1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/LoopInfo.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/ScalarEvolution.h" 49 #include "llvm/Analysis/ScalarEvolutionExpander.h" 50 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/LoopSimplify.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 65 using namespace llvm; 66 67 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 68 cl::init(64)); 69 70 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 71 cl::init(false)); 72 73 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 74 cl::init(false)); 75 76 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 77 cl::Hidden, cl::init(10)); 78 79 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 80 cl::Hidden, cl::init(false)); 81 82 static const char *ClonedLoopTag = "irce.loop.clone"; 83 84 #define DEBUG_TYPE "irce" 85 86 namespace { 87 88 /// An inductive range check is conditional branch in a loop with 89 /// 90 /// 1. a very cold successor (i.e. the branch jumps to that successor very 91 /// rarely) 92 /// 93 /// and 94 /// 95 /// 2. a condition that is provably true for some contiguous range of values 96 /// taken by the containing loop's induction variable. 97 /// 98 class InductiveRangeCheck { 99 // Classifies a range check 100 enum RangeCheckKind : unsigned { 101 // Range check of the form "0 <= I". 102 RANGE_CHECK_LOWER = 1, 103 104 // Range check of the form "I < L" where L is known positive. 105 RANGE_CHECK_UPPER = 2, 106 107 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 108 // conditions. 109 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 110 111 // Unrecognized range check condition. 112 RANGE_CHECK_UNKNOWN = (unsigned)-1 113 }; 114 115 static StringRef rangeCheckKindToStr(RangeCheckKind); 116 117 const SCEV *Offset = nullptr; 118 const SCEV *Scale = nullptr; 119 Value *Length = nullptr; 120 Use *CheckUse = nullptr; 121 RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; 122 123 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 124 ScalarEvolution &SE, Value *&Index, 125 Value *&Length); 126 127 static void 128 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 129 SmallVectorImpl<InductiveRangeCheck> &Checks, 130 SmallPtrSetImpl<Value *> &Visited); 131 132 public: 133 const SCEV *getOffset() const { return Offset; } 134 const SCEV *getScale() const { return Scale; } 135 Value *getLength() const { return Length; } 136 137 void print(raw_ostream &OS) const { 138 OS << "InductiveRangeCheck:\n"; 139 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 140 OS << " Offset: "; 141 Offset->print(OS); 142 OS << " Scale: "; 143 Scale->print(OS); 144 OS << " Length: "; 145 if (Length) 146 Length->print(OS); 147 else 148 OS << "(null)"; 149 OS << "\n CheckUse: "; 150 getCheckUse()->getUser()->print(OS); 151 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 152 } 153 154 LLVM_DUMP_METHOD 155 void dump() { 156 print(dbgs()); 157 } 158 159 Use *getCheckUse() const { return CheckUse; } 160 161 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 162 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 163 164 class Range { 165 const SCEV *Begin; 166 const SCEV *End; 167 168 public: 169 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 170 assert(Begin->getType() == End->getType() && "ill-typed range!"); 171 } 172 173 Type *getType() const { return Begin->getType(); } 174 const SCEV *getBegin() const { return Begin; } 175 const SCEV *getEnd() const { return End; } 176 }; 177 178 /// This is the value the condition of the branch needs to evaluate to for the 179 /// branch to take the hot successor (see (1) above). 180 bool getPassingDirection() { return true; } 181 182 /// Computes a range for the induction variable (IndVar) in which the range 183 /// check is redundant and can be constant-folded away. The induction 184 /// variable is not required to be the canonical {0,+,1} induction variable. 185 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 186 const SCEVAddRecExpr *IndVar) const; 187 188 /// Parse out a set of inductive range checks from \p BI and append them to \p 189 /// Checks. 190 /// 191 /// NB! There may be conditions feeding into \p BI that aren't inductive range 192 /// checks, and hence don't end up in \p Checks. 193 static void 194 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 195 BranchProbabilityInfo &BPI, 196 SmallVectorImpl<InductiveRangeCheck> &Checks); 197 }; 198 199 class InductiveRangeCheckElimination : public LoopPass { 200 public: 201 static char ID; 202 InductiveRangeCheckElimination() : LoopPass(ID) { 203 initializeInductiveRangeCheckEliminationPass( 204 *PassRegistry::getPassRegistry()); 205 } 206 207 void getAnalysisUsage(AnalysisUsage &AU) const override { 208 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 209 getLoopAnalysisUsage(AU); 210 } 211 212 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 213 }; 214 215 char InductiveRangeCheckElimination::ID = 0; 216 } 217 218 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", 219 "Inductive range check elimination", false, false) 220 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 221 INITIALIZE_PASS_DEPENDENCY(LoopPass) 222 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", 223 "Inductive range check elimination", false, false) 224 225 StringRef InductiveRangeCheck::rangeCheckKindToStr( 226 InductiveRangeCheck::RangeCheckKind RCK) { 227 switch (RCK) { 228 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 229 return "RANGE_CHECK_UNKNOWN"; 230 231 case InductiveRangeCheck::RANGE_CHECK_UPPER: 232 return "RANGE_CHECK_UPPER"; 233 234 case InductiveRangeCheck::RANGE_CHECK_LOWER: 235 return "RANGE_CHECK_LOWER"; 236 237 case InductiveRangeCheck::RANGE_CHECK_BOTH: 238 return "RANGE_CHECK_BOTH"; 239 } 240 241 llvm_unreachable("unknown range check type!"); 242 } 243 244 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 245 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 246 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 247 /// range checked, and set `Length` to the upper limit `Index` is being range 248 /// checked with if (and only if) the range check type is stronger or equal to 249 /// RANGE_CHECK_UPPER. 250 /// 251 InductiveRangeCheck::RangeCheckKind 252 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 253 ScalarEvolution &SE, Value *&Index, 254 Value *&Length) { 255 256 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { 257 const SCEV *S = SE.getSCEV(V); 258 if (isa<SCEVCouldNotCompute>(S)) 259 return false; 260 261 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && 262 SE.isKnownNonNegative(S); 263 }; 264 265 using namespace llvm::PatternMatch; 266 267 ICmpInst::Predicate Pred = ICI->getPredicate(); 268 Value *LHS = ICI->getOperand(0); 269 Value *RHS = ICI->getOperand(1); 270 271 switch (Pred) { 272 default: 273 return RANGE_CHECK_UNKNOWN; 274 275 case ICmpInst::ICMP_SLE: 276 std::swap(LHS, RHS); 277 LLVM_FALLTHROUGH; 278 case ICmpInst::ICMP_SGE: 279 if (match(RHS, m_ConstantInt<0>())) { 280 Index = LHS; 281 return RANGE_CHECK_LOWER; 282 } 283 return RANGE_CHECK_UNKNOWN; 284 285 case ICmpInst::ICMP_SLT: 286 std::swap(LHS, RHS); 287 LLVM_FALLTHROUGH; 288 case ICmpInst::ICMP_SGT: 289 if (match(RHS, m_ConstantInt<-1>())) { 290 Index = LHS; 291 return RANGE_CHECK_LOWER; 292 } 293 294 if (IsNonNegativeAndNotLoopVarying(LHS)) { 295 Index = RHS; 296 Length = LHS; 297 return RANGE_CHECK_UPPER; 298 } 299 return RANGE_CHECK_UNKNOWN; 300 301 case ICmpInst::ICMP_ULT: 302 std::swap(LHS, RHS); 303 LLVM_FALLTHROUGH; 304 case ICmpInst::ICMP_UGT: 305 if (IsNonNegativeAndNotLoopVarying(LHS)) { 306 Index = RHS; 307 Length = LHS; 308 return RANGE_CHECK_BOTH; 309 } 310 return RANGE_CHECK_UNKNOWN; 311 } 312 313 llvm_unreachable("default clause returns!"); 314 } 315 316 void InductiveRangeCheck::extractRangeChecksFromCond( 317 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 318 SmallVectorImpl<InductiveRangeCheck> &Checks, 319 SmallPtrSetImpl<Value *> &Visited) { 320 using namespace llvm::PatternMatch; 321 322 Value *Condition = ConditionUse.get(); 323 if (!Visited.insert(Condition).second) 324 return; 325 326 if (match(Condition, m_And(m_Value(), m_Value()))) { 327 SmallVector<InductiveRangeCheck, 8> SubChecks; 328 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 329 SubChecks, Visited); 330 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 331 SubChecks, Visited); 332 333 if (SubChecks.size() == 2) { 334 // Handle a special case where we know how to merge two checks separately 335 // checking the upper and lower bounds into a full range check. 336 const auto &RChkA = SubChecks[0]; 337 const auto &RChkB = SubChecks[1]; 338 if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) && 339 RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) { 340 341 // If RChkA.Kind == RChkB.Kind then we just found two identical checks. 342 // But if one of them is a RANGE_CHECK_LOWER and the other is a 343 // RANGE_CHECK_UPPER (only possibility if they're different) then 344 // together they form a RANGE_CHECK_BOTH. 345 SubChecks[0].Kind = 346 (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind); 347 SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length; 348 SubChecks[0].CheckUse = &ConditionUse; 349 350 // We updated one of the checks in place, now erase the other. 351 SubChecks.pop_back(); 352 } 353 } 354 355 Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end()); 356 return; 357 } 358 359 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 360 if (!ICI) 361 return; 362 363 Value *Length = nullptr, *Index; 364 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length); 365 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 366 return; 367 368 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 369 bool IsAffineIndex = 370 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 371 372 if (!IsAffineIndex) 373 return; 374 375 InductiveRangeCheck IRC; 376 IRC.Length = Length; 377 IRC.Offset = IndexAddRec->getStart(); 378 IRC.Scale = IndexAddRec->getStepRecurrence(SE); 379 IRC.CheckUse = &ConditionUse; 380 IRC.Kind = RCKind; 381 Checks.push_back(IRC); 382 } 383 384 void InductiveRangeCheck::extractRangeChecksFromBranch( 385 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI, 386 SmallVectorImpl<InductiveRangeCheck> &Checks) { 387 388 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 389 return; 390 391 BranchProbability LikelyTaken(15, 16); 392 393 if (!SkipProfitabilityChecks && 394 BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 395 return; 396 397 SmallPtrSet<Value *, 8> Visited; 398 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 399 Checks, Visited); 400 } 401 402 // Add metadata to the loop L to disable loop optimizations. Callers need to 403 // confirm that optimizing loop L is not beneficial. 404 static void DisableAllLoopOptsOnLoop(Loop &L) { 405 // We do not care about any existing loopID related metadata for L, since we 406 // are setting all loop metadata to false. 407 LLVMContext &Context = L.getHeader()->getContext(); 408 // Reserve first location for self reference to the LoopID metadata node. 409 MDNode *Dummy = MDNode::get(Context, {}); 410 MDNode *DisableUnroll = MDNode::get( 411 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 412 Metadata *FalseVal = 413 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 414 MDNode *DisableVectorize = MDNode::get( 415 Context, 416 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 417 MDNode *DisableLICMVersioning = MDNode::get( 418 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 419 MDNode *DisableDistribution= MDNode::get( 420 Context, 421 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 422 MDNode *NewLoopID = 423 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 424 DisableLICMVersioning, DisableDistribution}); 425 // Set operand 0 to refer to the loop id itself. 426 NewLoopID->replaceOperandWith(0, NewLoopID); 427 L.setLoopID(NewLoopID); 428 } 429 430 namespace { 431 432 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 433 // except that it is more lightweight and can track the state of a loop through 434 // changing and potentially invalid IR. This structure also formalizes the 435 // kinds of loops we can deal with -- ones that have a single latch that is also 436 // an exiting block *and* have a canonical induction variable. 437 struct LoopStructure { 438 const char *Tag; 439 440 BasicBlock *Header; 441 BasicBlock *Latch; 442 443 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 444 // successor is `LatchExit', the exit block of the loop. 445 BranchInst *LatchBr; 446 BasicBlock *LatchExit; 447 unsigned LatchBrExitIdx; 448 449 // The loop represented by this instance of LoopStructure is semantically 450 // equivalent to: 451 // 452 // intN_ty inc = IndVarIncreasing ? 1 : -1; 453 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 454 // 455 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarNext) 456 // ... body ... 457 458 Value *IndVarNext; 459 Value *IndVarStart; 460 Value *LoopExitAt; 461 bool IndVarIncreasing; 462 463 LoopStructure() 464 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr), 465 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr), 466 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {} 467 468 template <typename M> LoopStructure map(M Map) const { 469 LoopStructure Result; 470 Result.Tag = Tag; 471 Result.Header = cast<BasicBlock>(Map(Header)); 472 Result.Latch = cast<BasicBlock>(Map(Latch)); 473 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 474 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 475 Result.LatchBrExitIdx = LatchBrExitIdx; 476 Result.IndVarNext = Map(IndVarNext); 477 Result.IndVarStart = Map(IndVarStart); 478 Result.LoopExitAt = Map(LoopExitAt); 479 Result.IndVarIncreasing = IndVarIncreasing; 480 return Result; 481 } 482 483 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 484 BranchProbabilityInfo &BPI, 485 Loop &, 486 const char *&); 487 }; 488 489 /// This class is used to constrain loops to run within a given iteration space. 490 /// The algorithm this class implements is given a Loop and a range [Begin, 491 /// End). The algorithm then tries to break out a "main loop" out of the loop 492 /// it is given in a way that the "main loop" runs with the induction variable 493 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 494 /// loops to run any remaining iterations. The pre loop runs any iterations in 495 /// which the induction variable is < Begin, and the post loop runs any 496 /// iterations in which the induction variable is >= End. 497 /// 498 class LoopConstrainer { 499 // The representation of a clone of the original loop we started out with. 500 struct ClonedLoop { 501 // The cloned blocks 502 std::vector<BasicBlock *> Blocks; 503 504 // `Map` maps values in the clonee into values in the cloned version 505 ValueToValueMapTy Map; 506 507 // An instance of `LoopStructure` for the cloned loop 508 LoopStructure Structure; 509 }; 510 511 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 512 // more details on what these fields mean. 513 struct RewrittenRangeInfo { 514 BasicBlock *PseudoExit; 515 BasicBlock *ExitSelector; 516 std::vector<PHINode *> PHIValuesAtPseudoExit; 517 PHINode *IndVarEnd; 518 519 RewrittenRangeInfo() 520 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {} 521 }; 522 523 // Calculated subranges we restrict the iteration space of the main loop to. 524 // See the implementation of `calculateSubRanges' for more details on how 525 // these fields are computed. `LowLimit` is None if there is no restriction 526 // on low end of the restricted iteration space of the main loop. `HighLimit` 527 // is None if there is no restriction on high end of the restricted iteration 528 // space of the main loop. 529 530 struct SubRanges { 531 Optional<const SCEV *> LowLimit; 532 Optional<const SCEV *> HighLimit; 533 }; 534 535 // A utility function that does a `replaceUsesOfWith' on the incoming block 536 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 537 // incoming block list with `ReplaceBy'. 538 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 539 BasicBlock *ReplaceBy); 540 541 // Compute a safe set of limits for the main loop to run in -- effectively the 542 // intersection of `Range' and the iteration space of the original loop. 543 // Return None if unable to compute the set of subranges. 544 // 545 Optional<SubRanges> calculateSubRanges() const; 546 547 // Clone `OriginalLoop' and return the result in CLResult. The IR after 548 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 549 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 550 // but there is no such edge. 551 // 552 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 553 554 // Create the appropriate loop structure needed to describe a cloned copy of 555 // `Original`. The clone is described by `VM`. 556 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 557 ValueToValueMapTy &VM); 558 559 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 560 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 561 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 562 // `OriginalHeaderCount'. 563 // 564 // If there are iterations left to execute, control is made to jump to 565 // `ContinuationBlock', otherwise they take the normal loop exit. The 566 // returned `RewrittenRangeInfo' object is populated as follows: 567 // 568 // .PseudoExit is a basic block that unconditionally branches to 569 // `ContinuationBlock'. 570 // 571 // .ExitSelector is a basic block that decides, on exit from the loop, 572 // whether to branch to the "true" exit or to `PseudoExit'. 573 // 574 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 575 // for each PHINode in the loop header on taking the pseudo exit. 576 // 577 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 578 // preheader because it is made to branch to the loop header only 579 // conditionally. 580 // 581 RewrittenRangeInfo 582 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 583 Value *ExitLoopAt, 584 BasicBlock *ContinuationBlock) const; 585 586 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 587 // function creates a new preheader for `LS' and returns it. 588 // 589 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 590 const char *Tag) const; 591 592 // `ContinuationBlockAndPreheader' was the continuation block for some call to 593 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 594 // This function rewrites the PHI nodes in `LS.Header' to start with the 595 // correct value. 596 void rewriteIncomingValuesForPHIs( 597 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 598 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 599 600 // Even though we do not preserve any passes at this time, we at least need to 601 // keep the parent loop structure consistent. The `LPPassManager' seems to 602 // verify this after running a loop pass. This function adds the list of 603 // blocks denoted by BBs to this loops parent loop if required. 604 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 605 606 // Some global state. 607 Function &F; 608 LLVMContext &Ctx; 609 ScalarEvolution &SE; 610 DominatorTree &DT; 611 LPPassManager &LPM; 612 LoopInfo &LI; 613 614 // Information about the original loop we started out with. 615 Loop &OriginalLoop; 616 const SCEV *LatchTakenCount; 617 BasicBlock *OriginalPreheader; 618 619 // The preheader of the main loop. This may or may not be different from 620 // `OriginalPreheader'. 621 BasicBlock *MainLoopPreheader; 622 623 // The range we need to run the main loop in. 624 InductiveRangeCheck::Range Range; 625 626 // The structure of the main loop (see comment at the beginning of this class 627 // for a definition) 628 LoopStructure MainLoopStructure; 629 630 public: 631 LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM, 632 const LoopStructure &LS, ScalarEvolution &SE, 633 DominatorTree &DT, InductiveRangeCheck::Range R) 634 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 635 SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L), 636 LatchTakenCount(nullptr), OriginalPreheader(nullptr), 637 MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {} 638 639 // Entry point for the algorithm. Returns true on success. 640 bool run(); 641 }; 642 643 } 644 645 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 646 BasicBlock *ReplaceBy) { 647 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 648 if (PN->getIncomingBlock(i) == Block) 649 PN->setIncomingBlock(i, ReplaceBy); 650 } 651 652 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) { 653 APInt SMax = 654 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 655 return SE.getSignedRange(S).contains(SMax) && 656 SE.getUnsignedRange(S).contains(SMax); 657 } 658 659 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) { 660 APInt SMin = 661 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 662 return SE.getSignedRange(S).contains(SMin) && 663 SE.getUnsignedRange(S).contains(SMin); 664 } 665 666 Optional<LoopStructure> 667 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI, 668 Loop &L, const char *&FailureReason) { 669 if (!L.isLoopSimplifyForm()) { 670 FailureReason = "loop not in LoopSimplify form"; 671 return None; 672 } 673 674 BasicBlock *Latch = L.getLoopLatch(); 675 assert(Latch && "Simplified loops only have one latch!"); 676 677 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 678 FailureReason = "loop has already been cloned"; 679 return None; 680 } 681 682 if (!L.isLoopExiting(Latch)) { 683 FailureReason = "no loop latch"; 684 return None; 685 } 686 687 BasicBlock *Header = L.getHeader(); 688 BasicBlock *Preheader = L.getLoopPreheader(); 689 if (!Preheader) { 690 FailureReason = "no preheader"; 691 return None; 692 } 693 694 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 695 if (!LatchBr || LatchBr->isUnconditional()) { 696 FailureReason = "latch terminator not conditional branch"; 697 return None; 698 } 699 700 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 701 702 BranchProbability ExitProbability = 703 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 704 705 if (!SkipProfitabilityChecks && 706 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 707 FailureReason = "short running loop, not profitable"; 708 return None; 709 } 710 711 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 712 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 713 FailureReason = "latch terminator branch not conditional on integral icmp"; 714 return None; 715 } 716 717 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 718 if (isa<SCEVCouldNotCompute>(LatchCount)) { 719 FailureReason = "could not compute latch count"; 720 return None; 721 } 722 723 ICmpInst::Predicate Pred = ICI->getPredicate(); 724 Value *LeftValue = ICI->getOperand(0); 725 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 726 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 727 728 Value *RightValue = ICI->getOperand(1); 729 const SCEV *RightSCEV = SE.getSCEV(RightValue); 730 731 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 732 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 733 if (isa<SCEVAddRecExpr>(RightSCEV)) { 734 std::swap(LeftSCEV, RightSCEV); 735 std::swap(LeftValue, RightValue); 736 Pred = ICmpInst::getSwappedPredicate(Pred); 737 } else { 738 FailureReason = "no add recurrences in the icmp"; 739 return None; 740 } 741 } 742 743 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 744 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 745 return true; 746 747 IntegerType *Ty = cast<IntegerType>(AR->getType()); 748 IntegerType *WideTy = 749 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 750 751 const SCEVAddRecExpr *ExtendAfterOp = 752 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 753 if (ExtendAfterOp) { 754 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 755 const SCEV *ExtendedStep = 756 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 757 758 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 759 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 760 761 if (NoSignedWrap) 762 return true; 763 } 764 765 // We may have proved this when computing the sign extension above. 766 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 767 }; 768 769 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) { 770 if (!AR->isAffine()) 771 return false; 772 773 // Currently we only work with induction variables that have been proved to 774 // not wrap. This restriction can potentially be lifted in the future. 775 776 if (!HasNoSignedWrap(AR)) 777 return false; 778 779 if (const SCEVConstant *StepExpr = 780 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 781 ConstantInt *StepCI = StepExpr->getValue(); 782 if (StepCI->isOne() || StepCI->isMinusOne()) { 783 IsIncreasing = StepCI->isOne(); 784 return true; 785 } 786 } 787 788 return false; 789 }; 790 791 // `ICI` is interpreted as taking the backedge if the *next* value of the 792 // induction variable satisfies some constraint. 793 794 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV); 795 bool IsIncreasing = false; 796 if (!IsInductionVar(IndVarNext, IsIncreasing)) { 797 FailureReason = "LHS in icmp not induction variable"; 798 return None; 799 } 800 801 const SCEV *StartNext = IndVarNext->getStart(); 802 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE)); 803 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 804 805 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 806 // TODO: generalize the predicates here to also match their unsigned variants. 807 if (IsIncreasing) { 808 bool DecreasedRightValueByOne = false; 809 // Try to turn eq/ne predicates to those we can work with. 810 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 811 // while (++i != len) { while (++i < len) { 812 // ... ---> ... 813 // } } 814 Pred = ICmpInst::ICMP_SLT; 815 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 816 !CanBeSMin(SE, RightSCEV)) { 817 // while (true) { while (true) { 818 // if (++i == len) ---> if (++i > len - 1) 819 // break; break; 820 // ... ... 821 // } } 822 Pred = ICmpInst::ICMP_SGT; 823 RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); 824 DecreasedRightValueByOne = true; 825 } 826 827 bool FoundExpectedPred = 828 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) || 829 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0); 830 831 if (!FoundExpectedPred) { 832 FailureReason = "expected icmp slt semantically, found something else"; 833 return None; 834 } 835 836 if (LatchBrExitIdx == 0) { 837 if (CanBeSMax(SE, RightSCEV)) { 838 // TODO: this restriction is easily removable -- we just have to 839 // remember that the icmp was an slt and not an sle. 840 FailureReason = "limit may overflow when coercing sle to slt"; 841 return None; 842 } 843 844 if (!SE.isLoopEntryGuardedByCond( 845 &L, CmpInst::ICMP_SLT, IndVarStart, 846 SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())))) { 847 FailureReason = "Induction variable start not bounded by upper limit"; 848 return None; 849 } 850 851 // We need to increase the right value unless we have already decreased 852 // it virtually when we replaced EQ with SGT. 853 if (!DecreasedRightValueByOne) { 854 IRBuilder<> B(Preheader->getTerminator()); 855 RightValue = B.CreateAdd(RightValue, One); 856 } 857 } else { 858 if (!SE.isLoopEntryGuardedByCond(&L, CmpInst::ICMP_SLT, IndVarStart, 859 RightSCEV)) { 860 FailureReason = "Induction variable start not bounded by upper limit"; 861 return None; 862 } 863 assert(!DecreasedRightValueByOne && 864 "Right value can be decreased only for LatchBrExitIdx == 0!"); 865 } 866 } else { 867 bool IncreasedRightValueByOne = false; 868 // Try to turn eq/ne predicates to those we can work with. 869 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 870 // while (--i != len) { while (--i > len) { 871 // ... ---> ... 872 // } } 873 Pred = ICmpInst::ICMP_SGT; 874 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 875 !CanBeSMax(SE, RightSCEV)) { 876 // while (true) { while (true) { 877 // if (--i == len) ---> if (--i < len + 1) 878 // break; break; 879 // ... ... 880 // } } 881 Pred = ICmpInst::ICMP_SLT; 882 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 883 IncreasedRightValueByOne = true; 884 } 885 886 bool FoundExpectedPred = 887 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) || 888 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0); 889 890 if (!FoundExpectedPred) { 891 FailureReason = "expected icmp sgt semantically, found something else"; 892 return None; 893 } 894 895 if (LatchBrExitIdx == 0) { 896 if (CanBeSMin(SE, RightSCEV)) { 897 // TODO: this restriction is easily removable -- we just have to 898 // remember that the icmp was an sgt and not an sge. 899 FailureReason = "limit may overflow when coercing sge to sgt"; 900 return None; 901 } 902 903 if (!SE.isLoopEntryGuardedByCond( 904 &L, CmpInst::ICMP_SGT, IndVarStart, 905 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) { 906 FailureReason = "Induction variable start not bounded by lower limit"; 907 return None; 908 } 909 910 // We need to decrease the right value unless we have already increased 911 // it virtually when we replaced EQ with SLT. 912 if (!IncreasedRightValueByOne) { 913 IRBuilder<> B(Preheader->getTerminator()); 914 RightValue = B.CreateSub(RightValue, One); 915 } 916 } else { 917 if (!SE.isLoopEntryGuardedByCond(&L, CmpInst::ICMP_SGT, IndVarStart, 918 RightSCEV)) { 919 FailureReason = "Induction variable start not bounded by lower limit"; 920 return None; 921 } 922 assert(!IncreasedRightValueByOne && 923 "Right value can be increased only for LatchBrExitIdx == 0!"); 924 } 925 } 926 927 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 928 929 assert(SE.getLoopDisposition(LatchCount, &L) == 930 ScalarEvolution::LoopInvariant && 931 "loop variant exit count doesn't make sense!"); 932 933 assert(!L.contains(LatchExit) && "expected an exit block!"); 934 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 935 Value *IndVarStartV = 936 SCEVExpander(SE, DL, "irce") 937 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 938 IndVarStartV->setName("indvar.start"); 939 940 LoopStructure Result; 941 942 Result.Tag = "main"; 943 Result.Header = Header; 944 Result.Latch = Latch; 945 Result.LatchBr = LatchBr; 946 Result.LatchExit = LatchExit; 947 Result.LatchBrExitIdx = LatchBrExitIdx; 948 Result.IndVarStart = IndVarStartV; 949 Result.IndVarNext = LeftValue; 950 Result.IndVarIncreasing = IsIncreasing; 951 Result.LoopExitAt = RightValue; 952 953 FailureReason = nullptr; 954 955 return Result; 956 } 957 958 Optional<LoopConstrainer::SubRanges> 959 LoopConstrainer::calculateSubRanges() const { 960 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 961 962 if (Range.getType() != Ty) 963 return None; 964 965 LoopConstrainer::SubRanges Result; 966 967 // I think we can be more aggressive here and make this nuw / nsw if the 968 // addition that feeds into the icmp for the latch's terminating branch is nuw 969 // / nsw. In any case, a wrapping 2's complement addition is safe. 970 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 971 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 972 973 bool Increasing = MainLoopStructure.IndVarIncreasing; 974 975 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 976 // [Smallest, GreatestSeen] is the range of values the induction variable 977 // takes. 978 979 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 980 981 const SCEV *One = SE.getOne(Ty); 982 if (Increasing) { 983 Smallest = Start; 984 Greatest = End; 985 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 986 GreatestSeen = SE.getMinusSCEV(End, One); 987 } else { 988 // These two computations may sign-overflow. Here is why that is okay: 989 // 990 // We know that the induction variable does not sign-overflow on any 991 // iteration except the last one, and it starts at `Start` and ends at 992 // `End`, decrementing by one every time. 993 // 994 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 995 // induction variable is decreasing we know that that the smallest value 996 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 997 // 998 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 999 // that case, `Clamp` will always return `Smallest` and 1000 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1001 // will be an empty range. Returning an empty range is always safe. 1002 // 1003 1004 Smallest = SE.getAddExpr(End, One); 1005 Greatest = SE.getAddExpr(Start, One); 1006 GreatestSeen = Start; 1007 } 1008 1009 auto Clamp = [this, Smallest, Greatest](const SCEV *S) { 1010 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)); 1011 }; 1012 1013 // In some cases we can prove that we don't need a pre or post loop 1014 1015 bool ProvablyNoPreloop = 1016 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest); 1017 if (!ProvablyNoPreloop) 1018 Result.LowLimit = Clamp(Range.getBegin()); 1019 1020 bool ProvablyNoPostLoop = 1021 SE.isKnownPredicate(ICmpInst::ICMP_SLT, GreatestSeen, Range.getEnd()); 1022 if (!ProvablyNoPostLoop) 1023 Result.HighLimit = Clamp(Range.getEnd()); 1024 1025 return Result; 1026 } 1027 1028 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1029 const char *Tag) const { 1030 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1031 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1032 Result.Blocks.push_back(Clone); 1033 Result.Map[BB] = Clone; 1034 } 1035 1036 auto GetClonedValue = [&Result](Value *V) { 1037 assert(V && "null values not in domain!"); 1038 auto It = Result.Map.find(V); 1039 if (It == Result.Map.end()) 1040 return V; 1041 return static_cast<Value *>(It->second); 1042 }; 1043 1044 auto *ClonedLatch = 1045 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1046 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1047 MDNode::get(Ctx, {})); 1048 1049 Result.Structure = MainLoopStructure.map(GetClonedValue); 1050 Result.Structure.Tag = Tag; 1051 1052 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1053 BasicBlock *ClonedBB = Result.Blocks[i]; 1054 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1055 1056 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1057 1058 for (Instruction &I : *ClonedBB) 1059 RemapInstruction(&I, Result.Map, 1060 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1061 1062 // Exit blocks will now have one more predecessor and their PHI nodes need 1063 // to be edited to reflect that. No phi nodes need to be introduced because 1064 // the loop is in LCSSA. 1065 1066 for (auto *SBB : successors(OriginalBB)) { 1067 if (OriginalLoop.contains(SBB)) 1068 continue; // not an exit block 1069 1070 for (Instruction &I : *SBB) { 1071 auto *PN = dyn_cast<PHINode>(&I); 1072 if (!PN) 1073 break; 1074 1075 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); 1076 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1077 } 1078 } 1079 } 1080 } 1081 1082 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1083 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1084 BasicBlock *ContinuationBlock) const { 1085 1086 // We start with a loop with a single latch: 1087 // 1088 // +--------------------+ 1089 // | | 1090 // | preheader | 1091 // | | 1092 // +--------+-----------+ 1093 // | ----------------\ 1094 // | / | 1095 // +--------v----v------+ | 1096 // | | | 1097 // | header | | 1098 // | | | 1099 // +--------------------+ | 1100 // | 1101 // ..... | 1102 // | 1103 // +--------------------+ | 1104 // | | | 1105 // | latch >----------/ 1106 // | | 1107 // +-------v------------+ 1108 // | 1109 // | 1110 // | +--------------------+ 1111 // | | | 1112 // +---> original exit | 1113 // | | 1114 // +--------------------+ 1115 // 1116 // We change the control flow to look like 1117 // 1118 // 1119 // +--------------------+ 1120 // | | 1121 // | preheader >-------------------------+ 1122 // | | | 1123 // +--------v-----------+ | 1124 // | /-------------+ | 1125 // | / | | 1126 // +--------v--v--------+ | | 1127 // | | | | 1128 // | header | | +--------+ | 1129 // | | | | | | 1130 // +--------------------+ | | +-----v-----v-----------+ 1131 // | | | | 1132 // | | | .pseudo.exit | 1133 // | | | | 1134 // | | +-----------v-----------+ 1135 // | | | 1136 // ..... | | | 1137 // | | +--------v-------------+ 1138 // +--------------------+ | | | | 1139 // | | | | | ContinuationBlock | 1140 // | latch >------+ | | | 1141 // | | | +----------------------+ 1142 // +---------v----------+ | 1143 // | | 1144 // | | 1145 // | +---------------^-----+ 1146 // | | | 1147 // +-----> .exit.selector | 1148 // | | 1149 // +----------v----------+ 1150 // | 1151 // +--------------------+ | 1152 // | | | 1153 // | original exit <----+ 1154 // | | 1155 // +--------------------+ 1156 // 1157 1158 RewrittenRangeInfo RRI; 1159 1160 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1161 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1162 &F, BBInsertLocation); 1163 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1164 BBInsertLocation); 1165 1166 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1167 bool Increasing = LS.IndVarIncreasing; 1168 1169 IRBuilder<> B(PreheaderJump); 1170 1171 // EnterLoopCond - is it okay to start executing this `LS'? 1172 Value *EnterLoopCond = Increasing 1173 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1174 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt); 1175 1176 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1177 PreheaderJump->eraseFromParent(); 1178 1179 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1180 B.SetInsertPoint(LS.LatchBr); 1181 Value *TakeBackedgeLoopCond = 1182 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt) 1183 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt); 1184 Value *CondForBranch = LS.LatchBrExitIdx == 1 1185 ? TakeBackedgeLoopCond 1186 : B.CreateNot(TakeBackedgeLoopCond); 1187 1188 LS.LatchBr->setCondition(CondForBranch); 1189 1190 B.SetInsertPoint(RRI.ExitSelector); 1191 1192 // IterationsLeft - are there any more iterations left, given the original 1193 // upper bound on the induction variable? If not, we branch to the "real" 1194 // exit. 1195 Value *IterationsLeft = Increasing 1196 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt) 1197 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt); 1198 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1199 1200 BranchInst *BranchToContinuation = 1201 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1202 1203 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1204 // each of the PHI nodes in the loop header. This feeds into the initial 1205 // value of the same PHI nodes if/when we continue execution. 1206 for (Instruction &I : *LS.Header) { 1207 auto *PN = dyn_cast<PHINode>(&I); 1208 if (!PN) 1209 break; 1210 1211 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", 1212 BranchToContinuation); 1213 1214 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); 1215 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), 1216 RRI.ExitSelector); 1217 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1218 } 1219 1220 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end", 1221 BranchToContinuation); 1222 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1223 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector); 1224 1225 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1226 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1227 for (Instruction &I : *LS.LatchExit) { 1228 if (PHINode *PN = dyn_cast<PHINode>(&I)) 1229 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); 1230 else 1231 break; 1232 } 1233 1234 return RRI; 1235 } 1236 1237 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1238 LoopStructure &LS, BasicBlock *ContinuationBlock, 1239 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1240 1241 unsigned PHIIndex = 0; 1242 for (Instruction &I : *LS.Header) { 1243 auto *PN = dyn_cast<PHINode>(&I); 1244 if (!PN) 1245 break; 1246 1247 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1248 if (PN->getIncomingBlock(i) == ContinuationBlock) 1249 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1250 } 1251 1252 LS.IndVarStart = RRI.IndVarEnd; 1253 } 1254 1255 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1256 BasicBlock *OldPreheader, 1257 const char *Tag) const { 1258 1259 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1260 BranchInst::Create(LS.Header, Preheader); 1261 1262 for (Instruction &I : *LS.Header) { 1263 auto *PN = dyn_cast<PHINode>(&I); 1264 if (!PN) 1265 break; 1266 1267 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1268 replacePHIBlock(PN, OldPreheader, Preheader); 1269 } 1270 1271 return Preheader; 1272 } 1273 1274 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1275 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1276 if (!ParentLoop) 1277 return; 1278 1279 for (BasicBlock *BB : BBs) 1280 ParentLoop->addBasicBlockToLoop(BB, LI); 1281 } 1282 1283 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1284 ValueToValueMapTy &VM) { 1285 Loop &New = *new Loop(); 1286 if (Parent) 1287 Parent->addChildLoop(&New); 1288 else 1289 LI.addTopLevelLoop(&New); 1290 LPM.addLoop(New); 1291 1292 // Add all of the blocks in Original to the new loop. 1293 for (auto *BB : Original->blocks()) 1294 if (LI.getLoopFor(BB) == Original) 1295 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1296 1297 // Add all of the subloops to the new loop. 1298 for (Loop *SubLoop : *Original) 1299 createClonedLoopStructure(SubLoop, &New, VM); 1300 1301 return &New; 1302 } 1303 1304 bool LoopConstrainer::run() { 1305 BasicBlock *Preheader = nullptr; 1306 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1307 Preheader = OriginalLoop.getLoopPreheader(); 1308 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1309 "preconditions!"); 1310 1311 OriginalPreheader = Preheader; 1312 MainLoopPreheader = Preheader; 1313 1314 Optional<SubRanges> MaybeSR = calculateSubRanges(); 1315 if (!MaybeSR.hasValue()) { 1316 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1317 return false; 1318 } 1319 1320 SubRanges SR = MaybeSR.getValue(); 1321 bool Increasing = MainLoopStructure.IndVarIncreasing; 1322 IntegerType *IVTy = 1323 cast<IntegerType>(MainLoopStructure.IndVarNext->getType()); 1324 1325 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1326 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1327 1328 // It would have been better to make `PreLoop' and `PostLoop' 1329 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1330 // constructor. 1331 ClonedLoop PreLoop, PostLoop; 1332 bool NeedsPreLoop = 1333 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1334 bool NeedsPostLoop = 1335 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1336 1337 Value *ExitPreLoopAt = nullptr; 1338 Value *ExitMainLoopAt = nullptr; 1339 const SCEVConstant *MinusOneS = 1340 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1341 1342 if (NeedsPreLoop) { 1343 const SCEV *ExitPreLoopAtSCEV = nullptr; 1344 1345 if (Increasing) 1346 ExitPreLoopAtSCEV = *SR.LowLimit; 1347 else { 1348 if (CanBeSMin(SE, *SR.HighLimit)) { 1349 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1350 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1351 << "\n"); 1352 return false; 1353 } 1354 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1355 } 1356 1357 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1358 ExitPreLoopAt->setName("exit.preloop.at"); 1359 } 1360 1361 if (NeedsPostLoop) { 1362 const SCEV *ExitMainLoopAtSCEV = nullptr; 1363 1364 if (Increasing) 1365 ExitMainLoopAtSCEV = *SR.HighLimit; 1366 else { 1367 if (CanBeSMin(SE, *SR.LowLimit)) { 1368 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1369 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1370 << "\n"); 1371 return false; 1372 } 1373 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1374 } 1375 1376 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1377 ExitMainLoopAt->setName("exit.mainloop.at"); 1378 } 1379 1380 // We clone these ahead of time so that we don't have to deal with changing 1381 // and temporarily invalid IR as we transform the loops. 1382 if (NeedsPreLoop) 1383 cloneLoop(PreLoop, "preloop"); 1384 if (NeedsPostLoop) 1385 cloneLoop(PostLoop, "postloop"); 1386 1387 RewrittenRangeInfo PreLoopRRI; 1388 1389 if (NeedsPreLoop) { 1390 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1391 PreLoop.Structure.Header); 1392 1393 MainLoopPreheader = 1394 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1395 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1396 ExitPreLoopAt, MainLoopPreheader); 1397 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1398 PreLoopRRI); 1399 } 1400 1401 BasicBlock *PostLoopPreheader = nullptr; 1402 RewrittenRangeInfo PostLoopRRI; 1403 1404 if (NeedsPostLoop) { 1405 PostLoopPreheader = 1406 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1407 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1408 ExitMainLoopAt, PostLoopPreheader); 1409 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1410 PostLoopRRI); 1411 } 1412 1413 BasicBlock *NewMainLoopPreheader = 1414 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1415 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1416 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1417 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1418 1419 // Some of the above may be nullptr, filter them out before passing to 1420 // addToParentLoopIfNeeded. 1421 auto NewBlocksEnd = 1422 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1423 1424 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1425 1426 DT.recalculate(F); 1427 1428 // We need to first add all the pre and post loop blocks into the loop 1429 // structures (as part of createClonedLoopStructure), and then update the 1430 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1431 // LI when LoopSimplifyForm is generated. 1432 Loop *PreL = nullptr, *PostL = nullptr; 1433 if (!PreLoop.Blocks.empty()) { 1434 PreL = createClonedLoopStructure( 1435 &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map); 1436 } 1437 1438 if (!PostLoop.Blocks.empty()) { 1439 PostL = createClonedLoopStructure( 1440 &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map); 1441 } 1442 1443 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1444 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1445 formLCSSARecursively(*L, DT, &LI, &SE); 1446 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1447 // Pre/post loops are slow paths, we do not need to perform any loop 1448 // optimizations on them. 1449 if (!IsOriginalLoop) 1450 DisableAllLoopOptsOnLoop(*L); 1451 }; 1452 if (PreL) 1453 CanonicalizeLoop(PreL, false); 1454 if (PostL) 1455 CanonicalizeLoop(PostL, false); 1456 CanonicalizeLoop(&OriginalLoop, true); 1457 1458 return true; 1459 } 1460 1461 /// Computes and returns a range of values for the induction variable (IndVar) 1462 /// in which the range check can be safely elided. If it cannot compute such a 1463 /// range, returns None. 1464 Optional<InductiveRangeCheck::Range> 1465 InductiveRangeCheck::computeSafeIterationSpace( 1466 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const { 1467 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1468 // variable, that may or may not exist as a real llvm::Value in the loop) and 1469 // this inductive range check is a range check on the "C + D * I" ("C" is 1470 // getOffset() and "D" is getScale()). We rewrite the value being range 1471 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1472 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code 1473 // can be generalized as needed. 1474 // 1475 // The actual inequalities we solve are of the form 1476 // 1477 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1478 // 1479 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions 1480 // and subtractions are twos-complement wrapping and comparisons are signed. 1481 // 1482 // Proof: 1483 // 1484 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows 1485 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows 1486 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have 1487 // overflown. 1488 // 1489 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. 1490 // Hence 0 <= (IndVar + M) < L 1491 1492 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = 1493 // 127, IndVar = 126 and L = -2 in an i8 world. 1494 1495 if (!IndVar->isAffine()) 1496 return None; 1497 1498 const SCEV *A = IndVar->getStart(); 1499 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1500 if (!B) 1501 return None; 1502 1503 const SCEV *C = getOffset(); 1504 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale()); 1505 if (D != B) 1506 return None; 1507 1508 ConstantInt *ConstD = D->getValue(); 1509 if (!(ConstD->isMinusOne() || ConstD->isOne())) 1510 return None; 1511 1512 const SCEV *M = SE.getMinusSCEV(C, A); 1513 1514 const SCEV *Begin = SE.getNegativeSCEV(M); 1515 const SCEV *UpperLimit = nullptr; 1516 1517 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 1518 // We can potentially do much better here. 1519 if (Value *V = getLength()) { 1520 UpperLimit = SE.getSCEV(V); 1521 } else { 1522 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 1523 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1524 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1525 } 1526 1527 const SCEV *End = SE.getMinusSCEV(UpperLimit, M); 1528 return InductiveRangeCheck::Range(Begin, End); 1529 } 1530 1531 static Optional<InductiveRangeCheck::Range> 1532 IntersectRange(ScalarEvolution &SE, 1533 const Optional<InductiveRangeCheck::Range> &R1, 1534 const InductiveRangeCheck::Range &R2) { 1535 if (!R1.hasValue()) 1536 return R2; 1537 auto &R1Value = R1.getValue(); 1538 1539 // TODO: we could widen the smaller range and have this work; but for now we 1540 // bail out to keep things simple. 1541 if (R1Value.getType() != R2.getType()) 1542 return None; 1543 1544 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1545 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1546 1547 return InductiveRangeCheck::Range(NewBegin, NewEnd); 1548 } 1549 1550 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1551 if (skipLoop(L)) 1552 return false; 1553 1554 if (L->getBlocks().size() >= LoopSizeCutoff) { 1555 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1556 return false; 1557 } 1558 1559 BasicBlock *Preheader = L->getLoopPreheader(); 1560 if (!Preheader) { 1561 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1562 return false; 1563 } 1564 1565 LLVMContext &Context = Preheader->getContext(); 1566 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1567 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1568 BranchProbabilityInfo &BPI = 1569 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1570 1571 for (auto BBI : L->getBlocks()) 1572 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1573 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1574 RangeChecks); 1575 1576 if (RangeChecks.empty()) 1577 return false; 1578 1579 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1580 OS << "irce: looking at loop "; L->print(OS); 1581 OS << "irce: loop has " << RangeChecks.size() 1582 << " inductive range checks: \n"; 1583 for (InductiveRangeCheck &IRC : RangeChecks) 1584 IRC.print(OS); 1585 }; 1586 1587 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1588 1589 if (PrintRangeChecks) 1590 PrintRecognizedRangeChecks(errs()); 1591 1592 const char *FailureReason = nullptr; 1593 Optional<LoopStructure> MaybeLoopStructure = 1594 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1595 if (!MaybeLoopStructure.hasValue()) { 1596 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1597 << "\n";); 1598 return false; 1599 } 1600 LoopStructure LS = MaybeLoopStructure.getValue(); 1601 bool Increasing = LS.IndVarIncreasing; 1602 const SCEV *MinusOne = 1603 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true); 1604 const SCEVAddRecExpr *IndVar = 1605 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne)); 1606 1607 Optional<InductiveRangeCheck::Range> SafeIterRange; 1608 Instruction *ExprInsertPt = Preheader->getTerminator(); 1609 1610 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1611 1612 IRBuilder<> B(ExprInsertPt); 1613 for (InductiveRangeCheck &IRC : RangeChecks) { 1614 auto Result = IRC.computeSafeIterationSpace(SE, IndVar); 1615 if (Result.hasValue()) { 1616 auto MaybeSafeIterRange = 1617 IntersectRange(SE, SafeIterRange, Result.getValue()); 1618 if (MaybeSafeIterRange.hasValue()) { 1619 RangeChecksToEliminate.push_back(IRC); 1620 SafeIterRange = MaybeSafeIterRange.getValue(); 1621 } 1622 } 1623 } 1624 1625 if (!SafeIterRange.hasValue()) 1626 return false; 1627 1628 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1629 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM, 1630 LS, SE, DT, SafeIterRange.getValue()); 1631 bool Changed = LC.run(); 1632 1633 if (Changed) { 1634 auto PrintConstrainedLoopInfo = [L]() { 1635 dbgs() << "irce: in function "; 1636 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1637 dbgs() << "constrained "; 1638 L->print(dbgs()); 1639 }; 1640 1641 DEBUG(PrintConstrainedLoopInfo()); 1642 1643 if (PrintChangedLoops) 1644 PrintConstrainedLoopInfo(); 1645 1646 // Optimize away the now-redundant range checks. 1647 1648 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1649 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1650 ? ConstantInt::getTrue(Context) 1651 : ConstantInt::getFalse(Context); 1652 IRC.getCheckUse()->set(FoldedRangeCheck); 1653 } 1654 } 1655 1656 return Changed; 1657 } 1658 1659 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1660 return new InductiveRangeCheckElimination; 1661 } 1662