1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringRef.h"
53 #include "llvm/ADT/Twine.h"
54 #include "llvm/Analysis/BranchProbabilityInfo.h"
55 #include "llvm/Analysis/LoopAnalysisManager.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopPass.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpander.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/PatternMatch.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Use.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Transforms/Scalar.h"
86 #include "llvm/Transforms/Utils/Cloning.h"
87 #include "llvm/Transforms/Utils/LoopSimplify.h"
88 #include "llvm/Transforms/Utils/LoopUtils.h"
89 #include "llvm/Transforms/Utils/ValueMapper.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <iterator>
93 #include <limits>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 using namespace llvm::PatternMatch;
99 
100 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
101                                         cl::init(64));
102 
103 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
104                                        cl::init(false));
105 
106 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
107                                       cl::init(false));
108 
109 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
110                                           cl::Hidden, cl::init(10));
111 
112 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
113                                              cl::Hidden, cl::init(false));
114 
115 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
116                                                  cl::Hidden, cl::init(true));
117 
118 static cl::opt<bool> AllowNarrowLatchCondition(
119     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
120     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
121              "with narrow latch condition."));
122 
123 static const char *ClonedLoopTag = "irce.loop.clone";
124 
125 #define DEBUG_TYPE "irce"
126 
127 namespace {
128 
129 /// An inductive range check is conditional branch in a loop with
130 ///
131 ///  1. a very cold successor (i.e. the branch jumps to that successor very
132 ///     rarely)
133 ///
134 ///  and
135 ///
136 ///  2. a condition that is provably true for some contiguous range of values
137 ///     taken by the containing loop's induction variable.
138 ///
139 class InductiveRangeCheck {
140 
141   const SCEV *Begin = nullptr;
142   const SCEV *Step = nullptr;
143   const SCEV *End = nullptr;
144   Use *CheckUse = nullptr;
145   bool IsSigned = true;
146 
147   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
148                                   Value *&Index, Value *&Length,
149                                   bool &IsSigned);
150 
151   static void
152   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
153                              SmallVectorImpl<InductiveRangeCheck> &Checks,
154                              SmallPtrSetImpl<Value *> &Visited);
155 
156 public:
157   const SCEV *getBegin() const { return Begin; }
158   const SCEV *getStep() const { return Step; }
159   const SCEV *getEnd() const { return End; }
160   bool isSigned() const { return IsSigned; }
161 
162   void print(raw_ostream &OS) const {
163     OS << "InductiveRangeCheck:\n";
164     OS << "  Begin: ";
165     Begin->print(OS);
166     OS << "  Step: ";
167     Step->print(OS);
168     OS << "  End: ";
169     End->print(OS);
170     OS << "\n  CheckUse: ";
171     getCheckUse()->getUser()->print(OS);
172     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
173   }
174 
175   LLVM_DUMP_METHOD
176   void dump() {
177     print(dbgs());
178   }
179 
180   Use *getCheckUse() const { return CheckUse; }
181 
182   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
183   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
184 
185   class Range {
186     const SCEV *Begin;
187     const SCEV *End;
188 
189   public:
190     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
191       assert(Begin->getType() == End->getType() && "ill-typed range!");
192     }
193 
194     Type *getType() const { return Begin->getType(); }
195     const SCEV *getBegin() const { return Begin; }
196     const SCEV *getEnd() const { return End; }
197     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
198       if (Begin == End)
199         return true;
200       if (IsSigned)
201         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
202       else
203         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
204     }
205   };
206 
207   /// This is the value the condition of the branch needs to evaluate to for the
208   /// branch to take the hot successor (see (1) above).
209   bool getPassingDirection() { return true; }
210 
211   /// Computes a range for the induction variable (IndVar) in which the range
212   /// check is redundant and can be constant-folded away.  The induction
213   /// variable is not required to be the canonical {0,+,1} induction variable.
214   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
215                                             const SCEVAddRecExpr *IndVar,
216                                             bool IsLatchSigned) const;
217 
218   /// Parse out a set of inductive range checks from \p BI and append them to \p
219   /// Checks.
220   ///
221   /// NB! There may be conditions feeding into \p BI that aren't inductive range
222   /// checks, and hence don't end up in \p Checks.
223   static void
224   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
225                                BranchProbabilityInfo *BPI,
226                                SmallVectorImpl<InductiveRangeCheck> &Checks);
227 };
228 
229 class InductiveRangeCheckElimination {
230   ScalarEvolution &SE;
231   BranchProbabilityInfo *BPI;
232   DominatorTree &DT;
233   LoopInfo &LI;
234 
235 public:
236   InductiveRangeCheckElimination(ScalarEvolution &SE,
237                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
238                                  LoopInfo &LI)
239       : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
240 
241   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
242 };
243 
244 class IRCELegacyPass : public LoopPass {
245 public:
246   static char ID;
247 
248   IRCELegacyPass() : LoopPass(ID) {
249     initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
250   }
251 
252   void getAnalysisUsage(AnalysisUsage &AU) const override {
253     AU.addRequired<BranchProbabilityInfoWrapperPass>();
254     getLoopAnalysisUsage(AU);
255   }
256 
257   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
258 };
259 
260 } // end anonymous namespace
261 
262 char IRCELegacyPass::ID = 0;
263 
264 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
265                       "Inductive range check elimination", false, false)
266 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
267 INITIALIZE_PASS_DEPENDENCY(LoopPass)
268 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
269                     false, false)
270 
271 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
272 /// be interpreted as a range check, return false and set `Index` and `Length`
273 /// to `nullptr`.  Otherwise set `Index` to the value being range checked, and
274 /// set `Length` to the upper limit `Index` is being range checked.
275 bool
276 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
277                                          ScalarEvolution &SE, Value *&Index,
278                                          Value *&Length, bool &IsSigned) {
279   auto IsLoopInvariant = [&SE, L](Value *V) {
280     return SE.isLoopInvariant(SE.getSCEV(V), L);
281   };
282 
283   ICmpInst::Predicate Pred = ICI->getPredicate();
284   Value *LHS = ICI->getOperand(0);
285   Value *RHS = ICI->getOperand(1);
286 
287   switch (Pred) {
288   default:
289     return false;
290 
291   case ICmpInst::ICMP_SLE:
292     std::swap(LHS, RHS);
293     LLVM_FALLTHROUGH;
294   case ICmpInst::ICMP_SGE:
295     IsSigned = true;
296     if (match(RHS, m_ConstantInt<0>())) {
297       Index = LHS;
298       return true; // Lower.
299     }
300     return false;
301 
302   case ICmpInst::ICMP_SLT:
303     std::swap(LHS, RHS);
304     LLVM_FALLTHROUGH;
305   case ICmpInst::ICMP_SGT:
306     IsSigned = true;
307     if (match(RHS, m_ConstantInt<-1>())) {
308       Index = LHS;
309       return true; // Lower.
310     }
311 
312     if (IsLoopInvariant(LHS)) {
313       Index = RHS;
314       Length = LHS;
315       return true; // Upper.
316     }
317     return false;
318 
319   case ICmpInst::ICMP_ULT:
320     std::swap(LHS, RHS);
321     LLVM_FALLTHROUGH;
322   case ICmpInst::ICMP_UGT:
323     IsSigned = false;
324     if (IsLoopInvariant(LHS)) {
325       Index = RHS;
326       Length = LHS;
327       return true; // Both lower and upper.
328     }
329     return false;
330   }
331 
332   llvm_unreachable("default clause returns!");
333 }
334 
335 void InductiveRangeCheck::extractRangeChecksFromCond(
336     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
337     SmallVectorImpl<InductiveRangeCheck> &Checks,
338     SmallPtrSetImpl<Value *> &Visited) {
339   Value *Condition = ConditionUse.get();
340   if (!Visited.insert(Condition).second)
341     return;
342 
343   // TODO: Do the same for OR, XOR, NOT etc?
344   if (match(Condition, m_And(m_Value(), m_Value()))) {
345     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
346                                Checks, Visited);
347     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
348                                Checks, Visited);
349     return;
350   }
351 
352   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
353   if (!ICI)
354     return;
355 
356   Value *Length = nullptr, *Index;
357   bool IsSigned;
358   if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
359     return;
360 
361   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
362   bool IsAffineIndex =
363       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
364 
365   if (!IsAffineIndex)
366     return;
367 
368   const SCEV *End = nullptr;
369   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
370   // We can potentially do much better here.
371   if (Length)
372     End = SE.getSCEV(Length);
373   else {
374     // So far we can only reach this point for Signed range check. This may
375     // change in future. In this case we will need to pick Unsigned max for the
376     // unsigned range check.
377     unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
378     const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
379     End = SIntMax;
380   }
381 
382   InductiveRangeCheck IRC;
383   IRC.End = End;
384   IRC.Begin = IndexAddRec->getStart();
385   IRC.Step = IndexAddRec->getStepRecurrence(SE);
386   IRC.CheckUse = &ConditionUse;
387   IRC.IsSigned = IsSigned;
388   Checks.push_back(IRC);
389 }
390 
391 void InductiveRangeCheck::extractRangeChecksFromBranch(
392     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
393     SmallVectorImpl<InductiveRangeCheck> &Checks) {
394   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
395     return;
396 
397   BranchProbability LikelyTaken(15, 16);
398 
399   if (!SkipProfitabilityChecks && BPI &&
400       BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
401     return;
402 
403   SmallPtrSet<Value *, 8> Visited;
404   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
405                                                   Checks, Visited);
406 }
407 
408 // Add metadata to the loop L to disable loop optimizations. Callers need to
409 // confirm that optimizing loop L is not beneficial.
410 static void DisableAllLoopOptsOnLoop(Loop &L) {
411   // We do not care about any existing loopID related metadata for L, since we
412   // are setting all loop metadata to false.
413   LLVMContext &Context = L.getHeader()->getContext();
414   // Reserve first location for self reference to the LoopID metadata node.
415   MDNode *Dummy = MDNode::get(Context, {});
416   MDNode *DisableUnroll = MDNode::get(
417       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
418   Metadata *FalseVal =
419       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
420   MDNode *DisableVectorize = MDNode::get(
421       Context,
422       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
423   MDNode *DisableLICMVersioning = MDNode::get(
424       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
425   MDNode *DisableDistribution= MDNode::get(
426       Context,
427       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
428   MDNode *NewLoopID =
429       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
430                             DisableLICMVersioning, DisableDistribution});
431   // Set operand 0 to refer to the loop id itself.
432   NewLoopID->replaceOperandWith(0, NewLoopID);
433   L.setLoopID(NewLoopID);
434 }
435 
436 namespace {
437 
438 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
439 // except that it is more lightweight and can track the state of a loop through
440 // changing and potentially invalid IR.  This structure also formalizes the
441 // kinds of loops we can deal with -- ones that have a single latch that is also
442 // an exiting block *and* have a canonical induction variable.
443 struct LoopStructure {
444   const char *Tag = "";
445 
446   BasicBlock *Header = nullptr;
447   BasicBlock *Latch = nullptr;
448 
449   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
450   // successor is `LatchExit', the exit block of the loop.
451   BranchInst *LatchBr = nullptr;
452   BasicBlock *LatchExit = nullptr;
453   unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
454 
455   // The loop represented by this instance of LoopStructure is semantically
456   // equivalent to:
457   //
458   // intN_ty inc = IndVarIncreasing ? 1 : -1;
459   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
460   //
461   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
462   //   ... body ...
463 
464   Value *IndVarBase = nullptr;
465   Value *IndVarStart = nullptr;
466   Value *IndVarStep = nullptr;
467   Value *LoopExitAt = nullptr;
468   bool IndVarIncreasing = false;
469   bool IsSignedPredicate = true;
470 
471   LoopStructure() = default;
472 
473   template <typename M> LoopStructure map(M Map) const {
474     LoopStructure Result;
475     Result.Tag = Tag;
476     Result.Header = cast<BasicBlock>(Map(Header));
477     Result.Latch = cast<BasicBlock>(Map(Latch));
478     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
479     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
480     Result.LatchBrExitIdx = LatchBrExitIdx;
481     Result.IndVarBase = Map(IndVarBase);
482     Result.IndVarStart = Map(IndVarStart);
483     Result.IndVarStep = Map(IndVarStep);
484     Result.LoopExitAt = Map(LoopExitAt);
485     Result.IndVarIncreasing = IndVarIncreasing;
486     Result.IsSignedPredicate = IsSignedPredicate;
487     return Result;
488   }
489 
490   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
491                                                     BranchProbabilityInfo *BPI,
492                                                     Loop &, const char *&);
493 };
494 
495 /// This class is used to constrain loops to run within a given iteration space.
496 /// The algorithm this class implements is given a Loop and a range [Begin,
497 /// End).  The algorithm then tries to break out a "main loop" out of the loop
498 /// it is given in a way that the "main loop" runs with the induction variable
499 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
500 /// loops to run any remaining iterations.  The pre loop runs any iterations in
501 /// which the induction variable is < Begin, and the post loop runs any
502 /// iterations in which the induction variable is >= End.
503 class LoopConstrainer {
504   // The representation of a clone of the original loop we started out with.
505   struct ClonedLoop {
506     // The cloned blocks
507     std::vector<BasicBlock *> Blocks;
508 
509     // `Map` maps values in the clonee into values in the cloned version
510     ValueToValueMapTy Map;
511 
512     // An instance of `LoopStructure` for the cloned loop
513     LoopStructure Structure;
514   };
515 
516   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
517   // more details on what these fields mean.
518   struct RewrittenRangeInfo {
519     BasicBlock *PseudoExit = nullptr;
520     BasicBlock *ExitSelector = nullptr;
521     std::vector<PHINode *> PHIValuesAtPseudoExit;
522     PHINode *IndVarEnd = nullptr;
523 
524     RewrittenRangeInfo() = default;
525   };
526 
527   // Calculated subranges we restrict the iteration space of the main loop to.
528   // See the implementation of `calculateSubRanges' for more details on how
529   // these fields are computed.  `LowLimit` is None if there is no restriction
530   // on low end of the restricted iteration space of the main loop.  `HighLimit`
531   // is None if there is no restriction on high end of the restricted iteration
532   // space of the main loop.
533 
534   struct SubRanges {
535     Optional<const SCEV *> LowLimit;
536     Optional<const SCEV *> HighLimit;
537   };
538 
539   // A utility function that does a `replaceUsesOfWith' on the incoming block
540   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
541   // incoming block list with `ReplaceBy'.
542   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
543                               BasicBlock *ReplaceBy);
544 
545   // Compute a safe set of limits for the main loop to run in -- effectively the
546   // intersection of `Range' and the iteration space of the original loop.
547   // Return None if unable to compute the set of subranges.
548   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
549 
550   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
551   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
552   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
553   // but there is no such edge.
554   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
555 
556   // Create the appropriate loop structure needed to describe a cloned copy of
557   // `Original`.  The clone is described by `VM`.
558   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
559                                   ValueToValueMapTy &VM, bool IsSubloop);
560 
561   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
562   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
563   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
564   // `OriginalHeaderCount'.
565   //
566   // If there are iterations left to execute, control is made to jump to
567   // `ContinuationBlock', otherwise they take the normal loop exit.  The
568   // returned `RewrittenRangeInfo' object is populated as follows:
569   //
570   //  .PseudoExit is a basic block that unconditionally branches to
571   //      `ContinuationBlock'.
572   //
573   //  .ExitSelector is a basic block that decides, on exit from the loop,
574   //      whether to branch to the "true" exit or to `PseudoExit'.
575   //
576   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
577   //      for each PHINode in the loop header on taking the pseudo exit.
578   //
579   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
580   // preheader because it is made to branch to the loop header only
581   // conditionally.
582   RewrittenRangeInfo
583   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
584                           Value *ExitLoopAt,
585                           BasicBlock *ContinuationBlock) const;
586 
587   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
588   // function creates a new preheader for `LS' and returns it.
589   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
590                               const char *Tag) const;
591 
592   // `ContinuationBlockAndPreheader' was the continuation block for some call to
593   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
594   // This function rewrites the PHI nodes in `LS.Header' to start with the
595   // correct value.
596   void rewriteIncomingValuesForPHIs(
597       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
598       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
599 
600   // Even though we do not preserve any passes at this time, we at least need to
601   // keep the parent loop structure consistent.  The `LPPassManager' seems to
602   // verify this after running a loop pass.  This function adds the list of
603   // blocks denoted by BBs to this loops parent loop if required.
604   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
605 
606   // Some global state.
607   Function &F;
608   LLVMContext &Ctx;
609   ScalarEvolution &SE;
610   DominatorTree &DT;
611   LoopInfo &LI;
612   function_ref<void(Loop *, bool)> LPMAddNewLoop;
613 
614   // Information about the original loop we started out with.
615   Loop &OriginalLoop;
616 
617   const SCEV *LatchTakenCount = nullptr;
618   BasicBlock *OriginalPreheader = nullptr;
619 
620   // The preheader of the main loop.  This may or may not be different from
621   // `OriginalPreheader'.
622   BasicBlock *MainLoopPreheader = nullptr;
623 
624   // The range we need to run the main loop in.
625   InductiveRangeCheck::Range Range;
626 
627   // The structure of the main loop (see comment at the beginning of this class
628   // for a definition)
629   LoopStructure MainLoopStructure;
630 
631 public:
632   LoopConstrainer(Loop &L, LoopInfo &LI,
633                   function_ref<void(Loop *, bool)> LPMAddNewLoop,
634                   const LoopStructure &LS, ScalarEvolution &SE,
635                   DominatorTree &DT, InductiveRangeCheck::Range R)
636       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
637         SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
638         Range(R), MainLoopStructure(LS) {}
639 
640   // Entry point for the algorithm.  Returns true on success.
641   bool run();
642 };
643 
644 } // end anonymous namespace
645 
646 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
647                                       BasicBlock *ReplaceBy) {
648   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
649     if (PN->getIncomingBlock(i) == Block)
650       PN->setIncomingBlock(i, ReplaceBy);
651 }
652 
653 /// Given a loop with an deccreasing induction variable, is it possible to
654 /// safely calculate the bounds of a new loop using the given Predicate.
655 static bool isSafeDecreasingBound(const SCEV *Start,
656                                   const SCEV *BoundSCEV, const SCEV *Step,
657                                   ICmpInst::Predicate Pred,
658                                   unsigned LatchBrExitIdx,
659                                   Loop *L, ScalarEvolution &SE) {
660   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
661       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
662     return false;
663 
664   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
665     return false;
666 
667   assert(SE.isKnownNegative(Step) && "expecting negative step");
668 
669   LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
670   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
671   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
672   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
673   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
674                     << "\n");
675   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
676 
677   bool IsSigned = ICmpInst::isSigned(Pred);
678   // The predicate that we need to check that the induction variable lies
679   // within bounds.
680   ICmpInst::Predicate BoundPred =
681     IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
682 
683   if (LatchBrExitIdx == 1)
684     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
685 
686   assert(LatchBrExitIdx == 0 &&
687          "LatchBrExitIdx should be either 0 or 1");
688 
689   const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
690   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
691   APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
692     APInt::getMinValue(BitWidth);
693   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
694 
695   const SCEV *MinusOne =
696     SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
697 
698   return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
699          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
700 
701 }
702 
703 /// Given a loop with an increasing induction variable, is it possible to
704 /// safely calculate the bounds of a new loop using the given Predicate.
705 static bool isSafeIncreasingBound(const SCEV *Start,
706                                   const SCEV *BoundSCEV, const SCEV *Step,
707                                   ICmpInst::Predicate Pred,
708                                   unsigned LatchBrExitIdx,
709                                   Loop *L, ScalarEvolution &SE) {
710   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
711       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
712     return false;
713 
714   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
715     return false;
716 
717   LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
718   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
719   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
720   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
721   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
722                     << "\n");
723   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
724 
725   bool IsSigned = ICmpInst::isSigned(Pred);
726   // The predicate that we need to check that the induction variable lies
727   // within bounds.
728   ICmpInst::Predicate BoundPred =
729       IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
730 
731   if (LatchBrExitIdx == 1)
732     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
733 
734   assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
735 
736   const SCEV *StepMinusOne =
737     SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
738   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
739   APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
740     APInt::getMaxValue(BitWidth);
741   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
742 
743   return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
744                                       SE.getAddExpr(BoundSCEV, Step)) &&
745           SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
746 }
747 
748 Optional<LoopStructure>
749 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
750                                   BranchProbabilityInfo *BPI, Loop &L,
751                                   const char *&FailureReason) {
752   if (!L.isLoopSimplifyForm()) {
753     FailureReason = "loop not in LoopSimplify form";
754     return None;
755   }
756 
757   BasicBlock *Latch = L.getLoopLatch();
758   assert(Latch && "Simplified loops only have one latch!");
759 
760   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
761     FailureReason = "loop has already been cloned";
762     return None;
763   }
764 
765   if (!L.isLoopExiting(Latch)) {
766     FailureReason = "no loop latch";
767     return None;
768   }
769 
770   BasicBlock *Header = L.getHeader();
771   BasicBlock *Preheader = L.getLoopPreheader();
772   if (!Preheader) {
773     FailureReason = "no preheader";
774     return None;
775   }
776 
777   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
778   if (!LatchBr || LatchBr->isUnconditional()) {
779     FailureReason = "latch terminator not conditional branch";
780     return None;
781   }
782 
783   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
784 
785   BranchProbability ExitProbability =
786       BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
787           : BranchProbability::getZero();
788 
789   if (!SkipProfitabilityChecks &&
790       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
791     FailureReason = "short running loop, not profitable";
792     return None;
793   }
794 
795   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
796   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
797     FailureReason = "latch terminator branch not conditional on integral icmp";
798     return None;
799   }
800 
801   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
802   if (isa<SCEVCouldNotCompute>(LatchCount)) {
803     FailureReason = "could not compute latch count";
804     return None;
805   }
806 
807   ICmpInst::Predicate Pred = ICI->getPredicate();
808   Value *LeftValue = ICI->getOperand(0);
809   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
810   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
811 
812   Value *RightValue = ICI->getOperand(1);
813   const SCEV *RightSCEV = SE.getSCEV(RightValue);
814 
815   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
816   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
817     if (isa<SCEVAddRecExpr>(RightSCEV)) {
818       std::swap(LeftSCEV, RightSCEV);
819       std::swap(LeftValue, RightValue);
820       Pred = ICmpInst::getSwappedPredicate(Pred);
821     } else {
822       FailureReason = "no add recurrences in the icmp";
823       return None;
824     }
825   }
826 
827   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
828     if (AR->getNoWrapFlags(SCEV::FlagNSW))
829       return true;
830 
831     IntegerType *Ty = cast<IntegerType>(AR->getType());
832     IntegerType *WideTy =
833         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
834 
835     const SCEVAddRecExpr *ExtendAfterOp =
836         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
837     if (ExtendAfterOp) {
838       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
839       const SCEV *ExtendedStep =
840           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
841 
842       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
843                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
844 
845       if (NoSignedWrap)
846         return true;
847     }
848 
849     // We may have proved this when computing the sign extension above.
850     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
851   };
852 
853   // `ICI` is interpreted as taking the backedge if the *next* value of the
854   // induction variable satisfies some constraint.
855 
856   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
857   if (!IndVarBase->isAffine()) {
858     FailureReason = "LHS in icmp not induction variable";
859     return None;
860   }
861   const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
862   if (!isa<SCEVConstant>(StepRec)) {
863     FailureReason = "LHS in icmp not induction variable";
864     return None;
865   }
866   ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
867 
868   if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
869     FailureReason = "LHS in icmp needs nsw for equality predicates";
870     return None;
871   }
872 
873   assert(!StepCI->isZero() && "Zero step?");
874   bool IsIncreasing = !StepCI->isNegative();
875   bool IsSignedPredicate = ICmpInst::isSigned(Pred);
876   const SCEV *StartNext = IndVarBase->getStart();
877   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
878   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
879   const SCEV *Step = SE.getSCEV(StepCI);
880 
881   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
882   if (IsIncreasing) {
883     bool DecreasedRightValueByOne = false;
884     if (StepCI->isOne()) {
885       // Try to turn eq/ne predicates to those we can work with.
886       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
887         // while (++i != len) {         while (++i < len) {
888         //   ...                 --->     ...
889         // }                            }
890         // If both parts are known non-negative, it is profitable to use
891         // unsigned comparison in increasing loop. This allows us to make the
892         // comparison check against "RightSCEV + 1" more optimistic.
893         if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
894             isKnownNonNegativeInLoop(RightSCEV, &L, SE))
895           Pred = ICmpInst::ICMP_ULT;
896         else
897           Pred = ICmpInst::ICMP_SLT;
898       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
899         // while (true) {               while (true) {
900         //   if (++i == len)     --->     if (++i > len - 1)
901         //     break;                       break;
902         //   ...                          ...
903         // }                            }
904         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
905             cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
906           Pred = ICmpInst::ICMP_UGT;
907           RightSCEV = SE.getMinusSCEV(RightSCEV,
908                                       SE.getOne(RightSCEV->getType()));
909           DecreasedRightValueByOne = true;
910         } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
911           Pred = ICmpInst::ICMP_SGT;
912           RightSCEV = SE.getMinusSCEV(RightSCEV,
913                                       SE.getOne(RightSCEV->getType()));
914           DecreasedRightValueByOne = true;
915         }
916       }
917     }
918 
919     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
920     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
921     bool FoundExpectedPred =
922         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
923 
924     if (!FoundExpectedPred) {
925       FailureReason = "expected icmp slt semantically, found something else";
926       return None;
927     }
928 
929     IsSignedPredicate = ICmpInst::isSigned(Pred);
930     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
931       FailureReason = "unsigned latch conditions are explicitly prohibited";
932       return None;
933     }
934 
935     if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
936                                LatchBrExitIdx, &L, SE)) {
937       FailureReason = "Unsafe loop bounds";
938       return None;
939     }
940     if (LatchBrExitIdx == 0) {
941       // We need to increase the right value unless we have already decreased
942       // it virtually when we replaced EQ with SGT.
943       if (!DecreasedRightValueByOne) {
944         IRBuilder<> B(Preheader->getTerminator());
945         RightValue = B.CreateAdd(RightValue, One);
946       }
947     } else {
948       assert(!DecreasedRightValueByOne &&
949              "Right value can be decreased only for LatchBrExitIdx == 0!");
950     }
951   } else {
952     bool IncreasedRightValueByOne = false;
953     if (StepCI->isMinusOne()) {
954       // Try to turn eq/ne predicates to those we can work with.
955       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
956         // while (--i != len) {         while (--i > len) {
957         //   ...                 --->     ...
958         // }                            }
959         // We intentionally don't turn the predicate into UGT even if we know
960         // that both operands are non-negative, because it will only pessimize
961         // our check against "RightSCEV - 1".
962         Pred = ICmpInst::ICMP_SGT;
963       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
964         // while (true) {               while (true) {
965         //   if (--i == len)     --->     if (--i < len + 1)
966         //     break;                       break;
967         //   ...                          ...
968         // }                            }
969         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
970             cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
971           Pred = ICmpInst::ICMP_ULT;
972           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
973           IncreasedRightValueByOne = true;
974         } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
975           Pred = ICmpInst::ICMP_SLT;
976           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
977           IncreasedRightValueByOne = true;
978         }
979       }
980     }
981 
982     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
983     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
984 
985     bool FoundExpectedPred =
986         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
987 
988     if (!FoundExpectedPred) {
989       FailureReason = "expected icmp sgt semantically, found something else";
990       return None;
991     }
992 
993     IsSignedPredicate =
994         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
995 
996     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
997       FailureReason = "unsigned latch conditions are explicitly prohibited";
998       return None;
999     }
1000 
1001     if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1002                                LatchBrExitIdx, &L, SE)) {
1003       FailureReason = "Unsafe bounds";
1004       return None;
1005     }
1006 
1007     if (LatchBrExitIdx == 0) {
1008       // We need to decrease the right value unless we have already increased
1009       // it virtually when we replaced EQ with SLT.
1010       if (!IncreasedRightValueByOne) {
1011         IRBuilder<> B(Preheader->getTerminator());
1012         RightValue = B.CreateSub(RightValue, One);
1013       }
1014     } else {
1015       assert(!IncreasedRightValueByOne &&
1016              "Right value can be increased only for LatchBrExitIdx == 0!");
1017     }
1018   }
1019   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1020 
1021   assert(SE.getLoopDisposition(LatchCount, &L) ==
1022              ScalarEvolution::LoopInvariant &&
1023          "loop variant exit count doesn't make sense!");
1024 
1025   assert(!L.contains(LatchExit) && "expected an exit block!");
1026   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1027   Value *IndVarStartV =
1028       SCEVExpander(SE, DL, "irce")
1029           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
1030   IndVarStartV->setName("indvar.start");
1031 
1032   LoopStructure Result;
1033 
1034   Result.Tag = "main";
1035   Result.Header = Header;
1036   Result.Latch = Latch;
1037   Result.LatchBr = LatchBr;
1038   Result.LatchExit = LatchExit;
1039   Result.LatchBrExitIdx = LatchBrExitIdx;
1040   Result.IndVarStart = IndVarStartV;
1041   Result.IndVarStep = StepCI;
1042   Result.IndVarBase = LeftValue;
1043   Result.IndVarIncreasing = IsIncreasing;
1044   Result.LoopExitAt = RightValue;
1045   Result.IsSignedPredicate = IsSignedPredicate;
1046 
1047   FailureReason = nullptr;
1048 
1049   return Result;
1050 }
1051 
1052 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1053 /// signed or unsigned extension of \p S to type \p Ty.
1054 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1055                                 bool Signed) {
1056   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1057 }
1058 
1059 Optional<LoopConstrainer::SubRanges>
1060 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1061   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1062 
1063   auto *RTy = cast<IntegerType>(Range.getType());
1064 
1065   // We only support wide range checks and narrow latches.
1066   if (!AllowNarrowLatchCondition && RTy != Ty)
1067     return None;
1068   if (RTy->getBitWidth() < Ty->getBitWidth())
1069     return None;
1070 
1071   LoopConstrainer::SubRanges Result;
1072 
1073   // I think we can be more aggressive here and make this nuw / nsw if the
1074   // addition that feeds into the icmp for the latch's terminating branch is nuw
1075   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1076   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1077                                    RTy, SE, IsSignedPredicate);
1078   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1079                                  SE, IsSignedPredicate);
1080 
1081   bool Increasing = MainLoopStructure.IndVarIncreasing;
1082 
1083   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1084   // [Smallest, GreatestSeen] is the range of values the induction variable
1085   // takes.
1086 
1087   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1088 
1089   const SCEV *One = SE.getOne(RTy);
1090   if (Increasing) {
1091     Smallest = Start;
1092     Greatest = End;
1093     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1094     GreatestSeen = SE.getMinusSCEV(End, One);
1095   } else {
1096     // These two computations may sign-overflow.  Here is why that is okay:
1097     //
1098     // We know that the induction variable does not sign-overflow on any
1099     // iteration except the last one, and it starts at `Start` and ends at
1100     // `End`, decrementing by one every time.
1101     //
1102     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1103     //    induction variable is decreasing we know that that the smallest value
1104     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1105     //
1106     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1107     //    that case, `Clamp` will always return `Smallest` and
1108     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1109     //    will be an empty range.  Returning an empty range is always safe.
1110 
1111     Smallest = SE.getAddExpr(End, One);
1112     Greatest = SE.getAddExpr(Start, One);
1113     GreatestSeen = Start;
1114   }
1115 
1116   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1117     return IsSignedPredicate
1118                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1119                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1120   };
1121 
1122   // In some cases we can prove that we don't need a pre or post loop.
1123   ICmpInst::Predicate PredLE =
1124       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1125   ICmpInst::Predicate PredLT =
1126       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1127 
1128   bool ProvablyNoPreloop =
1129       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1130   if (!ProvablyNoPreloop)
1131     Result.LowLimit = Clamp(Range.getBegin());
1132 
1133   bool ProvablyNoPostLoop =
1134       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1135   if (!ProvablyNoPostLoop)
1136     Result.HighLimit = Clamp(Range.getEnd());
1137 
1138   return Result;
1139 }
1140 
1141 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1142                                 const char *Tag) const {
1143   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1144     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1145     Result.Blocks.push_back(Clone);
1146     Result.Map[BB] = Clone;
1147   }
1148 
1149   auto GetClonedValue = [&Result](Value *V) {
1150     assert(V && "null values not in domain!");
1151     auto It = Result.Map.find(V);
1152     if (It == Result.Map.end())
1153       return V;
1154     return static_cast<Value *>(It->second);
1155   };
1156 
1157   auto *ClonedLatch =
1158       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1159   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1160                                             MDNode::get(Ctx, {}));
1161 
1162   Result.Structure = MainLoopStructure.map(GetClonedValue);
1163   Result.Structure.Tag = Tag;
1164 
1165   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1166     BasicBlock *ClonedBB = Result.Blocks[i];
1167     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1168 
1169     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1170 
1171     for (Instruction &I : *ClonedBB)
1172       RemapInstruction(&I, Result.Map,
1173                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1174 
1175     // Exit blocks will now have one more predecessor and their PHI nodes need
1176     // to be edited to reflect that.  No phi nodes need to be introduced because
1177     // the loop is in LCSSA.
1178 
1179     for (auto *SBB : successors(OriginalBB)) {
1180       if (OriginalLoop.contains(SBB))
1181         continue; // not an exit block
1182 
1183       for (PHINode &PN : SBB->phis()) {
1184         Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1185         PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1186       }
1187     }
1188   }
1189 }
1190 
1191 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1192     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1193     BasicBlock *ContinuationBlock) const {
1194   // We start with a loop with a single latch:
1195   //
1196   //    +--------------------+
1197   //    |                    |
1198   //    |     preheader      |
1199   //    |                    |
1200   //    +--------+-----------+
1201   //             |      ----------------\
1202   //             |     /                |
1203   //    +--------v----v------+          |
1204   //    |                    |          |
1205   //    |      header        |          |
1206   //    |                    |          |
1207   //    +--------------------+          |
1208   //                                    |
1209   //            .....                   |
1210   //                                    |
1211   //    +--------------------+          |
1212   //    |                    |          |
1213   //    |       latch        >----------/
1214   //    |                    |
1215   //    +-------v------------+
1216   //            |
1217   //            |
1218   //            |   +--------------------+
1219   //            |   |                    |
1220   //            +--->   original exit    |
1221   //                |                    |
1222   //                +--------------------+
1223   //
1224   // We change the control flow to look like
1225   //
1226   //
1227   //    +--------------------+
1228   //    |                    |
1229   //    |     preheader      >-------------------------+
1230   //    |                    |                         |
1231   //    +--------v-----------+                         |
1232   //             |    /-------------+                  |
1233   //             |   /              |                  |
1234   //    +--------v--v--------+      |                  |
1235   //    |                    |      |                  |
1236   //    |      header        |      |   +--------+     |
1237   //    |                    |      |   |        |     |
1238   //    +--------------------+      |   |  +-----v-----v-----------+
1239   //                                |   |  |                       |
1240   //                                |   |  |     .pseudo.exit      |
1241   //                                |   |  |                       |
1242   //                                |   |  +-----------v-----------+
1243   //                                |   |              |
1244   //            .....               |   |              |
1245   //                                |   |     +--------v-------------+
1246   //    +--------------------+      |   |     |                      |
1247   //    |                    |      |   |     |   ContinuationBlock  |
1248   //    |       latch        >------+   |     |                      |
1249   //    |                    |          |     +----------------------+
1250   //    +---------v----------+          |
1251   //              |                     |
1252   //              |                     |
1253   //              |     +---------------^-----+
1254   //              |     |                     |
1255   //              +----->    .exit.selector   |
1256   //                    |                     |
1257   //                    +----------v----------+
1258   //                               |
1259   //     +--------------------+    |
1260   //     |                    |    |
1261   //     |   original exit    <----+
1262   //     |                    |
1263   //     +--------------------+
1264 
1265   RewrittenRangeInfo RRI;
1266 
1267   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1268   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1269                                         &F, BBInsertLocation);
1270   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1271                                       BBInsertLocation);
1272 
1273   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1274   bool Increasing = LS.IndVarIncreasing;
1275   bool IsSignedPredicate = LS.IsSignedPredicate;
1276 
1277   IRBuilder<> B(PreheaderJump);
1278   auto *RangeTy = Range.getBegin()->getType();
1279   auto NoopOrExt = [&](Value *V) {
1280     if (V->getType() == RangeTy)
1281       return V;
1282     return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1283                              : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1284   };
1285 
1286   // EnterLoopCond - is it okay to start executing this `LS'?
1287   Value *EnterLoopCond = nullptr;
1288   auto Pred =
1289       Increasing
1290           ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1291           : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1292   Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1293   EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1294 
1295   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1296   PreheaderJump->eraseFromParent();
1297 
1298   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1299   B.SetInsertPoint(LS.LatchBr);
1300   Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1301   Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1302 
1303   Value *CondForBranch = LS.LatchBrExitIdx == 1
1304                              ? TakeBackedgeLoopCond
1305                              : B.CreateNot(TakeBackedgeLoopCond);
1306 
1307   LS.LatchBr->setCondition(CondForBranch);
1308 
1309   B.SetInsertPoint(RRI.ExitSelector);
1310 
1311   // IterationsLeft - are there any more iterations left, given the original
1312   // upper bound on the induction variable?  If not, we branch to the "real"
1313   // exit.
1314   Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1315   Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1316   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1317 
1318   BranchInst *BranchToContinuation =
1319       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1320 
1321   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1322   // each of the PHI nodes in the loop header.  This feeds into the initial
1323   // value of the same PHI nodes if/when we continue execution.
1324   for (PHINode &PN : LS.Header->phis()) {
1325     PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1326                                       BranchToContinuation);
1327 
1328     NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1329     NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1330                         RRI.ExitSelector);
1331     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1332   }
1333 
1334   RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1335                                   BranchToContinuation);
1336   RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1337   RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1338 
1339   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1340   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1341   for (PHINode &PN : LS.LatchExit->phis())
1342     replacePHIBlock(&PN, LS.Latch, RRI.ExitSelector);
1343 
1344   return RRI;
1345 }
1346 
1347 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1348     LoopStructure &LS, BasicBlock *ContinuationBlock,
1349     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1350   unsigned PHIIndex = 0;
1351   for (PHINode &PN : LS.Header->phis())
1352     for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i)
1353       if (PN.getIncomingBlock(i) == ContinuationBlock)
1354         PN.setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1355 
1356   LS.IndVarStart = RRI.IndVarEnd;
1357 }
1358 
1359 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1360                                              BasicBlock *OldPreheader,
1361                                              const char *Tag) const {
1362   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1363   BranchInst::Create(LS.Header, Preheader);
1364 
1365   for (PHINode &PN : LS.Header->phis())
1366     for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i)
1367       replacePHIBlock(&PN, OldPreheader, Preheader);
1368 
1369   return Preheader;
1370 }
1371 
1372 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1373   Loop *ParentLoop = OriginalLoop.getParentLoop();
1374   if (!ParentLoop)
1375     return;
1376 
1377   for (BasicBlock *BB : BBs)
1378     ParentLoop->addBasicBlockToLoop(BB, LI);
1379 }
1380 
1381 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1382                                                  ValueToValueMapTy &VM,
1383                                                  bool IsSubloop) {
1384   Loop &New = *LI.AllocateLoop();
1385   if (Parent)
1386     Parent->addChildLoop(&New);
1387   else
1388     LI.addTopLevelLoop(&New);
1389   LPMAddNewLoop(&New, IsSubloop);
1390 
1391   // Add all of the blocks in Original to the new loop.
1392   for (auto *BB : Original->blocks())
1393     if (LI.getLoopFor(BB) == Original)
1394       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1395 
1396   // Add all of the subloops to the new loop.
1397   for (Loop *SubLoop : *Original)
1398     createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1399 
1400   return &New;
1401 }
1402 
1403 bool LoopConstrainer::run() {
1404   BasicBlock *Preheader = nullptr;
1405   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1406   Preheader = OriginalLoop.getLoopPreheader();
1407   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1408          "preconditions!");
1409 
1410   OriginalPreheader = Preheader;
1411   MainLoopPreheader = Preheader;
1412 
1413   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1414   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1415   if (!MaybeSR.hasValue()) {
1416     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1417     return false;
1418   }
1419 
1420   SubRanges SR = MaybeSR.getValue();
1421   bool Increasing = MainLoopStructure.IndVarIncreasing;
1422   IntegerType *IVTy =
1423       cast<IntegerType>(Range.getBegin()->getType());
1424 
1425   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1426   Instruction *InsertPt = OriginalPreheader->getTerminator();
1427 
1428   // It would have been better to make `PreLoop' and `PostLoop'
1429   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1430   // constructor.
1431   ClonedLoop PreLoop, PostLoop;
1432   bool NeedsPreLoop =
1433       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1434   bool NeedsPostLoop =
1435       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1436 
1437   Value *ExitPreLoopAt = nullptr;
1438   Value *ExitMainLoopAt = nullptr;
1439   const SCEVConstant *MinusOneS =
1440       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1441 
1442   if (NeedsPreLoop) {
1443     const SCEV *ExitPreLoopAtSCEV = nullptr;
1444 
1445     if (Increasing)
1446       ExitPreLoopAtSCEV = *SR.LowLimit;
1447     else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1448                                IsSignedPredicate))
1449       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1450     else {
1451       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1452                         << "preloop exit limit.  HighLimit = "
1453                         << *(*SR.HighLimit) << "\n");
1454       return false;
1455     }
1456 
1457     if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1458       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1459                         << " preloop exit limit " << *ExitPreLoopAtSCEV
1460                         << " at block " << InsertPt->getParent()->getName()
1461                         << "\n");
1462       return false;
1463     }
1464 
1465     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1466     ExitPreLoopAt->setName("exit.preloop.at");
1467   }
1468 
1469   if (NeedsPostLoop) {
1470     const SCEV *ExitMainLoopAtSCEV = nullptr;
1471 
1472     if (Increasing)
1473       ExitMainLoopAtSCEV = *SR.HighLimit;
1474     else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1475                                IsSignedPredicate))
1476       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1477     else {
1478       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1479                         << "mainloop exit limit.  LowLimit = "
1480                         << *(*SR.LowLimit) << "\n");
1481       return false;
1482     }
1483 
1484     if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1485       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1486                         << " main loop exit limit " << *ExitMainLoopAtSCEV
1487                         << " at block " << InsertPt->getParent()->getName()
1488                         << "\n");
1489       return false;
1490     }
1491 
1492     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1493     ExitMainLoopAt->setName("exit.mainloop.at");
1494   }
1495 
1496   // We clone these ahead of time so that we don't have to deal with changing
1497   // and temporarily invalid IR as we transform the loops.
1498   if (NeedsPreLoop)
1499     cloneLoop(PreLoop, "preloop");
1500   if (NeedsPostLoop)
1501     cloneLoop(PostLoop, "postloop");
1502 
1503   RewrittenRangeInfo PreLoopRRI;
1504 
1505   if (NeedsPreLoop) {
1506     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1507                                                   PreLoop.Structure.Header);
1508 
1509     MainLoopPreheader =
1510         createPreheader(MainLoopStructure, Preheader, "mainloop");
1511     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1512                                          ExitPreLoopAt, MainLoopPreheader);
1513     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1514                                  PreLoopRRI);
1515   }
1516 
1517   BasicBlock *PostLoopPreheader = nullptr;
1518   RewrittenRangeInfo PostLoopRRI;
1519 
1520   if (NeedsPostLoop) {
1521     PostLoopPreheader =
1522         createPreheader(PostLoop.Structure, Preheader, "postloop");
1523     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1524                                           ExitMainLoopAt, PostLoopPreheader);
1525     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1526                                  PostLoopRRI);
1527   }
1528 
1529   BasicBlock *NewMainLoopPreheader =
1530       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1531   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1532                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1533                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1534 
1535   // Some of the above may be nullptr, filter them out before passing to
1536   // addToParentLoopIfNeeded.
1537   auto NewBlocksEnd =
1538       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1539 
1540   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1541 
1542   DT.recalculate(F);
1543 
1544   // We need to first add all the pre and post loop blocks into the loop
1545   // structures (as part of createClonedLoopStructure), and then update the
1546   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1547   // LI when LoopSimplifyForm is generated.
1548   Loop *PreL = nullptr, *PostL = nullptr;
1549   if (!PreLoop.Blocks.empty()) {
1550     PreL = createClonedLoopStructure(&OriginalLoop,
1551                                      OriginalLoop.getParentLoop(), PreLoop.Map,
1552                                      /* IsSubLoop */ false);
1553   }
1554 
1555   if (!PostLoop.Blocks.empty()) {
1556     PostL =
1557         createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1558                                   PostLoop.Map, /* IsSubLoop */ false);
1559   }
1560 
1561   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1562   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1563     formLCSSARecursively(*L, DT, &LI, &SE);
1564     simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
1565     // Pre/post loops are slow paths, we do not need to perform any loop
1566     // optimizations on them.
1567     if (!IsOriginalLoop)
1568       DisableAllLoopOptsOnLoop(*L);
1569   };
1570   if (PreL)
1571     CanonicalizeLoop(PreL, false);
1572   if (PostL)
1573     CanonicalizeLoop(PostL, false);
1574   CanonicalizeLoop(&OriginalLoop, true);
1575 
1576   return true;
1577 }
1578 
1579 /// Computes and returns a range of values for the induction variable (IndVar)
1580 /// in which the range check can be safely elided.  If it cannot compute such a
1581 /// range, returns None.
1582 Optional<InductiveRangeCheck::Range>
1583 InductiveRangeCheck::computeSafeIterationSpace(
1584     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1585     bool IsLatchSigned) const {
1586   // We can deal when types of latch check and range checks don't match in case
1587   // if latch check is more narrow.
1588   auto *IVType = cast<IntegerType>(IndVar->getType());
1589   auto *RCType = cast<IntegerType>(getBegin()->getType());
1590   if (IVType->getBitWidth() > RCType->getBitWidth())
1591     return None;
1592   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1593   // variable, that may or may not exist as a real llvm::Value in the loop) and
1594   // this inductive range check is a range check on the "C + D * I" ("C" is
1595   // getBegin() and "D" is getStep()).  We rewrite the value being range
1596   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1597   //
1598   // The actual inequalities we solve are of the form
1599   //
1600   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1601   //
1602   // Here L stands for upper limit of the safe iteration space.
1603   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1604   // overflows when calculating (0 - M) and (L - M) we, depending on type of
1605   // IV's iteration space, limit the calculations by borders of the iteration
1606   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1607   // If we figured out that "anything greater than (-M) is safe", we strengthen
1608   // this to "everything greater than 0 is safe", assuming that values between
1609   // -M and 0 just do not exist in unsigned iteration space, and we don't want
1610   // to deal with overflown values.
1611 
1612   if (!IndVar->isAffine())
1613     return None;
1614 
1615   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1616   const SCEVConstant *B = dyn_cast<SCEVConstant>(
1617       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1618   if (!B)
1619     return None;
1620   assert(!B->isZero() && "Recurrence with zero step?");
1621 
1622   const SCEV *C = getBegin();
1623   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1624   if (D != B)
1625     return None;
1626 
1627   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1628   unsigned BitWidth = RCType->getBitWidth();
1629   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1630 
1631   // Subtract Y from X so that it does not go through border of the IV
1632   // iteration space. Mathematically, it is equivalent to:
1633   //
1634   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
1635   //
1636   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1637   // any width of bit grid). But after we take min/max, the result is
1638   // guaranteed to be within [INT_MIN, INT_MAX].
1639   //
1640   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1641   // values, depending on type of latch condition that defines IV iteration
1642   // space.
1643   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1644     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1645     // This is required to ensure that SINT_MAX - X does not overflow signed and
1646     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1647     // restriction and make it work for negative X either?
1648     if (IsLatchSigned) {
1649       // X is a number from signed range, Y is interpreted as signed.
1650       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1651       // thing we should care about is that we didn't cross SINT_MAX.
1652       // So, if Y is positive, we subtract Y safely.
1653       //   Rule 1: Y > 0 ---> Y.
1654       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1655       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1656       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1657       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1658       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1659       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1660       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1661                              SCEV::FlagNSW);
1662     } else
1663       // X is a number from unsigned range, Y is interpreted as signed.
1664       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1665       // thing we should care about is that we didn't cross zero.
1666       // So, if Y is negative, we subtract Y safely.
1667       //   Rule 1: Y <s 0 ---> Y.
1668       // If 0 <= Y <= X, we subtract Y safely.
1669       //   Rule 2: Y <=s X ---> Y.
1670       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1671       //   Rule 3: Y >s X ---> X.
1672       // It gives us smin(X, Y) to subtract in all cases.
1673       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1674   };
1675   const SCEV *M = SE.getMinusSCEV(C, A);
1676   const SCEV *Zero = SE.getZero(M->getType());
1677 
1678   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1679   auto SCEVCheckNonNegative = [&](const SCEV *X) {
1680     const Loop *L = IndVar->getLoop();
1681     const SCEV *One = SE.getOne(X->getType());
1682     // Can we trivially prove that X is a non-negative or negative value?
1683     if (isKnownNonNegativeInLoop(X, L, SE))
1684       return One;
1685     else if (isKnownNegativeInLoop(X, L, SE))
1686       return Zero;
1687     // If not, we will have to figure it out during the execution.
1688     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1689     const SCEV *NegOne = SE.getNegativeSCEV(One);
1690     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1691   };
1692   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1693   // X is non-negative (in sense of a signed value). We need to re-implement
1694   // this function in a way that it will correctly handle negative X as well.
1695   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1696   // end up with a negative X and produce wrong results. So currently we ensure
1697   // that if getEnd() is negative then both ends of the safe range are zero.
1698   // Note that this may pessimize elimination of unsigned range checks against
1699   // negative values.
1700   const SCEV *REnd = getEnd();
1701   const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1702 
1703   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1704   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1705   return InductiveRangeCheck::Range(Begin, End);
1706 }
1707 
1708 static Optional<InductiveRangeCheck::Range>
1709 IntersectSignedRange(ScalarEvolution &SE,
1710                      const Optional<InductiveRangeCheck::Range> &R1,
1711                      const InductiveRangeCheck::Range &R2) {
1712   if (R2.isEmpty(SE, /* IsSigned */ true))
1713     return None;
1714   if (!R1.hasValue())
1715     return R2;
1716   auto &R1Value = R1.getValue();
1717   // We never return empty ranges from this function, and R1 is supposed to be
1718   // a result of intersection. Thus, R1 is never empty.
1719   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1720          "We should never have empty R1!");
1721 
1722   // TODO: we could widen the smaller range and have this work; but for now we
1723   // bail out to keep things simple.
1724   if (R1Value.getType() != R2.getType())
1725     return None;
1726 
1727   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1728   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1729 
1730   // If the resulting range is empty, just return None.
1731   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1732   if (Ret.isEmpty(SE, /* IsSigned */ true))
1733     return None;
1734   return Ret;
1735 }
1736 
1737 static Optional<InductiveRangeCheck::Range>
1738 IntersectUnsignedRange(ScalarEvolution &SE,
1739                        const Optional<InductiveRangeCheck::Range> &R1,
1740                        const InductiveRangeCheck::Range &R2) {
1741   if (R2.isEmpty(SE, /* IsSigned */ false))
1742     return None;
1743   if (!R1.hasValue())
1744     return R2;
1745   auto &R1Value = R1.getValue();
1746   // We never return empty ranges from this function, and R1 is supposed to be
1747   // a result of intersection. Thus, R1 is never empty.
1748   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1749          "We should never have empty R1!");
1750 
1751   // TODO: we could widen the smaller range and have this work; but for now we
1752   // bail out to keep things simple.
1753   if (R1Value.getType() != R2.getType())
1754     return None;
1755 
1756   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1757   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1758 
1759   // If the resulting range is empty, just return None.
1760   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1761   if (Ret.isEmpty(SE, /* IsSigned */ false))
1762     return None;
1763   return Ret;
1764 }
1765 
1766 PreservedAnalyses IRCEPass::run(Loop &L, LoopAnalysisManager &AM,
1767                                 LoopStandardAnalysisResults &AR,
1768                                 LPMUpdater &U) {
1769   Function *F = L.getHeader()->getParent();
1770   const auto &FAM =
1771       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1772   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
1773   InductiveRangeCheckElimination IRCE(AR.SE, BPI, AR.DT, AR.LI);
1774   auto LPMAddNewLoop = [&U](Loop *NL, bool IsSubloop) {
1775     if (!IsSubloop)
1776       U.addSiblingLoops(NL);
1777   };
1778   bool Changed = IRCE.run(&L, LPMAddNewLoop);
1779   if (!Changed)
1780     return PreservedAnalyses::all();
1781 
1782   return getLoopPassPreservedAnalyses();
1783 }
1784 
1785 bool IRCELegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
1786   if (skipLoop(L))
1787     return false;
1788 
1789   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1790   BranchProbabilityInfo &BPI =
1791       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1792   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1793   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1794   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1795   auto LPMAddNewLoop = [&LPM](Loop *NL, bool /* IsSubLoop */) {
1796     LPM.addLoop(*NL);
1797   };
1798   return IRCE.run(L, LPMAddNewLoop);
1799 }
1800 
1801 bool InductiveRangeCheckElimination::run(
1802     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1803   if (L->getBlocks().size() >= LoopSizeCutoff) {
1804     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1805     return false;
1806   }
1807 
1808   BasicBlock *Preheader = L->getLoopPreheader();
1809   if (!Preheader) {
1810     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1811     return false;
1812   }
1813 
1814   LLVMContext &Context = Preheader->getContext();
1815   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1816 
1817   for (auto BBI : L->getBlocks())
1818     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1819       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1820                                                         RangeChecks);
1821 
1822   if (RangeChecks.empty())
1823     return false;
1824 
1825   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1826     OS << "irce: looking at loop "; L->print(OS);
1827     OS << "irce: loop has " << RangeChecks.size()
1828        << " inductive range checks: \n";
1829     for (InductiveRangeCheck &IRC : RangeChecks)
1830       IRC.print(OS);
1831   };
1832 
1833   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1834 
1835   if (PrintRangeChecks)
1836     PrintRecognizedRangeChecks(errs());
1837 
1838   const char *FailureReason = nullptr;
1839   Optional<LoopStructure> MaybeLoopStructure =
1840       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1841   if (!MaybeLoopStructure.hasValue()) {
1842     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1843                       << FailureReason << "\n";);
1844     return false;
1845   }
1846   LoopStructure LS = MaybeLoopStructure.getValue();
1847   const SCEVAddRecExpr *IndVar =
1848       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1849 
1850   Optional<InductiveRangeCheck::Range> SafeIterRange;
1851   Instruction *ExprInsertPt = Preheader->getTerminator();
1852 
1853   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1854   // Basing on the type of latch predicate, we interpret the IV iteration range
1855   // as signed or unsigned range. We use different min/max functions (signed or
1856   // unsigned) when intersecting this range with safe iteration ranges implied
1857   // by range checks.
1858   auto IntersectRange =
1859       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1860 
1861   IRBuilder<> B(ExprInsertPt);
1862   for (InductiveRangeCheck &IRC : RangeChecks) {
1863     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1864                                                 LS.IsSignedPredicate);
1865     if (Result.hasValue()) {
1866       auto MaybeSafeIterRange =
1867           IntersectRange(SE, SafeIterRange, Result.getValue());
1868       if (MaybeSafeIterRange.hasValue()) {
1869         assert(
1870             !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1871             "We should never return empty ranges!");
1872         RangeChecksToEliminate.push_back(IRC);
1873         SafeIterRange = MaybeSafeIterRange.getValue();
1874       }
1875     }
1876   }
1877 
1878   if (!SafeIterRange.hasValue())
1879     return false;
1880 
1881   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1882                      SafeIterRange.getValue());
1883   bool Changed = LC.run();
1884 
1885   if (Changed) {
1886     auto PrintConstrainedLoopInfo = [L]() {
1887       dbgs() << "irce: in function ";
1888       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1889       dbgs() << "constrained ";
1890       L->print(dbgs());
1891     };
1892 
1893     LLVM_DEBUG(PrintConstrainedLoopInfo());
1894 
1895     if (PrintChangedLoops)
1896       PrintConstrainedLoopInfo();
1897 
1898     // Optimize away the now-redundant range checks.
1899 
1900     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1901       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1902                                           ? ConstantInt::getTrue(Context)
1903                                           : ConstantInt::getFalse(Context);
1904       IRC.getCheckUse()->set(FoldedRangeCheck);
1905     }
1906   }
1907 
1908   return Changed;
1909 }
1910 
1911 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1912   return new IRCELegacyPass();
1913 }
1914