1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 11 // three disjoint ranges. It does that in a way such that the loop running in 12 // the middle loop provably does not need range checks. As an example, it will 13 // convert 14 // 15 // len = < known positive > 16 // for (i = 0; i < n; i++) { 17 // if (0 <= i && i < len) { 18 // do_something(); 19 // } else { 20 // throw_out_of_bounds(); 21 // } 22 // } 23 // 24 // to 25 // 26 // len = < known positive > 27 // limit = smin(n, len) 28 // // no first segment 29 // for (i = 0; i < limit; i++) { 30 // if (0 <= i && i < len) { // this check is fully redundant 31 // do_something(); 32 // } else { 33 // throw_out_of_bounds(); 34 // } 35 // } 36 // for (i = limit; i < n; i++) { 37 // if (0 <= i && i < len) { 38 // do_something(); 39 // } else { 40 // throw_out_of_bounds(); 41 // } 42 // } 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" 47 #include "llvm/ADT/APInt.h" 48 #include "llvm/ADT/ArrayRef.h" 49 #include "llvm/ADT/None.h" 50 #include "llvm/ADT/Optional.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/ADT/StringRef.h" 54 #include "llvm/ADT/Twine.h" 55 #include "llvm/Analysis/BranchProbabilityInfo.h" 56 #include "llvm/Analysis/LoopAnalysisManager.h" 57 #include "llvm/Analysis/LoopInfo.h" 58 #include "llvm/Analysis/LoopPass.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpander.h" 61 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DerivedTypes.h" 66 #include "llvm/IR/Dominators.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/IRBuilder.h" 69 #include "llvm/IR/InstrTypes.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/Metadata.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/PatternMatch.h" 74 #include "llvm/IR/Type.h" 75 #include "llvm/IR/Use.h" 76 #include "llvm/IR/User.h" 77 #include "llvm/IR/Value.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Scalar.h" 87 #include "llvm/Transforms/Utils/Cloning.h" 88 #include "llvm/Transforms/Utils/LoopSimplify.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Utils/ValueMapper.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <iterator> 94 #include <limits> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 using namespace llvm::PatternMatch; 100 101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 102 cl::init(64)); 103 104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 105 cl::init(false)); 106 107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 108 cl::init(false)); 109 110 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 111 cl::Hidden, cl::init(10)); 112 113 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 114 cl::Hidden, cl::init(false)); 115 116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", 117 cl::Hidden, cl::init(true)); 118 119 static const char *ClonedLoopTag = "irce.loop.clone"; 120 121 #define DEBUG_TYPE "irce" 122 123 namespace { 124 125 /// An inductive range check is conditional branch in a loop with 126 /// 127 /// 1. a very cold successor (i.e. the branch jumps to that successor very 128 /// rarely) 129 /// 130 /// and 131 /// 132 /// 2. a condition that is provably true for some contiguous range of values 133 /// taken by the containing loop's induction variable. 134 /// 135 class InductiveRangeCheck { 136 // Classifies a range check 137 enum RangeCheckKind : unsigned { 138 // Range check of the form "0 <= I". 139 RANGE_CHECK_LOWER = 1, 140 141 // Range check of the form "I < L" where L is known positive. 142 RANGE_CHECK_UPPER = 2, 143 144 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 145 // conditions. 146 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 147 148 // Unrecognized range check condition. 149 RANGE_CHECK_UNKNOWN = (unsigned)-1 150 }; 151 152 static StringRef rangeCheckKindToStr(RangeCheckKind); 153 154 const SCEV *Begin = nullptr; 155 const SCEV *Step = nullptr; 156 const SCEV *End = nullptr; 157 Use *CheckUse = nullptr; 158 RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; 159 bool IsSigned = true; 160 161 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 162 ScalarEvolution &SE, Value *&Index, 163 Value *&Length, bool &IsSigned); 164 165 static void 166 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 167 SmallVectorImpl<InductiveRangeCheck> &Checks, 168 SmallPtrSetImpl<Value *> &Visited); 169 170 public: 171 const SCEV *getBegin() const { return Begin; } 172 const SCEV *getStep() const { return Step; } 173 const SCEV *getEnd() const { return End; } 174 bool isSigned() const { return IsSigned; } 175 176 void print(raw_ostream &OS) const { 177 OS << "InductiveRangeCheck:\n"; 178 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 179 OS << " Begin: "; 180 Begin->print(OS); 181 OS << " Step: "; 182 Step->print(OS); 183 OS << " End: "; 184 End->print(OS); 185 OS << "\n CheckUse: "; 186 getCheckUse()->getUser()->print(OS); 187 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 188 } 189 190 LLVM_DUMP_METHOD 191 void dump() { 192 print(dbgs()); 193 } 194 195 Use *getCheckUse() const { return CheckUse; } 196 197 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 198 /// R.getEnd() le R.getBegin(), then R denotes the empty range. 199 200 class Range { 201 const SCEV *Begin; 202 const SCEV *End; 203 204 public: 205 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 206 assert(Begin->getType() == End->getType() && "ill-typed range!"); 207 } 208 209 Type *getType() const { return Begin->getType(); } 210 const SCEV *getBegin() const { return Begin; } 211 const SCEV *getEnd() const { return End; } 212 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { 213 if (Begin == End) 214 return true; 215 if (IsSigned) 216 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); 217 else 218 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); 219 } 220 }; 221 222 /// This is the value the condition of the branch needs to evaluate to for the 223 /// branch to take the hot successor (see (1) above). 224 bool getPassingDirection() { return true; } 225 226 /// Computes a range for the induction variable (IndVar) in which the range 227 /// check is redundant and can be constant-folded away. The induction 228 /// variable is not required to be the canonical {0,+,1} induction variable. 229 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 230 const SCEVAddRecExpr *IndVar, 231 bool IsLatchSigned) const; 232 233 /// Parse out a set of inductive range checks from \p BI and append them to \p 234 /// Checks. 235 /// 236 /// NB! There may be conditions feeding into \p BI that aren't inductive range 237 /// checks, and hence don't end up in \p Checks. 238 static void 239 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 240 BranchProbabilityInfo *BPI, 241 SmallVectorImpl<InductiveRangeCheck> &Checks); 242 }; 243 244 class InductiveRangeCheckElimination { 245 ScalarEvolution &SE; 246 BranchProbabilityInfo *BPI; 247 DominatorTree &DT; 248 LoopInfo &LI; 249 250 public: 251 InductiveRangeCheckElimination(ScalarEvolution &SE, 252 BranchProbabilityInfo *BPI, DominatorTree &DT, 253 LoopInfo &LI) 254 : SE(SE), BPI(BPI), DT(DT), LI(LI) {} 255 256 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop); 257 }; 258 259 class IRCELegacyPass : public LoopPass { 260 public: 261 static char ID; 262 263 IRCELegacyPass() : LoopPass(ID) { 264 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry()); 265 } 266 267 void getAnalysisUsage(AnalysisUsage &AU) const override { 268 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 269 getLoopAnalysisUsage(AU); 270 } 271 272 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 273 }; 274 275 } // end anonymous namespace 276 277 char IRCELegacyPass::ID = 0; 278 279 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce", 280 "Inductive range check elimination", false, false) 281 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 282 INITIALIZE_PASS_DEPENDENCY(LoopPass) 283 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination", 284 false, false) 285 286 StringRef InductiveRangeCheck::rangeCheckKindToStr( 287 InductiveRangeCheck::RangeCheckKind RCK) { 288 switch (RCK) { 289 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 290 return "RANGE_CHECK_UNKNOWN"; 291 292 case InductiveRangeCheck::RANGE_CHECK_UPPER: 293 return "RANGE_CHECK_UPPER"; 294 295 case InductiveRangeCheck::RANGE_CHECK_LOWER: 296 return "RANGE_CHECK_LOWER"; 297 298 case InductiveRangeCheck::RANGE_CHECK_BOTH: 299 return "RANGE_CHECK_BOTH"; 300 } 301 302 llvm_unreachable("unknown range check type!"); 303 } 304 305 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 306 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 307 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 308 /// range checked, and set `Length` to the upper limit `Index` is being range 309 /// checked with if (and only if) the range check type is stronger or equal to 310 /// RANGE_CHECK_UPPER. 311 InductiveRangeCheck::RangeCheckKind 312 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 313 ScalarEvolution &SE, Value *&Index, 314 Value *&Length, bool &IsSigned) { 315 auto IsLoopInvariant = [&SE, L](Value *V) { 316 return SE.isLoopInvariant(SE.getSCEV(V), L); 317 }; 318 319 ICmpInst::Predicate Pred = ICI->getPredicate(); 320 Value *LHS = ICI->getOperand(0); 321 Value *RHS = ICI->getOperand(1); 322 323 switch (Pred) { 324 default: 325 return RANGE_CHECK_UNKNOWN; 326 327 case ICmpInst::ICMP_SLE: 328 std::swap(LHS, RHS); 329 LLVM_FALLTHROUGH; 330 case ICmpInst::ICMP_SGE: 331 IsSigned = true; 332 if (match(RHS, m_ConstantInt<0>())) { 333 Index = LHS; 334 return RANGE_CHECK_LOWER; 335 } 336 return RANGE_CHECK_UNKNOWN; 337 338 case ICmpInst::ICMP_SLT: 339 std::swap(LHS, RHS); 340 LLVM_FALLTHROUGH; 341 case ICmpInst::ICMP_SGT: 342 IsSigned = true; 343 if (match(RHS, m_ConstantInt<-1>())) { 344 Index = LHS; 345 return RANGE_CHECK_LOWER; 346 } 347 348 if (IsLoopInvariant(LHS)) { 349 Index = RHS; 350 Length = LHS; 351 return RANGE_CHECK_UPPER; 352 } 353 return RANGE_CHECK_UNKNOWN; 354 355 case ICmpInst::ICMP_ULT: 356 std::swap(LHS, RHS); 357 LLVM_FALLTHROUGH; 358 case ICmpInst::ICMP_UGT: 359 IsSigned = false; 360 if (IsLoopInvariant(LHS)) { 361 Index = RHS; 362 Length = LHS; 363 return RANGE_CHECK_BOTH; 364 } 365 return RANGE_CHECK_UNKNOWN; 366 } 367 368 llvm_unreachable("default clause returns!"); 369 } 370 371 void InductiveRangeCheck::extractRangeChecksFromCond( 372 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 373 SmallVectorImpl<InductiveRangeCheck> &Checks, 374 SmallPtrSetImpl<Value *> &Visited) { 375 Value *Condition = ConditionUse.get(); 376 if (!Visited.insert(Condition).second) 377 return; 378 379 // TODO: Do the same for OR, XOR, NOT etc? 380 if (match(Condition, m_And(m_Value(), m_Value()))) { 381 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 382 Checks, Visited); 383 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 384 Checks, Visited); 385 return; 386 } 387 388 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 389 if (!ICI) 390 return; 391 392 Value *Length = nullptr, *Index; 393 bool IsSigned; 394 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned); 395 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 396 return; 397 398 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 399 bool IsAffineIndex = 400 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 401 402 if (!IsAffineIndex) 403 return; 404 405 const SCEV *End = nullptr; 406 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 407 // We can potentially do much better here. 408 if (Length) 409 End = SE.getSCEV(Length); 410 else { 411 assert(RCKind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 412 // So far we can only reach this point for Signed range check. This may 413 // change in future. In this case we will need to pick Unsigned max for the 414 // unsigned range check. 415 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth(); 416 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 417 End = SIntMax; 418 } 419 420 InductiveRangeCheck IRC; 421 IRC.End = End; 422 IRC.Begin = IndexAddRec->getStart(); 423 IRC.Step = IndexAddRec->getStepRecurrence(SE); 424 IRC.CheckUse = &ConditionUse; 425 IRC.Kind = RCKind; 426 IRC.IsSigned = IsSigned; 427 Checks.push_back(IRC); 428 } 429 430 void InductiveRangeCheck::extractRangeChecksFromBranch( 431 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, 432 SmallVectorImpl<InductiveRangeCheck> &Checks) { 433 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 434 return; 435 436 BranchProbability LikelyTaken(15, 16); 437 438 if (!SkipProfitabilityChecks && BPI && 439 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 440 return; 441 442 SmallPtrSet<Value *, 8> Visited; 443 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 444 Checks, Visited); 445 } 446 447 // Add metadata to the loop L to disable loop optimizations. Callers need to 448 // confirm that optimizing loop L is not beneficial. 449 static void DisableAllLoopOptsOnLoop(Loop &L) { 450 // We do not care about any existing loopID related metadata for L, since we 451 // are setting all loop metadata to false. 452 LLVMContext &Context = L.getHeader()->getContext(); 453 // Reserve first location for self reference to the LoopID metadata node. 454 MDNode *Dummy = MDNode::get(Context, {}); 455 MDNode *DisableUnroll = MDNode::get( 456 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 457 Metadata *FalseVal = 458 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 459 MDNode *DisableVectorize = MDNode::get( 460 Context, 461 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 462 MDNode *DisableLICMVersioning = MDNode::get( 463 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 464 MDNode *DisableDistribution= MDNode::get( 465 Context, 466 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 467 MDNode *NewLoopID = 468 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 469 DisableLICMVersioning, DisableDistribution}); 470 // Set operand 0 to refer to the loop id itself. 471 NewLoopID->replaceOperandWith(0, NewLoopID); 472 L.setLoopID(NewLoopID); 473 } 474 475 namespace { 476 477 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 478 // except that it is more lightweight and can track the state of a loop through 479 // changing and potentially invalid IR. This structure also formalizes the 480 // kinds of loops we can deal with -- ones that have a single latch that is also 481 // an exiting block *and* have a canonical induction variable. 482 struct LoopStructure { 483 const char *Tag = ""; 484 485 BasicBlock *Header = nullptr; 486 BasicBlock *Latch = nullptr; 487 488 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 489 // successor is `LatchExit', the exit block of the loop. 490 BranchInst *LatchBr = nullptr; 491 BasicBlock *LatchExit = nullptr; 492 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max(); 493 494 // The loop represented by this instance of LoopStructure is semantically 495 // equivalent to: 496 // 497 // intN_ty inc = IndVarIncreasing ? 1 : -1; 498 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 499 // 500 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 501 // ... body ... 502 503 Value *IndVarBase = nullptr; 504 Value *IndVarStart = nullptr; 505 Value *IndVarStep = nullptr; 506 Value *LoopExitAt = nullptr; 507 bool IndVarIncreasing = false; 508 bool IsSignedPredicate = true; 509 510 LoopStructure() = default; 511 512 template <typename M> LoopStructure map(M Map) const { 513 LoopStructure Result; 514 Result.Tag = Tag; 515 Result.Header = cast<BasicBlock>(Map(Header)); 516 Result.Latch = cast<BasicBlock>(Map(Latch)); 517 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 518 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 519 Result.LatchBrExitIdx = LatchBrExitIdx; 520 Result.IndVarBase = Map(IndVarBase); 521 Result.IndVarStart = Map(IndVarStart); 522 Result.IndVarStep = Map(IndVarStep); 523 Result.LoopExitAt = Map(LoopExitAt); 524 Result.IndVarIncreasing = IndVarIncreasing; 525 Result.IsSignedPredicate = IsSignedPredicate; 526 return Result; 527 } 528 529 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 530 BranchProbabilityInfo *BPI, 531 Loop &, const char *&); 532 }; 533 534 /// This class is used to constrain loops to run within a given iteration space. 535 /// The algorithm this class implements is given a Loop and a range [Begin, 536 /// End). The algorithm then tries to break out a "main loop" out of the loop 537 /// it is given in a way that the "main loop" runs with the induction variable 538 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 539 /// loops to run any remaining iterations. The pre loop runs any iterations in 540 /// which the induction variable is < Begin, and the post loop runs any 541 /// iterations in which the induction variable is >= End. 542 class LoopConstrainer { 543 // The representation of a clone of the original loop we started out with. 544 struct ClonedLoop { 545 // The cloned blocks 546 std::vector<BasicBlock *> Blocks; 547 548 // `Map` maps values in the clonee into values in the cloned version 549 ValueToValueMapTy Map; 550 551 // An instance of `LoopStructure` for the cloned loop 552 LoopStructure Structure; 553 }; 554 555 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 556 // more details on what these fields mean. 557 struct RewrittenRangeInfo { 558 BasicBlock *PseudoExit = nullptr; 559 BasicBlock *ExitSelector = nullptr; 560 std::vector<PHINode *> PHIValuesAtPseudoExit; 561 PHINode *IndVarEnd = nullptr; 562 563 RewrittenRangeInfo() = default; 564 }; 565 566 // Calculated subranges we restrict the iteration space of the main loop to. 567 // See the implementation of `calculateSubRanges' for more details on how 568 // these fields are computed. `LowLimit` is None if there is no restriction 569 // on low end of the restricted iteration space of the main loop. `HighLimit` 570 // is None if there is no restriction on high end of the restricted iteration 571 // space of the main loop. 572 573 struct SubRanges { 574 Optional<const SCEV *> LowLimit; 575 Optional<const SCEV *> HighLimit; 576 }; 577 578 // A utility function that does a `replaceUsesOfWith' on the incoming block 579 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 580 // incoming block list with `ReplaceBy'. 581 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 582 BasicBlock *ReplaceBy); 583 584 // Compute a safe set of limits for the main loop to run in -- effectively the 585 // intersection of `Range' and the iteration space of the original loop. 586 // Return None if unable to compute the set of subranges. 587 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 588 589 // Clone `OriginalLoop' and return the result in CLResult. The IR after 590 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 591 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 592 // but there is no such edge. 593 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 594 595 // Create the appropriate loop structure needed to describe a cloned copy of 596 // `Original`. The clone is described by `VM`. 597 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 598 ValueToValueMapTy &VM, bool IsSubloop); 599 600 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 601 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 602 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 603 // `OriginalHeaderCount'. 604 // 605 // If there are iterations left to execute, control is made to jump to 606 // `ContinuationBlock', otherwise they take the normal loop exit. The 607 // returned `RewrittenRangeInfo' object is populated as follows: 608 // 609 // .PseudoExit is a basic block that unconditionally branches to 610 // `ContinuationBlock'. 611 // 612 // .ExitSelector is a basic block that decides, on exit from the loop, 613 // whether to branch to the "true" exit or to `PseudoExit'. 614 // 615 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 616 // for each PHINode in the loop header on taking the pseudo exit. 617 // 618 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 619 // preheader because it is made to branch to the loop header only 620 // conditionally. 621 RewrittenRangeInfo 622 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 623 Value *ExitLoopAt, 624 BasicBlock *ContinuationBlock) const; 625 626 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 627 // function creates a new preheader for `LS' and returns it. 628 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 629 const char *Tag) const; 630 631 // `ContinuationBlockAndPreheader' was the continuation block for some call to 632 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 633 // This function rewrites the PHI nodes in `LS.Header' to start with the 634 // correct value. 635 void rewriteIncomingValuesForPHIs( 636 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 637 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 638 639 // Even though we do not preserve any passes at this time, we at least need to 640 // keep the parent loop structure consistent. The `LPPassManager' seems to 641 // verify this after running a loop pass. This function adds the list of 642 // blocks denoted by BBs to this loops parent loop if required. 643 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 644 645 // Some global state. 646 Function &F; 647 LLVMContext &Ctx; 648 ScalarEvolution &SE; 649 DominatorTree &DT; 650 LoopInfo &LI; 651 function_ref<void(Loop *, bool)> LPMAddNewLoop; 652 653 // Information about the original loop we started out with. 654 Loop &OriginalLoop; 655 656 const SCEV *LatchTakenCount = nullptr; 657 BasicBlock *OriginalPreheader = nullptr; 658 659 // The preheader of the main loop. This may or may not be different from 660 // `OriginalPreheader'. 661 BasicBlock *MainLoopPreheader = nullptr; 662 663 // The range we need to run the main loop in. 664 InductiveRangeCheck::Range Range; 665 666 // The structure of the main loop (see comment at the beginning of this class 667 // for a definition) 668 LoopStructure MainLoopStructure; 669 670 public: 671 LoopConstrainer(Loop &L, LoopInfo &LI, 672 function_ref<void(Loop *, bool)> LPMAddNewLoop, 673 const LoopStructure &LS, ScalarEvolution &SE, 674 DominatorTree &DT, InductiveRangeCheck::Range R) 675 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 676 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), 677 Range(R), MainLoopStructure(LS) {} 678 679 // Entry point for the algorithm. Returns true on success. 680 bool run(); 681 }; 682 683 } // end anonymous namespace 684 685 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 686 BasicBlock *ReplaceBy) { 687 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 688 if (PN->getIncomingBlock(i) == Block) 689 PN->setIncomingBlock(i, ReplaceBy); 690 } 691 692 static bool CannotBeMaxInLoop(const SCEV *BoundSCEV, Loop *L, 693 ScalarEvolution &SE, bool Signed) { 694 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 695 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 696 APInt::getMaxValue(BitWidth); 697 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 698 return SE.isAvailableAtLoopEntry(BoundSCEV, L) && 699 SE.isLoopEntryGuardedByCond(L, Predicate, BoundSCEV, 700 SE.getConstant(Max)); 701 } 702 703 /// Given a loop with an deccreasing induction variable, is it possible to 704 /// safely calculate the bounds of a new loop using the given Predicate. 705 static bool isSafeDecreasingBound(const SCEV *Start, 706 const SCEV *BoundSCEV, const SCEV *Step, 707 ICmpInst::Predicate Pred, 708 unsigned LatchBrExitIdx, 709 Loop *L, ScalarEvolution &SE) { 710 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 711 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 712 return false; 713 714 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 715 return false; 716 717 assert(SE.isKnownNegative(Step) && "expecting negative step"); 718 719 DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n"); 720 DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 721 DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 722 DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 723 DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) << "\n"); 724 DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 725 726 bool IsSigned = ICmpInst::isSigned(Pred); 727 // The predicate that we need to check that the induction variable lies 728 // within bounds. 729 ICmpInst::Predicate BoundPred = 730 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 731 732 if (LatchBrExitIdx == 1) 733 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 734 735 assert(LatchBrExitIdx == 0 && 736 "LatchBrExitIdx should be either 0 or 1"); 737 738 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 739 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 740 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) : 741 APInt::getMinValue(BitWidth); 742 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne); 743 744 const SCEV *MinusOne = 745 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType())); 746 747 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) && 748 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit); 749 750 } 751 752 /// Given a loop with an increasing induction variable, is it possible to 753 /// safely calculate the bounds of a new loop using the given Predicate. 754 static bool isSafeIncreasingBound(const SCEV *Start, 755 const SCEV *BoundSCEV, const SCEV *Step, 756 ICmpInst::Predicate Pred, 757 unsigned LatchBrExitIdx, 758 Loop *L, ScalarEvolution &SE) { 759 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 760 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 761 return false; 762 763 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 764 return false; 765 766 DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n"); 767 DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 768 DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 769 DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 770 DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) << "\n"); 771 DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 772 773 bool IsSigned = ICmpInst::isSigned(Pred); 774 // The predicate that we need to check that the induction variable lies 775 // within bounds. 776 ICmpInst::Predicate BoundPred = 777 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 778 779 if (LatchBrExitIdx == 1) 780 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 781 782 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1"); 783 784 const SCEV *StepMinusOne = 785 SE.getMinusSCEV(Step, SE.getOne(Step->getType())); 786 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 787 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) : 788 APInt::getMaxValue(BitWidth); 789 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne); 790 791 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start, 792 SE.getAddExpr(BoundSCEV, Step)) && 793 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit)); 794 } 795 796 static bool CannotBeMinInLoop(const SCEV *BoundSCEV, Loop *L, 797 ScalarEvolution &SE, bool Signed) { 798 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 799 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 800 APInt::getMinValue(BitWidth); 801 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 802 return SE.isAvailableAtLoopEntry(BoundSCEV, L) && 803 SE.isLoopEntryGuardedByCond(L, Predicate, BoundSCEV, 804 SE.getConstant(Min)); 805 } 806 807 static bool isKnownNonNegativeInLoop(const SCEV *BoundSCEV, Loop *L, 808 ScalarEvolution &SE) { 809 const SCEV *Zero = SE.getZero(BoundSCEV->getType()); 810 return SE.isAvailableAtLoopEntry(BoundSCEV, L) && 811 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, BoundSCEV, Zero); 812 } 813 814 Optional<LoopStructure> 815 LoopStructure::parseLoopStructure(ScalarEvolution &SE, 816 BranchProbabilityInfo *BPI, Loop &L, 817 const char *&FailureReason) { 818 if (!L.isLoopSimplifyForm()) { 819 FailureReason = "loop not in LoopSimplify form"; 820 return None; 821 } 822 823 BasicBlock *Latch = L.getLoopLatch(); 824 assert(Latch && "Simplified loops only have one latch!"); 825 826 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 827 FailureReason = "loop has already been cloned"; 828 return None; 829 } 830 831 if (!L.isLoopExiting(Latch)) { 832 FailureReason = "no loop latch"; 833 return None; 834 } 835 836 BasicBlock *Header = L.getHeader(); 837 BasicBlock *Preheader = L.getLoopPreheader(); 838 if (!Preheader) { 839 FailureReason = "no preheader"; 840 return None; 841 } 842 843 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 844 if (!LatchBr || LatchBr->isUnconditional()) { 845 FailureReason = "latch terminator not conditional branch"; 846 return None; 847 } 848 849 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 850 851 BranchProbability ExitProbability = 852 BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx) 853 : BranchProbability::getZero(); 854 855 if (!SkipProfitabilityChecks && 856 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 857 FailureReason = "short running loop, not profitable"; 858 return None; 859 } 860 861 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 862 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 863 FailureReason = "latch terminator branch not conditional on integral icmp"; 864 return None; 865 } 866 867 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 868 if (isa<SCEVCouldNotCompute>(LatchCount)) { 869 FailureReason = "could not compute latch count"; 870 return None; 871 } 872 873 ICmpInst::Predicate Pred = ICI->getPredicate(); 874 Value *LeftValue = ICI->getOperand(0); 875 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 876 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 877 878 Value *RightValue = ICI->getOperand(1); 879 const SCEV *RightSCEV = SE.getSCEV(RightValue); 880 881 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 882 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 883 if (isa<SCEVAddRecExpr>(RightSCEV)) { 884 std::swap(LeftSCEV, RightSCEV); 885 std::swap(LeftValue, RightValue); 886 Pred = ICmpInst::getSwappedPredicate(Pred); 887 } else { 888 FailureReason = "no add recurrences in the icmp"; 889 return None; 890 } 891 } 892 893 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 894 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 895 return true; 896 897 IntegerType *Ty = cast<IntegerType>(AR->getType()); 898 IntegerType *WideTy = 899 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 900 901 const SCEVAddRecExpr *ExtendAfterOp = 902 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 903 if (ExtendAfterOp) { 904 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 905 const SCEV *ExtendedStep = 906 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 907 908 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 909 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 910 911 if (NoSignedWrap) 912 return true; 913 } 914 915 // We may have proved this when computing the sign extension above. 916 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 917 }; 918 919 // Here we check whether the suggested AddRec is an induction variable that 920 // can be handled (i.e. with known constant step), and if yes, calculate its 921 // step and identify whether it is increasing or decreasing. 922 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing, 923 ConstantInt *&StepCI) { 924 if (!AR->isAffine()) 925 return false; 926 927 // Currently we only work with induction variables that have been proved to 928 // not wrap. This restriction can potentially be lifted in the future. 929 930 if (!HasNoSignedWrap(AR)) 931 return false; 932 933 if (const SCEVConstant *StepExpr = 934 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 935 StepCI = StepExpr->getValue(); 936 assert(!StepCI->isZero() && "Zero step?"); 937 IsIncreasing = !StepCI->isNegative(); 938 return true; 939 } 940 941 return false; 942 }; 943 944 // `ICI` is interpreted as taking the backedge if the *next* value of the 945 // induction variable satisfies some constraint. 946 947 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 948 bool IsIncreasing = false; 949 bool IsSignedPredicate = true; 950 ConstantInt *StepCI; 951 if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) { 952 FailureReason = "LHS in icmp not induction variable"; 953 return None; 954 } 955 956 const SCEV *StartNext = IndVarBase->getStart(); 957 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 958 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 959 const SCEV *Step = SE.getSCEV(StepCI); 960 961 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 962 if (IsIncreasing) { 963 bool DecreasedRightValueByOne = false; 964 if (StepCI->isOne()) { 965 // Try to turn eq/ne predicates to those we can work with. 966 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 967 // while (++i != len) { while (++i < len) { 968 // ... ---> ... 969 // } } 970 // If both parts are known non-negative, it is profitable to use 971 // unsigned comparison in increasing loop. This allows us to make the 972 // comparison check against "RightSCEV + 1" more optimistic. 973 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) && 974 isKnownNonNegativeInLoop(RightSCEV, &L, SE)) 975 Pred = ICmpInst::ICMP_ULT; 976 else 977 Pred = ICmpInst::ICMP_SLT; 978 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 979 // while (true) { while (true) { 980 // if (++i == len) ---> if (++i > len - 1) 981 // break; break; 982 // ... ... 983 // } } 984 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 985 CannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) { 986 Pred = ICmpInst::ICMP_UGT; 987 RightSCEV = SE.getMinusSCEV(RightSCEV, 988 SE.getOne(RightSCEV->getType())); 989 DecreasedRightValueByOne = true; 990 } else if (CannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) { 991 Pred = ICmpInst::ICMP_SGT; 992 RightSCEV = SE.getMinusSCEV(RightSCEV, 993 SE.getOne(RightSCEV->getType())); 994 DecreasedRightValueByOne = true; 995 } 996 } 997 } 998 999 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 1000 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 1001 bool FoundExpectedPred = 1002 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 1003 1004 if (!FoundExpectedPred) { 1005 FailureReason = "expected icmp slt semantically, found something else"; 1006 return None; 1007 } 1008 1009 IsSignedPredicate = ICmpInst::isSigned(Pred); 1010 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 1011 FailureReason = "unsigned latch conditions are explicitly prohibited"; 1012 return None; 1013 } 1014 1015 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred, 1016 LatchBrExitIdx, &L, SE)) { 1017 FailureReason = "Unsafe loop bounds"; 1018 return None; 1019 } 1020 if (LatchBrExitIdx == 0) { 1021 // We need to increase the right value unless we have already decreased 1022 // it virtually when we replaced EQ with SGT. 1023 if (!DecreasedRightValueByOne) { 1024 IRBuilder<> B(Preheader->getTerminator()); 1025 RightValue = B.CreateAdd(RightValue, One); 1026 } 1027 } else { 1028 assert(!DecreasedRightValueByOne && 1029 "Right value can be decreased only for LatchBrExitIdx == 0!"); 1030 } 1031 } else { 1032 bool IncreasedRightValueByOne = false; 1033 if (StepCI->isMinusOne()) { 1034 // Try to turn eq/ne predicates to those we can work with. 1035 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 1036 // while (--i != len) { while (--i > len) { 1037 // ... ---> ... 1038 // } } 1039 // We intentionally don't turn the predicate into UGT even if we know 1040 // that both operands are non-negative, because it will only pessimize 1041 // our check against "RightSCEV - 1". 1042 Pred = ICmpInst::ICMP_SGT; 1043 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 1044 // while (true) { while (true) { 1045 // if (--i == len) ---> if (--i < len + 1) 1046 // break; break; 1047 // ... ... 1048 // } } 1049 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 1050 CannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) { 1051 Pred = ICmpInst::ICMP_ULT; 1052 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 1053 IncreasedRightValueByOne = true; 1054 } else if (CannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) { 1055 Pred = ICmpInst::ICMP_SLT; 1056 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 1057 IncreasedRightValueByOne = true; 1058 } 1059 } 1060 } 1061 1062 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 1063 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 1064 1065 bool FoundExpectedPred = 1066 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 1067 1068 if (!FoundExpectedPred) { 1069 FailureReason = "expected icmp sgt semantically, found something else"; 1070 return None; 1071 } 1072 1073 IsSignedPredicate = 1074 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 1075 1076 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 1077 FailureReason = "unsigned latch conditions are explicitly prohibited"; 1078 return None; 1079 } 1080 1081 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred, 1082 LatchBrExitIdx, &L, SE)) { 1083 FailureReason = "Unsafe bounds"; 1084 return None; 1085 } 1086 1087 if (LatchBrExitIdx == 0) { 1088 // We need to decrease the right value unless we have already increased 1089 // it virtually when we replaced EQ with SLT. 1090 if (!IncreasedRightValueByOne) { 1091 IRBuilder<> B(Preheader->getTerminator()); 1092 RightValue = B.CreateSub(RightValue, One); 1093 } 1094 } else { 1095 assert(!IncreasedRightValueByOne && 1096 "Right value can be increased only for LatchBrExitIdx == 0!"); 1097 } 1098 } 1099 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1100 1101 assert(SE.getLoopDisposition(LatchCount, &L) == 1102 ScalarEvolution::LoopInvariant && 1103 "loop variant exit count doesn't make sense!"); 1104 1105 assert(!L.contains(LatchExit) && "expected an exit block!"); 1106 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1107 Value *IndVarStartV = 1108 SCEVExpander(SE, DL, "irce") 1109 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 1110 IndVarStartV->setName("indvar.start"); 1111 1112 LoopStructure Result; 1113 1114 Result.Tag = "main"; 1115 Result.Header = Header; 1116 Result.Latch = Latch; 1117 Result.LatchBr = LatchBr; 1118 Result.LatchExit = LatchExit; 1119 Result.LatchBrExitIdx = LatchBrExitIdx; 1120 Result.IndVarStart = IndVarStartV; 1121 Result.IndVarStep = StepCI; 1122 Result.IndVarBase = LeftValue; 1123 Result.IndVarIncreasing = IsIncreasing; 1124 Result.LoopExitAt = RightValue; 1125 Result.IsSignedPredicate = IsSignedPredicate; 1126 1127 FailureReason = nullptr; 1128 1129 return Result; 1130 } 1131 1132 Optional<LoopConstrainer::SubRanges> 1133 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1134 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1135 1136 if (Range.getType() != Ty) 1137 return None; 1138 1139 LoopConstrainer::SubRanges Result; 1140 1141 // I think we can be more aggressive here and make this nuw / nsw if the 1142 // addition that feeds into the icmp for the latch's terminating branch is nuw 1143 // / nsw. In any case, a wrapping 2's complement addition is safe. 1144 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 1145 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 1146 1147 bool Increasing = MainLoopStructure.IndVarIncreasing; 1148 1149 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1150 // [Smallest, GreatestSeen] is the range of values the induction variable 1151 // takes. 1152 1153 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1154 1155 const SCEV *One = SE.getOne(Ty); 1156 if (Increasing) { 1157 Smallest = Start; 1158 Greatest = End; 1159 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1160 GreatestSeen = SE.getMinusSCEV(End, One); 1161 } else { 1162 // These two computations may sign-overflow. Here is why that is okay: 1163 // 1164 // We know that the induction variable does not sign-overflow on any 1165 // iteration except the last one, and it starts at `Start` and ends at 1166 // `End`, decrementing by one every time. 1167 // 1168 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1169 // induction variable is decreasing we know that that the smallest value 1170 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1171 // 1172 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1173 // that case, `Clamp` will always return `Smallest` and 1174 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1175 // will be an empty range. Returning an empty range is always safe. 1176 1177 Smallest = SE.getAddExpr(End, One); 1178 Greatest = SE.getAddExpr(Start, One); 1179 GreatestSeen = Start; 1180 } 1181 1182 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1183 return IsSignedPredicate 1184 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1185 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1186 }; 1187 1188 // In some cases we can prove that we don't need a pre or post loop. 1189 ICmpInst::Predicate PredLE = 1190 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1191 ICmpInst::Predicate PredLT = 1192 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1193 1194 bool ProvablyNoPreloop = 1195 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1196 if (!ProvablyNoPreloop) 1197 Result.LowLimit = Clamp(Range.getBegin()); 1198 1199 bool ProvablyNoPostLoop = 1200 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1201 if (!ProvablyNoPostLoop) 1202 Result.HighLimit = Clamp(Range.getEnd()); 1203 1204 return Result; 1205 } 1206 1207 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1208 const char *Tag) const { 1209 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1210 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1211 Result.Blocks.push_back(Clone); 1212 Result.Map[BB] = Clone; 1213 } 1214 1215 auto GetClonedValue = [&Result](Value *V) { 1216 assert(V && "null values not in domain!"); 1217 auto It = Result.Map.find(V); 1218 if (It == Result.Map.end()) 1219 return V; 1220 return static_cast<Value *>(It->second); 1221 }; 1222 1223 auto *ClonedLatch = 1224 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1225 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1226 MDNode::get(Ctx, {})); 1227 1228 Result.Structure = MainLoopStructure.map(GetClonedValue); 1229 Result.Structure.Tag = Tag; 1230 1231 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1232 BasicBlock *ClonedBB = Result.Blocks[i]; 1233 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1234 1235 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1236 1237 for (Instruction &I : *ClonedBB) 1238 RemapInstruction(&I, Result.Map, 1239 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1240 1241 // Exit blocks will now have one more predecessor and their PHI nodes need 1242 // to be edited to reflect that. No phi nodes need to be introduced because 1243 // the loop is in LCSSA. 1244 1245 for (auto *SBB : successors(OriginalBB)) { 1246 if (OriginalLoop.contains(SBB)) 1247 continue; // not an exit block 1248 1249 for (PHINode &PN : SBB->phis()) { 1250 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); 1251 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1252 } 1253 } 1254 } 1255 } 1256 1257 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1258 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1259 BasicBlock *ContinuationBlock) const { 1260 // We start with a loop with a single latch: 1261 // 1262 // +--------------------+ 1263 // | | 1264 // | preheader | 1265 // | | 1266 // +--------+-----------+ 1267 // | ----------------\ 1268 // | / | 1269 // +--------v----v------+ | 1270 // | | | 1271 // | header | | 1272 // | | | 1273 // +--------------------+ | 1274 // | 1275 // ..... | 1276 // | 1277 // +--------------------+ | 1278 // | | | 1279 // | latch >----------/ 1280 // | | 1281 // +-------v------------+ 1282 // | 1283 // | 1284 // | +--------------------+ 1285 // | | | 1286 // +---> original exit | 1287 // | | 1288 // +--------------------+ 1289 // 1290 // We change the control flow to look like 1291 // 1292 // 1293 // +--------------------+ 1294 // | | 1295 // | preheader >-------------------------+ 1296 // | | | 1297 // +--------v-----------+ | 1298 // | /-------------+ | 1299 // | / | | 1300 // +--------v--v--------+ | | 1301 // | | | | 1302 // | header | | +--------+ | 1303 // | | | | | | 1304 // +--------------------+ | | +-----v-----v-----------+ 1305 // | | | | 1306 // | | | .pseudo.exit | 1307 // | | | | 1308 // | | +-----------v-----------+ 1309 // | | | 1310 // ..... | | | 1311 // | | +--------v-------------+ 1312 // +--------------------+ | | | | 1313 // | | | | | ContinuationBlock | 1314 // | latch >------+ | | | 1315 // | | | +----------------------+ 1316 // +---------v----------+ | 1317 // | | 1318 // | | 1319 // | +---------------^-----+ 1320 // | | | 1321 // +-----> .exit.selector | 1322 // | | 1323 // +----------v----------+ 1324 // | 1325 // +--------------------+ | 1326 // | | | 1327 // | original exit <----+ 1328 // | | 1329 // +--------------------+ 1330 1331 RewrittenRangeInfo RRI; 1332 1333 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1334 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1335 &F, BBInsertLocation); 1336 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1337 BBInsertLocation); 1338 1339 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1340 bool Increasing = LS.IndVarIncreasing; 1341 bool IsSignedPredicate = LS.IsSignedPredicate; 1342 1343 IRBuilder<> B(PreheaderJump); 1344 1345 // EnterLoopCond - is it okay to start executing this `LS'? 1346 Value *EnterLoopCond = nullptr; 1347 if (Increasing) 1348 EnterLoopCond = IsSignedPredicate 1349 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1350 : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt); 1351 else 1352 EnterLoopCond = IsSignedPredicate 1353 ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt) 1354 : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt); 1355 1356 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1357 PreheaderJump->eraseFromParent(); 1358 1359 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1360 B.SetInsertPoint(LS.LatchBr); 1361 Value *TakeBackedgeLoopCond = nullptr; 1362 if (Increasing) 1363 TakeBackedgeLoopCond = IsSignedPredicate 1364 ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt) 1365 : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt); 1366 else 1367 TakeBackedgeLoopCond = IsSignedPredicate 1368 ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt) 1369 : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt); 1370 Value *CondForBranch = LS.LatchBrExitIdx == 1 1371 ? TakeBackedgeLoopCond 1372 : B.CreateNot(TakeBackedgeLoopCond); 1373 1374 LS.LatchBr->setCondition(CondForBranch); 1375 1376 B.SetInsertPoint(RRI.ExitSelector); 1377 1378 // IterationsLeft - are there any more iterations left, given the original 1379 // upper bound on the induction variable? If not, we branch to the "real" 1380 // exit. 1381 Value *IterationsLeft = nullptr; 1382 if (Increasing) 1383 IterationsLeft = IsSignedPredicate 1384 ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt) 1385 : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt); 1386 else 1387 IterationsLeft = IsSignedPredicate 1388 ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt) 1389 : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt); 1390 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1391 1392 BranchInst *BranchToContinuation = 1393 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1394 1395 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1396 // each of the PHI nodes in the loop header. This feeds into the initial 1397 // value of the same PHI nodes if/when we continue execution. 1398 for (PHINode &PN : LS.Header->phis()) { 1399 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", 1400 BranchToContinuation); 1401 1402 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); 1403 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), 1404 RRI.ExitSelector); 1405 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1406 } 1407 1408 RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end", 1409 BranchToContinuation); 1410 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1411 RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector); 1412 1413 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1414 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1415 for (PHINode &PN : LS.LatchExit->phis()) 1416 replacePHIBlock(&PN, LS.Latch, RRI.ExitSelector); 1417 1418 return RRI; 1419 } 1420 1421 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1422 LoopStructure &LS, BasicBlock *ContinuationBlock, 1423 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1424 unsigned PHIIndex = 0; 1425 for (PHINode &PN : LS.Header->phis()) 1426 for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) 1427 if (PN.getIncomingBlock(i) == ContinuationBlock) 1428 PN.setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1429 1430 LS.IndVarStart = RRI.IndVarEnd; 1431 } 1432 1433 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1434 BasicBlock *OldPreheader, 1435 const char *Tag) const { 1436 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1437 BranchInst::Create(LS.Header, Preheader); 1438 1439 for (PHINode &PN : LS.Header->phis()) 1440 for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) 1441 replacePHIBlock(&PN, OldPreheader, Preheader); 1442 1443 return Preheader; 1444 } 1445 1446 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1447 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1448 if (!ParentLoop) 1449 return; 1450 1451 for (BasicBlock *BB : BBs) 1452 ParentLoop->addBasicBlockToLoop(BB, LI); 1453 } 1454 1455 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1456 ValueToValueMapTy &VM, 1457 bool IsSubloop) { 1458 Loop &New = *LI.AllocateLoop(); 1459 if (Parent) 1460 Parent->addChildLoop(&New); 1461 else 1462 LI.addTopLevelLoop(&New); 1463 LPMAddNewLoop(&New, IsSubloop); 1464 1465 // Add all of the blocks in Original to the new loop. 1466 for (auto *BB : Original->blocks()) 1467 if (LI.getLoopFor(BB) == Original) 1468 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1469 1470 // Add all of the subloops to the new loop. 1471 for (Loop *SubLoop : *Original) 1472 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true); 1473 1474 return &New; 1475 } 1476 1477 bool LoopConstrainer::run() { 1478 BasicBlock *Preheader = nullptr; 1479 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1480 Preheader = OriginalLoop.getLoopPreheader(); 1481 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1482 "preconditions!"); 1483 1484 OriginalPreheader = Preheader; 1485 MainLoopPreheader = Preheader; 1486 1487 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1488 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1489 if (!MaybeSR.hasValue()) { 1490 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1491 return false; 1492 } 1493 1494 SubRanges SR = MaybeSR.getValue(); 1495 bool Increasing = MainLoopStructure.IndVarIncreasing; 1496 IntegerType *IVTy = 1497 cast<IntegerType>(MainLoopStructure.IndVarBase->getType()); 1498 1499 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1500 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1501 1502 // It would have been better to make `PreLoop' and `PostLoop' 1503 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1504 // constructor. 1505 ClonedLoop PreLoop, PostLoop; 1506 bool NeedsPreLoop = 1507 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1508 bool NeedsPostLoop = 1509 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1510 1511 Value *ExitPreLoopAt = nullptr; 1512 Value *ExitMainLoopAt = nullptr; 1513 const SCEVConstant *MinusOneS = 1514 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1515 1516 if (NeedsPreLoop) { 1517 const SCEV *ExitPreLoopAtSCEV = nullptr; 1518 1519 if (Increasing) 1520 ExitPreLoopAtSCEV = *SR.LowLimit; 1521 else { 1522 if (CannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE, 1523 IsSignedPredicate)) 1524 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1525 else { 1526 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1527 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1528 << "\n"); 1529 return false; 1530 } 1531 } 1532 1533 if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) { 1534 DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1535 << " preloop exit limit " << *ExitPreLoopAtSCEV 1536 << " at block " << InsertPt->getParent()->getName() << "\n"); 1537 return false; 1538 } 1539 1540 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1541 ExitPreLoopAt->setName("exit.preloop.at"); 1542 } 1543 1544 if (NeedsPostLoop) { 1545 const SCEV *ExitMainLoopAtSCEV = nullptr; 1546 1547 if (Increasing) 1548 ExitMainLoopAtSCEV = *SR.HighLimit; 1549 else { 1550 if (CannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE, 1551 IsSignedPredicate)) 1552 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1553 else { 1554 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1555 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1556 << "\n"); 1557 return false; 1558 } 1559 } 1560 1561 if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) { 1562 DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1563 << " main loop exit limit " << *ExitMainLoopAtSCEV 1564 << " at block " << InsertPt->getParent()->getName() << "\n"); 1565 return false; 1566 } 1567 1568 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1569 ExitMainLoopAt->setName("exit.mainloop.at"); 1570 } 1571 1572 // We clone these ahead of time so that we don't have to deal with changing 1573 // and temporarily invalid IR as we transform the loops. 1574 if (NeedsPreLoop) 1575 cloneLoop(PreLoop, "preloop"); 1576 if (NeedsPostLoop) 1577 cloneLoop(PostLoop, "postloop"); 1578 1579 RewrittenRangeInfo PreLoopRRI; 1580 1581 if (NeedsPreLoop) { 1582 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1583 PreLoop.Structure.Header); 1584 1585 MainLoopPreheader = 1586 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1587 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1588 ExitPreLoopAt, MainLoopPreheader); 1589 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1590 PreLoopRRI); 1591 } 1592 1593 BasicBlock *PostLoopPreheader = nullptr; 1594 RewrittenRangeInfo PostLoopRRI; 1595 1596 if (NeedsPostLoop) { 1597 PostLoopPreheader = 1598 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1599 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1600 ExitMainLoopAt, PostLoopPreheader); 1601 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1602 PostLoopRRI); 1603 } 1604 1605 BasicBlock *NewMainLoopPreheader = 1606 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1607 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1608 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1609 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1610 1611 // Some of the above may be nullptr, filter them out before passing to 1612 // addToParentLoopIfNeeded. 1613 auto NewBlocksEnd = 1614 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1615 1616 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1617 1618 DT.recalculate(F); 1619 1620 // We need to first add all the pre and post loop blocks into the loop 1621 // structures (as part of createClonedLoopStructure), and then update the 1622 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1623 // LI when LoopSimplifyForm is generated. 1624 Loop *PreL = nullptr, *PostL = nullptr; 1625 if (!PreLoop.Blocks.empty()) { 1626 PreL = createClonedLoopStructure(&OriginalLoop, 1627 OriginalLoop.getParentLoop(), PreLoop.Map, 1628 /* IsSubLoop */ false); 1629 } 1630 1631 if (!PostLoop.Blocks.empty()) { 1632 PostL = 1633 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(), 1634 PostLoop.Map, /* IsSubLoop */ false); 1635 } 1636 1637 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1638 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1639 formLCSSARecursively(*L, DT, &LI, &SE); 1640 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1641 // Pre/post loops are slow paths, we do not need to perform any loop 1642 // optimizations on them. 1643 if (!IsOriginalLoop) 1644 DisableAllLoopOptsOnLoop(*L); 1645 }; 1646 if (PreL) 1647 CanonicalizeLoop(PreL, false); 1648 if (PostL) 1649 CanonicalizeLoop(PostL, false); 1650 CanonicalizeLoop(&OriginalLoop, true); 1651 1652 return true; 1653 } 1654 1655 /// Computes and returns a range of values for the induction variable (IndVar) 1656 /// in which the range check can be safely elided. If it cannot compute such a 1657 /// range, returns None. 1658 Optional<InductiveRangeCheck::Range> 1659 InductiveRangeCheck::computeSafeIterationSpace( 1660 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, 1661 bool IsLatchSigned) const { 1662 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1663 // variable, that may or may not exist as a real llvm::Value in the loop) and 1664 // this inductive range check is a range check on the "C + D * I" ("C" is 1665 // getBegin() and "D" is getStep()). We rewrite the value being range 1666 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1667 // 1668 // The actual inequalities we solve are of the form 1669 // 1670 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1671 // 1672 // Here L stands for upper limit of the safe iteration space. 1673 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid 1674 // overflows when calculating (0 - M) and (L - M) we, depending on type of 1675 // IV's iteration space, limit the calculations by borders of the iteration 1676 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. 1677 // If we figured out that "anything greater than (-M) is safe", we strengthen 1678 // this to "everything greater than 0 is safe", assuming that values between 1679 // -M and 0 just do not exist in unsigned iteration space, and we don't want 1680 // to deal with overflown values. 1681 1682 if (!IndVar->isAffine()) 1683 return None; 1684 1685 const SCEV *A = IndVar->getStart(); 1686 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1687 if (!B) 1688 return None; 1689 assert(!B->isZero() && "Recurrence with zero step?"); 1690 1691 const SCEV *C = getBegin(); 1692 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep()); 1693 if (D != B) 1694 return None; 1695 1696 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1697 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1698 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1699 1700 // Subtract Y from X so that it does not go through border of the IV 1701 // iteration space. Mathematically, it is equivalent to: 1702 // 1703 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] 1704 // 1705 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to 1706 // any width of bit grid). But after we take min/max, the result is 1707 // guaranteed to be within [INT_MIN, INT_MAX]. 1708 // 1709 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min 1710 // values, depending on type of latch condition that defines IV iteration 1711 // space. 1712 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) { 1713 if (IsLatchSigned) { 1714 // X is a number from signed range, Y is interpreted as signed. 1715 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only 1716 // thing we should care about is that we didn't cross SINT_MAX. 1717 // So, if Y is positive, we subtract Y safely. 1718 // Rule 1: Y > 0 ---> Y. 1719 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely. 1720 // Rule 2: Y >=s (X - SINT_MAX) ---> Y. 1721 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX). 1722 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX). 1723 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases. 1724 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); 1725 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), 1726 SCEV::FlagNSW); 1727 } else 1728 // X is a number from unsigned range, Y is interpreted as signed. 1729 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only 1730 // thing we should care about is that we didn't cross zero. 1731 // So, if Y is negative, we subtract Y safely. 1732 // Rule 1: Y <s 0 ---> Y. 1733 // If 0 <= Y <= X, we subtract Y safely. 1734 // Rule 2: Y <=s X ---> Y. 1735 // If 0 <= X < Y, we should stop at 0 and can only subtract X. 1736 // Rule 3: Y >s X ---> X. 1737 // It gives us smin(X, Y) to subtract in all cases. 1738 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); 1739 }; 1740 const SCEV *M = SE.getMinusSCEV(C, A); 1741 const SCEV *Zero = SE.getZero(M->getType()); 1742 const SCEV *Begin = ClampedSubtract(Zero, M); 1743 const SCEV *End = ClampedSubtract(getEnd(), M); 1744 return InductiveRangeCheck::Range(Begin, End); 1745 } 1746 1747 static Optional<InductiveRangeCheck::Range> 1748 IntersectSignedRange(ScalarEvolution &SE, 1749 const Optional<InductiveRangeCheck::Range> &R1, 1750 const InductiveRangeCheck::Range &R2) { 1751 if (R2.isEmpty(SE, /* IsSigned */ true)) 1752 return None; 1753 if (!R1.hasValue()) 1754 return R2; 1755 auto &R1Value = R1.getValue(); 1756 // We never return empty ranges from this function, and R1 is supposed to be 1757 // a result of intersection. Thus, R1 is never empty. 1758 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && 1759 "We should never have empty R1!"); 1760 1761 // TODO: we could widen the smaller range and have this work; but for now we 1762 // bail out to keep things simple. 1763 if (R1Value.getType() != R2.getType()) 1764 return None; 1765 1766 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1767 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1768 1769 // If the resulting range is empty, just return None. 1770 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1771 if (Ret.isEmpty(SE, /* IsSigned */ true)) 1772 return None; 1773 return Ret; 1774 } 1775 1776 static Optional<InductiveRangeCheck::Range> 1777 IntersectUnsignedRange(ScalarEvolution &SE, 1778 const Optional<InductiveRangeCheck::Range> &R1, 1779 const InductiveRangeCheck::Range &R2) { 1780 if (R2.isEmpty(SE, /* IsSigned */ false)) 1781 return None; 1782 if (!R1.hasValue()) 1783 return R2; 1784 auto &R1Value = R1.getValue(); 1785 // We never return empty ranges from this function, and R1 is supposed to be 1786 // a result of intersection. Thus, R1 is never empty. 1787 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && 1788 "We should never have empty R1!"); 1789 1790 // TODO: we could widen the smaller range and have this work; but for now we 1791 // bail out to keep things simple. 1792 if (R1Value.getType() != R2.getType()) 1793 return None; 1794 1795 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); 1796 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); 1797 1798 // If the resulting range is empty, just return None. 1799 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1800 if (Ret.isEmpty(SE, /* IsSigned */ false)) 1801 return None; 1802 return Ret; 1803 } 1804 1805 PreservedAnalyses IRCEPass::run(Loop &L, LoopAnalysisManager &AM, 1806 LoopStandardAnalysisResults &AR, 1807 LPMUpdater &U) { 1808 Function *F = L.getHeader()->getParent(); 1809 const auto &FAM = 1810 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1811 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 1812 InductiveRangeCheckElimination IRCE(AR.SE, BPI, AR.DT, AR.LI); 1813 auto LPMAddNewLoop = [&U](Loop *NL, bool IsSubloop) { 1814 if (!IsSubloop) 1815 U.addSiblingLoops(NL); 1816 }; 1817 bool Changed = IRCE.run(&L, LPMAddNewLoop); 1818 if (!Changed) 1819 return PreservedAnalyses::all(); 1820 1821 return getLoopPassPreservedAnalyses(); 1822 } 1823 1824 bool IRCELegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 1825 if (skipLoop(L)) 1826 return false; 1827 1828 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1829 BranchProbabilityInfo &BPI = 1830 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1831 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1832 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1833 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI); 1834 auto LPMAddNewLoop = [&LPM](Loop *NL, bool /* IsSubLoop */) { 1835 LPM.addLoop(*NL); 1836 }; 1837 return IRCE.run(L, LPMAddNewLoop); 1838 } 1839 1840 bool InductiveRangeCheckElimination::run( 1841 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) { 1842 if (L->getBlocks().size() >= LoopSizeCutoff) { 1843 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n"); 1844 return false; 1845 } 1846 1847 BasicBlock *Preheader = L->getLoopPreheader(); 1848 if (!Preheader) { 1849 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1850 return false; 1851 } 1852 1853 LLVMContext &Context = Preheader->getContext(); 1854 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1855 1856 for (auto BBI : L->getBlocks()) 1857 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1858 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1859 RangeChecks); 1860 1861 if (RangeChecks.empty()) 1862 return false; 1863 1864 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1865 OS << "irce: looking at loop "; L->print(OS); 1866 OS << "irce: loop has " << RangeChecks.size() 1867 << " inductive range checks: \n"; 1868 for (InductiveRangeCheck &IRC : RangeChecks) 1869 IRC.print(OS); 1870 }; 1871 1872 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1873 1874 if (PrintRangeChecks) 1875 PrintRecognizedRangeChecks(errs()); 1876 1877 const char *FailureReason = nullptr; 1878 Optional<LoopStructure> MaybeLoopStructure = 1879 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1880 if (!MaybeLoopStructure.hasValue()) { 1881 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1882 << "\n";); 1883 return false; 1884 } 1885 LoopStructure LS = MaybeLoopStructure.getValue(); 1886 const SCEVAddRecExpr *IndVar = 1887 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1888 1889 Optional<InductiveRangeCheck::Range> SafeIterRange; 1890 Instruction *ExprInsertPt = Preheader->getTerminator(); 1891 1892 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1893 // Basing on the type of latch predicate, we interpret the IV iteration range 1894 // as signed or unsigned range. We use different min/max functions (signed or 1895 // unsigned) when intersecting this range with safe iteration ranges implied 1896 // by range checks. 1897 auto IntersectRange = 1898 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; 1899 1900 IRBuilder<> B(ExprInsertPt); 1901 for (InductiveRangeCheck &IRC : RangeChecks) { 1902 auto Result = IRC.computeSafeIterationSpace(SE, IndVar, 1903 LS.IsSignedPredicate); 1904 if (Result.hasValue()) { 1905 auto MaybeSafeIterRange = 1906 IntersectRange(SE, SafeIterRange, Result.getValue()); 1907 if (MaybeSafeIterRange.hasValue()) { 1908 assert( 1909 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) && 1910 "We should never return empty ranges!"); 1911 RangeChecksToEliminate.push_back(IRC); 1912 SafeIterRange = MaybeSafeIterRange.getValue(); 1913 } 1914 } 1915 } 1916 1917 if (!SafeIterRange.hasValue()) 1918 return false; 1919 1920 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, 1921 SafeIterRange.getValue()); 1922 bool Changed = LC.run(); 1923 1924 if (Changed) { 1925 auto PrintConstrainedLoopInfo = [L]() { 1926 dbgs() << "irce: in function "; 1927 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1928 dbgs() << "constrained "; 1929 L->print(dbgs()); 1930 }; 1931 1932 DEBUG(PrintConstrainedLoopInfo()); 1933 1934 if (PrintChangedLoops) 1935 PrintConstrainedLoopInfo(); 1936 1937 // Optimize away the now-redundant range checks. 1938 1939 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1940 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1941 ? ConstantInt::getTrue(Context) 1942 : ConstantInt::getFalse(Context); 1943 IRC.getCheckUse()->set(FoldedRangeCheck); 1944 } 1945 } 1946 1947 return Changed; 1948 } 1949 1950 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1951 return new IRCELegacyPass(); 1952 } 1953