1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/LoopInfo.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/ScalarEvolution.h" 49 #include "llvm/Analysis/ScalarEvolutionExpander.h" 50 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/LoopSimplify.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 65 using namespace llvm; 66 67 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 68 cl::init(64)); 69 70 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 71 cl::init(false)); 72 73 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 74 cl::init(false)); 75 76 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 77 cl::Hidden, cl::init(10)); 78 79 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 80 cl::Hidden, cl::init(false)); 81 82 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", 83 cl::Hidden, cl::init(false)); 84 85 static const char *ClonedLoopTag = "irce.loop.clone"; 86 87 #define DEBUG_TYPE "irce" 88 89 namespace { 90 91 /// An inductive range check is conditional branch in a loop with 92 /// 93 /// 1. a very cold successor (i.e. the branch jumps to that successor very 94 /// rarely) 95 /// 96 /// and 97 /// 98 /// 2. a condition that is provably true for some contiguous range of values 99 /// taken by the containing loop's induction variable. 100 /// 101 class InductiveRangeCheck { 102 // Classifies a range check 103 enum RangeCheckKind : unsigned { 104 // Range check of the form "0 <= I". 105 RANGE_CHECK_LOWER = 1, 106 107 // Range check of the form "I < L" where L is known positive. 108 RANGE_CHECK_UPPER = 2, 109 110 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 111 // conditions. 112 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 113 114 // Unrecognized range check condition. 115 RANGE_CHECK_UNKNOWN = (unsigned)-1 116 }; 117 118 static StringRef rangeCheckKindToStr(RangeCheckKind); 119 120 const SCEV *Offset = nullptr; 121 const SCEV *Scale = nullptr; 122 Value *Length = nullptr; 123 Use *CheckUse = nullptr; 124 RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; 125 126 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 127 ScalarEvolution &SE, Value *&Index, 128 Value *&Length); 129 130 static void 131 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 132 SmallVectorImpl<InductiveRangeCheck> &Checks, 133 SmallPtrSetImpl<Value *> &Visited); 134 135 public: 136 const SCEV *getOffset() const { return Offset; } 137 const SCEV *getScale() const { return Scale; } 138 Value *getLength() const { return Length; } 139 140 void print(raw_ostream &OS) const { 141 OS << "InductiveRangeCheck:\n"; 142 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 143 OS << " Offset: "; 144 Offset->print(OS); 145 OS << " Scale: "; 146 Scale->print(OS); 147 OS << " Length: "; 148 if (Length) 149 Length->print(OS); 150 else 151 OS << "(null)"; 152 OS << "\n CheckUse: "; 153 getCheckUse()->getUser()->print(OS); 154 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 155 } 156 157 LLVM_DUMP_METHOD 158 void dump() { 159 print(dbgs()); 160 } 161 162 Use *getCheckUse() const { return CheckUse; } 163 164 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 165 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 166 167 class Range { 168 const SCEV *Begin; 169 const SCEV *End; 170 171 public: 172 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 173 assert(Begin->getType() == End->getType() && "ill-typed range!"); 174 } 175 176 Type *getType() const { return Begin->getType(); } 177 const SCEV *getBegin() const { return Begin; } 178 const SCEV *getEnd() const { return End; } 179 bool isEmpty() const { return Begin == End; } 180 }; 181 182 /// This is the value the condition of the branch needs to evaluate to for the 183 /// branch to take the hot successor (see (1) above). 184 bool getPassingDirection() { return true; } 185 186 /// Computes a range for the induction variable (IndVar) in which the range 187 /// check is redundant and can be constant-folded away. The induction 188 /// variable is not required to be the canonical {0,+,1} induction variable. 189 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 190 const SCEVAddRecExpr *IndVar) const; 191 192 /// Parse out a set of inductive range checks from \p BI and append them to \p 193 /// Checks. 194 /// 195 /// NB! There may be conditions feeding into \p BI that aren't inductive range 196 /// checks, and hence don't end up in \p Checks. 197 static void 198 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 199 BranchProbabilityInfo &BPI, 200 SmallVectorImpl<InductiveRangeCheck> &Checks); 201 }; 202 203 class InductiveRangeCheckElimination : public LoopPass { 204 public: 205 static char ID; 206 InductiveRangeCheckElimination() : LoopPass(ID) { 207 initializeInductiveRangeCheckEliminationPass( 208 *PassRegistry::getPassRegistry()); 209 } 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 213 getLoopAnalysisUsage(AU); 214 } 215 216 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 217 }; 218 219 char InductiveRangeCheckElimination::ID = 0; 220 } 221 222 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", 223 "Inductive range check elimination", false, false) 224 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 225 INITIALIZE_PASS_DEPENDENCY(LoopPass) 226 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", 227 "Inductive range check elimination", false, false) 228 229 StringRef InductiveRangeCheck::rangeCheckKindToStr( 230 InductiveRangeCheck::RangeCheckKind RCK) { 231 switch (RCK) { 232 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 233 return "RANGE_CHECK_UNKNOWN"; 234 235 case InductiveRangeCheck::RANGE_CHECK_UPPER: 236 return "RANGE_CHECK_UPPER"; 237 238 case InductiveRangeCheck::RANGE_CHECK_LOWER: 239 return "RANGE_CHECK_LOWER"; 240 241 case InductiveRangeCheck::RANGE_CHECK_BOTH: 242 return "RANGE_CHECK_BOTH"; 243 } 244 245 llvm_unreachable("unknown range check type!"); 246 } 247 248 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 249 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 250 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 251 /// range checked, and set `Length` to the upper limit `Index` is being range 252 /// checked with if (and only if) the range check type is stronger or equal to 253 /// RANGE_CHECK_UPPER. 254 /// 255 InductiveRangeCheck::RangeCheckKind 256 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 257 ScalarEvolution &SE, Value *&Index, 258 Value *&Length) { 259 260 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { 261 const SCEV *S = SE.getSCEV(V); 262 if (isa<SCEVCouldNotCompute>(S)) 263 return false; 264 265 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && 266 SE.isKnownNonNegative(S); 267 }; 268 269 using namespace llvm::PatternMatch; 270 271 ICmpInst::Predicate Pred = ICI->getPredicate(); 272 Value *LHS = ICI->getOperand(0); 273 Value *RHS = ICI->getOperand(1); 274 275 switch (Pred) { 276 default: 277 return RANGE_CHECK_UNKNOWN; 278 279 case ICmpInst::ICMP_SLE: 280 std::swap(LHS, RHS); 281 LLVM_FALLTHROUGH; 282 case ICmpInst::ICMP_SGE: 283 if (match(RHS, m_ConstantInt<0>())) { 284 Index = LHS; 285 return RANGE_CHECK_LOWER; 286 } 287 return RANGE_CHECK_UNKNOWN; 288 289 case ICmpInst::ICMP_SLT: 290 std::swap(LHS, RHS); 291 LLVM_FALLTHROUGH; 292 case ICmpInst::ICMP_SGT: 293 if (match(RHS, m_ConstantInt<-1>())) { 294 Index = LHS; 295 return RANGE_CHECK_LOWER; 296 } 297 298 if (IsNonNegativeAndNotLoopVarying(LHS)) { 299 Index = RHS; 300 Length = LHS; 301 return RANGE_CHECK_UPPER; 302 } 303 return RANGE_CHECK_UNKNOWN; 304 305 case ICmpInst::ICMP_ULT: 306 std::swap(LHS, RHS); 307 LLVM_FALLTHROUGH; 308 case ICmpInst::ICMP_UGT: 309 if (IsNonNegativeAndNotLoopVarying(LHS)) { 310 Index = RHS; 311 Length = LHS; 312 return RANGE_CHECK_BOTH; 313 } 314 return RANGE_CHECK_UNKNOWN; 315 } 316 317 llvm_unreachable("default clause returns!"); 318 } 319 320 void InductiveRangeCheck::extractRangeChecksFromCond( 321 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 322 SmallVectorImpl<InductiveRangeCheck> &Checks, 323 SmallPtrSetImpl<Value *> &Visited) { 324 using namespace llvm::PatternMatch; 325 326 Value *Condition = ConditionUse.get(); 327 if (!Visited.insert(Condition).second) 328 return; 329 330 if (match(Condition, m_And(m_Value(), m_Value()))) { 331 SmallVector<InductiveRangeCheck, 8> SubChecks; 332 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 333 SubChecks, Visited); 334 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 335 SubChecks, Visited); 336 337 if (SubChecks.size() == 2) { 338 // Handle a special case where we know how to merge two checks separately 339 // checking the upper and lower bounds into a full range check. 340 const auto &RChkA = SubChecks[0]; 341 const auto &RChkB = SubChecks[1]; 342 if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) && 343 RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) { 344 345 // If RChkA.Kind == RChkB.Kind then we just found two identical checks. 346 // But if one of them is a RANGE_CHECK_LOWER and the other is a 347 // RANGE_CHECK_UPPER (only possibility if they're different) then 348 // together they form a RANGE_CHECK_BOTH. 349 SubChecks[0].Kind = 350 (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind); 351 SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length; 352 SubChecks[0].CheckUse = &ConditionUse; 353 354 // We updated one of the checks in place, now erase the other. 355 SubChecks.pop_back(); 356 } 357 } 358 359 Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end()); 360 return; 361 } 362 363 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 364 if (!ICI) 365 return; 366 367 Value *Length = nullptr, *Index; 368 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length); 369 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 370 return; 371 372 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 373 bool IsAffineIndex = 374 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 375 376 if (!IsAffineIndex) 377 return; 378 379 InductiveRangeCheck IRC; 380 IRC.Length = Length; 381 IRC.Offset = IndexAddRec->getStart(); 382 IRC.Scale = IndexAddRec->getStepRecurrence(SE); 383 IRC.CheckUse = &ConditionUse; 384 IRC.Kind = RCKind; 385 Checks.push_back(IRC); 386 } 387 388 void InductiveRangeCheck::extractRangeChecksFromBranch( 389 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI, 390 SmallVectorImpl<InductiveRangeCheck> &Checks) { 391 392 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 393 return; 394 395 BranchProbability LikelyTaken(15, 16); 396 397 if (!SkipProfitabilityChecks && 398 BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 399 return; 400 401 SmallPtrSet<Value *, 8> Visited; 402 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 403 Checks, Visited); 404 } 405 406 // Add metadata to the loop L to disable loop optimizations. Callers need to 407 // confirm that optimizing loop L is not beneficial. 408 static void DisableAllLoopOptsOnLoop(Loop &L) { 409 // We do not care about any existing loopID related metadata for L, since we 410 // are setting all loop metadata to false. 411 LLVMContext &Context = L.getHeader()->getContext(); 412 // Reserve first location for self reference to the LoopID metadata node. 413 MDNode *Dummy = MDNode::get(Context, {}); 414 MDNode *DisableUnroll = MDNode::get( 415 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 416 Metadata *FalseVal = 417 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 418 MDNode *DisableVectorize = MDNode::get( 419 Context, 420 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 421 MDNode *DisableLICMVersioning = MDNode::get( 422 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 423 MDNode *DisableDistribution= MDNode::get( 424 Context, 425 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 426 MDNode *NewLoopID = 427 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 428 DisableLICMVersioning, DisableDistribution}); 429 // Set operand 0 to refer to the loop id itself. 430 NewLoopID->replaceOperandWith(0, NewLoopID); 431 L.setLoopID(NewLoopID); 432 } 433 434 namespace { 435 436 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 437 // except that it is more lightweight and can track the state of a loop through 438 // changing and potentially invalid IR. This structure also formalizes the 439 // kinds of loops we can deal with -- ones that have a single latch that is also 440 // an exiting block *and* have a canonical induction variable. 441 struct LoopStructure { 442 const char *Tag; 443 444 BasicBlock *Header; 445 BasicBlock *Latch; 446 447 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 448 // successor is `LatchExit', the exit block of the loop. 449 BranchInst *LatchBr; 450 BasicBlock *LatchExit; 451 unsigned LatchBrExitIdx; 452 453 // The loop represented by this instance of LoopStructure is semantically 454 // equivalent to: 455 // 456 // intN_ty inc = IndVarIncreasing ? 1 : -1; 457 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 458 // 459 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 460 // ... body ... 461 462 Value *IndVarBase; 463 Value *IndVarStart; 464 Value *IndVarStep; 465 Value *LoopExitAt; 466 bool IndVarIncreasing; 467 bool IsSignedPredicate; 468 469 LoopStructure() 470 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr), 471 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarBase(nullptr), 472 IndVarStart(nullptr), IndVarStep(nullptr), LoopExitAt(nullptr), 473 IndVarIncreasing(false), IsSignedPredicate(true) {} 474 475 template <typename M> LoopStructure map(M Map) const { 476 LoopStructure Result; 477 Result.Tag = Tag; 478 Result.Header = cast<BasicBlock>(Map(Header)); 479 Result.Latch = cast<BasicBlock>(Map(Latch)); 480 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 481 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 482 Result.LatchBrExitIdx = LatchBrExitIdx; 483 Result.IndVarBase = Map(IndVarBase); 484 Result.IndVarStart = Map(IndVarStart); 485 Result.IndVarStep = Map(IndVarStep); 486 Result.LoopExitAt = Map(LoopExitAt); 487 Result.IndVarIncreasing = IndVarIncreasing; 488 Result.IsSignedPredicate = IsSignedPredicate; 489 return Result; 490 } 491 492 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 493 BranchProbabilityInfo &BPI, 494 Loop &, 495 const char *&); 496 }; 497 498 /// This class is used to constrain loops to run within a given iteration space. 499 /// The algorithm this class implements is given a Loop and a range [Begin, 500 /// End). The algorithm then tries to break out a "main loop" out of the loop 501 /// it is given in a way that the "main loop" runs with the induction variable 502 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 503 /// loops to run any remaining iterations. The pre loop runs any iterations in 504 /// which the induction variable is < Begin, and the post loop runs any 505 /// iterations in which the induction variable is >= End. 506 /// 507 class LoopConstrainer { 508 // The representation of a clone of the original loop we started out with. 509 struct ClonedLoop { 510 // The cloned blocks 511 std::vector<BasicBlock *> Blocks; 512 513 // `Map` maps values in the clonee into values in the cloned version 514 ValueToValueMapTy Map; 515 516 // An instance of `LoopStructure` for the cloned loop 517 LoopStructure Structure; 518 }; 519 520 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 521 // more details on what these fields mean. 522 struct RewrittenRangeInfo { 523 BasicBlock *PseudoExit; 524 BasicBlock *ExitSelector; 525 std::vector<PHINode *> PHIValuesAtPseudoExit; 526 PHINode *IndVarEnd; 527 528 RewrittenRangeInfo() 529 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {} 530 }; 531 532 // Calculated subranges we restrict the iteration space of the main loop to. 533 // See the implementation of `calculateSubRanges' for more details on how 534 // these fields are computed. `LowLimit` is None if there is no restriction 535 // on low end of the restricted iteration space of the main loop. `HighLimit` 536 // is None if there is no restriction on high end of the restricted iteration 537 // space of the main loop. 538 539 struct SubRanges { 540 Optional<const SCEV *> LowLimit; 541 Optional<const SCEV *> HighLimit; 542 }; 543 544 // A utility function that does a `replaceUsesOfWith' on the incoming block 545 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 546 // incoming block list with `ReplaceBy'. 547 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 548 BasicBlock *ReplaceBy); 549 550 // Compute a safe set of limits for the main loop to run in -- effectively the 551 // intersection of `Range' and the iteration space of the original loop. 552 // Return None if unable to compute the set of subranges. 553 // 554 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 555 556 // Clone `OriginalLoop' and return the result in CLResult. The IR after 557 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 558 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 559 // but there is no such edge. 560 // 561 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 562 563 // Create the appropriate loop structure needed to describe a cloned copy of 564 // `Original`. The clone is described by `VM`. 565 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 566 ValueToValueMapTy &VM); 567 568 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 569 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 570 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 571 // `OriginalHeaderCount'. 572 // 573 // If there are iterations left to execute, control is made to jump to 574 // `ContinuationBlock', otherwise they take the normal loop exit. The 575 // returned `RewrittenRangeInfo' object is populated as follows: 576 // 577 // .PseudoExit is a basic block that unconditionally branches to 578 // `ContinuationBlock'. 579 // 580 // .ExitSelector is a basic block that decides, on exit from the loop, 581 // whether to branch to the "true" exit or to `PseudoExit'. 582 // 583 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 584 // for each PHINode in the loop header on taking the pseudo exit. 585 // 586 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 587 // preheader because it is made to branch to the loop header only 588 // conditionally. 589 // 590 RewrittenRangeInfo 591 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 592 Value *ExitLoopAt, 593 BasicBlock *ContinuationBlock) const; 594 595 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 596 // function creates a new preheader for `LS' and returns it. 597 // 598 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 599 const char *Tag) const; 600 601 // `ContinuationBlockAndPreheader' was the continuation block for some call to 602 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 603 // This function rewrites the PHI nodes in `LS.Header' to start with the 604 // correct value. 605 void rewriteIncomingValuesForPHIs( 606 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 607 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 608 609 // Even though we do not preserve any passes at this time, we at least need to 610 // keep the parent loop structure consistent. The `LPPassManager' seems to 611 // verify this after running a loop pass. This function adds the list of 612 // blocks denoted by BBs to this loops parent loop if required. 613 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 614 615 // Some global state. 616 Function &F; 617 LLVMContext &Ctx; 618 ScalarEvolution &SE; 619 DominatorTree &DT; 620 LPPassManager &LPM; 621 LoopInfo &LI; 622 623 // Information about the original loop we started out with. 624 Loop &OriginalLoop; 625 const SCEV *LatchTakenCount; 626 BasicBlock *OriginalPreheader; 627 628 // The preheader of the main loop. This may or may not be different from 629 // `OriginalPreheader'. 630 BasicBlock *MainLoopPreheader; 631 632 // The range we need to run the main loop in. 633 InductiveRangeCheck::Range Range; 634 635 // The structure of the main loop (see comment at the beginning of this class 636 // for a definition) 637 LoopStructure MainLoopStructure; 638 639 public: 640 LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM, 641 const LoopStructure &LS, ScalarEvolution &SE, 642 DominatorTree &DT, InductiveRangeCheck::Range R) 643 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 644 SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L), 645 LatchTakenCount(nullptr), OriginalPreheader(nullptr), 646 MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {} 647 648 // Entry point for the algorithm. Returns true on success. 649 bool run(); 650 }; 651 652 } 653 654 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 655 BasicBlock *ReplaceBy) { 656 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 657 if (PN->getIncomingBlock(i) == Block) 658 PN->setIncomingBlock(i, ReplaceBy); 659 } 660 661 static bool CanBeMax(ScalarEvolution &SE, const SCEV *S, bool Signed) { 662 APInt Max = Signed ? 663 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()) : 664 APInt::getMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 665 return SE.getSignedRange(S).contains(Max) && 666 SE.getUnsignedRange(S).contains(Max); 667 } 668 669 static bool SumCanReachMax(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, 670 bool Signed) { 671 // S1 < INT_MAX - S2 ===> S1 + S2 < INT_MAX. 672 assert(SE.isKnownNonNegative(S2) && 673 "We expected the 2nd arg to be non-negative!"); 674 const SCEV *Max = SE.getConstant( 675 Signed ? APInt::getSignedMaxValue( 676 cast<IntegerType>(S1->getType())->getBitWidth()) 677 : APInt::getMaxValue( 678 cast<IntegerType>(S1->getType())->getBitWidth())); 679 const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); 680 return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 681 S1, CapForS1); 682 } 683 684 static bool CanBeMin(ScalarEvolution &SE, const SCEV *S, bool Signed) { 685 APInt Min = Signed ? 686 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()) : 687 APInt::getMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 688 return SE.getSignedRange(S).contains(Min) && 689 SE.getUnsignedRange(S).contains(Min); 690 } 691 692 static bool SumCanReachMin(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, 693 bool Signed) { 694 // S1 > INT_MIN - S2 ===> S1 + S2 > INT_MIN. 695 assert(SE.isKnownNonPositive(S2) && 696 "We expected the 2nd arg to be non-positive!"); 697 const SCEV *Max = SE.getConstant( 698 Signed ? APInt::getSignedMinValue( 699 cast<IntegerType>(S1->getType())->getBitWidth()) 700 : APInt::getMinValue( 701 cast<IntegerType>(S1->getType())->getBitWidth())); 702 const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); 703 return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, 704 S1, CapForS1); 705 } 706 707 Optional<LoopStructure> 708 LoopStructure::parseLoopStructure(ScalarEvolution &SE, 709 BranchProbabilityInfo &BPI, 710 Loop &L, const char *&FailureReason) { 711 if (!L.isLoopSimplifyForm()) { 712 FailureReason = "loop not in LoopSimplify form"; 713 return None; 714 } 715 716 BasicBlock *Latch = L.getLoopLatch(); 717 assert(Latch && "Simplified loops only have one latch!"); 718 719 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 720 FailureReason = "loop has already been cloned"; 721 return None; 722 } 723 724 if (!L.isLoopExiting(Latch)) { 725 FailureReason = "no loop latch"; 726 return None; 727 } 728 729 BasicBlock *Header = L.getHeader(); 730 BasicBlock *Preheader = L.getLoopPreheader(); 731 if (!Preheader) { 732 FailureReason = "no preheader"; 733 return None; 734 } 735 736 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 737 if (!LatchBr || LatchBr->isUnconditional()) { 738 FailureReason = "latch terminator not conditional branch"; 739 return None; 740 } 741 742 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 743 744 BranchProbability ExitProbability = 745 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 746 747 if (!SkipProfitabilityChecks && 748 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 749 FailureReason = "short running loop, not profitable"; 750 return None; 751 } 752 753 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 754 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 755 FailureReason = "latch terminator branch not conditional on integral icmp"; 756 return None; 757 } 758 759 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 760 if (isa<SCEVCouldNotCompute>(LatchCount)) { 761 FailureReason = "could not compute latch count"; 762 return None; 763 } 764 765 ICmpInst::Predicate Pred = ICI->getPredicate(); 766 Value *LeftValue = ICI->getOperand(0); 767 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 768 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 769 770 Value *RightValue = ICI->getOperand(1); 771 const SCEV *RightSCEV = SE.getSCEV(RightValue); 772 773 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 774 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 775 if (isa<SCEVAddRecExpr>(RightSCEV)) { 776 std::swap(LeftSCEV, RightSCEV); 777 std::swap(LeftValue, RightValue); 778 Pred = ICmpInst::getSwappedPredicate(Pred); 779 } else { 780 FailureReason = "no add recurrences in the icmp"; 781 return None; 782 } 783 } 784 785 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 786 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 787 return true; 788 789 IntegerType *Ty = cast<IntegerType>(AR->getType()); 790 IntegerType *WideTy = 791 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 792 793 const SCEVAddRecExpr *ExtendAfterOp = 794 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 795 if (ExtendAfterOp) { 796 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 797 const SCEV *ExtendedStep = 798 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 799 800 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 801 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 802 803 if (NoSignedWrap) 804 return true; 805 } 806 807 // We may have proved this when computing the sign extension above. 808 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 809 }; 810 811 // Here we check whether the suggested AddRec is an induction variable that 812 // can be handled (i.e. with known constant step), and if yes, calculate its 813 // step and identify whether it is increasing or decreasing. 814 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing, 815 ConstantInt *&StepCI) { 816 if (!AR->isAffine()) 817 return false; 818 819 // Currently we only work with induction variables that have been proved to 820 // not wrap. This restriction can potentially be lifted in the future. 821 822 if (!HasNoSignedWrap(AR)) 823 return false; 824 825 if (const SCEVConstant *StepExpr = 826 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 827 StepCI = StepExpr->getValue(); 828 assert(!StepCI->isZero() && "Zero step?"); 829 IsIncreasing = !StepCI->isNegative(); 830 return true; 831 } 832 833 return false; 834 }; 835 836 // `ICI` is interpreted as taking the backedge if the *next* value of the 837 // induction variable satisfies some constraint. 838 839 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 840 bool IsIncreasing = false; 841 bool IsSignedPredicate = true; 842 ConstantInt *StepCI; 843 if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) { 844 FailureReason = "LHS in icmp not induction variable"; 845 return None; 846 } 847 848 const SCEV *StartNext = IndVarBase->getStart(); 849 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 850 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 851 const SCEV *Step = SE.getSCEV(StepCI); 852 853 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 854 if (IsIncreasing) { 855 bool DecreasedRightValueByOne = false; 856 if (StepCI->isOne()) { 857 // Try to turn eq/ne predicates to those we can work with. 858 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 859 // while (++i != len) { while (++i < len) { 860 // ... ---> ... 861 // } } 862 // If both parts are known non-negative, it is profitable to use 863 // unsigned comparison in increasing loop. This allows us to make the 864 // comparison check against "RightSCEV + 1" more optimistic. 865 if (SE.isKnownNonNegative(IndVarStart) && 866 SE.isKnownNonNegative(RightSCEV)) 867 Pred = ICmpInst::ICMP_ULT; 868 else 869 Pred = ICmpInst::ICMP_SLT; 870 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 871 !CanBeMin(SE, RightSCEV, /* IsSignedPredicate */ true)) { 872 // while (true) { while (true) { 873 // if (++i == len) ---> if (++i > len - 1) 874 // break; break; 875 // ... ... 876 // } } 877 // TODO: Insert ICMP_UGT if both are non-negative? 878 Pred = ICmpInst::ICMP_SGT; 879 RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); 880 DecreasedRightValueByOne = true; 881 } 882 } 883 884 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 885 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 886 bool FoundExpectedPred = 887 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 888 889 if (!FoundExpectedPred) { 890 FailureReason = "expected icmp slt semantically, found something else"; 891 return None; 892 } 893 894 IsSignedPredicate = 895 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 896 897 // FIXME: We temporarily disable unsigned latch conditions by default 898 // because of found problems with intersecting signed and unsigned ranges. 899 // We are going to turn it on once the problems are fixed. 900 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 901 FailureReason = "unsigned latch conditions are explicitly prohibited"; 902 return None; 903 } 904 905 // The predicate that we need to check that the induction variable lies 906 // within bounds. 907 ICmpInst::Predicate BoundPred = 908 IsSignedPredicate ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 909 910 if (LatchBrExitIdx == 0) { 911 const SCEV *StepMinusOne = SE.getMinusSCEV(Step, 912 SE.getOne(Step->getType())); 913 if (SumCanReachMax(SE, RightSCEV, StepMinusOne, IsSignedPredicate)) { 914 // TODO: this restriction is easily removable -- we just have to 915 // remember that the icmp was an slt and not an sle. 916 FailureReason = "limit may overflow when coercing le to lt"; 917 return None; 918 } 919 920 if (!SE.isLoopEntryGuardedByCond( 921 &L, BoundPred, IndVarStart, 922 SE.getAddExpr(RightSCEV, Step))) { 923 FailureReason = "Induction variable start not bounded by upper limit"; 924 return None; 925 } 926 927 // We need to increase the right value unless we have already decreased 928 // it virtually when we replaced EQ with SGT. 929 if (!DecreasedRightValueByOne) { 930 IRBuilder<> B(Preheader->getTerminator()); 931 RightValue = B.CreateAdd(RightValue, One); 932 } 933 } else { 934 if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { 935 FailureReason = "Induction variable start not bounded by upper limit"; 936 return None; 937 } 938 assert(!DecreasedRightValueByOne && 939 "Right value can be decreased only for LatchBrExitIdx == 0!"); 940 } 941 } else { 942 bool IncreasedRightValueByOne = false; 943 if (StepCI->isMinusOne()) { 944 // Try to turn eq/ne predicates to those we can work with. 945 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 946 // while (--i != len) { while (--i > len) { 947 // ... ---> ... 948 // } } 949 // We intentionally don't turn the predicate into UGT even if we know 950 // that both operands are non-negative, because it will only pessimize 951 // our check against "RightSCEV - 1". 952 Pred = ICmpInst::ICMP_SGT; 953 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 954 !CanBeMax(SE, RightSCEV, /* IsSignedPredicate */ true)) { 955 // while (true) { while (true) { 956 // if (--i == len) ---> if (--i < len + 1) 957 // break; break; 958 // ... ... 959 // } } 960 // TODO: Insert ICMP_ULT if both are non-negative? 961 Pred = ICmpInst::ICMP_SLT; 962 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 963 IncreasedRightValueByOne = true; 964 } 965 } 966 967 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 968 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 969 970 bool FoundExpectedPred = 971 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 972 973 if (!FoundExpectedPred) { 974 FailureReason = "expected icmp sgt semantically, found something else"; 975 return None; 976 } 977 978 IsSignedPredicate = 979 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 980 981 // FIXME: We temporarily disable unsigned latch conditions by default 982 // because of found problems with intersecting signed and unsigned ranges. 983 // We are going to turn it on once the problems are fixed. 984 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 985 FailureReason = "unsigned latch conditions are explicitly prohibited"; 986 return None; 987 } 988 989 // The predicate that we need to check that the induction variable lies 990 // within bounds. 991 ICmpInst::Predicate BoundPred = 992 IsSignedPredicate ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 993 994 if (LatchBrExitIdx == 0) { 995 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 996 if (SumCanReachMin(SE, RightSCEV, StepPlusOne, IsSignedPredicate)) { 997 // TODO: this restriction is easily removable -- we just have to 998 // remember that the icmp was an sgt and not an sge. 999 FailureReason = "limit may overflow when coercing ge to gt"; 1000 return None; 1001 } 1002 1003 if (!SE.isLoopEntryGuardedByCond( 1004 &L, BoundPred, IndVarStart, 1005 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) { 1006 FailureReason = "Induction variable start not bounded by lower limit"; 1007 return None; 1008 } 1009 1010 // We need to decrease the right value unless we have already increased 1011 // it virtually when we replaced EQ with SLT. 1012 if (!IncreasedRightValueByOne) { 1013 IRBuilder<> B(Preheader->getTerminator()); 1014 RightValue = B.CreateSub(RightValue, One); 1015 } 1016 } else { 1017 if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { 1018 FailureReason = "Induction variable start not bounded by lower limit"; 1019 return None; 1020 } 1021 assert(!IncreasedRightValueByOne && 1022 "Right value can be increased only for LatchBrExitIdx == 0!"); 1023 } 1024 } 1025 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1026 1027 assert(SE.getLoopDisposition(LatchCount, &L) == 1028 ScalarEvolution::LoopInvariant && 1029 "loop variant exit count doesn't make sense!"); 1030 1031 assert(!L.contains(LatchExit) && "expected an exit block!"); 1032 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1033 Value *IndVarStartV = 1034 SCEVExpander(SE, DL, "irce") 1035 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 1036 IndVarStartV->setName("indvar.start"); 1037 1038 LoopStructure Result; 1039 1040 Result.Tag = "main"; 1041 Result.Header = Header; 1042 Result.Latch = Latch; 1043 Result.LatchBr = LatchBr; 1044 Result.LatchExit = LatchExit; 1045 Result.LatchBrExitIdx = LatchBrExitIdx; 1046 Result.IndVarStart = IndVarStartV; 1047 Result.IndVarStep = StepCI; 1048 Result.IndVarBase = LeftValue; 1049 Result.IndVarIncreasing = IsIncreasing; 1050 Result.LoopExitAt = RightValue; 1051 Result.IsSignedPredicate = IsSignedPredicate; 1052 1053 FailureReason = nullptr; 1054 1055 return Result; 1056 } 1057 1058 Optional<LoopConstrainer::SubRanges> 1059 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1060 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1061 1062 if (Range.getType() != Ty) 1063 return None; 1064 1065 LoopConstrainer::SubRanges Result; 1066 1067 // I think we can be more aggressive here and make this nuw / nsw if the 1068 // addition that feeds into the icmp for the latch's terminating branch is nuw 1069 // / nsw. In any case, a wrapping 2's complement addition is safe. 1070 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 1071 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 1072 1073 bool Increasing = MainLoopStructure.IndVarIncreasing; 1074 1075 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1076 // [Smallest, GreatestSeen] is the range of values the induction variable 1077 // takes. 1078 1079 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1080 1081 const SCEV *One = SE.getOne(Ty); 1082 if (Increasing) { 1083 Smallest = Start; 1084 Greatest = End; 1085 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1086 GreatestSeen = SE.getMinusSCEV(End, One); 1087 } else { 1088 // These two computations may sign-overflow. Here is why that is okay: 1089 // 1090 // We know that the induction variable does not sign-overflow on any 1091 // iteration except the last one, and it starts at `Start` and ends at 1092 // `End`, decrementing by one every time. 1093 // 1094 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1095 // induction variable is decreasing we know that that the smallest value 1096 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1097 // 1098 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1099 // that case, `Clamp` will always return `Smallest` and 1100 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1101 // will be an empty range. Returning an empty range is always safe. 1102 // 1103 1104 Smallest = SE.getAddExpr(End, One); 1105 Greatest = SE.getAddExpr(Start, One); 1106 GreatestSeen = Start; 1107 } 1108 1109 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1110 bool MaybeNegativeValues = IsSignedPredicate || !SE.isKnownNonNegative(S); 1111 return MaybeNegativeValues 1112 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1113 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1114 }; 1115 1116 // In some cases we can prove that we don't need a pre or post loop. 1117 ICmpInst::Predicate PredLE = 1118 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1119 ICmpInst::Predicate PredLT = 1120 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1121 1122 bool ProvablyNoPreloop = 1123 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1124 if (!ProvablyNoPreloop) 1125 Result.LowLimit = Clamp(Range.getBegin()); 1126 1127 bool ProvablyNoPostLoop = 1128 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1129 if (!ProvablyNoPostLoop) 1130 Result.HighLimit = Clamp(Range.getEnd()); 1131 1132 return Result; 1133 } 1134 1135 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1136 const char *Tag) const { 1137 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1138 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1139 Result.Blocks.push_back(Clone); 1140 Result.Map[BB] = Clone; 1141 } 1142 1143 auto GetClonedValue = [&Result](Value *V) { 1144 assert(V && "null values not in domain!"); 1145 auto It = Result.Map.find(V); 1146 if (It == Result.Map.end()) 1147 return V; 1148 return static_cast<Value *>(It->second); 1149 }; 1150 1151 auto *ClonedLatch = 1152 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1153 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1154 MDNode::get(Ctx, {})); 1155 1156 Result.Structure = MainLoopStructure.map(GetClonedValue); 1157 Result.Structure.Tag = Tag; 1158 1159 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1160 BasicBlock *ClonedBB = Result.Blocks[i]; 1161 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1162 1163 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1164 1165 for (Instruction &I : *ClonedBB) 1166 RemapInstruction(&I, Result.Map, 1167 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1168 1169 // Exit blocks will now have one more predecessor and their PHI nodes need 1170 // to be edited to reflect that. No phi nodes need to be introduced because 1171 // the loop is in LCSSA. 1172 1173 for (auto *SBB : successors(OriginalBB)) { 1174 if (OriginalLoop.contains(SBB)) 1175 continue; // not an exit block 1176 1177 for (Instruction &I : *SBB) { 1178 auto *PN = dyn_cast<PHINode>(&I); 1179 if (!PN) 1180 break; 1181 1182 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); 1183 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1184 } 1185 } 1186 } 1187 } 1188 1189 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1190 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1191 BasicBlock *ContinuationBlock) const { 1192 1193 // We start with a loop with a single latch: 1194 // 1195 // +--------------------+ 1196 // | | 1197 // | preheader | 1198 // | | 1199 // +--------+-----------+ 1200 // | ----------------\ 1201 // | / | 1202 // +--------v----v------+ | 1203 // | | | 1204 // | header | | 1205 // | | | 1206 // +--------------------+ | 1207 // | 1208 // ..... | 1209 // | 1210 // +--------------------+ | 1211 // | | | 1212 // | latch >----------/ 1213 // | | 1214 // +-------v------------+ 1215 // | 1216 // | 1217 // | +--------------------+ 1218 // | | | 1219 // +---> original exit | 1220 // | | 1221 // +--------------------+ 1222 // 1223 // We change the control flow to look like 1224 // 1225 // 1226 // +--------------------+ 1227 // | | 1228 // | preheader >-------------------------+ 1229 // | | | 1230 // +--------v-----------+ | 1231 // | /-------------+ | 1232 // | / | | 1233 // +--------v--v--------+ | | 1234 // | | | | 1235 // | header | | +--------+ | 1236 // | | | | | | 1237 // +--------------------+ | | +-----v-----v-----------+ 1238 // | | | | 1239 // | | | .pseudo.exit | 1240 // | | | | 1241 // | | +-----------v-----------+ 1242 // | | | 1243 // ..... | | | 1244 // | | +--------v-------------+ 1245 // +--------------------+ | | | | 1246 // | | | | | ContinuationBlock | 1247 // | latch >------+ | | | 1248 // | | | +----------------------+ 1249 // +---------v----------+ | 1250 // | | 1251 // | | 1252 // | +---------------^-----+ 1253 // | | | 1254 // +-----> .exit.selector | 1255 // | | 1256 // +----------v----------+ 1257 // | 1258 // +--------------------+ | 1259 // | | | 1260 // | original exit <----+ 1261 // | | 1262 // +--------------------+ 1263 // 1264 1265 RewrittenRangeInfo RRI; 1266 1267 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1268 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1269 &F, BBInsertLocation); 1270 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1271 BBInsertLocation); 1272 1273 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1274 bool Increasing = LS.IndVarIncreasing; 1275 bool IsSignedPredicate = LS.IsSignedPredicate; 1276 1277 IRBuilder<> B(PreheaderJump); 1278 1279 // EnterLoopCond - is it okay to start executing this `LS'? 1280 Value *EnterLoopCond = nullptr; 1281 if (Increasing) 1282 EnterLoopCond = IsSignedPredicate 1283 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1284 : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt); 1285 else 1286 EnterLoopCond = IsSignedPredicate 1287 ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt) 1288 : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt); 1289 1290 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1291 PreheaderJump->eraseFromParent(); 1292 1293 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1294 B.SetInsertPoint(LS.LatchBr); 1295 Value *TakeBackedgeLoopCond = nullptr; 1296 if (Increasing) 1297 TakeBackedgeLoopCond = IsSignedPredicate 1298 ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt) 1299 : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt); 1300 else 1301 TakeBackedgeLoopCond = IsSignedPredicate 1302 ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt) 1303 : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt); 1304 Value *CondForBranch = LS.LatchBrExitIdx == 1 1305 ? TakeBackedgeLoopCond 1306 : B.CreateNot(TakeBackedgeLoopCond); 1307 1308 LS.LatchBr->setCondition(CondForBranch); 1309 1310 B.SetInsertPoint(RRI.ExitSelector); 1311 1312 // IterationsLeft - are there any more iterations left, given the original 1313 // upper bound on the induction variable? If not, we branch to the "real" 1314 // exit. 1315 Value *IterationsLeft = nullptr; 1316 if (Increasing) 1317 IterationsLeft = IsSignedPredicate 1318 ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt) 1319 : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt); 1320 else 1321 IterationsLeft = IsSignedPredicate 1322 ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt) 1323 : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt); 1324 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1325 1326 BranchInst *BranchToContinuation = 1327 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1328 1329 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1330 // each of the PHI nodes in the loop header. This feeds into the initial 1331 // value of the same PHI nodes if/when we continue execution. 1332 for (Instruction &I : *LS.Header) { 1333 auto *PN = dyn_cast<PHINode>(&I); 1334 if (!PN) 1335 break; 1336 1337 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", 1338 BranchToContinuation); 1339 1340 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); 1341 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), 1342 RRI.ExitSelector); 1343 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1344 } 1345 1346 RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end", 1347 BranchToContinuation); 1348 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1349 RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector); 1350 1351 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1352 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1353 for (Instruction &I : *LS.LatchExit) { 1354 if (PHINode *PN = dyn_cast<PHINode>(&I)) 1355 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); 1356 else 1357 break; 1358 } 1359 1360 return RRI; 1361 } 1362 1363 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1364 LoopStructure &LS, BasicBlock *ContinuationBlock, 1365 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1366 1367 unsigned PHIIndex = 0; 1368 for (Instruction &I : *LS.Header) { 1369 auto *PN = dyn_cast<PHINode>(&I); 1370 if (!PN) 1371 break; 1372 1373 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1374 if (PN->getIncomingBlock(i) == ContinuationBlock) 1375 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1376 } 1377 1378 LS.IndVarStart = RRI.IndVarEnd; 1379 } 1380 1381 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1382 BasicBlock *OldPreheader, 1383 const char *Tag) const { 1384 1385 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1386 BranchInst::Create(LS.Header, Preheader); 1387 1388 for (Instruction &I : *LS.Header) { 1389 auto *PN = dyn_cast<PHINode>(&I); 1390 if (!PN) 1391 break; 1392 1393 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 1394 replacePHIBlock(PN, OldPreheader, Preheader); 1395 } 1396 1397 return Preheader; 1398 } 1399 1400 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1401 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1402 if (!ParentLoop) 1403 return; 1404 1405 for (BasicBlock *BB : BBs) 1406 ParentLoop->addBasicBlockToLoop(BB, LI); 1407 } 1408 1409 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1410 ValueToValueMapTy &VM) { 1411 Loop &New = *LI.AllocateLoop(); 1412 if (Parent) 1413 Parent->addChildLoop(&New); 1414 else 1415 LI.addTopLevelLoop(&New); 1416 LPM.addLoop(New); 1417 1418 // Add all of the blocks in Original to the new loop. 1419 for (auto *BB : Original->blocks()) 1420 if (LI.getLoopFor(BB) == Original) 1421 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1422 1423 // Add all of the subloops to the new loop. 1424 for (Loop *SubLoop : *Original) 1425 createClonedLoopStructure(SubLoop, &New, VM); 1426 1427 return &New; 1428 } 1429 1430 bool LoopConstrainer::run() { 1431 BasicBlock *Preheader = nullptr; 1432 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1433 Preheader = OriginalLoop.getLoopPreheader(); 1434 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1435 "preconditions!"); 1436 1437 OriginalPreheader = Preheader; 1438 MainLoopPreheader = Preheader; 1439 1440 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1441 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1442 if (!MaybeSR.hasValue()) { 1443 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1444 return false; 1445 } 1446 1447 SubRanges SR = MaybeSR.getValue(); 1448 bool Increasing = MainLoopStructure.IndVarIncreasing; 1449 IntegerType *IVTy = 1450 cast<IntegerType>(MainLoopStructure.IndVarBase->getType()); 1451 1452 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1453 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1454 1455 // It would have been better to make `PreLoop' and `PostLoop' 1456 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1457 // constructor. 1458 ClonedLoop PreLoop, PostLoop; 1459 bool NeedsPreLoop = 1460 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1461 bool NeedsPostLoop = 1462 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1463 1464 Value *ExitPreLoopAt = nullptr; 1465 Value *ExitMainLoopAt = nullptr; 1466 const SCEVConstant *MinusOneS = 1467 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1468 1469 if (NeedsPreLoop) { 1470 const SCEV *ExitPreLoopAtSCEV = nullptr; 1471 1472 if (Increasing) 1473 ExitPreLoopAtSCEV = *SR.LowLimit; 1474 else { 1475 if (CanBeMin(SE, *SR.HighLimit, IsSignedPredicate)) { 1476 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1477 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1478 << "\n"); 1479 return false; 1480 } 1481 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1482 } 1483 1484 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1485 ExitPreLoopAt->setName("exit.preloop.at"); 1486 } 1487 1488 if (NeedsPostLoop) { 1489 const SCEV *ExitMainLoopAtSCEV = nullptr; 1490 1491 if (Increasing) 1492 ExitMainLoopAtSCEV = *SR.HighLimit; 1493 else { 1494 if (CanBeMin(SE, *SR.LowLimit, IsSignedPredicate)) { 1495 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1496 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1497 << "\n"); 1498 return false; 1499 } 1500 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1501 } 1502 1503 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1504 ExitMainLoopAt->setName("exit.mainloop.at"); 1505 } 1506 1507 // We clone these ahead of time so that we don't have to deal with changing 1508 // and temporarily invalid IR as we transform the loops. 1509 if (NeedsPreLoop) 1510 cloneLoop(PreLoop, "preloop"); 1511 if (NeedsPostLoop) 1512 cloneLoop(PostLoop, "postloop"); 1513 1514 RewrittenRangeInfo PreLoopRRI; 1515 1516 if (NeedsPreLoop) { 1517 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1518 PreLoop.Structure.Header); 1519 1520 MainLoopPreheader = 1521 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1522 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1523 ExitPreLoopAt, MainLoopPreheader); 1524 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1525 PreLoopRRI); 1526 } 1527 1528 BasicBlock *PostLoopPreheader = nullptr; 1529 RewrittenRangeInfo PostLoopRRI; 1530 1531 if (NeedsPostLoop) { 1532 PostLoopPreheader = 1533 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1534 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1535 ExitMainLoopAt, PostLoopPreheader); 1536 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1537 PostLoopRRI); 1538 } 1539 1540 BasicBlock *NewMainLoopPreheader = 1541 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1542 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1543 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1544 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1545 1546 // Some of the above may be nullptr, filter them out before passing to 1547 // addToParentLoopIfNeeded. 1548 auto NewBlocksEnd = 1549 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1550 1551 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1552 1553 DT.recalculate(F); 1554 1555 // We need to first add all the pre and post loop blocks into the loop 1556 // structures (as part of createClonedLoopStructure), and then update the 1557 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1558 // LI when LoopSimplifyForm is generated. 1559 Loop *PreL = nullptr, *PostL = nullptr; 1560 if (!PreLoop.Blocks.empty()) { 1561 PreL = createClonedLoopStructure( 1562 &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map); 1563 } 1564 1565 if (!PostLoop.Blocks.empty()) { 1566 PostL = createClonedLoopStructure( 1567 &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map); 1568 } 1569 1570 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1571 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1572 formLCSSARecursively(*L, DT, &LI, &SE); 1573 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1574 // Pre/post loops are slow paths, we do not need to perform any loop 1575 // optimizations on them. 1576 if (!IsOriginalLoop) 1577 DisableAllLoopOptsOnLoop(*L); 1578 }; 1579 if (PreL) 1580 CanonicalizeLoop(PreL, false); 1581 if (PostL) 1582 CanonicalizeLoop(PostL, false); 1583 CanonicalizeLoop(&OriginalLoop, true); 1584 1585 return true; 1586 } 1587 1588 /// Computes and returns a range of values for the induction variable (IndVar) 1589 /// in which the range check can be safely elided. If it cannot compute such a 1590 /// range, returns None. 1591 Optional<InductiveRangeCheck::Range> 1592 InductiveRangeCheck::computeSafeIterationSpace( 1593 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const { 1594 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1595 // variable, that may or may not exist as a real llvm::Value in the loop) and 1596 // this inductive range check is a range check on the "C + D * I" ("C" is 1597 // getOffset() and "D" is getScale()). We rewrite the value being range 1598 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1599 // 1600 // The actual inequalities we solve are of the form 1601 // 1602 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1603 // 1604 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions 1605 // and subtractions are twos-complement wrapping and comparisons are signed. 1606 // 1607 // Proof: 1608 // 1609 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows 1610 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows 1611 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have 1612 // overflown. 1613 // 1614 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. 1615 // Hence 0 <= (IndVar + M) < L 1616 1617 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = 1618 // 127, IndVar = 126 and L = -2 in an i8 world. 1619 1620 if (!IndVar->isAffine()) 1621 return None; 1622 1623 const SCEV *A = IndVar->getStart(); 1624 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1625 if (!B) 1626 return None; 1627 assert(!B->isZero() && "Recurrence with zero step?"); 1628 1629 const SCEV *C = getOffset(); 1630 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale()); 1631 if (D != B) 1632 return None; 1633 1634 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1635 1636 const SCEV *M = SE.getMinusSCEV(C, A); 1637 const SCEV *Begin = SE.getNegativeSCEV(M); 1638 const SCEV *UpperLimit = nullptr; 1639 1640 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 1641 // We can potentially do much better here. 1642 if (Value *V = getLength()) { 1643 UpperLimit = SE.getSCEV(V); 1644 } else { 1645 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 1646 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1647 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1648 } 1649 1650 const SCEV *End = SE.getMinusSCEV(UpperLimit, M); 1651 return InductiveRangeCheck::Range(Begin, End); 1652 } 1653 1654 static Optional<InductiveRangeCheck::Range> 1655 IntersectRange(ScalarEvolution &SE, 1656 const Optional<InductiveRangeCheck::Range> &R1, 1657 const InductiveRangeCheck::Range &R2) { 1658 if (R2.isEmpty()) 1659 return None; 1660 if (!R1.hasValue()) 1661 return R2; 1662 auto &R1Value = R1.getValue(); 1663 // We never return empty ranges from this function, and R1 is supposed to be 1664 // a result of intersection. Thus, R1 is never empty. 1665 assert(!R1Value.isEmpty() && "We should never have empty R1!"); 1666 1667 // TODO: we could widen the smaller range and have this work; but for now we 1668 // bail out to keep things simple. 1669 if (R1Value.getType() != R2.getType()) 1670 return None; 1671 1672 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1673 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1674 1675 // If the resulting range is empty, just return None. 1676 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1677 if (Ret.isEmpty()) 1678 return None; 1679 return Ret; 1680 } 1681 1682 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1683 if (skipLoop(L)) 1684 return false; 1685 1686 if (L->getBlocks().size() >= LoopSizeCutoff) { 1687 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1688 return false; 1689 } 1690 1691 BasicBlock *Preheader = L->getLoopPreheader(); 1692 if (!Preheader) { 1693 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1694 return false; 1695 } 1696 1697 LLVMContext &Context = Preheader->getContext(); 1698 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1699 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1700 BranchProbabilityInfo &BPI = 1701 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1702 1703 for (auto BBI : L->getBlocks()) 1704 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1705 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1706 RangeChecks); 1707 1708 if (RangeChecks.empty()) 1709 return false; 1710 1711 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1712 OS << "irce: looking at loop "; L->print(OS); 1713 OS << "irce: loop has " << RangeChecks.size() 1714 << " inductive range checks: \n"; 1715 for (InductiveRangeCheck &IRC : RangeChecks) 1716 IRC.print(OS); 1717 }; 1718 1719 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1720 1721 if (PrintRangeChecks) 1722 PrintRecognizedRangeChecks(errs()); 1723 1724 const char *FailureReason = nullptr; 1725 Optional<LoopStructure> MaybeLoopStructure = 1726 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1727 if (!MaybeLoopStructure.hasValue()) { 1728 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1729 << "\n";); 1730 return false; 1731 } 1732 LoopStructure LS = MaybeLoopStructure.getValue(); 1733 const SCEVAddRecExpr *IndVar = 1734 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1735 1736 Optional<InductiveRangeCheck::Range> SafeIterRange; 1737 Instruction *ExprInsertPt = Preheader->getTerminator(); 1738 1739 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1740 1741 IRBuilder<> B(ExprInsertPt); 1742 for (InductiveRangeCheck &IRC : RangeChecks) { 1743 auto Result = IRC.computeSafeIterationSpace(SE, IndVar); 1744 if (Result.hasValue()) { 1745 auto MaybeSafeIterRange = 1746 IntersectRange(SE, SafeIterRange, Result.getValue()); 1747 if (MaybeSafeIterRange.hasValue()) { 1748 assert(!MaybeSafeIterRange.getValue().isEmpty() && 1749 "We should never return empty ranges!"); 1750 RangeChecksToEliminate.push_back(IRC); 1751 SafeIterRange = MaybeSafeIterRange.getValue(); 1752 } 1753 } 1754 } 1755 1756 if (!SafeIterRange.hasValue()) 1757 return false; 1758 1759 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1760 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM, 1761 LS, SE, DT, SafeIterRange.getValue()); 1762 bool Changed = LC.run(); 1763 1764 if (Changed) { 1765 auto PrintConstrainedLoopInfo = [L]() { 1766 dbgs() << "irce: in function "; 1767 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1768 dbgs() << "constrained "; 1769 L->print(dbgs()); 1770 }; 1771 1772 DEBUG(PrintConstrainedLoopInfo()); 1773 1774 if (PrintChangedLoops) 1775 PrintConstrainedLoopInfo(); 1776 1777 // Optimize away the now-redundant range checks. 1778 1779 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1780 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1781 ? ConstantInt::getTrue(Context) 1782 : ConstantInt::getFalse(Context); 1783 IRC.getCheckUse()->set(FoldedRangeCheck); 1784 } 1785 } 1786 1787 return Changed; 1788 } 1789 1790 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1791 return new InductiveRangeCheckElimination; 1792 } 1793