1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/InstructionSimplify.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Analysis/ScalarEvolution.h"
50 #include "llvm/Analysis/ScalarEvolutionExpander.h"
51 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
52 #include "llvm/Analysis/ValueTracking.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/LoopUtils.h"
68 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
69 #include "llvm/Transforms/Utils/UnrollLoop.h"
70 
71 using namespace llvm;
72 
73 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
74                                         cl::init(64));
75 
76 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
77                                        cl::init(false));
78 
79 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
80                                       cl::init(false));
81 
82 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
83                                           cl::Hidden, cl::init(10));
84 
85 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
86                                              cl::Hidden, cl::init(false));
87 
88 #define DEBUG_TYPE "irce"
89 
90 namespace {
91 
92 /// An inductive range check is conditional branch in a loop with
93 ///
94 ///  1. a very cold successor (i.e. the branch jumps to that successor very
95 ///     rarely)
96 ///
97 ///  and
98 ///
99 ///  2. a condition that is provably true for some contiguous range of values
100 ///     taken by the containing loop's induction variable.
101 ///
102 class InductiveRangeCheck {
103   // Classifies a range check
104   enum RangeCheckKind : unsigned {
105     // Range check of the form "0 <= I".
106     RANGE_CHECK_LOWER = 1,
107 
108     // Range check of the form "I < L" where L is known positive.
109     RANGE_CHECK_UPPER = 2,
110 
111     // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
112     // conditions.
113     RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
114 
115     // Unrecognized range check condition.
116     RANGE_CHECK_UNKNOWN = (unsigned)-1
117   };
118 
119   static StringRef rangeCheckKindToStr(RangeCheckKind);
120 
121   const SCEV *Offset = nullptr;
122   const SCEV *Scale = nullptr;
123   Value *Length = nullptr;
124   Use *CheckUse = nullptr;
125   RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
126 
127   static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
128                                             ScalarEvolution &SE, Value *&Index,
129                                             Value *&Length);
130 
131   static void
132   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
133                              SmallVectorImpl<InductiveRangeCheck> &Checks,
134                              SmallPtrSetImpl<Value *> &Visited);
135 
136 public:
137   const SCEV *getOffset() const { return Offset; }
138   const SCEV *getScale() const { return Scale; }
139   Value *getLength() const { return Length; }
140 
141   void print(raw_ostream &OS) const {
142     OS << "InductiveRangeCheck:\n";
143     OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
144     OS << "  Offset: ";
145     Offset->print(OS);
146     OS << "  Scale: ";
147     Scale->print(OS);
148     OS << "  Length: ";
149     if (Length)
150       Length->print(OS);
151     else
152       OS << "(null)";
153     OS << "\n  CheckUse: ";
154     getCheckUse()->getUser()->print(OS);
155     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
156   }
157 
158 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
159   void dump() {
160     print(dbgs());
161   }
162 #endif
163 
164   Use *getCheckUse() const { return CheckUse; }
165 
166   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
167   /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
168 
169   class Range {
170     const SCEV *Begin;
171     const SCEV *End;
172 
173   public:
174     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
175       assert(Begin->getType() == End->getType() && "ill-typed range!");
176     }
177 
178     Type *getType() const { return Begin->getType(); }
179     const SCEV *getBegin() const { return Begin; }
180     const SCEV *getEnd() const { return End; }
181   };
182 
183   /// This is the value the condition of the branch needs to evaluate to for the
184   /// branch to take the hot successor (see (1) above).
185   bool getPassingDirection() { return true; }
186 
187   /// Computes a range for the induction variable (IndVar) in which the range
188   /// check is redundant and can be constant-folded away.  The induction
189   /// variable is not required to be the canonical {0,+,1} induction variable.
190   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
191                                             const SCEVAddRecExpr *IndVar) const;
192 
193   /// Parse out a set of inductive range checks from \p BI and append them to \p
194   /// Checks.
195   ///
196   /// NB! There may be conditions feeding into \p BI that aren't inductive range
197   /// checks, and hence don't end up in \p Checks.
198   static void
199   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
200                                BranchProbabilityInfo &BPI,
201                                SmallVectorImpl<InductiveRangeCheck> &Checks);
202 };
203 
204 class InductiveRangeCheckElimination : public LoopPass {
205 public:
206   static char ID;
207   InductiveRangeCheckElimination() : LoopPass(ID) {
208     initializeInductiveRangeCheckEliminationPass(
209         *PassRegistry::getPassRegistry());
210   }
211 
212   void getAnalysisUsage(AnalysisUsage &AU) const override {
213     AU.addRequired<BranchProbabilityInfoWrapperPass>();
214     getLoopAnalysisUsage(AU);
215   }
216 
217   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
218 };
219 
220 char InductiveRangeCheckElimination::ID = 0;
221 }
222 
223 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
224                       "Inductive range check elimination", false, false)
225 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(LoopPass)
227 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
228                     "Inductive range check elimination", false, false)
229 
230 StringRef InductiveRangeCheck::rangeCheckKindToStr(
231     InductiveRangeCheck::RangeCheckKind RCK) {
232   switch (RCK) {
233   case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
234     return "RANGE_CHECK_UNKNOWN";
235 
236   case InductiveRangeCheck::RANGE_CHECK_UPPER:
237     return "RANGE_CHECK_UPPER";
238 
239   case InductiveRangeCheck::RANGE_CHECK_LOWER:
240     return "RANGE_CHECK_LOWER";
241 
242   case InductiveRangeCheck::RANGE_CHECK_BOTH:
243     return "RANGE_CHECK_BOTH";
244   }
245 
246   llvm_unreachable("unknown range check type!");
247 }
248 
249 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
250 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
251 /// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
252 /// range checked, and set `Length` to the upper limit `Index` is being range
253 /// checked with if (and only if) the range check type is stronger or equal to
254 /// RANGE_CHECK_UPPER.
255 ///
256 InductiveRangeCheck::RangeCheckKind
257 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
258                                          ScalarEvolution &SE, Value *&Index,
259                                          Value *&Length) {
260 
261   auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
262     const SCEV *S = SE.getSCEV(V);
263     if (isa<SCEVCouldNotCompute>(S))
264       return false;
265 
266     return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
267            SE.isKnownNonNegative(S);
268   };
269 
270   using namespace llvm::PatternMatch;
271 
272   ICmpInst::Predicate Pred = ICI->getPredicate();
273   Value *LHS = ICI->getOperand(0);
274   Value *RHS = ICI->getOperand(1);
275 
276   switch (Pred) {
277   default:
278     return RANGE_CHECK_UNKNOWN;
279 
280   case ICmpInst::ICMP_SLE:
281     std::swap(LHS, RHS);
282   // fallthrough
283   case ICmpInst::ICMP_SGE:
284     if (match(RHS, m_ConstantInt<0>())) {
285       Index = LHS;
286       return RANGE_CHECK_LOWER;
287     }
288     return RANGE_CHECK_UNKNOWN;
289 
290   case ICmpInst::ICMP_SLT:
291     std::swap(LHS, RHS);
292   // fallthrough
293   case ICmpInst::ICMP_SGT:
294     if (match(RHS, m_ConstantInt<-1>())) {
295       Index = LHS;
296       return RANGE_CHECK_LOWER;
297     }
298 
299     if (IsNonNegativeAndNotLoopVarying(LHS)) {
300       Index = RHS;
301       Length = LHS;
302       return RANGE_CHECK_UPPER;
303     }
304     return RANGE_CHECK_UNKNOWN;
305 
306   case ICmpInst::ICMP_ULT:
307     std::swap(LHS, RHS);
308   // fallthrough
309   case ICmpInst::ICMP_UGT:
310     if (IsNonNegativeAndNotLoopVarying(LHS)) {
311       Index = RHS;
312       Length = LHS;
313       return RANGE_CHECK_BOTH;
314     }
315     return RANGE_CHECK_UNKNOWN;
316   }
317 
318   llvm_unreachable("default clause returns!");
319 }
320 
321 void InductiveRangeCheck::extractRangeChecksFromCond(
322     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
323     SmallVectorImpl<InductiveRangeCheck> &Checks,
324     SmallPtrSetImpl<Value *> &Visited) {
325   using namespace llvm::PatternMatch;
326 
327   Value *Condition = ConditionUse.get();
328   if (!Visited.insert(Condition).second)
329     return;
330 
331   if (match(Condition, m_And(m_Value(), m_Value()))) {
332     SmallVector<InductiveRangeCheck, 8> SubChecks;
333     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
334                                SubChecks, Visited);
335     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
336                                SubChecks, Visited);
337 
338     if (SubChecks.size() == 2) {
339       // Handle a special case where we know how to merge two checks separately
340       // checking the upper and lower bounds into a full range check.
341       const auto &RChkA = SubChecks[0];
342       const auto &RChkB = SubChecks[1];
343       if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
344           RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
345 
346         // If RChkA.Kind == RChkB.Kind then we just found two identical checks.
347         // But if one of them is a RANGE_CHECK_LOWER and the other is a
348         // RANGE_CHECK_UPPER (only possibility if they're different) then
349         // together they form a RANGE_CHECK_BOTH.
350         SubChecks[0].Kind =
351             (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
352         SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
353         SubChecks[0].CheckUse = &ConditionUse;
354 
355         // We updated one of the checks in place, now erase the other.
356         SubChecks.pop_back();
357       }
358     }
359 
360     Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
361     return;
362   }
363 
364   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
365   if (!ICI)
366     return;
367 
368   Value *Length = nullptr, *Index;
369   auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
370   if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
371     return;
372 
373   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
374   bool IsAffineIndex =
375       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
376 
377   if (!IsAffineIndex)
378     return;
379 
380   InductiveRangeCheck IRC;
381   IRC.Length = Length;
382   IRC.Offset = IndexAddRec->getStart();
383   IRC.Scale = IndexAddRec->getStepRecurrence(SE);
384   IRC.CheckUse = &ConditionUse;
385   IRC.Kind = RCKind;
386   Checks.push_back(IRC);
387 }
388 
389 void InductiveRangeCheck::extractRangeChecksFromBranch(
390     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
391     SmallVectorImpl<InductiveRangeCheck> &Checks) {
392 
393   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
394     return;
395 
396   BranchProbability LikelyTaken(15, 16);
397 
398   if (!SkipProfitabilityChecks &&
399       BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
400     return;
401 
402   SmallPtrSet<Value *, 8> Visited;
403   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
404                                                   Checks, Visited);
405 }
406 
407 namespace {
408 
409 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
410 // except that it is more lightweight and can track the state of a loop through
411 // changing and potentially invalid IR.  This structure also formalizes the
412 // kinds of loops we can deal with -- ones that have a single latch that is also
413 // an exiting block *and* have a canonical induction variable.
414 struct LoopStructure {
415   const char *Tag;
416 
417   BasicBlock *Header;
418   BasicBlock *Latch;
419 
420   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
421   // successor is `LatchExit', the exit block of the loop.
422   BranchInst *LatchBr;
423   BasicBlock *LatchExit;
424   unsigned LatchBrExitIdx;
425 
426   Value *IndVarNext;
427   Value *IndVarStart;
428   Value *LoopExitAt;
429   bool IndVarIncreasing;
430 
431   LoopStructure()
432       : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
433         LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
434         IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
435 
436   template <typename M> LoopStructure map(M Map) const {
437     LoopStructure Result;
438     Result.Tag = Tag;
439     Result.Header = cast<BasicBlock>(Map(Header));
440     Result.Latch = cast<BasicBlock>(Map(Latch));
441     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
442     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
443     Result.LatchBrExitIdx = LatchBrExitIdx;
444     Result.IndVarNext = Map(IndVarNext);
445     Result.IndVarStart = Map(IndVarStart);
446     Result.LoopExitAt = Map(LoopExitAt);
447     Result.IndVarIncreasing = IndVarIncreasing;
448     return Result;
449   }
450 
451   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
452                                                     BranchProbabilityInfo &BPI,
453                                                     Loop &,
454                                                     const char *&);
455 };
456 
457 /// This class is used to constrain loops to run within a given iteration space.
458 /// The algorithm this class implements is given a Loop and a range [Begin,
459 /// End).  The algorithm then tries to break out a "main loop" out of the loop
460 /// it is given in a way that the "main loop" runs with the induction variable
461 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
462 /// loops to run any remaining iterations.  The pre loop runs any iterations in
463 /// which the induction variable is < Begin, and the post loop runs any
464 /// iterations in which the induction variable is >= End.
465 ///
466 class LoopConstrainer {
467   // The representation of a clone of the original loop we started out with.
468   struct ClonedLoop {
469     // The cloned blocks
470     std::vector<BasicBlock *> Blocks;
471 
472     // `Map` maps values in the clonee into values in the cloned version
473     ValueToValueMapTy Map;
474 
475     // An instance of `LoopStructure` for the cloned loop
476     LoopStructure Structure;
477   };
478 
479   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
480   // more details on what these fields mean.
481   struct RewrittenRangeInfo {
482     BasicBlock *PseudoExit;
483     BasicBlock *ExitSelector;
484     std::vector<PHINode *> PHIValuesAtPseudoExit;
485     PHINode *IndVarEnd;
486 
487     RewrittenRangeInfo()
488         : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
489   };
490 
491   // Calculated subranges we restrict the iteration space of the main loop to.
492   // See the implementation of `calculateSubRanges' for more details on how
493   // these fields are computed.  `LowLimit` is None if there is no restriction
494   // on low end of the restricted iteration space of the main loop.  `HighLimit`
495   // is None if there is no restriction on high end of the restricted iteration
496   // space of the main loop.
497 
498   struct SubRanges {
499     Optional<const SCEV *> LowLimit;
500     Optional<const SCEV *> HighLimit;
501   };
502 
503   // A utility function that does a `replaceUsesOfWith' on the incoming block
504   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
505   // incoming block list with `ReplaceBy'.
506   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
507                               BasicBlock *ReplaceBy);
508 
509   // Compute a safe set of limits for the main loop to run in -- effectively the
510   // intersection of `Range' and the iteration space of the original loop.
511   // Return None if unable to compute the set of subranges.
512   //
513   Optional<SubRanges> calculateSubRanges() const;
514 
515   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
516   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
517   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
518   // but there is no such edge.
519   //
520   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
521 
522   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
523   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
524   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
525   // `OriginalHeaderCount'.
526   //
527   // If there are iterations left to execute, control is made to jump to
528   // `ContinuationBlock', otherwise they take the normal loop exit.  The
529   // returned `RewrittenRangeInfo' object is populated as follows:
530   //
531   //  .PseudoExit is a basic block that unconditionally branches to
532   //      `ContinuationBlock'.
533   //
534   //  .ExitSelector is a basic block that decides, on exit from the loop,
535   //      whether to branch to the "true" exit or to `PseudoExit'.
536   //
537   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
538   //      for each PHINode in the loop header on taking the pseudo exit.
539   //
540   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
541   // preheader because it is made to branch to the loop header only
542   // conditionally.
543   //
544   RewrittenRangeInfo
545   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
546                           Value *ExitLoopAt,
547                           BasicBlock *ContinuationBlock) const;
548 
549   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
550   // function creates a new preheader for `LS' and returns it.
551   //
552   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
553                               const char *Tag) const;
554 
555   // `ContinuationBlockAndPreheader' was the continuation block for some call to
556   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
557   // This function rewrites the PHI nodes in `LS.Header' to start with the
558   // correct value.
559   void rewriteIncomingValuesForPHIs(
560       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
561       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
562 
563   // Even though we do not preserve any passes at this time, we at least need to
564   // keep the parent loop structure consistent.  The `LPPassManager' seems to
565   // verify this after running a loop pass.  This function adds the list of
566   // blocks denoted by BBs to this loops parent loop if required.
567   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
568 
569   // Some global state.
570   Function &F;
571   LLVMContext &Ctx;
572   ScalarEvolution &SE;
573 
574   // Information about the original loop we started out with.
575   Loop &OriginalLoop;
576   LoopInfo &OriginalLoopInfo;
577   const SCEV *LatchTakenCount;
578   BasicBlock *OriginalPreheader;
579 
580   // The preheader of the main loop.  This may or may not be different from
581   // `OriginalPreheader'.
582   BasicBlock *MainLoopPreheader;
583 
584   // The range we need to run the main loop in.
585   InductiveRangeCheck::Range Range;
586 
587   // The structure of the main loop (see comment at the beginning of this class
588   // for a definition)
589   LoopStructure MainLoopStructure;
590 
591 public:
592   LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
593                   ScalarEvolution &SE, InductiveRangeCheck::Range R)
594       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
595         SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
596         OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
597         MainLoopStructure(LS) {}
598 
599   // Entry point for the algorithm.  Returns true on success.
600   bool run();
601 };
602 
603 }
604 
605 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
606                                       BasicBlock *ReplaceBy) {
607   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
608     if (PN->getIncomingBlock(i) == Block)
609       PN->setIncomingBlock(i, ReplaceBy);
610 }
611 
612 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
613   APInt SMax =
614       APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
615   return SE.getSignedRange(S).contains(SMax) &&
616          SE.getUnsignedRange(S).contains(SMax);
617 }
618 
619 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
620   APInt SMin =
621       APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
622   return SE.getSignedRange(S).contains(SMin) &&
623          SE.getUnsignedRange(S).contains(SMin);
624 }
625 
626 Optional<LoopStructure>
627 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
628                                   Loop &L, const char *&FailureReason) {
629   assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
630 
631   BasicBlock *Latch = L.getLoopLatch();
632   if (!L.isLoopExiting(Latch)) {
633     FailureReason = "no loop latch";
634     return None;
635   }
636 
637   BasicBlock *Header = L.getHeader();
638   BasicBlock *Preheader = L.getLoopPreheader();
639   if (!Preheader) {
640     FailureReason = "no preheader";
641     return None;
642   }
643 
644   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
645   if (!LatchBr || LatchBr->isUnconditional()) {
646     FailureReason = "latch terminator not conditional branch";
647     return None;
648   }
649 
650   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
651 
652   BranchProbability ExitProbability =
653     BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
654 
655   if (!SkipProfitabilityChecks &&
656       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
657     FailureReason = "short running loop, not profitable";
658     return None;
659   }
660 
661   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
662   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
663     FailureReason = "latch terminator branch not conditional on integral icmp";
664     return None;
665   }
666 
667   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
668   if (isa<SCEVCouldNotCompute>(LatchCount)) {
669     FailureReason = "could not compute latch count";
670     return None;
671   }
672 
673   ICmpInst::Predicate Pred = ICI->getPredicate();
674   Value *LeftValue = ICI->getOperand(0);
675   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
676   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
677 
678   Value *RightValue = ICI->getOperand(1);
679   const SCEV *RightSCEV = SE.getSCEV(RightValue);
680 
681   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
682   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
683     if (isa<SCEVAddRecExpr>(RightSCEV)) {
684       std::swap(LeftSCEV, RightSCEV);
685       std::swap(LeftValue, RightValue);
686       Pred = ICmpInst::getSwappedPredicate(Pred);
687     } else {
688       FailureReason = "no add recurrences in the icmp";
689       return None;
690     }
691   }
692 
693   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
694     if (AR->getNoWrapFlags(SCEV::FlagNSW))
695       return true;
696 
697     IntegerType *Ty = cast<IntegerType>(AR->getType());
698     IntegerType *WideTy =
699         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
700 
701     const SCEVAddRecExpr *ExtendAfterOp =
702         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
703     if (ExtendAfterOp) {
704       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
705       const SCEV *ExtendedStep =
706           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
707 
708       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
709                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
710 
711       if (NoSignedWrap)
712         return true;
713     }
714 
715     // We may have proved this when computing the sign extension above.
716     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
717   };
718 
719   auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
720     if (!AR->isAffine())
721       return false;
722 
723     // Currently we only work with induction variables that have been proved to
724     // not wrap.  This restriction can potentially be lifted in the future.
725 
726     if (!HasNoSignedWrap(AR))
727       return false;
728 
729     if (const SCEVConstant *StepExpr =
730             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
731       ConstantInt *StepCI = StepExpr->getValue();
732       if (StepCI->isOne() || StepCI->isMinusOne()) {
733         IsIncreasing = StepCI->isOne();
734         return true;
735       }
736     }
737 
738     return false;
739   };
740 
741   // `ICI` is interpreted as taking the backedge if the *next* value of the
742   // induction variable satisfies some constraint.
743 
744   const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
745   bool IsIncreasing = false;
746   if (!IsInductionVar(IndVarNext, IsIncreasing)) {
747     FailureReason = "LHS in icmp not induction variable";
748     return None;
749   }
750 
751   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
752   // TODO: generalize the predicates here to also match their unsigned variants.
753   if (IsIncreasing) {
754     bool FoundExpectedPred =
755         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
756         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
757 
758     if (!FoundExpectedPred) {
759       FailureReason = "expected icmp slt semantically, found something else";
760       return None;
761     }
762 
763     if (LatchBrExitIdx == 0) {
764       if (CanBeSMax(SE, RightSCEV)) {
765         // TODO: this restriction is easily removable -- we just have to
766         // remember that the icmp was an slt and not an sle.
767         FailureReason = "limit may overflow when coercing sle to slt";
768         return None;
769       }
770 
771       IRBuilder<> B(Preheader->getTerminator());
772       RightValue = B.CreateAdd(RightValue, One);
773     }
774 
775   } else {
776     bool FoundExpectedPred =
777         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
778         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
779 
780     if (!FoundExpectedPred) {
781       FailureReason = "expected icmp sgt semantically, found something else";
782       return None;
783     }
784 
785     if (LatchBrExitIdx == 0) {
786       if (CanBeSMin(SE, RightSCEV)) {
787         // TODO: this restriction is easily removable -- we just have to
788         // remember that the icmp was an sgt and not an sge.
789         FailureReason = "limit may overflow when coercing sge to sgt";
790         return None;
791       }
792 
793       IRBuilder<> B(Preheader->getTerminator());
794       RightValue = B.CreateSub(RightValue, One);
795     }
796   }
797 
798   const SCEV *StartNext = IndVarNext->getStart();
799   const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
800   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
801 
802   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
803 
804   assert(SE.getLoopDisposition(LatchCount, &L) ==
805              ScalarEvolution::LoopInvariant &&
806          "loop variant exit count doesn't make sense!");
807 
808   assert(!L.contains(LatchExit) && "expected an exit block!");
809   const DataLayout &DL = Preheader->getModule()->getDataLayout();
810   Value *IndVarStartV =
811       SCEVExpander(SE, DL, "irce")
812           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
813   IndVarStartV->setName("indvar.start");
814 
815   LoopStructure Result;
816 
817   Result.Tag = "main";
818   Result.Header = Header;
819   Result.Latch = Latch;
820   Result.LatchBr = LatchBr;
821   Result.LatchExit = LatchExit;
822   Result.LatchBrExitIdx = LatchBrExitIdx;
823   Result.IndVarStart = IndVarStartV;
824   Result.IndVarNext = LeftValue;
825   Result.IndVarIncreasing = IsIncreasing;
826   Result.LoopExitAt = RightValue;
827 
828   FailureReason = nullptr;
829 
830   return Result;
831 }
832 
833 Optional<LoopConstrainer::SubRanges>
834 LoopConstrainer::calculateSubRanges() const {
835   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
836 
837   if (Range.getType() != Ty)
838     return None;
839 
840   LoopConstrainer::SubRanges Result;
841 
842   // I think we can be more aggressive here and make this nuw / nsw if the
843   // addition that feeds into the icmp for the latch's terminating branch is nuw
844   // / nsw.  In any case, a wrapping 2's complement addition is safe.
845   ConstantInt *One = ConstantInt::get(Ty, 1);
846   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
847   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
848 
849   bool Increasing = MainLoopStructure.IndVarIncreasing;
850 
851   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
852   // range of values the induction variable takes.
853 
854   const SCEV *Smallest = nullptr, *Greatest = nullptr;
855 
856   if (Increasing) {
857     Smallest = Start;
858     Greatest = End;
859   } else {
860     // These two computations may sign-overflow.  Here is why that is okay:
861     //
862     // We know that the induction variable does not sign-overflow on any
863     // iteration except the last one, and it starts at `Start` and ends at
864     // `End`, decrementing by one every time.
865     //
866     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
867     //    induction variable is decreasing we know that that the smallest value
868     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
869     //
870     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
871     //    that case, `Clamp` will always return `Smallest` and
872     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
873     //    will be an empty range.  Returning an empty range is always safe.
874     //
875 
876     Smallest = SE.getAddExpr(End, SE.getSCEV(One));
877     Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
878   }
879 
880   auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
881     return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
882   };
883 
884   // In some cases we can prove that we don't need a pre or post loop
885 
886   bool ProvablyNoPreloop =
887       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
888   if (!ProvablyNoPreloop)
889     Result.LowLimit = Clamp(Range.getBegin());
890 
891   bool ProvablyNoPostLoop =
892       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
893   if (!ProvablyNoPostLoop)
894     Result.HighLimit = Clamp(Range.getEnd());
895 
896   return Result;
897 }
898 
899 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
900                                 const char *Tag) const {
901   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
902     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
903     Result.Blocks.push_back(Clone);
904     Result.Map[BB] = Clone;
905   }
906 
907   auto GetClonedValue = [&Result](Value *V) {
908     assert(V && "null values not in domain!");
909     auto It = Result.Map.find(V);
910     if (It == Result.Map.end())
911       return V;
912     return static_cast<Value *>(It->second);
913   };
914 
915   Result.Structure = MainLoopStructure.map(GetClonedValue);
916   Result.Structure.Tag = Tag;
917 
918   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
919     BasicBlock *ClonedBB = Result.Blocks[i];
920     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
921 
922     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
923 
924     for (Instruction &I : *ClonedBB)
925       RemapInstruction(&I, Result.Map,
926                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
927 
928     // Exit blocks will now have one more predecessor and their PHI nodes need
929     // to be edited to reflect that.  No phi nodes need to be introduced because
930     // the loop is in LCSSA.
931 
932     for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
933          SBBI != SBBE; ++SBBI) {
934 
935       if (OriginalLoop.contains(*SBBI))
936         continue; // not an exit block
937 
938       for (Instruction &I : **SBBI) {
939         if (!isa<PHINode>(&I))
940           break;
941 
942         PHINode *PN = cast<PHINode>(&I);
943         Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
944         PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
945       }
946     }
947   }
948 }
949 
950 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
951     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
952     BasicBlock *ContinuationBlock) const {
953 
954   // We start with a loop with a single latch:
955   //
956   //    +--------------------+
957   //    |                    |
958   //    |     preheader      |
959   //    |                    |
960   //    +--------+-----------+
961   //             |      ----------------\
962   //             |     /                |
963   //    +--------v----v------+          |
964   //    |                    |          |
965   //    |      header        |          |
966   //    |                    |          |
967   //    +--------------------+          |
968   //                                    |
969   //            .....                   |
970   //                                    |
971   //    +--------------------+          |
972   //    |                    |          |
973   //    |       latch        >----------/
974   //    |                    |
975   //    +-------v------------+
976   //            |
977   //            |
978   //            |   +--------------------+
979   //            |   |                    |
980   //            +--->   original exit    |
981   //                |                    |
982   //                +--------------------+
983   //
984   // We change the control flow to look like
985   //
986   //
987   //    +--------------------+
988   //    |                    |
989   //    |     preheader      >-------------------------+
990   //    |                    |                         |
991   //    +--------v-----------+                         |
992   //             |    /-------------+                  |
993   //             |   /              |                  |
994   //    +--------v--v--------+      |                  |
995   //    |                    |      |                  |
996   //    |      header        |      |   +--------+     |
997   //    |                    |      |   |        |     |
998   //    +--------------------+      |   |  +-----v-----v-----------+
999   //                                |   |  |                       |
1000   //                                |   |  |     .pseudo.exit      |
1001   //                                |   |  |                       |
1002   //                                |   |  +-----------v-----------+
1003   //                                |   |              |
1004   //            .....               |   |              |
1005   //                                |   |     +--------v-------------+
1006   //    +--------------------+      |   |     |                      |
1007   //    |                    |      |   |     |   ContinuationBlock  |
1008   //    |       latch        >------+   |     |                      |
1009   //    |                    |          |     +----------------------+
1010   //    +---------v----------+          |
1011   //              |                     |
1012   //              |                     |
1013   //              |     +---------------^-----+
1014   //              |     |                     |
1015   //              +----->    .exit.selector   |
1016   //                    |                     |
1017   //                    +----------v----------+
1018   //                               |
1019   //     +--------------------+    |
1020   //     |                    |    |
1021   //     |   original exit    <----+
1022   //     |                    |
1023   //     +--------------------+
1024   //
1025 
1026   RewrittenRangeInfo RRI;
1027 
1028   auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
1029   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1030                                         &F, &*BBInsertLocation);
1031   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1032                                       &*BBInsertLocation);
1033 
1034   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1035   bool Increasing = LS.IndVarIncreasing;
1036 
1037   IRBuilder<> B(PreheaderJump);
1038 
1039   // EnterLoopCond - is it okay to start executing this `LS'?
1040   Value *EnterLoopCond = Increasing
1041                              ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1042                              : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1043 
1044   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1045   PreheaderJump->eraseFromParent();
1046 
1047   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1048   B.SetInsertPoint(LS.LatchBr);
1049   Value *TakeBackedgeLoopCond =
1050       Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1051                  : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1052   Value *CondForBranch = LS.LatchBrExitIdx == 1
1053                              ? TakeBackedgeLoopCond
1054                              : B.CreateNot(TakeBackedgeLoopCond);
1055 
1056   LS.LatchBr->setCondition(CondForBranch);
1057 
1058   B.SetInsertPoint(RRI.ExitSelector);
1059 
1060   // IterationsLeft - are there any more iterations left, given the original
1061   // upper bound on the induction variable?  If not, we branch to the "real"
1062   // exit.
1063   Value *IterationsLeft = Increasing
1064                               ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1065                               : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
1066   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1067 
1068   BranchInst *BranchToContinuation =
1069       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1070 
1071   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1072   // each of the PHI nodes in the loop header.  This feeds into the initial
1073   // value of the same PHI nodes if/when we continue execution.
1074   for (Instruction &I : *LS.Header) {
1075     if (!isa<PHINode>(&I))
1076       break;
1077 
1078     PHINode *PN = cast<PHINode>(&I);
1079 
1080     PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1081                                       BranchToContinuation);
1082 
1083     NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1084     NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1085                         RRI.ExitSelector);
1086     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1087   }
1088 
1089   RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1090                                   BranchToContinuation);
1091   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1092   RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1093 
1094   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1095   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1096   for (Instruction &I : *LS.LatchExit) {
1097     if (PHINode *PN = dyn_cast<PHINode>(&I))
1098       replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1099     else
1100       break;
1101   }
1102 
1103   return RRI;
1104 }
1105 
1106 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1107     LoopStructure &LS, BasicBlock *ContinuationBlock,
1108     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1109 
1110   unsigned PHIIndex = 0;
1111   for (Instruction &I : *LS.Header) {
1112     if (!isa<PHINode>(&I))
1113       break;
1114 
1115     PHINode *PN = cast<PHINode>(&I);
1116 
1117     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1118       if (PN->getIncomingBlock(i) == ContinuationBlock)
1119         PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1120   }
1121 
1122   LS.IndVarStart = RRI.IndVarEnd;
1123 }
1124 
1125 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1126                                              BasicBlock *OldPreheader,
1127                                              const char *Tag) const {
1128 
1129   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1130   BranchInst::Create(LS.Header, Preheader);
1131 
1132   for (Instruction &I : *LS.Header) {
1133     if (!isa<PHINode>(&I))
1134       break;
1135 
1136     PHINode *PN = cast<PHINode>(&I);
1137     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1138       replacePHIBlock(PN, OldPreheader, Preheader);
1139   }
1140 
1141   return Preheader;
1142 }
1143 
1144 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1145   Loop *ParentLoop = OriginalLoop.getParentLoop();
1146   if (!ParentLoop)
1147     return;
1148 
1149   for (BasicBlock *BB : BBs)
1150     ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
1151 }
1152 
1153 bool LoopConstrainer::run() {
1154   BasicBlock *Preheader = nullptr;
1155   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1156   Preheader = OriginalLoop.getLoopPreheader();
1157   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1158          "preconditions!");
1159 
1160   OriginalPreheader = Preheader;
1161   MainLoopPreheader = Preheader;
1162 
1163   Optional<SubRanges> MaybeSR = calculateSubRanges();
1164   if (!MaybeSR.hasValue()) {
1165     DEBUG(dbgs() << "irce: could not compute subranges\n");
1166     return false;
1167   }
1168 
1169   SubRanges SR = MaybeSR.getValue();
1170   bool Increasing = MainLoopStructure.IndVarIncreasing;
1171   IntegerType *IVTy =
1172       cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1173 
1174   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1175   Instruction *InsertPt = OriginalPreheader->getTerminator();
1176 
1177   // It would have been better to make `PreLoop' and `PostLoop'
1178   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1179   // constructor.
1180   ClonedLoop PreLoop, PostLoop;
1181   bool NeedsPreLoop =
1182       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1183   bool NeedsPostLoop =
1184       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1185 
1186   Value *ExitPreLoopAt = nullptr;
1187   Value *ExitMainLoopAt = nullptr;
1188   const SCEVConstant *MinusOneS =
1189       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1190 
1191   if (NeedsPreLoop) {
1192     const SCEV *ExitPreLoopAtSCEV = nullptr;
1193 
1194     if (Increasing)
1195       ExitPreLoopAtSCEV = *SR.LowLimit;
1196     else {
1197       if (CanBeSMin(SE, *SR.HighLimit)) {
1198         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1199                      << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
1200                      << "\n");
1201         return false;
1202       }
1203       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1204     }
1205 
1206     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1207     ExitPreLoopAt->setName("exit.preloop.at");
1208   }
1209 
1210   if (NeedsPostLoop) {
1211     const SCEV *ExitMainLoopAtSCEV = nullptr;
1212 
1213     if (Increasing)
1214       ExitMainLoopAtSCEV = *SR.HighLimit;
1215     else {
1216       if (CanBeSMin(SE, *SR.LowLimit)) {
1217         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1218                      << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
1219                      << "\n");
1220         return false;
1221       }
1222       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1223     }
1224 
1225     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1226     ExitMainLoopAt->setName("exit.mainloop.at");
1227   }
1228 
1229   // We clone these ahead of time so that we don't have to deal with changing
1230   // and temporarily invalid IR as we transform the loops.
1231   if (NeedsPreLoop)
1232     cloneLoop(PreLoop, "preloop");
1233   if (NeedsPostLoop)
1234     cloneLoop(PostLoop, "postloop");
1235 
1236   RewrittenRangeInfo PreLoopRRI;
1237 
1238   if (NeedsPreLoop) {
1239     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1240                                                   PreLoop.Structure.Header);
1241 
1242     MainLoopPreheader =
1243         createPreheader(MainLoopStructure, Preheader, "mainloop");
1244     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1245                                          ExitPreLoopAt, MainLoopPreheader);
1246     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1247                                  PreLoopRRI);
1248   }
1249 
1250   BasicBlock *PostLoopPreheader = nullptr;
1251   RewrittenRangeInfo PostLoopRRI;
1252 
1253   if (NeedsPostLoop) {
1254     PostLoopPreheader =
1255         createPreheader(PostLoop.Structure, Preheader, "postloop");
1256     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1257                                           ExitMainLoopAt, PostLoopPreheader);
1258     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1259                                  PostLoopRRI);
1260   }
1261 
1262   BasicBlock *NewMainLoopPreheader =
1263       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1264   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1265                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1266                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1267 
1268   // Some of the above may be nullptr, filter them out before passing to
1269   // addToParentLoopIfNeeded.
1270   auto NewBlocksEnd =
1271       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1272 
1273   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1274   addToParentLoopIfNeeded(PreLoop.Blocks);
1275   addToParentLoopIfNeeded(PostLoop.Blocks);
1276 
1277   return true;
1278 }
1279 
1280 /// Computes and returns a range of values for the induction variable (IndVar)
1281 /// in which the range check can be safely elided.  If it cannot compute such a
1282 /// range, returns None.
1283 Optional<InductiveRangeCheck::Range>
1284 InductiveRangeCheck::computeSafeIterationSpace(
1285     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
1286   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1287   // variable, that may or may not exist as a real llvm::Value in the loop) and
1288   // this inductive range check is a range check on the "C + D * I" ("C" is
1289   // getOffset() and "D" is getScale()).  We rewrite the value being range
1290   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1291   // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1292   // can be generalized as needed.
1293   //
1294   // The actual inequalities we solve are of the form
1295   //
1296   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1297   //
1298   // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
1299   // and subtractions are twos-complement wrapping and comparisons are signed.
1300   //
1301   // Proof:
1302   //
1303   //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1304   //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
1305   //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
1306   //   overflown.
1307   //
1308   //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
1309   //   Hence 0 <= (IndVar + M) < L
1310 
1311   // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1312   // 127, IndVar = 126 and L = -2 in an i8 world.
1313 
1314   if (!IndVar->isAffine())
1315     return None;
1316 
1317   const SCEV *A = IndVar->getStart();
1318   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1319   if (!B)
1320     return None;
1321 
1322   const SCEV *C = getOffset();
1323   const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1324   if (D != B)
1325     return None;
1326 
1327   ConstantInt *ConstD = D->getValue();
1328   if (!(ConstD->isMinusOne() || ConstD->isOne()))
1329     return None;
1330 
1331   const SCEV *M = SE.getMinusSCEV(C, A);
1332 
1333   const SCEV *Begin = SE.getNegativeSCEV(M);
1334   const SCEV *UpperLimit = nullptr;
1335 
1336   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1337   // We can potentially do much better here.
1338   if (Value *V = getLength()) {
1339     UpperLimit = SE.getSCEV(V);
1340   } else {
1341     assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1342     unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1343     UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1344   }
1345 
1346   const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
1347   return InductiveRangeCheck::Range(Begin, End);
1348 }
1349 
1350 static Optional<InductiveRangeCheck::Range>
1351 IntersectRange(ScalarEvolution &SE,
1352                const Optional<InductiveRangeCheck::Range> &R1,
1353                const InductiveRangeCheck::Range &R2) {
1354   if (!R1.hasValue())
1355     return R2;
1356   auto &R1Value = R1.getValue();
1357 
1358   // TODO: we could widen the smaller range and have this work; but for now we
1359   // bail out to keep things simple.
1360   if (R1Value.getType() != R2.getType())
1361     return None;
1362 
1363   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1364   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1365 
1366   return InductiveRangeCheck::Range(NewBegin, NewEnd);
1367 }
1368 
1369 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1370   if (skipLoop(L))
1371     return false;
1372 
1373   if (L->getBlocks().size() >= LoopSizeCutoff) {
1374     DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1375     return false;
1376   }
1377 
1378   BasicBlock *Preheader = L->getLoopPreheader();
1379   if (!Preheader) {
1380     DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1381     return false;
1382   }
1383 
1384   LLVMContext &Context = Preheader->getContext();
1385   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1386   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1387   BranchProbabilityInfo &BPI =
1388       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1389 
1390   for (auto BBI : L->getBlocks())
1391     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1392       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1393                                                         RangeChecks);
1394 
1395   if (RangeChecks.empty())
1396     return false;
1397 
1398   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1399     OS << "irce: looking at loop "; L->print(OS);
1400     OS << "irce: loop has " << RangeChecks.size()
1401        << " inductive range checks: \n";
1402     for (InductiveRangeCheck &IRC : RangeChecks)
1403       IRC.print(OS);
1404   };
1405 
1406   DEBUG(PrintRecognizedRangeChecks(dbgs()));
1407 
1408   if (PrintRangeChecks)
1409     PrintRecognizedRangeChecks(errs());
1410 
1411   const char *FailureReason = nullptr;
1412   Optional<LoopStructure> MaybeLoopStructure =
1413       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1414   if (!MaybeLoopStructure.hasValue()) {
1415     DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1416                  << "\n";);
1417     return false;
1418   }
1419   LoopStructure LS = MaybeLoopStructure.getValue();
1420   bool Increasing = LS.IndVarIncreasing;
1421   const SCEV *MinusOne =
1422       SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1423   const SCEVAddRecExpr *IndVar =
1424       cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1425 
1426   Optional<InductiveRangeCheck::Range> SafeIterRange;
1427   Instruction *ExprInsertPt = Preheader->getTerminator();
1428 
1429   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1430 
1431   IRBuilder<> B(ExprInsertPt);
1432   for (InductiveRangeCheck &IRC : RangeChecks) {
1433     auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
1434     if (Result.hasValue()) {
1435       auto MaybeSafeIterRange =
1436           IntersectRange(SE, SafeIterRange, Result.getValue());
1437       if (MaybeSafeIterRange.hasValue()) {
1438         RangeChecksToEliminate.push_back(IRC);
1439         SafeIterRange = MaybeSafeIterRange.getValue();
1440       }
1441     }
1442   }
1443 
1444   if (!SafeIterRange.hasValue())
1445     return false;
1446 
1447   LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
1448                      SE, SafeIterRange.getValue());
1449   bool Changed = LC.run();
1450 
1451   if (Changed) {
1452     auto PrintConstrainedLoopInfo = [L]() {
1453       dbgs() << "irce: in function ";
1454       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1455       dbgs() << "constrained ";
1456       L->print(dbgs());
1457     };
1458 
1459     DEBUG(PrintConstrainedLoopInfo());
1460 
1461     if (PrintChangedLoops)
1462       PrintConstrainedLoopInfo();
1463 
1464     // Optimize away the now-redundant range checks.
1465 
1466     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1467       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1468                                           ? ConstantInt::getTrue(Context)
1469                                           : ConstantInt::getFalse(Context);
1470       IRC.getCheckUse()->set(FoldedRangeCheck);
1471     }
1472   }
1473 
1474   return Changed;
1475 }
1476 
1477 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1478   return new InductiveRangeCheckElimination;
1479 }
1480