1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/ScalarEvolution.h"
49 #include "llvm/Analysis/ScalarEvolutionExpander.h"
50 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Cloning.h"
62 #include "llvm/Transforms/Utils/LoopSimplify.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 
65 using namespace llvm;
66 
67 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
68                                         cl::init(64));
69 
70 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
71                                        cl::init(false));
72 
73 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
74                                       cl::init(false));
75 
76 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
77                                           cl::Hidden, cl::init(10));
78 
79 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
80                                              cl::Hidden, cl::init(false));
81 
82 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
83                                                  cl::Hidden, cl::init(false));
84 
85 static const char *ClonedLoopTag = "irce.loop.clone";
86 
87 #define DEBUG_TYPE "irce"
88 
89 namespace {
90 
91 /// An inductive range check is conditional branch in a loop with
92 ///
93 ///  1. a very cold successor (i.e. the branch jumps to that successor very
94 ///     rarely)
95 ///
96 ///  and
97 ///
98 ///  2. a condition that is provably true for some contiguous range of values
99 ///     taken by the containing loop's induction variable.
100 ///
101 class InductiveRangeCheck {
102   // Classifies a range check
103   enum RangeCheckKind : unsigned {
104     // Range check of the form "0 <= I".
105     RANGE_CHECK_LOWER = 1,
106 
107     // Range check of the form "I < L" where L is known positive.
108     RANGE_CHECK_UPPER = 2,
109 
110     // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
111     // conditions.
112     RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
113 
114     // Unrecognized range check condition.
115     RANGE_CHECK_UNKNOWN = (unsigned)-1
116   };
117 
118   static StringRef rangeCheckKindToStr(RangeCheckKind);
119 
120   const SCEV *Offset = nullptr;
121   const SCEV *Scale = nullptr;
122   Value *Length = nullptr;
123   Use *CheckUse = nullptr;
124   RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
125 
126   static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
127                                             ScalarEvolution &SE, Value *&Index,
128                                             Value *&Length);
129 
130   static void
131   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
132                              SmallVectorImpl<InductiveRangeCheck> &Checks,
133                              SmallPtrSetImpl<Value *> &Visited);
134 
135 public:
136   const SCEV *getOffset() const { return Offset; }
137   const SCEV *getScale() const { return Scale; }
138   Value *getLength() const { return Length; }
139 
140   void print(raw_ostream &OS) const {
141     OS << "InductiveRangeCheck:\n";
142     OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
143     OS << "  Offset: ";
144     Offset->print(OS);
145     OS << "  Scale: ";
146     Scale->print(OS);
147     OS << "  Length: ";
148     if (Length)
149       Length->print(OS);
150     else
151       OS << "(null)";
152     OS << "\n  CheckUse: ";
153     getCheckUse()->getUser()->print(OS);
154     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
155   }
156 
157   LLVM_DUMP_METHOD
158   void dump() {
159     print(dbgs());
160   }
161 
162   Use *getCheckUse() const { return CheckUse; }
163 
164   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
165   /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
166 
167   class Range {
168     const SCEV *Begin;
169     const SCEV *End;
170 
171   public:
172     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
173       assert(Begin->getType() == End->getType() && "ill-typed range!");
174     }
175 
176     Type *getType() const { return Begin->getType(); }
177     const SCEV *getBegin() const { return Begin; }
178     const SCEV *getEnd() const { return End; }
179     bool isEmpty() const { return Begin == End; }
180   };
181 
182   /// This is the value the condition of the branch needs to evaluate to for the
183   /// branch to take the hot successor (see (1) above).
184   bool getPassingDirection() { return true; }
185 
186   /// Computes a range for the induction variable (IndVar) in which the range
187   /// check is redundant and can be constant-folded away.  The induction
188   /// variable is not required to be the canonical {0,+,1} induction variable.
189   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
190                                             const SCEVAddRecExpr *IndVar) const;
191 
192   /// Parse out a set of inductive range checks from \p BI and append them to \p
193   /// Checks.
194   ///
195   /// NB! There may be conditions feeding into \p BI that aren't inductive range
196   /// checks, and hence don't end up in \p Checks.
197   static void
198   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
199                                BranchProbabilityInfo &BPI,
200                                SmallVectorImpl<InductiveRangeCheck> &Checks);
201 };
202 
203 class InductiveRangeCheckElimination : public LoopPass {
204 public:
205   static char ID;
206   InductiveRangeCheckElimination() : LoopPass(ID) {
207     initializeInductiveRangeCheckEliminationPass(
208         *PassRegistry::getPassRegistry());
209   }
210 
211   void getAnalysisUsage(AnalysisUsage &AU) const override {
212     AU.addRequired<BranchProbabilityInfoWrapperPass>();
213     getLoopAnalysisUsage(AU);
214   }
215 
216   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
217 };
218 
219 char InductiveRangeCheckElimination::ID = 0;
220 }
221 
222 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
223                       "Inductive range check elimination", false, false)
224 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
225 INITIALIZE_PASS_DEPENDENCY(LoopPass)
226 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
227                     "Inductive range check elimination", false, false)
228 
229 StringRef InductiveRangeCheck::rangeCheckKindToStr(
230     InductiveRangeCheck::RangeCheckKind RCK) {
231   switch (RCK) {
232   case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
233     return "RANGE_CHECK_UNKNOWN";
234 
235   case InductiveRangeCheck::RANGE_CHECK_UPPER:
236     return "RANGE_CHECK_UPPER";
237 
238   case InductiveRangeCheck::RANGE_CHECK_LOWER:
239     return "RANGE_CHECK_LOWER";
240 
241   case InductiveRangeCheck::RANGE_CHECK_BOTH:
242     return "RANGE_CHECK_BOTH";
243   }
244 
245   llvm_unreachable("unknown range check type!");
246 }
247 
248 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
249 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
250 /// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
251 /// range checked, and set `Length` to the upper limit `Index` is being range
252 /// checked with if (and only if) the range check type is stronger or equal to
253 /// RANGE_CHECK_UPPER.
254 ///
255 InductiveRangeCheck::RangeCheckKind
256 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
257                                          ScalarEvolution &SE, Value *&Index,
258                                          Value *&Length) {
259 
260   auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
261     const SCEV *S = SE.getSCEV(V);
262     if (isa<SCEVCouldNotCompute>(S))
263       return false;
264 
265     return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
266            SE.isKnownNonNegative(S);
267   };
268 
269   using namespace llvm::PatternMatch;
270 
271   ICmpInst::Predicate Pred = ICI->getPredicate();
272   Value *LHS = ICI->getOperand(0);
273   Value *RHS = ICI->getOperand(1);
274 
275   switch (Pred) {
276   default:
277     return RANGE_CHECK_UNKNOWN;
278 
279   case ICmpInst::ICMP_SLE:
280     std::swap(LHS, RHS);
281     LLVM_FALLTHROUGH;
282   case ICmpInst::ICMP_SGE:
283     if (match(RHS, m_ConstantInt<0>())) {
284       Index = LHS;
285       return RANGE_CHECK_LOWER;
286     }
287     return RANGE_CHECK_UNKNOWN;
288 
289   case ICmpInst::ICMP_SLT:
290     std::swap(LHS, RHS);
291     LLVM_FALLTHROUGH;
292   case ICmpInst::ICMP_SGT:
293     if (match(RHS, m_ConstantInt<-1>())) {
294       Index = LHS;
295       return RANGE_CHECK_LOWER;
296     }
297 
298     if (IsNonNegativeAndNotLoopVarying(LHS)) {
299       Index = RHS;
300       Length = LHS;
301       return RANGE_CHECK_UPPER;
302     }
303     return RANGE_CHECK_UNKNOWN;
304 
305   case ICmpInst::ICMP_ULT:
306     std::swap(LHS, RHS);
307     LLVM_FALLTHROUGH;
308   case ICmpInst::ICMP_UGT:
309     if (IsNonNegativeAndNotLoopVarying(LHS)) {
310       Index = RHS;
311       Length = LHS;
312       return RANGE_CHECK_BOTH;
313     }
314     return RANGE_CHECK_UNKNOWN;
315   }
316 
317   llvm_unreachable("default clause returns!");
318 }
319 
320 void InductiveRangeCheck::extractRangeChecksFromCond(
321     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
322     SmallVectorImpl<InductiveRangeCheck> &Checks,
323     SmallPtrSetImpl<Value *> &Visited) {
324   using namespace llvm::PatternMatch;
325 
326   Value *Condition = ConditionUse.get();
327   if (!Visited.insert(Condition).second)
328     return;
329 
330   if (match(Condition, m_And(m_Value(), m_Value()))) {
331     SmallVector<InductiveRangeCheck, 8> SubChecks;
332     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
333                                SubChecks, Visited);
334     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
335                                SubChecks, Visited);
336 
337     if (SubChecks.size() == 2) {
338       // Handle a special case where we know how to merge two checks separately
339       // checking the upper and lower bounds into a full range check.
340       const auto &RChkA = SubChecks[0];
341       const auto &RChkB = SubChecks[1];
342       if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
343           RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
344 
345         // If RChkA.Kind == RChkB.Kind then we just found two identical checks.
346         // But if one of them is a RANGE_CHECK_LOWER and the other is a
347         // RANGE_CHECK_UPPER (only possibility if they're different) then
348         // together they form a RANGE_CHECK_BOTH.
349         SubChecks[0].Kind =
350             (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
351         SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
352         SubChecks[0].CheckUse = &ConditionUse;
353 
354         // We updated one of the checks in place, now erase the other.
355         SubChecks.pop_back();
356       }
357     }
358 
359     Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
360     return;
361   }
362 
363   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
364   if (!ICI)
365     return;
366 
367   Value *Length = nullptr, *Index;
368   auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
369   if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
370     return;
371 
372   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
373   bool IsAffineIndex =
374       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
375 
376   if (!IsAffineIndex)
377     return;
378 
379   InductiveRangeCheck IRC;
380   IRC.Length = Length;
381   IRC.Offset = IndexAddRec->getStart();
382   IRC.Scale = IndexAddRec->getStepRecurrence(SE);
383   IRC.CheckUse = &ConditionUse;
384   IRC.Kind = RCKind;
385   Checks.push_back(IRC);
386 }
387 
388 void InductiveRangeCheck::extractRangeChecksFromBranch(
389     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
390     SmallVectorImpl<InductiveRangeCheck> &Checks) {
391 
392   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
393     return;
394 
395   BranchProbability LikelyTaken(15, 16);
396 
397   if (!SkipProfitabilityChecks &&
398       BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
399     return;
400 
401   SmallPtrSet<Value *, 8> Visited;
402   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
403                                                   Checks, Visited);
404 }
405 
406 // Add metadata to the loop L to disable loop optimizations. Callers need to
407 // confirm that optimizing loop L is not beneficial.
408 static void DisableAllLoopOptsOnLoop(Loop &L) {
409   // We do not care about any existing loopID related metadata for L, since we
410   // are setting all loop metadata to false.
411   LLVMContext &Context = L.getHeader()->getContext();
412   // Reserve first location for self reference to the LoopID metadata node.
413   MDNode *Dummy = MDNode::get(Context, {});
414   MDNode *DisableUnroll = MDNode::get(
415       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
416   Metadata *FalseVal =
417       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
418   MDNode *DisableVectorize = MDNode::get(
419       Context,
420       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
421   MDNode *DisableLICMVersioning = MDNode::get(
422       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
423   MDNode *DisableDistribution= MDNode::get(
424       Context,
425       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
426   MDNode *NewLoopID =
427       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
428                             DisableLICMVersioning, DisableDistribution});
429   // Set operand 0 to refer to the loop id itself.
430   NewLoopID->replaceOperandWith(0, NewLoopID);
431   L.setLoopID(NewLoopID);
432 }
433 
434 namespace {
435 
436 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
437 // except that it is more lightweight and can track the state of a loop through
438 // changing and potentially invalid IR.  This structure also formalizes the
439 // kinds of loops we can deal with -- ones that have a single latch that is also
440 // an exiting block *and* have a canonical induction variable.
441 struct LoopStructure {
442   const char *Tag;
443 
444   BasicBlock *Header;
445   BasicBlock *Latch;
446 
447   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
448   // successor is `LatchExit', the exit block of the loop.
449   BranchInst *LatchBr;
450   BasicBlock *LatchExit;
451   unsigned LatchBrExitIdx;
452 
453   // The loop represented by this instance of LoopStructure is semantically
454   // equivalent to:
455   //
456   // intN_ty inc = IndVarIncreasing ? 1 : -1;
457   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
458   //
459   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
460   //   ... body ...
461 
462   Value *IndVarBase;
463   Value *IndVarStart;
464   Value *IndVarStep;
465   Value *LoopExitAt;
466   bool IndVarIncreasing;
467   bool IsSignedPredicate;
468 
469   LoopStructure()
470       : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
471         LatchExit(nullptr), LatchBrExitIdx(-1), IndVarBase(nullptr),
472         IndVarStart(nullptr), IndVarStep(nullptr), LoopExitAt(nullptr),
473         IndVarIncreasing(false), IsSignedPredicate(true) {}
474 
475   template <typename M> LoopStructure map(M Map) const {
476     LoopStructure Result;
477     Result.Tag = Tag;
478     Result.Header = cast<BasicBlock>(Map(Header));
479     Result.Latch = cast<BasicBlock>(Map(Latch));
480     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
481     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
482     Result.LatchBrExitIdx = LatchBrExitIdx;
483     Result.IndVarBase = Map(IndVarBase);
484     Result.IndVarStart = Map(IndVarStart);
485     Result.IndVarStep = Map(IndVarStep);
486     Result.LoopExitAt = Map(LoopExitAt);
487     Result.IndVarIncreasing = IndVarIncreasing;
488     Result.IsSignedPredicate = IsSignedPredicate;
489     return Result;
490   }
491 
492   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
493                                                     BranchProbabilityInfo &BPI,
494                                                     Loop &,
495                                                     const char *&);
496 };
497 
498 /// This class is used to constrain loops to run within a given iteration space.
499 /// The algorithm this class implements is given a Loop and a range [Begin,
500 /// End).  The algorithm then tries to break out a "main loop" out of the loop
501 /// it is given in a way that the "main loop" runs with the induction variable
502 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
503 /// loops to run any remaining iterations.  The pre loop runs any iterations in
504 /// which the induction variable is < Begin, and the post loop runs any
505 /// iterations in which the induction variable is >= End.
506 ///
507 class LoopConstrainer {
508   // The representation of a clone of the original loop we started out with.
509   struct ClonedLoop {
510     // The cloned blocks
511     std::vector<BasicBlock *> Blocks;
512 
513     // `Map` maps values in the clonee into values in the cloned version
514     ValueToValueMapTy Map;
515 
516     // An instance of `LoopStructure` for the cloned loop
517     LoopStructure Structure;
518   };
519 
520   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
521   // more details on what these fields mean.
522   struct RewrittenRangeInfo {
523     BasicBlock *PseudoExit;
524     BasicBlock *ExitSelector;
525     std::vector<PHINode *> PHIValuesAtPseudoExit;
526     PHINode *IndVarEnd;
527 
528     RewrittenRangeInfo()
529         : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
530   };
531 
532   // Calculated subranges we restrict the iteration space of the main loop to.
533   // See the implementation of `calculateSubRanges' for more details on how
534   // these fields are computed.  `LowLimit` is None if there is no restriction
535   // on low end of the restricted iteration space of the main loop.  `HighLimit`
536   // is None if there is no restriction on high end of the restricted iteration
537   // space of the main loop.
538 
539   struct SubRanges {
540     Optional<const SCEV *> LowLimit;
541     Optional<const SCEV *> HighLimit;
542   };
543 
544   // A utility function that does a `replaceUsesOfWith' on the incoming block
545   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
546   // incoming block list with `ReplaceBy'.
547   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
548                               BasicBlock *ReplaceBy);
549 
550   // Compute a safe set of limits for the main loop to run in -- effectively the
551   // intersection of `Range' and the iteration space of the original loop.
552   // Return None if unable to compute the set of subranges.
553   //
554   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
555 
556   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
557   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
558   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
559   // but there is no such edge.
560   //
561   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
562 
563   // Create the appropriate loop structure needed to describe a cloned copy of
564   // `Original`.  The clone is described by `VM`.
565   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
566                                   ValueToValueMapTy &VM);
567 
568   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
569   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
570   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
571   // `OriginalHeaderCount'.
572   //
573   // If there are iterations left to execute, control is made to jump to
574   // `ContinuationBlock', otherwise they take the normal loop exit.  The
575   // returned `RewrittenRangeInfo' object is populated as follows:
576   //
577   //  .PseudoExit is a basic block that unconditionally branches to
578   //      `ContinuationBlock'.
579   //
580   //  .ExitSelector is a basic block that decides, on exit from the loop,
581   //      whether to branch to the "true" exit or to `PseudoExit'.
582   //
583   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
584   //      for each PHINode in the loop header on taking the pseudo exit.
585   //
586   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
587   // preheader because it is made to branch to the loop header only
588   // conditionally.
589   //
590   RewrittenRangeInfo
591   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
592                           Value *ExitLoopAt,
593                           BasicBlock *ContinuationBlock) const;
594 
595   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
596   // function creates a new preheader for `LS' and returns it.
597   //
598   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
599                               const char *Tag) const;
600 
601   // `ContinuationBlockAndPreheader' was the continuation block for some call to
602   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
603   // This function rewrites the PHI nodes in `LS.Header' to start with the
604   // correct value.
605   void rewriteIncomingValuesForPHIs(
606       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
607       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
608 
609   // Even though we do not preserve any passes at this time, we at least need to
610   // keep the parent loop structure consistent.  The `LPPassManager' seems to
611   // verify this after running a loop pass.  This function adds the list of
612   // blocks denoted by BBs to this loops parent loop if required.
613   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
614 
615   // Some global state.
616   Function &F;
617   LLVMContext &Ctx;
618   ScalarEvolution &SE;
619   DominatorTree &DT;
620   LPPassManager &LPM;
621   LoopInfo &LI;
622 
623   // Information about the original loop we started out with.
624   Loop &OriginalLoop;
625   const SCEV *LatchTakenCount;
626   BasicBlock *OriginalPreheader;
627 
628   // The preheader of the main loop.  This may or may not be different from
629   // `OriginalPreheader'.
630   BasicBlock *MainLoopPreheader;
631 
632   // The range we need to run the main loop in.
633   InductiveRangeCheck::Range Range;
634 
635   // The structure of the main loop (see comment at the beginning of this class
636   // for a definition)
637   LoopStructure MainLoopStructure;
638 
639 public:
640   LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM,
641                   const LoopStructure &LS, ScalarEvolution &SE,
642                   DominatorTree &DT, InductiveRangeCheck::Range R)
643       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
644         SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L),
645         LatchTakenCount(nullptr), OriginalPreheader(nullptr),
646         MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {}
647 
648   // Entry point for the algorithm.  Returns true on success.
649   bool run();
650 };
651 
652 }
653 
654 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
655                                       BasicBlock *ReplaceBy) {
656   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
657     if (PN->getIncomingBlock(i) == Block)
658       PN->setIncomingBlock(i, ReplaceBy);
659 }
660 
661 static bool CanBeMax(ScalarEvolution &SE, const SCEV *S, bool Signed) {
662   APInt Max = Signed ?
663       APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()) :
664       APInt::getMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
665   return SE.getSignedRange(S).contains(Max) &&
666          SE.getUnsignedRange(S).contains(Max);
667 }
668 
669 static bool SumCanReachMax(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2,
670                            bool Signed) {
671   // S1 < INT_MAX - S2 ===> S1 + S2 < INT_MAX.
672   assert(SE.isKnownNonNegative(S2) &&
673          "We expected the 2nd arg to be non-negative!");
674   const SCEV *Max = SE.getConstant(
675       Signed ? APInt::getSignedMaxValue(
676                    cast<IntegerType>(S1->getType())->getBitWidth())
677              : APInt::getMaxValue(
678                    cast<IntegerType>(S1->getType())->getBitWidth()));
679   const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2);
680   return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
681                               S1, CapForS1);
682 }
683 
684 static bool CanBeMin(ScalarEvolution &SE, const SCEV *S, bool Signed) {
685   APInt Min = Signed ?
686       APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()) :
687       APInt::getMinValue(cast<IntegerType>(S->getType())->getBitWidth());
688   return SE.getSignedRange(S).contains(Min) &&
689          SE.getUnsignedRange(S).contains(Min);
690 }
691 
692 static bool SumCanReachMin(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2,
693                            bool Signed) {
694   // S1 > INT_MIN - S2 ===> S1 + S2 > INT_MIN.
695   assert(SE.isKnownNonPositive(S2) &&
696          "We expected the 2nd arg to be non-positive!");
697   const SCEV *Max = SE.getConstant(
698       Signed ? APInt::getSignedMinValue(
699                    cast<IntegerType>(S1->getType())->getBitWidth())
700              : APInt::getMinValue(
701                    cast<IntegerType>(S1->getType())->getBitWidth()));
702   const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2);
703   return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT,
704                               S1, CapForS1);
705 }
706 
707 Optional<LoopStructure>
708 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
709                                   BranchProbabilityInfo &BPI,
710                                   Loop &L, const char *&FailureReason) {
711   if (!L.isLoopSimplifyForm()) {
712     FailureReason = "loop not in LoopSimplify form";
713     return None;
714   }
715 
716   BasicBlock *Latch = L.getLoopLatch();
717   assert(Latch && "Simplified loops only have one latch!");
718 
719   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
720     FailureReason = "loop has already been cloned";
721     return None;
722   }
723 
724   if (!L.isLoopExiting(Latch)) {
725     FailureReason = "no loop latch";
726     return None;
727   }
728 
729   BasicBlock *Header = L.getHeader();
730   BasicBlock *Preheader = L.getLoopPreheader();
731   if (!Preheader) {
732     FailureReason = "no preheader";
733     return None;
734   }
735 
736   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
737   if (!LatchBr || LatchBr->isUnconditional()) {
738     FailureReason = "latch terminator not conditional branch";
739     return None;
740   }
741 
742   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
743 
744   BranchProbability ExitProbability =
745     BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
746 
747   if (!SkipProfitabilityChecks &&
748       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
749     FailureReason = "short running loop, not profitable";
750     return None;
751   }
752 
753   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
754   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
755     FailureReason = "latch terminator branch not conditional on integral icmp";
756     return None;
757   }
758 
759   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
760   if (isa<SCEVCouldNotCompute>(LatchCount)) {
761     FailureReason = "could not compute latch count";
762     return None;
763   }
764 
765   ICmpInst::Predicate Pred = ICI->getPredicate();
766   Value *LeftValue = ICI->getOperand(0);
767   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
768   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
769 
770   Value *RightValue = ICI->getOperand(1);
771   const SCEV *RightSCEV = SE.getSCEV(RightValue);
772 
773   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
774   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
775     if (isa<SCEVAddRecExpr>(RightSCEV)) {
776       std::swap(LeftSCEV, RightSCEV);
777       std::swap(LeftValue, RightValue);
778       Pred = ICmpInst::getSwappedPredicate(Pred);
779     } else {
780       FailureReason = "no add recurrences in the icmp";
781       return None;
782     }
783   }
784 
785   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
786     if (AR->getNoWrapFlags(SCEV::FlagNSW))
787       return true;
788 
789     IntegerType *Ty = cast<IntegerType>(AR->getType());
790     IntegerType *WideTy =
791         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
792 
793     const SCEVAddRecExpr *ExtendAfterOp =
794         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
795     if (ExtendAfterOp) {
796       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
797       const SCEV *ExtendedStep =
798           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
799 
800       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
801                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
802 
803       if (NoSignedWrap)
804         return true;
805     }
806 
807     // We may have proved this when computing the sign extension above.
808     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
809   };
810 
811   // Here we check whether the suggested AddRec is an induction variable that
812   // can be handled (i.e. with known constant step), and if yes, calculate its
813   // step and identify whether it is increasing or decreasing.
814   auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing,
815                             ConstantInt *&StepCI) {
816     if (!AR->isAffine())
817       return false;
818 
819     // Currently we only work with induction variables that have been proved to
820     // not wrap.  This restriction can potentially be lifted in the future.
821 
822     if (!HasNoSignedWrap(AR))
823       return false;
824 
825     if (const SCEVConstant *StepExpr =
826             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
827       StepCI = StepExpr->getValue();
828       assert(!StepCI->isZero() && "Zero step?");
829       IsIncreasing = !StepCI->isNegative();
830       return true;
831     }
832 
833     return false;
834   };
835 
836   // `ICI` is interpreted as taking the backedge if the *next* value of the
837   // induction variable satisfies some constraint.
838 
839   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
840   bool IsIncreasing = false;
841   bool IsSignedPredicate = true;
842   ConstantInt *StepCI;
843   if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) {
844     FailureReason = "LHS in icmp not induction variable";
845     return None;
846   }
847 
848   const SCEV *StartNext = IndVarBase->getStart();
849   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
850   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
851   const SCEV *Step = SE.getSCEV(StepCI);
852 
853   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
854   if (IsIncreasing) {
855     bool DecreasedRightValueByOne = false;
856     if (StepCI->isOne()) {
857       // Try to turn eq/ne predicates to those we can work with.
858       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
859         // while (++i != len) {         while (++i < len) {
860         //   ...                 --->     ...
861         // }                            }
862         // If both parts are known non-negative, it is profitable to use
863         // unsigned comparison in increasing loop. This allows us to make the
864         // comparison check against "RightSCEV + 1" more optimistic.
865         if (SE.isKnownNonNegative(IndVarStart) &&
866             SE.isKnownNonNegative(RightSCEV))
867           Pred = ICmpInst::ICMP_ULT;
868         else
869           Pred = ICmpInst::ICMP_SLT;
870       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
871                !CanBeMin(SE, RightSCEV, /* IsSignedPredicate */ true)) {
872         // while (true) {               while (true) {
873         //   if (++i == len)     --->     if (++i > len - 1)
874         //     break;                       break;
875         //   ...                          ...
876         // }                            }
877         // TODO: Insert ICMP_UGT if both are non-negative?
878         Pred = ICmpInst::ICMP_SGT;
879         RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
880         DecreasedRightValueByOne = true;
881       }
882     }
883 
884     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
885     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
886     bool FoundExpectedPred =
887         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
888 
889     if (!FoundExpectedPred) {
890       FailureReason = "expected icmp slt semantically, found something else";
891       return None;
892     }
893 
894     IsSignedPredicate =
895         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
896 
897     // FIXME: We temporarily disable unsigned latch conditions by default
898     // because of found problems with intersecting signed and unsigned ranges.
899     // We are going to turn it on once the problems are fixed.
900     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
901       FailureReason = "unsigned latch conditions are explicitly prohibited";
902       return None;
903     }
904 
905     // The predicate that we need to check that the induction variable lies
906     // within bounds.
907     ICmpInst::Predicate BoundPred =
908         IsSignedPredicate ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
909 
910     if (LatchBrExitIdx == 0) {
911       const SCEV *StepMinusOne = SE.getMinusSCEV(Step,
912                                                  SE.getOne(Step->getType()));
913       if (SumCanReachMax(SE, RightSCEV, StepMinusOne, IsSignedPredicate)) {
914         // TODO: this restriction is easily removable -- we just have to
915         // remember that the icmp was an slt and not an sle.
916         FailureReason = "limit may overflow when coercing le to lt";
917         return None;
918       }
919 
920       if (!SE.isLoopEntryGuardedByCond(
921               &L, BoundPred, IndVarStart,
922               SE.getAddExpr(RightSCEV, Step))) {
923         FailureReason = "Induction variable start not bounded by upper limit";
924         return None;
925       }
926 
927       // We need to increase the right value unless we have already decreased
928       // it virtually when we replaced EQ with SGT.
929       if (!DecreasedRightValueByOne) {
930         IRBuilder<> B(Preheader->getTerminator());
931         RightValue = B.CreateAdd(RightValue, One);
932       }
933     } else {
934       if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) {
935         FailureReason = "Induction variable start not bounded by upper limit";
936         return None;
937       }
938       assert(!DecreasedRightValueByOne &&
939              "Right value can be decreased only for LatchBrExitIdx == 0!");
940     }
941   } else {
942     bool IncreasedRightValueByOne = false;
943     if (StepCI->isMinusOne()) {
944       // Try to turn eq/ne predicates to those we can work with.
945       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
946         // while (--i != len) {         while (--i > len) {
947         //   ...                 --->     ...
948         // }                            }
949         // We intentionally don't turn the predicate into UGT even if we know
950         // that both operands are non-negative, because it will only pessimize
951         // our check against "RightSCEV - 1".
952         Pred = ICmpInst::ICMP_SGT;
953       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
954                !CanBeMax(SE, RightSCEV, /* IsSignedPredicate */ true)) {
955         // while (true) {               while (true) {
956         //   if (--i == len)     --->     if (--i < len + 1)
957         //     break;                       break;
958         //   ...                          ...
959         // }                            }
960         // TODO: Insert ICMP_ULT if both are non-negative?
961         Pred = ICmpInst::ICMP_SLT;
962         RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
963         IncreasedRightValueByOne = true;
964       }
965     }
966 
967     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
968     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
969 
970     bool FoundExpectedPred =
971         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
972 
973     if (!FoundExpectedPred) {
974       FailureReason = "expected icmp sgt semantically, found something else";
975       return None;
976     }
977 
978     IsSignedPredicate =
979         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
980 
981     // FIXME: We temporarily disable unsigned latch conditions by default
982     // because of found problems with intersecting signed and unsigned ranges.
983     // We are going to turn it on once the problems are fixed.
984     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
985       FailureReason = "unsigned latch conditions are explicitly prohibited";
986       return None;
987     }
988 
989     // The predicate that we need to check that the induction variable lies
990     // within bounds.
991     ICmpInst::Predicate BoundPred =
992         IsSignedPredicate ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
993 
994     if (LatchBrExitIdx == 0) {
995       const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
996       if (SumCanReachMin(SE, RightSCEV, StepPlusOne, IsSignedPredicate)) {
997         // TODO: this restriction is easily removable -- we just have to
998         // remember that the icmp was an sgt and not an sge.
999         FailureReason = "limit may overflow when coercing ge to gt";
1000         return None;
1001       }
1002 
1003       if (!SE.isLoopEntryGuardedByCond(
1004               &L, BoundPred, IndVarStart,
1005               SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) {
1006         FailureReason = "Induction variable start not bounded by lower limit";
1007         return None;
1008       }
1009 
1010       // We need to decrease the right value unless we have already increased
1011       // it virtually when we replaced EQ with SLT.
1012       if (!IncreasedRightValueByOne) {
1013         IRBuilder<> B(Preheader->getTerminator());
1014         RightValue = B.CreateSub(RightValue, One);
1015       }
1016     } else {
1017       if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) {
1018         FailureReason = "Induction variable start not bounded by lower limit";
1019         return None;
1020       }
1021       assert(!IncreasedRightValueByOne &&
1022              "Right value can be increased only for LatchBrExitIdx == 0!");
1023     }
1024   }
1025   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1026 
1027   assert(SE.getLoopDisposition(LatchCount, &L) ==
1028              ScalarEvolution::LoopInvariant &&
1029          "loop variant exit count doesn't make sense!");
1030 
1031   assert(!L.contains(LatchExit) && "expected an exit block!");
1032   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1033   Value *IndVarStartV =
1034       SCEVExpander(SE, DL, "irce")
1035           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
1036   IndVarStartV->setName("indvar.start");
1037 
1038   LoopStructure Result;
1039 
1040   Result.Tag = "main";
1041   Result.Header = Header;
1042   Result.Latch = Latch;
1043   Result.LatchBr = LatchBr;
1044   Result.LatchExit = LatchExit;
1045   Result.LatchBrExitIdx = LatchBrExitIdx;
1046   Result.IndVarStart = IndVarStartV;
1047   Result.IndVarStep = StepCI;
1048   Result.IndVarBase = LeftValue;
1049   Result.IndVarIncreasing = IsIncreasing;
1050   Result.LoopExitAt = RightValue;
1051   Result.IsSignedPredicate = IsSignedPredicate;
1052 
1053   FailureReason = nullptr;
1054 
1055   return Result;
1056 }
1057 
1058 Optional<LoopConstrainer::SubRanges>
1059 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1060   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1061 
1062   if (Range.getType() != Ty)
1063     return None;
1064 
1065   LoopConstrainer::SubRanges Result;
1066 
1067   // I think we can be more aggressive here and make this nuw / nsw if the
1068   // addition that feeds into the icmp for the latch's terminating branch is nuw
1069   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1070   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
1071   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
1072 
1073   bool Increasing = MainLoopStructure.IndVarIncreasing;
1074 
1075   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1076   // [Smallest, GreatestSeen] is the range of values the induction variable
1077   // takes.
1078 
1079   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1080 
1081   const SCEV *One = SE.getOne(Ty);
1082   if (Increasing) {
1083     Smallest = Start;
1084     Greatest = End;
1085     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1086     GreatestSeen = SE.getMinusSCEV(End, One);
1087   } else {
1088     // These two computations may sign-overflow.  Here is why that is okay:
1089     //
1090     // We know that the induction variable does not sign-overflow on any
1091     // iteration except the last one, and it starts at `Start` and ends at
1092     // `End`, decrementing by one every time.
1093     //
1094     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1095     //    induction variable is decreasing we know that that the smallest value
1096     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1097     //
1098     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1099     //    that case, `Clamp` will always return `Smallest` and
1100     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1101     //    will be an empty range.  Returning an empty range is always safe.
1102     //
1103 
1104     Smallest = SE.getAddExpr(End, One);
1105     Greatest = SE.getAddExpr(Start, One);
1106     GreatestSeen = Start;
1107   }
1108 
1109   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1110     bool MaybeNegativeValues = IsSignedPredicate || !SE.isKnownNonNegative(S);
1111     return MaybeNegativeValues
1112                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1113                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1114   };
1115 
1116   // In some cases we can prove that we don't need a pre or post loop.
1117   ICmpInst::Predicate PredLE =
1118       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1119   ICmpInst::Predicate PredLT =
1120       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1121 
1122   bool ProvablyNoPreloop =
1123       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1124   if (!ProvablyNoPreloop)
1125     Result.LowLimit = Clamp(Range.getBegin());
1126 
1127   bool ProvablyNoPostLoop =
1128       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1129   if (!ProvablyNoPostLoop)
1130     Result.HighLimit = Clamp(Range.getEnd());
1131 
1132   return Result;
1133 }
1134 
1135 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1136                                 const char *Tag) const {
1137   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1138     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1139     Result.Blocks.push_back(Clone);
1140     Result.Map[BB] = Clone;
1141   }
1142 
1143   auto GetClonedValue = [&Result](Value *V) {
1144     assert(V && "null values not in domain!");
1145     auto It = Result.Map.find(V);
1146     if (It == Result.Map.end())
1147       return V;
1148     return static_cast<Value *>(It->second);
1149   };
1150 
1151   auto *ClonedLatch =
1152       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1153   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1154                                             MDNode::get(Ctx, {}));
1155 
1156   Result.Structure = MainLoopStructure.map(GetClonedValue);
1157   Result.Structure.Tag = Tag;
1158 
1159   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1160     BasicBlock *ClonedBB = Result.Blocks[i];
1161     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1162 
1163     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1164 
1165     for (Instruction &I : *ClonedBB)
1166       RemapInstruction(&I, Result.Map,
1167                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1168 
1169     // Exit blocks will now have one more predecessor and their PHI nodes need
1170     // to be edited to reflect that.  No phi nodes need to be introduced because
1171     // the loop is in LCSSA.
1172 
1173     for (auto *SBB : successors(OriginalBB)) {
1174       if (OriginalLoop.contains(SBB))
1175         continue; // not an exit block
1176 
1177       for (Instruction &I : *SBB) {
1178         auto *PN = dyn_cast<PHINode>(&I);
1179         if (!PN)
1180           break;
1181 
1182         Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
1183         PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1184       }
1185     }
1186   }
1187 }
1188 
1189 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1190     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1191     BasicBlock *ContinuationBlock) const {
1192 
1193   // We start with a loop with a single latch:
1194   //
1195   //    +--------------------+
1196   //    |                    |
1197   //    |     preheader      |
1198   //    |                    |
1199   //    +--------+-----------+
1200   //             |      ----------------\
1201   //             |     /                |
1202   //    +--------v----v------+          |
1203   //    |                    |          |
1204   //    |      header        |          |
1205   //    |                    |          |
1206   //    +--------------------+          |
1207   //                                    |
1208   //            .....                   |
1209   //                                    |
1210   //    +--------------------+          |
1211   //    |                    |          |
1212   //    |       latch        >----------/
1213   //    |                    |
1214   //    +-------v------------+
1215   //            |
1216   //            |
1217   //            |   +--------------------+
1218   //            |   |                    |
1219   //            +--->   original exit    |
1220   //                |                    |
1221   //                +--------------------+
1222   //
1223   // We change the control flow to look like
1224   //
1225   //
1226   //    +--------------------+
1227   //    |                    |
1228   //    |     preheader      >-------------------------+
1229   //    |                    |                         |
1230   //    +--------v-----------+                         |
1231   //             |    /-------------+                  |
1232   //             |   /              |                  |
1233   //    +--------v--v--------+      |                  |
1234   //    |                    |      |                  |
1235   //    |      header        |      |   +--------+     |
1236   //    |                    |      |   |        |     |
1237   //    +--------------------+      |   |  +-----v-----v-----------+
1238   //                                |   |  |                       |
1239   //                                |   |  |     .pseudo.exit      |
1240   //                                |   |  |                       |
1241   //                                |   |  +-----------v-----------+
1242   //                                |   |              |
1243   //            .....               |   |              |
1244   //                                |   |     +--------v-------------+
1245   //    +--------------------+      |   |     |                      |
1246   //    |                    |      |   |     |   ContinuationBlock  |
1247   //    |       latch        >------+   |     |                      |
1248   //    |                    |          |     +----------------------+
1249   //    +---------v----------+          |
1250   //              |                     |
1251   //              |                     |
1252   //              |     +---------------^-----+
1253   //              |     |                     |
1254   //              +----->    .exit.selector   |
1255   //                    |                     |
1256   //                    +----------v----------+
1257   //                               |
1258   //     +--------------------+    |
1259   //     |                    |    |
1260   //     |   original exit    <----+
1261   //     |                    |
1262   //     +--------------------+
1263   //
1264 
1265   RewrittenRangeInfo RRI;
1266 
1267   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1268   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1269                                         &F, BBInsertLocation);
1270   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1271                                       BBInsertLocation);
1272 
1273   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1274   bool Increasing = LS.IndVarIncreasing;
1275   bool IsSignedPredicate = LS.IsSignedPredicate;
1276 
1277   IRBuilder<> B(PreheaderJump);
1278 
1279   // EnterLoopCond - is it okay to start executing this `LS'?
1280   Value *EnterLoopCond = nullptr;
1281   if (Increasing)
1282     EnterLoopCond = IsSignedPredicate
1283                         ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1284                         : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt);
1285   else
1286     EnterLoopCond = IsSignedPredicate
1287                         ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt)
1288                         : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt);
1289 
1290   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1291   PreheaderJump->eraseFromParent();
1292 
1293   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1294   B.SetInsertPoint(LS.LatchBr);
1295   Value *TakeBackedgeLoopCond = nullptr;
1296   if (Increasing)
1297     TakeBackedgeLoopCond = IsSignedPredicate
1298                         ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt)
1299                         : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt);
1300   else
1301     TakeBackedgeLoopCond = IsSignedPredicate
1302                         ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt)
1303                         : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt);
1304   Value *CondForBranch = LS.LatchBrExitIdx == 1
1305                              ? TakeBackedgeLoopCond
1306                              : B.CreateNot(TakeBackedgeLoopCond);
1307 
1308   LS.LatchBr->setCondition(CondForBranch);
1309 
1310   B.SetInsertPoint(RRI.ExitSelector);
1311 
1312   // IterationsLeft - are there any more iterations left, given the original
1313   // upper bound on the induction variable?  If not, we branch to the "real"
1314   // exit.
1315   Value *IterationsLeft = nullptr;
1316   if (Increasing)
1317     IterationsLeft = IsSignedPredicate
1318                          ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt)
1319                          : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt);
1320   else
1321     IterationsLeft = IsSignedPredicate
1322                          ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt)
1323                          : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt);
1324   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1325 
1326   BranchInst *BranchToContinuation =
1327       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1328 
1329   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1330   // each of the PHI nodes in the loop header.  This feeds into the initial
1331   // value of the same PHI nodes if/when we continue execution.
1332   for (Instruction &I : *LS.Header) {
1333     auto *PN = dyn_cast<PHINode>(&I);
1334     if (!PN)
1335       break;
1336 
1337     PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1338                                       BranchToContinuation);
1339 
1340     NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1341     NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1342                         RRI.ExitSelector);
1343     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1344   }
1345 
1346   RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end",
1347                                   BranchToContinuation);
1348   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1349   RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector);
1350 
1351   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1352   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1353   for (Instruction &I : *LS.LatchExit) {
1354     if (PHINode *PN = dyn_cast<PHINode>(&I))
1355       replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1356     else
1357       break;
1358   }
1359 
1360   return RRI;
1361 }
1362 
1363 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1364     LoopStructure &LS, BasicBlock *ContinuationBlock,
1365     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1366 
1367   unsigned PHIIndex = 0;
1368   for (Instruction &I : *LS.Header) {
1369     auto *PN = dyn_cast<PHINode>(&I);
1370     if (!PN)
1371       break;
1372 
1373     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1374       if (PN->getIncomingBlock(i) == ContinuationBlock)
1375         PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1376   }
1377 
1378   LS.IndVarStart = RRI.IndVarEnd;
1379 }
1380 
1381 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1382                                              BasicBlock *OldPreheader,
1383                                              const char *Tag) const {
1384 
1385   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1386   BranchInst::Create(LS.Header, Preheader);
1387 
1388   for (Instruction &I : *LS.Header) {
1389     auto *PN = dyn_cast<PHINode>(&I);
1390     if (!PN)
1391       break;
1392 
1393     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1394       replacePHIBlock(PN, OldPreheader, Preheader);
1395   }
1396 
1397   return Preheader;
1398 }
1399 
1400 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1401   Loop *ParentLoop = OriginalLoop.getParentLoop();
1402   if (!ParentLoop)
1403     return;
1404 
1405   for (BasicBlock *BB : BBs)
1406     ParentLoop->addBasicBlockToLoop(BB, LI);
1407 }
1408 
1409 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1410                                                  ValueToValueMapTy &VM) {
1411   Loop &New = *LI.AllocateLoop();
1412   if (Parent)
1413     Parent->addChildLoop(&New);
1414   else
1415     LI.addTopLevelLoop(&New);
1416   LPM.addLoop(New);
1417 
1418   // Add all of the blocks in Original to the new loop.
1419   for (auto *BB : Original->blocks())
1420     if (LI.getLoopFor(BB) == Original)
1421       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1422 
1423   // Add all of the subloops to the new loop.
1424   for (Loop *SubLoop : *Original)
1425     createClonedLoopStructure(SubLoop, &New, VM);
1426 
1427   return &New;
1428 }
1429 
1430 bool LoopConstrainer::run() {
1431   BasicBlock *Preheader = nullptr;
1432   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1433   Preheader = OriginalLoop.getLoopPreheader();
1434   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1435          "preconditions!");
1436 
1437   OriginalPreheader = Preheader;
1438   MainLoopPreheader = Preheader;
1439 
1440   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1441   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1442   if (!MaybeSR.hasValue()) {
1443     DEBUG(dbgs() << "irce: could not compute subranges\n");
1444     return false;
1445   }
1446 
1447   SubRanges SR = MaybeSR.getValue();
1448   bool Increasing = MainLoopStructure.IndVarIncreasing;
1449   IntegerType *IVTy =
1450       cast<IntegerType>(MainLoopStructure.IndVarBase->getType());
1451 
1452   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1453   Instruction *InsertPt = OriginalPreheader->getTerminator();
1454 
1455   // It would have been better to make `PreLoop' and `PostLoop'
1456   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1457   // constructor.
1458   ClonedLoop PreLoop, PostLoop;
1459   bool NeedsPreLoop =
1460       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1461   bool NeedsPostLoop =
1462       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1463 
1464   Value *ExitPreLoopAt = nullptr;
1465   Value *ExitMainLoopAt = nullptr;
1466   const SCEVConstant *MinusOneS =
1467       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1468 
1469   if (NeedsPreLoop) {
1470     const SCEV *ExitPreLoopAtSCEV = nullptr;
1471 
1472     if (Increasing)
1473       ExitPreLoopAtSCEV = *SR.LowLimit;
1474     else {
1475       if (CanBeMin(SE, *SR.HighLimit, IsSignedPredicate)) {
1476         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1477                      << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
1478                      << "\n");
1479         return false;
1480       }
1481       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1482     }
1483 
1484     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1485     ExitPreLoopAt->setName("exit.preloop.at");
1486   }
1487 
1488   if (NeedsPostLoop) {
1489     const SCEV *ExitMainLoopAtSCEV = nullptr;
1490 
1491     if (Increasing)
1492       ExitMainLoopAtSCEV = *SR.HighLimit;
1493     else {
1494       if (CanBeMin(SE, *SR.LowLimit, IsSignedPredicate)) {
1495         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1496                      << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
1497                      << "\n");
1498         return false;
1499       }
1500       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1501     }
1502 
1503     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1504     ExitMainLoopAt->setName("exit.mainloop.at");
1505   }
1506 
1507   // We clone these ahead of time so that we don't have to deal with changing
1508   // and temporarily invalid IR as we transform the loops.
1509   if (NeedsPreLoop)
1510     cloneLoop(PreLoop, "preloop");
1511   if (NeedsPostLoop)
1512     cloneLoop(PostLoop, "postloop");
1513 
1514   RewrittenRangeInfo PreLoopRRI;
1515 
1516   if (NeedsPreLoop) {
1517     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1518                                                   PreLoop.Structure.Header);
1519 
1520     MainLoopPreheader =
1521         createPreheader(MainLoopStructure, Preheader, "mainloop");
1522     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1523                                          ExitPreLoopAt, MainLoopPreheader);
1524     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1525                                  PreLoopRRI);
1526   }
1527 
1528   BasicBlock *PostLoopPreheader = nullptr;
1529   RewrittenRangeInfo PostLoopRRI;
1530 
1531   if (NeedsPostLoop) {
1532     PostLoopPreheader =
1533         createPreheader(PostLoop.Structure, Preheader, "postloop");
1534     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1535                                           ExitMainLoopAt, PostLoopPreheader);
1536     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1537                                  PostLoopRRI);
1538   }
1539 
1540   BasicBlock *NewMainLoopPreheader =
1541       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1542   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1543                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1544                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1545 
1546   // Some of the above may be nullptr, filter them out before passing to
1547   // addToParentLoopIfNeeded.
1548   auto NewBlocksEnd =
1549       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1550 
1551   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1552 
1553   DT.recalculate(F);
1554 
1555   // We need to first add all the pre and post loop blocks into the loop
1556   // structures (as part of createClonedLoopStructure), and then update the
1557   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1558   // LI when LoopSimplifyForm is generated.
1559   Loop *PreL = nullptr, *PostL = nullptr;
1560   if (!PreLoop.Blocks.empty()) {
1561     PreL = createClonedLoopStructure(
1562         &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map);
1563   }
1564 
1565   if (!PostLoop.Blocks.empty()) {
1566     PostL = createClonedLoopStructure(
1567         &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map);
1568   }
1569 
1570   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1571   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1572     formLCSSARecursively(*L, DT, &LI, &SE);
1573     simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
1574     // Pre/post loops are slow paths, we do not need to perform any loop
1575     // optimizations on them.
1576     if (!IsOriginalLoop)
1577       DisableAllLoopOptsOnLoop(*L);
1578   };
1579   if (PreL)
1580     CanonicalizeLoop(PreL, false);
1581   if (PostL)
1582     CanonicalizeLoop(PostL, false);
1583   CanonicalizeLoop(&OriginalLoop, true);
1584 
1585   return true;
1586 }
1587 
1588 /// Computes and returns a range of values for the induction variable (IndVar)
1589 /// in which the range check can be safely elided.  If it cannot compute such a
1590 /// range, returns None.
1591 Optional<InductiveRangeCheck::Range>
1592 InductiveRangeCheck::computeSafeIterationSpace(
1593     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
1594   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1595   // variable, that may or may not exist as a real llvm::Value in the loop) and
1596   // this inductive range check is a range check on the "C + D * I" ("C" is
1597   // getOffset() and "D" is getScale()).  We rewrite the value being range
1598   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1599   //
1600   // The actual inequalities we solve are of the form
1601   //
1602   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1603   //
1604   // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
1605   // and subtractions are twos-complement wrapping and comparisons are signed.
1606   //
1607   // Proof:
1608   //
1609   //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1610   //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
1611   //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
1612   //   overflown.
1613   //
1614   //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
1615   //   Hence 0 <= (IndVar + M) < L
1616 
1617   // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1618   // 127, IndVar = 126 and L = -2 in an i8 world.
1619 
1620   if (!IndVar->isAffine())
1621     return None;
1622 
1623   const SCEV *A = IndVar->getStart();
1624   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1625   if (!B)
1626     return None;
1627   assert(!B->isZero() && "Recurrence with zero step?");
1628 
1629   const SCEV *C = getOffset();
1630   const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1631   if (D != B)
1632     return None;
1633 
1634   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1635 
1636   const SCEV *M = SE.getMinusSCEV(C, A);
1637   const SCEV *Begin = SE.getNegativeSCEV(M);
1638   const SCEV *UpperLimit = nullptr;
1639 
1640   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1641   // We can potentially do much better here.
1642   if (Value *V = getLength()) {
1643     UpperLimit = SE.getSCEV(V);
1644   } else {
1645     assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1646     unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1647     UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1648   }
1649 
1650   const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
1651   return InductiveRangeCheck::Range(Begin, End);
1652 }
1653 
1654 static Optional<InductiveRangeCheck::Range>
1655 IntersectRange(ScalarEvolution &SE,
1656                const Optional<InductiveRangeCheck::Range> &R1,
1657                const InductiveRangeCheck::Range &R2) {
1658   if (R2.isEmpty())
1659     return None;
1660   if (!R1.hasValue())
1661     return R2;
1662   auto &R1Value = R1.getValue();
1663   // We never return empty ranges from this function, and R1 is supposed to be
1664   // a result of intersection. Thus, R1 is never empty.
1665   assert(!R1Value.isEmpty() && "We should never have empty R1!");
1666 
1667   // TODO: we could widen the smaller range and have this work; but for now we
1668   // bail out to keep things simple.
1669   if (R1Value.getType() != R2.getType())
1670     return None;
1671 
1672   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1673   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1674 
1675   // If the resulting range is empty, just return None.
1676   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1677   if (Ret.isEmpty())
1678     return None;
1679   return Ret;
1680 }
1681 
1682 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1683   if (skipLoop(L))
1684     return false;
1685 
1686   if (L->getBlocks().size() >= LoopSizeCutoff) {
1687     DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1688     return false;
1689   }
1690 
1691   BasicBlock *Preheader = L->getLoopPreheader();
1692   if (!Preheader) {
1693     DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1694     return false;
1695   }
1696 
1697   LLVMContext &Context = Preheader->getContext();
1698   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1699   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1700   BranchProbabilityInfo &BPI =
1701       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1702 
1703   for (auto BBI : L->getBlocks())
1704     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1705       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1706                                                         RangeChecks);
1707 
1708   if (RangeChecks.empty())
1709     return false;
1710 
1711   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1712     OS << "irce: looking at loop "; L->print(OS);
1713     OS << "irce: loop has " << RangeChecks.size()
1714        << " inductive range checks: \n";
1715     for (InductiveRangeCheck &IRC : RangeChecks)
1716       IRC.print(OS);
1717   };
1718 
1719   DEBUG(PrintRecognizedRangeChecks(dbgs()));
1720 
1721   if (PrintRangeChecks)
1722     PrintRecognizedRangeChecks(errs());
1723 
1724   const char *FailureReason = nullptr;
1725   Optional<LoopStructure> MaybeLoopStructure =
1726       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1727   if (!MaybeLoopStructure.hasValue()) {
1728     DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1729                  << "\n";);
1730     return false;
1731   }
1732   LoopStructure LS = MaybeLoopStructure.getValue();
1733   const SCEVAddRecExpr *IndVar =
1734       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1735 
1736   Optional<InductiveRangeCheck::Range> SafeIterRange;
1737   Instruction *ExprInsertPt = Preheader->getTerminator();
1738 
1739   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1740 
1741   IRBuilder<> B(ExprInsertPt);
1742   for (InductiveRangeCheck &IRC : RangeChecks) {
1743     auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
1744     if (Result.hasValue()) {
1745       auto MaybeSafeIterRange =
1746           IntersectRange(SE, SafeIterRange, Result.getValue());
1747       if (MaybeSafeIterRange.hasValue()) {
1748         assert(!MaybeSafeIterRange.getValue().isEmpty() &&
1749                "We should never return empty ranges!");
1750         RangeChecksToEliminate.push_back(IRC);
1751         SafeIterRange = MaybeSafeIterRange.getValue();
1752       }
1753     }
1754   }
1755 
1756   if (!SafeIterRange.hasValue())
1757     return false;
1758 
1759   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1760   LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM,
1761                      LS, SE, DT, SafeIterRange.getValue());
1762   bool Changed = LC.run();
1763 
1764   if (Changed) {
1765     auto PrintConstrainedLoopInfo = [L]() {
1766       dbgs() << "irce: in function ";
1767       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1768       dbgs() << "constrained ";
1769       L->print(dbgs());
1770     };
1771 
1772     DEBUG(PrintConstrainedLoopInfo());
1773 
1774     if (PrintChangedLoops)
1775       PrintConstrainedLoopInfo();
1776 
1777     // Optimize away the now-redundant range checks.
1778 
1779     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1780       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1781                                           ? ConstantInt::getTrue(Context)
1782                                           : ConstantInt::getFalse(Context);
1783       IRC.getCheckUse()->set(FoldedRangeCheck);
1784     }
1785   }
1786 
1787   return Changed;
1788 }
1789 
1790 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1791   return new InductiveRangeCheckElimination;
1792 }
1793