1 //===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the guard widening pass. The semantics of the
10 // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
11 // more often that it did before the transform. This optimization is called
12 // "widening" and can be used hoist and common runtime checks in situations like
13 // these:
14 //
15 // %cmp0 = 7 u< Length
16 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
17 // call @unknown_side_effects()
18 // %cmp1 = 9 u< Length
19 // call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
20 // ...
21 //
22 // =>
23 //
24 // %cmp0 = 9 u< Length
25 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
26 // call @unknown_side_effects()
27 // ...
28 //
29 // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
30 // generic implementation of the same function, which will have the correct
31 // semantics from that point onward. It is always _legal_ to deoptimize (so
32 // replacing %cmp0 with false is "correct"), though it may not always be
33 // profitable to do so.
34 //
35 // NB! This pass is a work in progress. It hasn't been tuned to be "production
36 // ready" yet. It is known to have quadriatic running time and will not scale
37 // to large numbers of guards
38 //
39 //===----------------------------------------------------------------------===//
40
41 #include "llvm/Transforms/Scalar/GuardWidening.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/GuardUtils.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/ConstantRange.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/KnownBits.h"
60 #include "llvm/Transforms/Scalar.h"
61 #include "llvm/Transforms/Utils/GuardUtils.h"
62 #include "llvm/Transforms/Utils/LoopUtils.h"
63 #include <functional>
64
65 using namespace llvm;
66
67 #define DEBUG_TYPE "guard-widening"
68
69 STATISTIC(GuardsEliminated, "Number of eliminated guards");
70 STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
71
72 static cl::opt<bool>
73 WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
74 cl::desc("Whether or not we should widen guards "
75 "expressed as branches by widenable conditions"),
76 cl::init(true));
77
78 namespace {
79
80 // Get the condition of \p I. It can either be a guard or a conditional branch.
getCondition(Instruction * I)81 static Value *getCondition(Instruction *I) {
82 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
83 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
84 "Bad guard intrinsic?");
85 return GI->getArgOperand(0);
86 }
87 Value *Cond, *WC;
88 BasicBlock *IfTrueBB, *IfFalseBB;
89 if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
90 return Cond;
91
92 return cast<BranchInst>(I)->getCondition();
93 }
94
95 // Set the condition for \p I to \p NewCond. \p I can either be a guard or a
96 // conditional branch.
setCondition(Instruction * I,Value * NewCond)97 static void setCondition(Instruction *I, Value *NewCond) {
98 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
99 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
100 "Bad guard intrinsic?");
101 GI->setArgOperand(0, NewCond);
102 return;
103 }
104 cast<BranchInst>(I)->setCondition(NewCond);
105 }
106
107 // Eliminates the guard instruction properly.
eliminateGuard(Instruction * GuardInst,MemorySSAUpdater * MSSAU)108 static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
109 GuardInst->eraseFromParent();
110 if (MSSAU)
111 MSSAU->removeMemoryAccess(GuardInst);
112 ++GuardsEliminated;
113 }
114
115 class GuardWideningImpl {
116 DominatorTree &DT;
117 PostDominatorTree *PDT;
118 LoopInfo &LI;
119 MemorySSAUpdater *MSSAU;
120
121 /// Together, these describe the region of interest. This might be all of
122 /// the blocks within a function, or only a given loop's blocks and preheader.
123 DomTreeNode *Root;
124 std::function<bool(BasicBlock*)> BlockFilter;
125
126 /// The set of guards and conditional branches whose conditions have been
127 /// widened into dominating guards.
128 SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
129
130 /// The set of guards which have been widened to include conditions to other
131 /// guards.
132 DenseSet<Instruction *> WidenedGuards;
133
134 /// Try to eliminate instruction \p Instr by widening it into an earlier
135 /// dominating guard. \p DFSI is the DFS iterator on the dominator tree that
136 /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
137 /// maps BasicBlocks to the set of guards seen in that block.
138 bool eliminateInstrViaWidening(
139 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
140 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
141 GuardsPerBlock, bool InvertCondition = false);
142
143 /// Used to keep track of which widening potential is more effective.
144 enum WideningScore {
145 /// Don't widen.
146 WS_IllegalOrNegative,
147
148 /// Widening is performance neutral as far as the cycles spent in check
149 /// conditions goes (but can still help, e.g., code layout, having less
150 /// deopt state).
151 WS_Neutral,
152
153 /// Widening is profitable.
154 WS_Positive,
155
156 /// Widening is very profitable. Not significantly different from \c
157 /// WS_Positive, except by the order.
158 WS_VeryPositive
159 };
160
161 static StringRef scoreTypeToString(WideningScore WS);
162
163 /// Compute the score for widening the condition in \p DominatedInstr
164 /// into \p DominatingGuard. If \p InvertCond is set, then we widen the
165 /// inverted condition of the dominating guard.
166 WideningScore computeWideningScore(Instruction *DominatedInstr,
167 Instruction *DominatingGuard,
168 bool InvertCond);
169
170 /// Helper to check if \p V can be hoisted to \p InsertPos.
isAvailableAt(const Value * V,const Instruction * InsertPos) const171 bool isAvailableAt(const Value *V, const Instruction *InsertPos) const {
172 SmallPtrSet<const Instruction *, 8> Visited;
173 return isAvailableAt(V, InsertPos, Visited);
174 }
175
176 bool isAvailableAt(const Value *V, const Instruction *InsertPos,
177 SmallPtrSetImpl<const Instruction *> &Visited) const;
178
179 /// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c
180 /// isAvailableAt returned true.
181 void makeAvailableAt(Value *V, Instruction *InsertPos) const;
182
183 /// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try
184 /// to generate an expression computing the logical AND of \p Cond0 and (\p
185 /// Cond1 XOR \p InvertCondition).
186 /// Return true if the expression computing the AND is only as
187 /// expensive as computing one of the two. If \p InsertPt is true then
188 /// actually generate the resulting expression, make it available at \p
189 /// InsertPt and return it in \p Result (else no change to the IR is made).
190 bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
191 Value *&Result, bool InvertCondition);
192
193 /// Represents a range check of the form \c Base + \c Offset u< \c Length,
194 /// with the constraint that \c Length is not negative. \c CheckInst is the
195 /// pre-existing instruction in the IR that computes the result of this range
196 /// check.
197 class RangeCheck {
198 const Value *Base;
199 const ConstantInt *Offset;
200 const Value *Length;
201 ICmpInst *CheckInst;
202
203 public:
RangeCheck(const Value * Base,const ConstantInt * Offset,const Value * Length,ICmpInst * CheckInst)204 explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
205 const Value *Length, ICmpInst *CheckInst)
206 : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
207
setBase(const Value * NewBase)208 void setBase(const Value *NewBase) { Base = NewBase; }
setOffset(const ConstantInt * NewOffset)209 void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
210
getBase() const211 const Value *getBase() const { return Base; }
getOffset() const212 const ConstantInt *getOffset() const { return Offset; }
getOffsetValue() const213 const APInt &getOffsetValue() const { return getOffset()->getValue(); }
getLength() const214 const Value *getLength() const { return Length; };
getCheckInst() const215 ICmpInst *getCheckInst() const { return CheckInst; }
216
print(raw_ostream & OS,bool PrintTypes=false)217 void print(raw_ostream &OS, bool PrintTypes = false) {
218 OS << "Base: ";
219 Base->printAsOperand(OS, PrintTypes);
220 OS << " Offset: ";
221 Offset->printAsOperand(OS, PrintTypes);
222 OS << " Length: ";
223 Length->printAsOperand(OS, PrintTypes);
224 }
225
dump()226 LLVM_DUMP_METHOD void dump() {
227 print(dbgs());
228 dbgs() << "\n";
229 }
230 };
231
232 /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
233 /// append them to \p Checks. Returns true on success, may clobber \c Checks
234 /// on failure.
parseRangeChecks(Value * CheckCond,SmallVectorImpl<RangeCheck> & Checks)235 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
236 SmallPtrSet<const Value *, 8> Visited;
237 return parseRangeChecks(CheckCond, Checks, Visited);
238 }
239
240 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
241 SmallPtrSetImpl<const Value *> &Visited);
242
243 /// Combine the checks in \p Checks into a smaller set of checks and append
244 /// them into \p CombinedChecks. Return true on success (i.e. all of checks
245 /// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks
246 /// and \p CombinedChecks on success and on failure.
247 bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
248 SmallVectorImpl<RangeCheck> &CombinedChecks) const;
249
250 /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
251 /// computing only one of the two expressions?
isWideningCondProfitable(Value * Cond0,Value * Cond1,bool InvertCond)252 bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
253 Value *ResultUnused;
254 return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
255 InvertCond);
256 }
257
258 /// If \p InvertCondition is false, Widen \p ToWiden to fail if
259 /// \p NewCondition is false, otherwise make it fail if \p NewCondition is
260 /// true (in addition to whatever it is already checking).
widenGuard(Instruction * ToWiden,Value * NewCondition,bool InvertCondition)261 void widenGuard(Instruction *ToWiden, Value *NewCondition,
262 bool InvertCondition) {
263 Value *Result;
264
265 widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result,
266 InvertCondition);
267 if (isGuardAsWidenableBranch(ToWiden)) {
268 setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
269 return;
270 }
271 setCondition(ToWiden, Result);
272 }
273
274 public:
GuardWideningImpl(DominatorTree & DT,PostDominatorTree * PDT,LoopInfo & LI,MemorySSAUpdater * MSSAU,DomTreeNode * Root,std::function<bool (BasicBlock *)> BlockFilter)275 explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
276 LoopInfo &LI, MemorySSAUpdater *MSSAU,
277 DomTreeNode *Root,
278 std::function<bool(BasicBlock*)> BlockFilter)
279 : DT(DT), PDT(PDT), LI(LI), MSSAU(MSSAU), Root(Root),
280 BlockFilter(BlockFilter) {}
281
282 /// The entry point for this pass.
283 bool run();
284 };
285 }
286
isSupportedGuardInstruction(const Instruction * Insn)287 static bool isSupportedGuardInstruction(const Instruction *Insn) {
288 if (isGuard(Insn))
289 return true;
290 if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
291 return true;
292 return false;
293 }
294
run()295 bool GuardWideningImpl::run() {
296 DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
297 bool Changed = false;
298 for (auto DFI = df_begin(Root), DFE = df_end(Root);
299 DFI != DFE; ++DFI) {
300 auto *BB = (*DFI)->getBlock();
301 if (!BlockFilter(BB))
302 continue;
303
304 auto &CurrentList = GuardsInBlock[BB];
305
306 for (auto &I : *BB)
307 if (isSupportedGuardInstruction(&I))
308 CurrentList.push_back(cast<Instruction>(&I));
309
310 for (auto *II : CurrentList)
311 Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
312 }
313
314 assert(EliminatedGuardsAndBranches.empty() || Changed);
315 for (auto *I : EliminatedGuardsAndBranches)
316 if (!WidenedGuards.count(I)) {
317 assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
318 if (isSupportedGuardInstruction(I))
319 eliminateGuard(I, MSSAU);
320 else {
321 assert(isa<BranchInst>(I) &&
322 "Eliminated something other than guard or branch?");
323 ++CondBranchEliminated;
324 }
325 }
326
327 return Changed;
328 }
329
eliminateInstrViaWidening(Instruction * Instr,const df_iterator<DomTreeNode * > & DFSI,const DenseMap<BasicBlock *,SmallVector<Instruction *,8>> & GuardsInBlock,bool InvertCondition)330 bool GuardWideningImpl::eliminateInstrViaWidening(
331 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
332 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
333 GuardsInBlock, bool InvertCondition) {
334 // Ignore trivial true or false conditions. These instructions will be
335 // trivially eliminated by any cleanup pass. Do not erase them because other
336 // guards can possibly be widened into them.
337 if (isa<ConstantInt>(getCondition(Instr)))
338 return false;
339
340 Instruction *BestSoFar = nullptr;
341 auto BestScoreSoFar = WS_IllegalOrNegative;
342
343 // In the set of dominating guards, find the one we can merge GuardInst with
344 // for the most profit.
345 for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
346 auto *CurBB = DFSI.getPath(i)->getBlock();
347 if (!BlockFilter(CurBB))
348 break;
349 assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
350 const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
351
352 auto I = GuardsInCurBB.begin();
353 auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
354 : GuardsInCurBB.end();
355
356 #ifndef NDEBUG
357 {
358 unsigned Index = 0;
359 for (auto &I : *CurBB) {
360 if (Index == GuardsInCurBB.size())
361 break;
362 if (GuardsInCurBB[Index] == &I)
363 Index++;
364 }
365 assert(Index == GuardsInCurBB.size() &&
366 "Guards expected to be in order!");
367 }
368 #endif
369
370 assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
371
372 for (auto *Candidate : make_range(I, E)) {
373 auto Score = computeWideningScore(Instr, Candidate, InvertCondition);
374 LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr)
375 << " and " << *getCondition(Candidate) << " is "
376 << scoreTypeToString(Score) << "\n");
377 if (Score > BestScoreSoFar) {
378 BestScoreSoFar = Score;
379 BestSoFar = Candidate;
380 }
381 }
382 }
383
384 if (BestScoreSoFar == WS_IllegalOrNegative) {
385 LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
386 return false;
387 }
388
389 assert(BestSoFar != Instr && "Should have never visited same guard!");
390 assert(DT.dominates(BestSoFar, Instr) && "Should be!");
391
392 LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
393 << " with score " << scoreTypeToString(BestScoreSoFar)
394 << "\n");
395 widenGuard(BestSoFar, getCondition(Instr), InvertCondition);
396 auto NewGuardCondition = InvertCondition
397 ? ConstantInt::getFalse(Instr->getContext())
398 : ConstantInt::getTrue(Instr->getContext());
399 setCondition(Instr, NewGuardCondition);
400 EliminatedGuardsAndBranches.push_back(Instr);
401 WidenedGuards.insert(BestSoFar);
402 return true;
403 }
404
405 GuardWideningImpl::WideningScore
computeWideningScore(Instruction * DominatedInstr,Instruction * DominatingGuard,bool InvertCond)406 GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr,
407 Instruction *DominatingGuard,
408 bool InvertCond) {
409 Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
410 Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent());
411 bool HoistingOutOfLoop = false;
412
413 if (DominatingGuardLoop != DominatedInstrLoop) {
414 // Be conservative and don't widen into a sibling loop. TODO: If the
415 // sibling is colder, we should consider allowing this.
416 if (DominatingGuardLoop &&
417 !DominatingGuardLoop->contains(DominatedInstrLoop))
418 return WS_IllegalOrNegative;
419
420 HoistingOutOfLoop = true;
421 }
422
423 if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard))
424 return WS_IllegalOrNegative;
425
426 // If the guard was conditional executed, it may never be reached
427 // dynamically. There are two potential downsides to hoisting it out of the
428 // conditionally executed region: 1) we may spuriously deopt without need and
429 // 2) we have the extra cost of computing the guard condition in the common
430 // case. At the moment, we really only consider the second in our heuristic
431 // here. TODO: evaluate cost model for spurious deopt
432 // NOTE: As written, this also lets us hoist right over another guard which
433 // is essentially just another spelling for control flow.
434 if (isWideningCondProfitable(getCondition(DominatedInstr),
435 getCondition(DominatingGuard), InvertCond))
436 return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
437
438 if (HoistingOutOfLoop)
439 return WS_Positive;
440
441 // Returns true if we might be hoisting above explicit control flow. Note
442 // that this completely ignores implicit control flow (guards, calls which
443 // throw, etc...). That choice appears arbitrary.
444 auto MaybeHoistingOutOfIf = [&]() {
445 auto *DominatingBlock = DominatingGuard->getParent();
446 auto *DominatedBlock = DominatedInstr->getParent();
447 if (isGuardAsWidenableBranch(DominatingGuard))
448 DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0);
449
450 // Same Block?
451 if (DominatedBlock == DominatingBlock)
452 return false;
453 // Obvious successor (common loop header/preheader case)
454 if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
455 return false;
456 // TODO: diamond, triangle cases
457 if (!PDT) return true;
458 return !PDT->dominates(DominatedBlock, DominatingBlock);
459 };
460
461 return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
462 }
463
isAvailableAt(const Value * V,const Instruction * Loc,SmallPtrSetImpl<const Instruction * > & Visited) const464 bool GuardWideningImpl::isAvailableAt(
465 const Value *V, const Instruction *Loc,
466 SmallPtrSetImpl<const Instruction *> &Visited) const {
467 auto *Inst = dyn_cast<Instruction>(V);
468 if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
469 return true;
470
471 if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) ||
472 Inst->mayReadFromMemory())
473 return false;
474
475 Visited.insert(Inst);
476
477 // We only want to go _up_ the dominance chain when recursing.
478 assert(!isa<PHINode>(Loc) &&
479 "PHIs should return false for isSafeToSpeculativelyExecute");
480 assert(DT.isReachableFromEntry(Inst->getParent()) &&
481 "We did a DFS from the block entry!");
482 return all_of(Inst->operands(),
483 [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
484 }
485
makeAvailableAt(Value * V,Instruction * Loc) const486 void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
487 auto *Inst = dyn_cast<Instruction>(V);
488 if (!Inst || DT.dominates(Inst, Loc))
489 return;
490
491 assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) &&
492 !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");
493
494 for (Value *Op : Inst->operands())
495 makeAvailableAt(Op, Loc);
496
497 Inst->moveBefore(Loc);
498 // If we moved instruction before guard we must clean poison generating flags.
499 Inst->dropPoisonGeneratingFlags();
500 }
501
widenCondCommon(Value * Cond0,Value * Cond1,Instruction * InsertPt,Value * & Result,bool InvertCondition)502 bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
503 Instruction *InsertPt, Value *&Result,
504 bool InvertCondition) {
505 using namespace llvm::PatternMatch;
506
507 {
508 // L >u C0 && L >u C1 -> L >u max(C0, C1)
509 ConstantInt *RHS0, *RHS1;
510 Value *LHS;
511 ICmpInst::Predicate Pred0, Pred1;
512 if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
513 match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
514 if (InvertCondition)
515 Pred1 = ICmpInst::getInversePredicate(Pred1);
516
517 ConstantRange CR0 =
518 ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
519 ConstantRange CR1 =
520 ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
521
522 // Given what we're doing here and the semantics of guards, it would
523 // be correct to use a subset intersection, but that may be too
524 // aggressive in cases we care about.
525 if (Optional<ConstantRange> Intersect = CR0.exactIntersectWith(CR1)) {
526 APInt NewRHSAP;
527 CmpInst::Predicate Pred;
528 if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
529 if (InsertPt) {
530 ConstantInt *NewRHS =
531 ConstantInt::get(Cond0->getContext(), NewRHSAP);
532 Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
533 }
534 return true;
535 }
536 }
537 }
538 }
539
540 {
541 SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
542 // TODO: Support InvertCondition case?
543 if (!InvertCondition &&
544 parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
545 combineRangeChecks(Checks, CombinedChecks)) {
546 if (InsertPt) {
547 Result = nullptr;
548 for (auto &RC : CombinedChecks) {
549 makeAvailableAt(RC.getCheckInst(), InsertPt);
550 if (Result)
551 Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
552 InsertPt);
553 else
554 Result = RC.getCheckInst();
555 }
556 assert(Result && "Failed to find result value");
557 Result->setName("wide.chk");
558 }
559 return true;
560 }
561 }
562
563 // Base case -- just logical-and the two conditions together.
564
565 if (InsertPt) {
566 makeAvailableAt(Cond0, InsertPt);
567 makeAvailableAt(Cond1, InsertPt);
568 if (InvertCondition)
569 Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
570 Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
571 }
572
573 // We were not able to compute Cond0 AND Cond1 for the price of one.
574 return false;
575 }
576
parseRangeChecks(Value * CheckCond,SmallVectorImpl<GuardWideningImpl::RangeCheck> & Checks,SmallPtrSetImpl<const Value * > & Visited)577 bool GuardWideningImpl::parseRangeChecks(
578 Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
579 SmallPtrSetImpl<const Value *> &Visited) {
580 if (!Visited.insert(CheckCond).second)
581 return true;
582
583 using namespace llvm::PatternMatch;
584
585 {
586 Value *AndLHS, *AndRHS;
587 if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
588 return parseRangeChecks(AndLHS, Checks) &&
589 parseRangeChecks(AndRHS, Checks);
590 }
591
592 auto *IC = dyn_cast<ICmpInst>(CheckCond);
593 if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
594 (IC->getPredicate() != ICmpInst::ICMP_ULT &&
595 IC->getPredicate() != ICmpInst::ICMP_UGT))
596 return false;
597
598 const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
599 if (IC->getPredicate() == ICmpInst::ICMP_UGT)
600 std::swap(CmpLHS, CmpRHS);
601
602 auto &DL = IC->getModule()->getDataLayout();
603
604 GuardWideningImpl::RangeCheck Check(
605 CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
606 CmpRHS, IC);
607
608 if (!isKnownNonNegative(Check.getLength(), DL))
609 return false;
610
611 // What we have in \c Check now is a correct interpretation of \p CheckCond.
612 // Try to see if we can move some constant offsets into the \c Offset field.
613
614 bool Changed;
615 auto &Ctx = CheckCond->getContext();
616
617 do {
618 Value *OpLHS;
619 ConstantInt *OpRHS;
620 Changed = false;
621
622 #ifndef NDEBUG
623 auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
624 assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
625 "Unreachable instruction?");
626 #endif
627
628 if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
629 Check.setBase(OpLHS);
630 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
631 Check.setOffset(ConstantInt::get(Ctx, NewOffset));
632 Changed = true;
633 } else if (match(Check.getBase(),
634 m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
635 KnownBits Known = computeKnownBits(OpLHS, DL);
636 if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
637 Check.setBase(OpLHS);
638 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
639 Check.setOffset(ConstantInt::get(Ctx, NewOffset));
640 Changed = true;
641 }
642 }
643 } while (Changed);
644
645 Checks.push_back(Check);
646 return true;
647 }
648
combineRangeChecks(SmallVectorImpl<GuardWideningImpl::RangeCheck> & Checks,SmallVectorImpl<GuardWideningImpl::RangeCheck> & RangeChecksOut) const649 bool GuardWideningImpl::combineRangeChecks(
650 SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
651 SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
652 unsigned OldCount = Checks.size();
653 while (!Checks.empty()) {
654 // Pick all of the range checks with a specific base and length, and try to
655 // merge them.
656 const Value *CurrentBase = Checks.front().getBase();
657 const Value *CurrentLength = Checks.front().getLength();
658
659 SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
660
661 auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
662 return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
663 };
664
665 copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
666 erase_if(Checks, IsCurrentCheck);
667
668 assert(CurrentChecks.size() != 0 && "We know we have at least one!");
669
670 if (CurrentChecks.size() < 3) {
671 llvm::append_range(RangeChecksOut, CurrentChecks);
672 continue;
673 }
674
675 // CurrentChecks.size() will typically be 3 here, but so far there has been
676 // no need to hard-code that fact.
677
678 llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
679 const GuardWideningImpl::RangeCheck &RHS) {
680 return LHS.getOffsetValue().slt(RHS.getOffsetValue());
681 });
682
683 // Note: std::sort should not invalidate the ChecksStart iterator.
684
685 const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
686 const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
687
688 unsigned BitWidth = MaxOffset->getValue().getBitWidth();
689 if ((MaxOffset->getValue() - MinOffset->getValue())
690 .ugt(APInt::getSignedMinValue(BitWidth)))
691 return false;
692
693 APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
694 const APInt &HighOffset = MaxOffset->getValue();
695 auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
696 return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
697 };
698
699 if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
700 return false;
701
702 // We have a series of f+1 checks as:
703 //
704 // I+k_0 u< L ... Chk_0
705 // I+k_1 u< L ... Chk_1
706 // ...
707 // I+k_f u< L ... Chk_f
708 //
709 // with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0
710 // k_f-k_0 u< INT_MIN+k_f ... Precond_1
711 // k_f != k_0 ... Precond_2
712 //
713 // Claim:
714 // Chk_0 AND Chk_f implies all the other checks
715 //
716 // Informal proof sketch:
717 //
718 // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
719 // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
720 // thus I+k_f is the greatest unsigned value in that range.
721 //
722 // This combined with Ckh_(f+1) shows that everything in that range is u< L.
723 // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
724 // lie in [I+k_0,I+k_f], this proving our claim.
725 //
726 // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
727 // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
728 // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping
729 // range by definition, and the latter case is impossible:
730 //
731 // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
732 // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
733 //
734 // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
735 // with 'x' above) to be at least >u INT_MIN.
736
737 RangeChecksOut.emplace_back(CurrentChecks.front());
738 RangeChecksOut.emplace_back(CurrentChecks.back());
739 }
740
741 assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
742 return RangeChecksOut.size() != OldCount;
743 }
744
745 #ifndef NDEBUG
scoreTypeToString(WideningScore WS)746 StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
747 switch (WS) {
748 case WS_IllegalOrNegative:
749 return "IllegalOrNegative";
750 case WS_Neutral:
751 return "Neutral";
752 case WS_Positive:
753 return "Positive";
754 case WS_VeryPositive:
755 return "VeryPositive";
756 }
757
758 llvm_unreachable("Fully covered switch above!");
759 }
760 #endif
761
run(Function & F,FunctionAnalysisManager & AM)762 PreservedAnalyses GuardWideningPass::run(Function &F,
763 FunctionAnalysisManager &AM) {
764 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
765 auto &LI = AM.getResult<LoopAnalysis>(F);
766 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
767 auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
768 std::unique_ptr<MemorySSAUpdater> MSSAU;
769 if (MSSAA)
770 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
771 if (!GuardWideningImpl(DT, &PDT, LI, MSSAU ? MSSAU.get() : nullptr,
772 DT.getRootNode(), [](BasicBlock *) { return true; })
773 .run())
774 return PreservedAnalyses::all();
775
776 PreservedAnalyses PA;
777 PA.preserveSet<CFGAnalyses>();
778 PA.preserve<MemorySSAAnalysis>();
779 return PA;
780 }
781
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)782 PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
783 LoopStandardAnalysisResults &AR,
784 LPMUpdater &U) {
785 BasicBlock *RootBB = L.getLoopPredecessor();
786 if (!RootBB)
787 RootBB = L.getHeader();
788 auto BlockFilter = [&](BasicBlock *BB) {
789 return BB == RootBB || L.contains(BB);
790 };
791 std::unique_ptr<MemorySSAUpdater> MSSAU;
792 if (AR.MSSA)
793 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
794 if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, MSSAU ? MSSAU.get() : nullptr,
795 AR.DT.getNode(RootBB), BlockFilter).run())
796 return PreservedAnalyses::all();
797
798 auto PA = getLoopPassPreservedAnalyses();
799 if (AR.MSSA)
800 PA.preserve<MemorySSAAnalysis>();
801 return PA;
802 }
803
804 namespace {
805 struct GuardWideningLegacyPass : public FunctionPass {
806 static char ID;
807
GuardWideningLegacyPass__anon4a46d7eb0911::GuardWideningLegacyPass808 GuardWideningLegacyPass() : FunctionPass(ID) {
809 initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
810 }
811
runOnFunction__anon4a46d7eb0911::GuardWideningLegacyPass812 bool runOnFunction(Function &F) override {
813 if (skipFunction(F))
814 return false;
815 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
816 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
817 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
818 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
819 std::unique_ptr<MemorySSAUpdater> MSSAU;
820 if (MSSAWP)
821 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
822 return GuardWideningImpl(DT, &PDT, LI, MSSAU ? MSSAU.get() : nullptr,
823 DT.getRootNode(),
824 [](BasicBlock *) { return true; })
825 .run();
826 }
827
getAnalysisUsage__anon4a46d7eb0911::GuardWideningLegacyPass828 void getAnalysisUsage(AnalysisUsage &AU) const override {
829 AU.setPreservesCFG();
830 AU.addRequired<DominatorTreeWrapperPass>();
831 AU.addRequired<PostDominatorTreeWrapperPass>();
832 AU.addRequired<LoopInfoWrapperPass>();
833 AU.addPreserved<MemorySSAWrapperPass>();
834 }
835 };
836
837 /// Same as above, but restricted to a single loop at a time. Can be
838 /// scheduled with other loop passes w/o breaking out of LPM
839 struct LoopGuardWideningLegacyPass : public LoopPass {
840 static char ID;
841
LoopGuardWideningLegacyPass__anon4a46d7eb0911::LoopGuardWideningLegacyPass842 LoopGuardWideningLegacyPass() : LoopPass(ID) {
843 initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
844 }
845
runOnLoop__anon4a46d7eb0911::LoopGuardWideningLegacyPass846 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
847 if (skipLoop(L))
848 return false;
849 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
850 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
851 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
852 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
853 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
854 std::unique_ptr<MemorySSAUpdater> MSSAU;
855 if (MSSAWP)
856 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
857
858 BasicBlock *RootBB = L->getLoopPredecessor();
859 if (!RootBB)
860 RootBB = L->getHeader();
861 auto BlockFilter = [&](BasicBlock *BB) {
862 return BB == RootBB || L->contains(BB);
863 };
864 return GuardWideningImpl(DT, PDT, LI, MSSAU ? MSSAU.get() : nullptr,
865 DT.getNode(RootBB), BlockFilter).run();
866 }
867
getAnalysisUsage__anon4a46d7eb0911::LoopGuardWideningLegacyPass868 void getAnalysisUsage(AnalysisUsage &AU) const override {
869 AU.setPreservesCFG();
870 getLoopAnalysisUsage(AU);
871 AU.addPreserved<PostDominatorTreeWrapperPass>();
872 AU.addPreserved<MemorySSAWrapperPass>();
873 }
874 };
875 }
876
877 char GuardWideningLegacyPass::ID = 0;
878 char LoopGuardWideningLegacyPass::ID = 0;
879
880 INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
881 false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)882 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
883 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
884 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
885 INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
886 false, false)
887
888 INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
889 "Widen guards (within a single loop, as a loop pass)",
890 false, false)
891 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
892 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
893 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
894 INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
895 "Widen guards (within a single loop, as a loop pass)",
896 false, false)
897
898 FunctionPass *llvm::createGuardWideningPass() {
899 return new GuardWideningLegacyPass();
900 }
901
createLoopGuardWideningPass()902 Pass *llvm::createLoopGuardWideningPass() {
903 return new LoopGuardWideningLegacyPass();
904 }
905