE:
279     if (match(RHS, m_ConstantInt<0>())) {
280       Index = LHS;
281       return RANGE_CHECK_LOWER;
282     }
283     return RANGE_CHECK_UNKNOWN;
284 
285   case ICmpInst::ICMP_SLT:
286     std::swap(LHS, RHS);
287     LLVM_FALLTHROUGH;
288   case ICmpInst::ICMP_SGT:
289     if (match(RHS, m_ConstantInt<-1>())) {
290       Index = LHS;
291       return RANGE_CHECK_LOWER;
292     }
293 
294     if (IsNonNegativeAndNotLoopVarying(LHS)) {
295       Index = RHS;
296       Length = LHS;
297       return RANGE_CHECK_UPPER;
298     }
299     return RANGE_CHECK_UNKNOWN;
300 
301   case ICmpInst::ICMP_ULT:
302     std::swap(LHS, RHS);
303     LLVM_FALLTHROUGH;
304   case ICmpInst::ICMP_UGT:
305     if (IsNonNegativeAndNotLoopVarying(LHS)) {
306       Index = RHS;
307       Length = LHS;
308       return RANGE_CHECK_BOTH;
309     }
310     return RANGE_CHECK_UNKNOWN;
311   }
312 
313   llvm_unreachable("default clause returns!");
314 }
315 
316 void InductiveRangeCheck::extractRangeChecksFromCond(
317     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
318     SmallVectorImpl<InductiveRangeCheck> &Checks,
319     SmallPtrSetImpl<Value *> &Visited) {
320   using namespace llvm::PatternMatch;
321 
322   Value *Condition = ConditionUse.get();
323   if (!Visited.insert(Condition).second)
324     return;
325 
326   if (match(Condition, m_And(m_Value(), m_Value()))) {
327     SmallVector<InductiveRangeCheck, 8> SubChecks;
328     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
329                                SubChecks, Visited);
330     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
331                                SubChecks, Visited);
332 
333     if (SubChecks.size() == 2) {
334       // Handle a special case where we know how to merge two checks separately
335       // checking the upper and lower bounds into a full range check.
336       const auto &RChkA = SubChecks[0];
337       const auto &RChkB = SubChecks[1];
338       if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
339           RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
340 
341         // If RChkA.Kind == RChkB.Kind then we just found two identical checks.
342         // But if one of them is a RANGE_CHECK_LOWER and the other is a
343         // RANGE_CHECK_UPPER (only possibility if they're different) then
344         // together they form a RANGE_CHECK_BOTH.
345         SubChecks[0].Kind =
346             (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
347         SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
348         SubChecks[0].CheckUse = &ConditionUse;
349 
350         // We updated one of the checks in place, now erase the other.
351         SubChecks.pop_back();
352       }
353     }
354 
355     Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
356     return;
357   }
358 
359   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
360   if (!ICI)
361     return;
362 
363   Value *Length = nullptr, *Index;
364   auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
365   if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
366     return;
367 
368   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
369   bool IsAffineIndex =
370       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
371 
372   if (!IsAffineIndex)
373     return;
374 
375   InductiveRangeCheck IRC;
376   IRC.Length = Length;
377   IRC.Offset = IndexAddRec->getStart();
378   IRC.Scale = IndexAddRec->getStepRecurrence(SE);
379   IRC.CheckUse = &ConditionUse;
380   IRC.Kind = RCKind;
381   Checks.push_back(IRC);
382 }
383 
384 void InductiveRangeCheck::extractRangeChecksFromBranch(
385     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
386     SmallVectorImpl<InductiveRangeCheck> &Checks) {
387 
388   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
389     return;
390 
391   BranchProbability LikelyTaken(15, 16);
392 
393   if (!SkipProfitabilityChecks &&
394       BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
395     return;
396 
397   SmallPtrSet<Value *, 8> Visited;
398   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
399                                                   Checks, Visited);
400 }
401 
402 // Add metadata to the loop L to disable loop optimizations. Callers need to
403 // confirm that optimizing loop L is not beneficial.
404 static void DisableAllLoopOptsOnLoop(Loop &L) {
405   // We do not care about any existing loopID related metadata for L, since we
406   // are setting all loop metadata to false.
407   LLVMContext &Context = L.getHeader()->getContext();
408   // Reserve first location for self reference to the LoopID metadata node.
409   MDNode *Dummy = MDNode::get(Context, {});
410   MDNode *DisableUnroll = MDNode::get(
411       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
412   Metadata *FalseVal =
413       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
414   MDNode *DisableVectorize = MDNode::get(
415       Context,
416       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
417   MDNode *DisableLICMVersioning = MDNode::get(
418       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
419   MDNode *DisableDistribution= MDNode::get(
420       Context,
421       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
422   MDNode *NewLoopID =
423       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
424                             DisableLICMVersioning, DisableDistribution});
425   // Set operand 0 to refer to the loop id itself.
426   NewLoopID->replaceOperandWith(0, NewLoopID);
427   L.setLoopID(NewLoopID);
428 }
429 
430 namespace {
431 
432 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
433 // except that it is more lightweight and can track the state of a loop through
434 // changing and potentially invalid IR.  This structure also formalizes the
435 // kinds of loops we can deal with -- ones that have a single latch that is also
436 // an exiting block *and* have a canonical induction variable.
437 struct LoopStructure {
438   const char *Tag;
439 
440   BasicBlock *Header;
441   BasicBlock *Latch;
442 
443   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
444   // successor is `LatchExit', the exit block of the loop.
445   BranchInst *LatchBr;
446   BasicBlock *LatchExit;
447   unsigned LatchBrExitIdx;
448 
449   // The loop represented by this instance of LoopStructure is semantically
450   // equivalent to:
451   //
452   // intN_ty inc = IndVarIncreasing ? 1 : -1;
453   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
454   //
455   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarNext)
456   //   ... body ...
457 
458   Value *IndVarNext;
459   Value *IndVarStart;
460   Value *LoopExitAt;
461   bool IndVarIncreasing;
462 
463   LoopStructure()
464       : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
465         LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
466         IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
467 
468   template <typename M> LoopStructure map(M Map) const {
469     LoopStructure Result;
470     Result.Tag = Tag;
471     Result.Header = cast<BasicBlock>(Map(Header));
472     Result.Latch = cast<BasicBlock>(Map(Latch));
473     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
474     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
475     Result.LatchBrExitIdx = LatchBrExitIdx;
476     Result.IndVarNext = Map(IndVarNext);
477     Result.IndVarStart = Map(IndVarStart);
478     Result.LoopExitAt = Map(LoopExitAt);
479     Result.IndVarIncreasing = IndVarIncreasing;
480     return Result;
481   }
482 
483   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
484                                                     BranchProbabilityInfo &BPI,
485                                                     Loop &,
486                                                     const char *&);
487 };
488 
489 /// This class is used to constrain loops to run within a given iteration space.
490 /// The algorithm this class implements is given a Loop and a range [Begin,
491 /// End).  The algorithm then tries to break out a "main loop" out of the loop
492 /// it is given in a way that the "main loop" runs with the induction variable
493 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
494 /// loops to run any remaining iterations.  The pre loop runs any iterations in
495 /// which the induction variable is < Begin, and the post loop runs any
496 /// iterations in which the induction variable is >= End.
497 ///
498 class LoopConstrainer {
499   // The representation of a clone of the original loop we started out with.
500   struct ClonedLoop {
501     // The cloned blocks
502     std::vector<BasicBlock *> Blocks;
503 
504     // `Map` maps values in the clonee into values in the cloned version
505     ValueToValueMapTy Map;
506 
507     // An instance of `LoopStructure` for the cloned loop
508     LoopStructure Structure;
509   };
510 
511   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
512   // more details on what these fields mean.
513   struct RewrittenRangeInfo {
514     BasicBlock *PseudoExit;
515     BasicBlock *ExitSelector;
516     std::vector<PHINode *> PHIValuesAtPseudoExit;
517     PHINode *IndVarEnd;
518 
519     RewrittenRangeInfo()
520         : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
521   };
522 
523   // Calculated subranges we restrict the iteration space of the main loop to.
524   // See the implementation of `calculateSubRanges' for more details on how
525   // these fields are computed.  `LowLimit` is None if there is no restriction
526   // on low end of the restricted iteration space of the main loop.  `HighLimit`
527   // is None if there is no restriction on high end of the restricted iteration
528   // space of the main loop.
529 
530   struct SubRanges {
531     Optional<const SCEV *> LowLimit;
532     Optional<const SCEV *> HighLimit;
533   };
534 
535   // A utility function that does a `replaceUsesOfWith' on the incoming block
536   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
537   // incoming block list with `ReplaceBy'.
538   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
539                               BasicBlock *ReplaceBy);
540 
541   // Compute a safe set of limits for the main loop to run in -- effectively the
542   // intersection of `Range' and the iteration space of the original loop.
543   // Return None if unable to compute the set of subranges.
544   //
545   Optional<SubRanges> calculateSubRanges() const;
546 
547   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
548   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
549   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
550   // but there is no such edge.
551   //
552   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
553 
554   // Create the appropriate loop structure needed to describe a cloned copy of
555   // `Original`.  The clone is described by `VM`.
556   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
557                                   ValueToValueMapTy &VM);
558 
559   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
560   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
561   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
562   // `OriginalHeaderCount'.
563   //
564   // If there are iterations left to execute, control is made to jump to
565   // `ContinuationBlock', otherwise they take the normal loop exit.  The
566   // returned `RewrittenRangeInfo' object is populated as follows:
567   //
568   //  .PseudoExit is a basic block that unconditionally branches to
569   //      `ContinuationBlock'.
570   //
571   //  .ExitSelector is a basic block that decides, on exit from the loop,
572   //      whether to branch to the "true" exit or to `PseudoExit'.
573   //
574   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
575   //      for each PHINode in the loop header on taking the pseudo exit.
576   //
577   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
578   // preheader because it is made to branch to the loop header only
579   // conditionally.
580   //
581   RewrittenRangeInfo
582   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
583                           Value *ExitLoopAt,
584                           BasicBlock *ContinuationBlock) const;
585 
586   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
587   // function creates a new preheader for `LS' and returns it.
588   //
589   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
590                               const char *Tag) const;
591 
592   // `ContinuationBlockAndPreheader' was the continuation block for some call to
593   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
594   // This function rewrites the PHI nodes in `LS.Header' to start with the
595   // correct value.
596   void rewriteIncomingValuesForPHIs(
597       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
598       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
599 
600   // Even though we do not preserve any passes at this time, we at least need to
601   // keep the parent loop structure consistent.  The `LPPassManager' seems to
602   // verify this after running a loop pass.  This function adds the list of
603   // blocks denoted by BBs to this loops parent loop if required.
604   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
605 
606   // Some global state.
607   Function &F;
608   LLVMContext &Ctx;
609   ScalarEvolution &SE;
610   DominatorTree &DT;
611   LPPassManager &LPM;
612   LoopInfo &LI;
613 
614   // Information about the original loop we started out with.
615   Loop &OriginalLoop;
616   const SCEV *LatchTakenCount;
617   BasicBlock *OriginalPreheader;
618 
619   // The preheader of the main loop.  This may or may not be different from
620   // `OriginalPreheader'.
621   BasicBlock *MainLoopPreheader;
622 
623   // The range we need to run the main loop in.
624   InductiveRangeCheck::Range Range;
625 
626   // The structure of the main loop (see comment at the beginning of this class
627   // for a definition)
628   LoopStructure MainLoopStructure;
629 
630 public:
631   LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM,
632                   const LoopStructure &LS, ScalarEvolution &SE,
633                   DominatorTree &DT, InductiveRangeCheck::Range R)
634       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
635         SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L),
636         LatchTakenCount(nullptr), OriginalPreheader(nullptr),
637         MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {}
638 
639   // Entry point for the algorithm.  Returns true on success.
640   bool run();
641 };
642 
643 }
644 
645 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
646                                       BasicBlock *ReplaceBy) {
647   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
648     if (PN->getIncomingBlock(i) == Block)
649       PN->setIncomingBlock(i, ReplaceBy);
650 }
651 
652 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
653   APInt SMax =
654       APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
655   return SE.getSignedRange(S).contains(SMax) &&
656          SE.getUnsignedRange(S).contains(SMax);
657 }
658 
659 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
660   APInt SMin =
661       APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
662   return SE.getSignedRange(S).contains(SMin) &&
663          SE.getUnsignedRange(S).contains(SMin);
664 }
665 
666 Optional<LoopStructure>
667 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
668                                   Loop &L, const char *&FailureReason) {
669   if (!L.isLoopSimplifyForm()) {
670     FailureReason = "loop not in LoopSimplify form";
671     return None;
672   }
673 
674   BasicBlock *Latch = L.getLoopLatch();
675   assert(Latch && "Simplified loops only have one latch!");
676 
677   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
678     FailureReason = "loop has already been cloned";
679     return None;
680   }
681 
682   if (!L.isLoopExiting(Latch)) {
683     FailureReason = "no loop latch";
684     return None;
685   }
686 
687   BasicBlock *Header = L.getHeader();
688   BasicBlock *Preheader = L.getLoopPreheader();
689   if (!Preheader) {
690     FailureReason = "no preheader";
691     return None;
692   }
693 
694   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
695   if (!LatchBr || LatchBr->isUnconditional()) {
696     FailureReason = "latch terminator not conditional branch";
697     return None;
698   }
699 
700   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
701 
702   BranchProbability ExitProbability =
703     BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
704 
705   if (!SkipProfitabilityChecks &&
706       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
707     FailureReason = "short running loop, not profitable";
708     return None;
709   }
710 
711   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
712   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
713     FailureReason = "latch terminator branch not conditional on integral icmp";
714     return None;
715   }
716 
717   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
718   if (isa<SCEVCouldNotCompute>(LatchCount)) {
719     FailureReason = "could not compute latch count";
720     return None;
721   }
722 
723   ICmpInst::Predicate Pred = ICI->getPredicate();
724   Value *LeftValue = ICI->getOperand(0);
725   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
726   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
727 
728   Value *RightValue = ICI->getOperand(1);
729   const SCEV *RightSCEV = SE.getSCEV(RightValue);
730 
731   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
732   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
733     if (isa<SCEVAddRecExpr>(RightSCEV)) {
734       std::swap(LeftSCEV, RightSCEV);
735       std::swap(LeftValue, RightValue);
736       Pred = ICmpInst::getSwappedPredicate(Pred);
737     } else {
738       FailureReason = "no add recurrences in the icmp";
739       return None;
740     }
741   }
742 
743   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
744     if (AR->getNoWrapFlags(SCEV::FlagNSW))
745       return true;
746 
747     IntegerType *Ty = cast<IntegerType>(AR->getType());
748     IntegerType *WideTy =
749         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
750 
751     const SCEVAddRecExpr *ExtendAfterOp =
752         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
753     if (ExtendAfterOp) {
754       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
755       const SCEV *ExtendedStep =
756           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
757 
758       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
759                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
760 
761       if (NoSignedWrap)
762         return true;
763     }
764 
765     // We may have proved this when computing the sign extension above.
766     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
767   };
768 
769   auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
770     if (!AR->isAffine())
771       return false;
772 
773     // Currently we only work with induction variables that have been proved to
774     // not wrap.  This restriction can potentially be lifted in the future.
775 
776     if (!HasNoSignedWrap(AR))
777       return false;
778 
779     if (const SCEVConstant *StepExpr =
780             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
781       ConstantInt *StepCI = StepExpr->getValue();
782       if (StepCI->isOne() || StepCI->isMinusOne()) {
783         IsIncreasing = StepCI->isOne();
784         return true;
785       }
786     }
787 
788     return false;
789   };
790 
791   // `ICI` is interpreted as taking the backedge if the *next* value of the
792   // induction variable satisfies some constraint.
793 
794   const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
795   bool IsIncreasing = false;
796   if (!IsInductionVar(IndVarNext, IsIncreasing)) {
797     FailureReason = "LHS in icmp not induction variable";
798     return None;
799   }
800 
801   const SCEV *StartNext = IndVarNext->getStart();
802   const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
803   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
804 
805   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
806   // TODO: generalize the predicates here to also match their unsigned variants.
807   if (IsIncreasing) {
808     bool DecreasedRightValueByOne = false;
809     // Try to turn eq/ne predicates to those we can work with.
810     if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
811       // while (++i != len) {         while (++i < len) {
812       //   ...                 --->     ...
813       // }                            }
814       Pred = ICmpInst::ICMP_SLT;
815     else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
816              !CanBeSMin(SE, RightSCEV)) {
817       // while (true) {               while (true) {
818       //   if (++i == len)     --->     if (++i > len - 1)
819       //     break;                       break;
820       //   ...                          ...
821       // }                            }
822       Pred = ICmpInst::ICMP_SGT;
823       RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
824       DecreasedRightValueByOne = true;
825     }
826 
827     bool FoundExpectedPred =
828         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
829         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
830 
831     if (!FoundExpectedPred) {
832       FailureReason = "expected icmp slt semantically, found something else";
833       return None;
834     }
835 
836     if (LatchBrExitIdx == 0) {
837       if (CanBeSMax(SE, RightSCEV)) {
838         // TODO: this restriction is easily removable -- we just have to
839         // remember that the icmp was an slt and not an sle.
840         FailureReason = "limit may overflow when coercing sle to slt";
841         return None;
842       }
843 
844       if (!SE.isLoopEntryGuardedByCond(
845               &L, CmpInst::ICMP_SLT, IndVarStart,
846               SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())))) {
847         FailureReason = "Induction variable start not bounded by upper limit";
848         return None;
849       }
850 
851       // We need to increase the right value unless we have already decreased
852       // it virtually when we replaced EQ with SGT.
853       if (!DecreasedRightValueByOne) {
854         IRBuilder<> B(Preheader->getTerminator());
855         RightValue = B.CreateAdd(RightValue, One);
856       }
857     } else {
858       if (!SE.isLoopEntryGuardedByCond(&L, CmpInst::ICMP_SLT, IndVarStart,
859                                        RightSCEV)) {
860         FailureReason = "Induction variable start not bounded by upper limit";
861         return None;
862       }
863       assert(!DecreasedRightValueByOne &&
864              "Right value can be decreased only for LatchBrExitIdx == 0!");
865     }
866   } else {
867     bool IncreasedRightValueByOne = false;
868     // Try to turn eq/ne predicates to those we can work with.
869     if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
870       // while (--i != len) {         while (--i > len) {
871       //   ...                 --->     ...
872       // }                            }
873       Pred = ICmpInst::ICMP_SGT;
874     else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
875              !CanBeSMax(SE, RightSCEV)) {
876       // while (true) {               while (true) {
877       //   if (--i == len)     --->     if (--i < len + 1)
878       //     break;                       break;
879       //   ...                          ...
880       // }                            }
881       Pred = ICmpInst::ICMP_SLT;
882       RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
883       IncreasedRightValueByOne = true;
884     }
885 
886     bool FoundExpectedPred =
887         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
888         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
889 
890     if (!FoundExpectedPred) {
891       FailureReason = "expected icmp sgt semantically, found something else";
892       return None;
893     }
894 
895     if (LatchBrExitIdx == 0) {
896       if (CanBeSMin(SE, RightSCEV)) {
897         // TODO: this restriction is easily removable -- we just have to
898         // remember that the icmp was an sgt and not an sge.
899         FailureReason = "limit may overflow when coercing sge to sgt";
900         return None;
901       }
902 
903       if (!SE.isLoopEntryGuardedByCond(
904               &L, CmpInst::ICMP_SGT, IndVarStart,
905               SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) {
906         FailureReason = "Induction variable start not bounded by lower limit";
907         return None;
908       }
909 
910       // We need to decrease the right value unless we have already increased
911       // it virtually when we replaced EQ with SLT.
912       if (!IncreasedRightValueByOne) {
913         IRBuilder<> B(Preheader->getTerminator());
914         RightValue = B.CreateSub(RightValue, One);
915       }
916     } else {
917       if (!SE.isLoopEntryGuardedByCond(&L, CmpInst::ICMP_SGT, IndVarStart,
918                                        RightSCEV)) {
919         FailureReason = "Induction variable start not bounded by lower limit";
920         return None;
921       }
922       assert(!IncreasedRightValueByOne &&
923              "Right value can be increased only for LatchBrExitIdx == 0!");
924     }
925   }
926 
927   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
928 
929   assert(SE.getLoopDisposition(LatchCount, &L) ==
930              ScalarEvolution::LoopInvariant &&
931          "loop variant exit count doesn't make sense!");
932 
933   assert(!L.contains(LatchExit) && "expected an exit block!");
934   const DataLayout &DL = Preheader->getModule()->getDataLayout();
935   Value *IndVarStartV =
936       SCEVExpander(SE, DL, "irce")
937           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
938   IndVarStartV->setName("indvar.start");
939 
940   LoopStructure Result;
941 
942   Result.Tag = "main";
943   Result.Header = Header;
944   Result.Latch = Latch;
945   Result.LatchBr = LatchBr;
946   Result.LatchExit = LatchExit;
947   Result.LatchBrExitIdx = LatchBrExitIdx;
948   Result.IndVarStart = IndVarStartV;
949   Result.IndVarNext = LeftValue;
950   Result.IndVarIncreasing = IsIncreasing;
951   Result.LoopExitAt = RightValue;
952 
953   FailureReason = nullptr;
954 
955   return Result;
956 }
957 
958 Optional<LoopConstrainer::SubRanges>
959 LoopConstrainer::calculateSubRanges() const {
960   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
961 
962   if (Range.getType() != Ty)
963     return None;
964 
965   LoopConstrainer::SubRanges Result;
966 
967   // I think we can be more aggressive here and make this nuw / nsw if the
968   // addition that feeds into the icmp for the latch's terminating branch is nuw
969   // / nsw.  In any case, a wrapping 2's complement addition is safe.
970   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
971   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
972 
973   bool Increasing = MainLoopStructure.IndVarIncreasing;
974 
975   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
976   // [Smallest, GreatestSeen] is the range of values the induction variable
977   // takes.
978 
979   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
980 
981   const SCEV *One = SE.getOne(Ty);
982   if (Increasing) {
983     Smallest = Start;
984     Greatest = End;
985     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
986     GreatestSeen = SE.getMinusSCEV(End, One);
987   } else {
988     // These two computations may sign-overflow.  Here is why that is okay:
989     //
990     // We know that the induction variable does not sign-overflow on any
991     // iteration except the last one, and it starts at `Start` and ends at
992     // `End`, decrementing by one every time.
993     //
994     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
995     //    induction variable is decreasing we know that that the smallest value
996     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
997     //
998     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
999     //    that case, `Clamp` will always return `Smallest` and
1000     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1001     //    will be an empty range.  Returning an empty range is always safe.
1002     //
1003 
1004     Smallest = SE.getAddExpr(End, One);
1005     Greatest = SE.getAddExpr(Start, One);
1006     GreatestSeen = Start;
1007   }
1008 
1009   auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
1010     return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
1011   };
1012 
1013   // In some cases we can prove that we don't need a pre or post loop
1014 
1015   bool ProvablyNoPreloop =
1016       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
1017   if (!ProvablyNoPreloop)
1018     Result.LowLimit = Clamp(Range.getBegin());
1019 
1020   bool ProvablyNoPostLoop =
1021       SE.isKnownPredicate(ICmpInst::ICMP_SLT, GreatestSeen, Range.getEnd());
1022   if (!ProvablyNoPostLoop)
1023     Result.HighLimit = Clamp(Range.getEnd());
1024 
1025   return Result;
1026 }
1027 
1028 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1029                                 const char *Tag) const {
1030   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1031     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1032     Result.Blocks.push_back(Clone);
1033     Result.Map[BB] = Clone;
1034   }
1035 
1036   auto GetClonedValue = [&Result](Value *V) {
1037     assert(V && "null values not in domain!");
1038     auto It = Result.Map.find(V);
1039     if (It == Result.Map.end())
1040       return V;
1041     return static_cast<Value *>(It->second);
1042   };
1043 
1044   auto *ClonedLatch =
1045       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1046   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1047                                             MDNode::get(Ctx, {}));
1048 
1049   Result.Structure = MainLoopStructure.map(GetClonedValue);
1050   Result.Structure.Tag = Tag;
1051 
1052   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1053     BasicBlock *ClonedBB = Result.Blocks[i];
1054     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1055 
1056     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1057 
1058     for (Instruction &I : *ClonedBB)
1059       RemapInstruction(&I, Result.Map,
1060                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1061 
1062     // Exit blocks will now have one more predecessor and their PHI nodes need
1063     // to be edited to reflect that.  No phi nodes need to be introduced because
1064     // the loop is in LCSSA.
1065 
1066     for (auto *SBB : successors(OriginalBB)) {
1067       if (OriginalLoop.contains(SBB))
1068         continue; // not an exit block
1069 
1070       for (Instruction &I : *SBB) {
1071         auto *PN = dyn_cast<PHINode>(&I);
1072         if (!PN)
1073           break;
1074 
1075         Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
1076         PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1077       }
1078     }
1079   }
1080 }
1081 
1082 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1083     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1084     BasicBlock *ContinuationBlock) const {
1085 
1086   // We start with a loop with a single latch:
1087   //
1088   //    +--------------------+
1089   //    |                    |
1090   //    |     preheader      |
1091   //    |                    |
1092   //    +--------+-----------+
1093   //             |      ----------------\
1094   //             |     /                |
1095   //    +--------v----v------+          |
1096   //    |                    |          |
1097   //    |      header        |          |
1098   //    |                    |          |
1099   //    +--------------------+          |
1100   //                                    |
1101   //            .....                   |
1102   //                                    |
1103   //    +--------------------+          |
1104   //    |                    |          |
1105   //    |       latch        >----------/
1106   //    |                    |
1107   //    +-------v------------+
1108   //            |
1109   //            |
1110   //            |   +--------------------+
1111   //            |   |                    |
1112   //            +--->   original exit    |
1113   //                |                    |
1114   //                +--------------------+
1115   //
1116   // We change the control flow to look like
1117   //
1118   //
1119   //    +--------------------+
1120   //    |                    |
1121   //    |     preheader      >-------------------------+
1122   //    |                    |                         |
1123   //    +--------v-----------+                         |
1124   //             |    /-------------+                  |
1125   //             |   /              |                  |
1126   //    +--------v--v--------+      |                  |
1127   //    |                    |      |                  |
1128   //    |      header        |      |   +--------+     |
1129   //    |                    |      |   |        |     |
1130   //    +--------------------+      |   |  +-----v-----v-----------+
1131   //                                |   |  |                       |
1132   //                                |   |  |     .pseudo.exit      |
1133   //                                |   |  |                       |
1134   //                                |   |  +-----------v-----------+
1135   //                                |   |              |
1136   //            .....               |   |              |
1137   //                                |   |     +--------v-------------+
1138   //    +--------------------+      |   |     |                      |
1139   //    |                    |      |   |     |   ContinuationBlock  |
1140   //    |       latch        >------+   |     |                      |
1141   //    |                    |          |     +----------------------+
1142   //    +---------v----------+          |
1143   //              |                     |
1144   //              |                     |
1145   //              |     +---------------^-----+
1146   //              |     |                     |
1147   //              +----->    .exit.selector   |
1148   //                    |                     |
1149   //                    +----------v----------+
1150   //                               |
1151   //     +--------------------+    |
1152   //     |                    |    |
1153   //     |   original exit    <----+
1154   //     |                    |
1155   //     +--------------------+
1156   //
1157 
1158   RewrittenRangeInfo RRI;
1159 
1160   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1161   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1162                                         &F, BBInsertLocation);
1163   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1164                                       BBInsertLocation);
1165 
1166   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1167   bool Increasing = LS.IndVarIncreasing;
1168 
1169   IRBuilder<> B(PreheaderJump);
1170 
1171   // EnterLoopCond - is it okay to start executing this `LS'?
1172   Value *EnterLoopCond = Increasing
1173                              ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1174                              : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1175 
1176   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1177   PreheaderJump->eraseFromParent();
1178 
1179   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1180   B.SetInsertPoint(LS.LatchBr);
1181   Value *TakeBackedgeLoopCond =
1182       Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1183                  : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1184   Value *CondForBranch = LS.LatchBrExitIdx == 1
1185                              ? TakeBackedgeLoopCond
1186                              : B.CreateNot(TakeBackedgeLoopCond);
1187 
1188   LS.LatchBr->setCondition(CondForBranch);
1189 
1190   B.SetInsertPoint(RRI.ExitSelector);
1191 
1192   // IterationsLeft - are there any more iterations left, given the original
1193   // upper bound on the induction variable?  If not, we branch to the "real"
1194   // exit.
1195   Value *IterationsLeft = Increasing
1196                               ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1197                               : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
1198   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1199 
1200   BranchInst *BranchToContinuation =
1201       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1202 
1203   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1204   // each of the PHI nodes in the loop header.  This feeds into the initial
1205   // value of the same PHI nodes if/when we continue execution.
1206   for (Instruction &I : *LS.Header) {
1207     auto *PN = dyn_cast<PHINode>(&I);
1208     if (!PN)
1209       break;
1210 
1211     PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1212                                       BranchToContinuation);
1213 
1214     NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1215     NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1216                         RRI.ExitSelector);
1217     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1218   }
1219 
1220   RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1221                                   BranchToContinuation);
1222   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1223   RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1224 
1225   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1226   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1227   for (Instruction &I : *LS.LatchExit) {
1228     if (PHINode *PN = dyn_cast<PHINode>(&I))
1229       replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1230     else
1231       break;
1232   }
1233 
1234   return RRI;
1235 }
1236 
1237 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1238     LoopStructure &LS, BasicBlock *ContinuationBlock,
1239     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1240 
1241   unsigned PHIIndex = 0;
1242   for (Instruction &I : *LS.Header) {
1243     auto *PN = dyn_cast<PHINode>(&I);
1244     if (!PN)
1245       break;
1246 
1247     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1248       if (PN->getIncomingBlock(i) == ContinuationBlock)
1249         PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1250   }
1251 
1252   LS.IndVarStart = RRI.IndVarEnd;
1253 }
1254 
1255 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1256                                              BasicBlock *OldPreheader,
1257                                              const char *Tag) const {
1258 
1259   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1260   BranchInst::Create(LS.Header, Preheader);
1261 
1262   for (Instruction &I : *LS.Header) {
1263     auto *PN = dyn_cast<PHINode>(&I);
1264     if (!PN)
1265       break;
1266 
1267     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1268       replacePHIBlock(PN, OldPreheader, Preheader);
1269   }
1270 
1271   return Preheader;
1272 }
1273 
1274 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1275   Loop *ParentLoop = OriginalLoop.getParentLoop();
1276   if (!ParentLoop)
1277     return;
1278 
1279   for (BasicBlock *BB : BBs)
1280     ParentLoop->addBasicBlockToLoop(BB, LI);
1281 }
1282 
1283 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1284                                                  ValueToValueMapTy &VM) {
1285   Loop &New = *new Loop();
1286   if (Parent)
1287     Parent->addChildLoop(&New);
1288   else
1289     LI.addTopLevelLoop(&New);
1290   LPM.addLoop(New);
1291 
1292   // Add all of the blocks in Original to the new loop.
1293   for (auto *BB : Original->blocks())
1294     if (LI.getLoopFor(BB) == Original)
1295       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1296 
1297   // Add all of the subloops to the new loop.
1298   for (Loop *SubLoop : *Original)
1299     createClonedLoopStructure(SubLoop, &New, VM);
1300 
1301   return &New;
1302 }
1303 
1304 bool LoopConstrainer::run() {
1305   BasicBlock *Preheader = nullptr;
1306   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1307   Preheader = OriginalLoop.getLoopPreheader();
1308   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1309          "preconditions!");
1310 
1311   OriginalPreheader = Preheader;
1312   MainLoopPreheader = Preheader;
1313 
1314   Optional<SubRanges> MaybeSR = calculateSubRanges();
1315   if (!MaybeSR.hasValue()) {
1316     DEBUG(dbgs() << "irce: could not compute subranges\n");
1317     return false;
1318   }
1319 
1320   SubRanges SR = MaybeSR.getValue();
1321   bool Increasing = MainLoopStructure.IndVarIncreasing;
1322   IntegerType *IVTy =
1323       cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1324 
1325   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1326   Instruction *InsertPt = OriginalPreheader->getTerminator();
1327 
1328   // It would have been better to make `PreLoop' and `PostLoop'
1329   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1330   // constructor.
1331   ClonedLoop PreLoop, PostLoop;
1332   bool NeedsPreLoop =
1333       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1334   bool NeedsPostLoop =
1335       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1336 
1337   Value *ExitPreLoopAt = nullptr;
1338   Value *ExitMainLoopAt = nullptr;
1339   const SCEVConstant *MinusOneS =
1340       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1341 
1342   if (NeedsPreLoop) {
1343     const SCEV *ExitPreLoopAtSCEV = nullptr;
1344 
1345     if (Increasing)
1346       ExitPreLoopAtSCEV = *SR.LowLimit;
1347     else {
1348       if (CanBeSMin(SE, *SR.HighLimit)) {
1349         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1350                      << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
1351                      << "\n");
1352         return false;
1353       }
1354       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1355     }
1356 
1357     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1358     ExitPreLoopAt->setName("exit.preloop.at");
1359   }
1360 
1361   if (NeedsPostLoop) {
1362     const SCEV *ExitMainLoopAtSCEV = nullptr;
1363 
1364     if (Increasing)
1365       ExitMainLoopAtSCEV = *SR.HighLimit;
1366     else {
1367       if (CanBeSMin(SE, *SR.LowLimit)) {
1368         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1369                      << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
1370                      << "\n");
1371         return false;
1372       }
1373       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1374     }
1375 
1376     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1377     ExitMainLoopAt->setName("exit.mainloop.at");
1378   }
1379 
1380   // We clone these ahead of time so that we don't have to deal with changing
1381   // and temporarily invalid IR as we transform the loops.
1382   if (NeedsPreLoop)
1383     cloneLoop(PreLoop, "preloop");
1384   if (NeedsPostLoop)
1385     cloneLoop(PostLoop, "postloop");
1386 
1387   RewrittenRangeInfo PreLoopRRI;
1388 
1389   if (NeedsPreLoop) {
1390     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1391                                                   PreLoop.Structure.Header);
1392 
1393     MainLoopPreheader =
1394         createPreheader(MainLoopStructure, Preheader, "mainloop");
1395     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1396                                          ExitPreLoopAt, MainLoopPreheader);
1397     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1398                                  PreLoopRRI);
1399   }
1400 
1401   BasicBlock *PostLoopPreheader = nullptr;
1402   RewrittenRangeInfo PostLoopRRI;
1403 
1404   if (NeedsPostLoop) {
1405     PostLoopPreheader =
1406         createPreheader(PostLoop.Structure, Preheader, "postloop");
1407     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1408                                           ExitMainLoopAt, PostLoopPreheader);
1409     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1410                                  PostLoopRRI);
1411   }
1412 
1413   BasicBlock *NewMainLoopPreheader =
1414       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1415   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1416                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1417                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1418 
1419   // Some of the above may be nullptr, filter them out before passing to
1420   // addToParentLoopIfNeeded.
1421   auto NewBlocksEnd =
1422       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1423 
1424   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1425 
1426   DT.recalculate(F);
1427 
1428   // We need to first add all the pre and post loop blocks into the loop
1429   // structures (as part of createClonedLoopStructure), and then update the
1430   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1431   // LI when LoopSimplifyForm is generated.
1432   Loop *PreL = nullptr, *PostL = nullptr;
1433   if (!PreLoop.Blocks.empty()) {
1434     PreL = createClonedLoopStructure(
1435         &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map);
1436   }
1437 
1438   if (!PostLoop.Blocks.empty()) {
1439     PostL = createClonedLoopStructure(
1440         &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map);
1441   }
1442 
1443   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1444   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1445     formLCSSARecursively(*L, DT, &LI, &SE);
1446     simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
1447     // Pre/post loops are slow paths, we do not need to perform any loop
1448     // optimizations on them.
1449     if (!IsOriginalLoop)
1450       DisableAllLoopOptsOnLoop(*L);
1451   };
1452   if (PreL)
1453     CanonicalizeLoop(PreL, false);
1454   if (PostL)
1455     CanonicalizeLoop(PostL, false);
1456   CanonicalizeLoop(&OriginalLoop, true);
1457 
1458   return true;
1459 }
1460 
1461 /// Computes and returns a range of values for the induction variable (IndVar)
1462 /// in which the range check can be safely elided.  If it cannot compute such a
1463 /// range, returns None.
1464 Optional<InductiveRangeCheck::Range>
1465 InductiveRangeCheck::computeSafeIterationSpace(
1466     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
1467   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1468   // variable, that may or may not exist as a real llvm::Value in the loop) and
1469   // this inductive range check is a range check on the "C + D * I" ("C" is
1470   // getOffset() and "D" is getScale()).  We rewrite the value being range
1471   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1472   // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1473   // can be generalized as needed.
1474   //
1475   // The actual inequalities we solve are of the form
1476   //
1477   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1478   //
1479   // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
1480   // and subtractions are twos-complement wrapping and comparisons are signed.
1481   //
1482   // Proof:
1483   //
1484   //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1485   //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
1486   //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
1487   //   overflown.
1488   //
1489   //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
1490   //   Hence 0 <= (IndVar + M) < L
1491 
1492   // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1493   // 127, IndVar = 126 and L = -2 in an i8 world.
1494 
1495   if (!IndVar->isAffine())
1496     return None;
1497 
1498   const SCEV *A = IndVar->getStart();
1499   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1500   if (!B)
1501     return None;
1502 
1503   const SCEV *C = getOffset();
1504   const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1505   if (D != B)
1506     return None;
1507 
1508   ConstantInt *ConstD = D->getValue();
1509   if (!(ConstD->isMinusOne() || ConstD->isOne()))
1510     return None;
1511 
1512   const SCEV *M = SE.getMinusSCEV(C, A);
1513 
1514   const SCEV *Begin = SE.getNegativeSCEV(M);
1515   const SCEV *UpperLimit = nullptr;
1516 
1517   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1518   // We can potentially do much better here.
1519   if (Value *V = getLength()) {
1520     UpperLimit = SE.getSCEV(V);
1521   } else {
1522     assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1523     unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1524     UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1525   }
1526 
1527   const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
1528   return InductiveRangeCheck::Range(Begin, End);
1529 }
1530 
1531 static Optional<InductiveRangeCheck::Range>
1532 IntersectRange(ScalarEvolution &SE,
1533                const Optional<InductiveRangeCheck::Range> &R1,
1534                const InductiveRangeCheck::Range &R2) {
1535   if (!R1.hasValue())
1536     return R2;
1537   auto &R1Value = R1.getValue();
1538 
1539   // TODO: we could widen the smaller range and have this work; but for now we
1540   // bail out to keep things simple.
1541   if (R1Value.getType() != R2.getType())
1542     return None;
1543 
1544   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1545   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1546 
1547   return InductiveRangeCheck::Range(NewBegin, NewEnd);
1548 }
1549 
1550 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1551   if (skipLoop(L))
1552     return false;
1553 
1554   if (L->getBlocks().size() >= LoopSizeCutoff) {
1555     DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1556     return false;
1557   }
1558 
1559   BasicBlock *Preheader = L->getLoopPreheader();
1560   if (!Preheader) {
1561     DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1562     return false;
1563   }
1564 
1565   LLVMContext &Context = Preheader->getContext();
1566   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1567   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1568   BranchProbabilityInfo &BPI =
1569       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1570 
1571   for (auto BBI : L->getBlocks())
1572     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1573       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1574                                                         RangeChecks);
1575 
1576   if (RangeChecks.empty())
1577     return false;
1578 
1579   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1580     OS << "irce: looking at loop "; L->print(OS);
1581     OS << "irce: loop has " << RangeChecks.size()
1582        << " inductive range checks: \n";
1583     for (InductiveRangeCheck &IRC : RangeChecks)
1584       IRC.print(OS);
1585   };
1586 
1587   DEBUG(PrintRecognizedRangeChecks(dbgs()));
1588 
1589   if (PrintRangeChecks)
1590     PrintRecognizedRangeChecks(errs());
1591 
1592   const char *FailureReason = nullptr;
1593   Optional<LoopStructure> MaybeLoopStructure =
1594       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1595   if (!MaybeLoopStructure.hasValue()) {
1596     DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1597                  << "\n";);
1598     return false;
1599   }
1600   LoopStructure LS = MaybeLoopStructure.getValue();
1601   bool Increasing = LS.IndVarIncreasing;
1602   const SCEV *MinusOne =
1603       SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1604   const SCEVAddRecExpr *IndVar =
1605       cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1606 
1607   Optional<InductiveRangeCheck::Range> SafeIterRange;
1608   Instruction *ExprInsertPt = Preheader->getTerminator();
1609 
1610   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1611 
1612   IRBuilder<> B(ExprInsertPt);
1613   for (InductiveRangeCheck &IRC : RangeChecks) {
1614     auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
1615     if (Result.hasValue()) {
1616       auto MaybeSafeIterRange =
1617           IntersectRange(SE, SafeIterRange, Result.getValue());
1618       if (MaybeSafeIterRange.hasValue()) {
1619         RangeChecksToEliminate.push_back(IRC);
1620         SafeIterRange = MaybeSafeIterRange.getValue();
1621       }
1622     }
1623   }
1624 
1625   if (!SafeIterRange.hasValue())
1626     return false;
1627 
1628   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1629   LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM,
1630                      LS, SE, DT, SafeIterRange.getValue());
1631   bool Changed = LC.run();
1632 
1633   if (Changed) {
1634     auto PrintConstrainedLoopInfo = [L]() {
1635       dbgs() << "irce: in function ";
1636       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1637       dbgs() << "constrained ";
1638       L->print(dbgs());
1639     };
1640 
1641     DEBUG(PrintConstrainedLoopInfo());
1642 
1643     if (PrintChangedLoops)
1644       PrintConstrainedLoopInfo();
1645 
1646     // Optimize away the now-redundant range checks.
1647 
1648     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1649       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1650                                           ? ConstantInt::getTrue(Context)
1651                                           : ConstantInt::getFalse(Context);
1652       IRC.getCheckUse()->set(FoldedRangeCheck);
1653     }
1654   }
1655 
1656   return Changed;
1657 }
1658 
1659 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1660   return new InductiveRangeCheckElimination;
1661 }
1662