1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs a simple dominator tree walk that eliminates trivially
10 // redundant instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/EarlyCSE.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/GuardUtils.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/MemorySSA.h"
26 #include "llvm/Analysis/MemorySSAUpdater.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Allocator.h"
46 #include "llvm/Support/AtomicOrdering.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/DebugCounter.h"
50 #include "llvm/Support/RecyclingAllocator.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include <cassert>
56 #include <deque>
57 #include <memory>
58 #include <utility>
59
60 using namespace llvm;
61 using namespace llvm::PatternMatch;
62
63 #define DEBUG_TYPE "early-cse"
64
65 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
66 STATISTIC(NumCSE, "Number of instructions CSE'd");
67 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd");
68 STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
69 STATISTIC(NumCSECall, "Number of call instructions CSE'd");
70 STATISTIC(NumDSE, "Number of trivial dead stores removed");
71
72 DEBUG_COUNTER(CSECounter, "early-cse",
73 "Controls which instructions are removed");
74
75 static cl::opt<unsigned> EarlyCSEMssaOptCap(
76 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
77 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
78 "for faster compile. Caps the MemorySSA clobbering calls."));
79
80 static cl::opt<bool> EarlyCSEDebugHash(
81 "earlycse-debug-hash", cl::init(false), cl::Hidden,
82 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
83 "function is well-behaved w.r.t. its isEqual predicate"));
84
85 //===----------------------------------------------------------------------===//
86 // SimpleValue
87 //===----------------------------------------------------------------------===//
88
89 namespace {
90
91 /// Struct representing the available values in the scoped hash table.
92 struct SimpleValue {
93 Instruction *Inst;
94
SimpleValue__anon5cb5eb3b0111::SimpleValue95 SimpleValue(Instruction *I) : Inst(I) {
96 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
97 }
98
isSentinel__anon5cb5eb3b0111::SimpleValue99 bool isSentinel() const {
100 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
101 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
102 }
103
canHandle__anon5cb5eb3b0111::SimpleValue104 static bool canHandle(Instruction *Inst) {
105 // This can only handle non-void readnone functions.
106 // Also handled are constrained intrinsic that look like the types
107 // of instruction handled below (UnaryOperator, etc.).
108 if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
109 if (Function *F = CI->getCalledFunction()) {
110 switch ((Intrinsic::ID)F->getIntrinsicID()) {
111 case Intrinsic::experimental_constrained_fadd:
112 case Intrinsic::experimental_constrained_fsub:
113 case Intrinsic::experimental_constrained_fmul:
114 case Intrinsic::experimental_constrained_fdiv:
115 case Intrinsic::experimental_constrained_frem:
116 case Intrinsic::experimental_constrained_fptosi:
117 case Intrinsic::experimental_constrained_sitofp:
118 case Intrinsic::experimental_constrained_fptoui:
119 case Intrinsic::experimental_constrained_uitofp:
120 case Intrinsic::experimental_constrained_fcmp:
121 case Intrinsic::experimental_constrained_fcmps: {
122 auto *CFP = cast<ConstrainedFPIntrinsic>(CI);
123 return CFP->isDefaultFPEnvironment();
124 }
125 }
126 }
127 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
128 }
129 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
130 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
131 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
132 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
133 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
134 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
135 }
136 };
137
138 } // end anonymous namespace
139
140 namespace llvm {
141
142 template <> struct DenseMapInfo<SimpleValue> {
getEmptyKeyllvm::DenseMapInfo143 static inline SimpleValue getEmptyKey() {
144 return DenseMapInfo<Instruction *>::getEmptyKey();
145 }
146
getTombstoneKeyllvm::DenseMapInfo147 static inline SimpleValue getTombstoneKey() {
148 return DenseMapInfo<Instruction *>::getTombstoneKey();
149 }
150
151 static unsigned getHashValue(SimpleValue Val);
152 static bool isEqual(SimpleValue LHS, SimpleValue RHS);
153 };
154
155 } // end namespace llvm
156
157 /// Match a 'select' including an optional 'not's of the condition.
matchSelectWithOptionalNotCond(Value * V,Value * & Cond,Value * & A,Value * & B,SelectPatternFlavor & Flavor)158 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
159 Value *&B,
160 SelectPatternFlavor &Flavor) {
161 // Return false if V is not even a select.
162 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
163 return false;
164
165 // Look through a 'not' of the condition operand by swapping A/B.
166 Value *CondNot;
167 if (match(Cond, m_Not(m_Value(CondNot)))) {
168 Cond = CondNot;
169 std::swap(A, B);
170 }
171
172 // Match canonical forms of min/max. We are not using ValueTracking's
173 // more powerful matchSelectPattern() because it may rely on instruction flags
174 // such as "nsw". That would be incompatible with the current hashing
175 // mechanism that may remove flags to increase the likelihood of CSE.
176
177 Flavor = SPF_UNKNOWN;
178 CmpInst::Predicate Pred;
179
180 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
181 // Check for commuted variants of min/max by swapping predicate.
182 // If we do not match the standard or commuted patterns, this is not a
183 // recognized form of min/max, but it is still a select, so return true.
184 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
185 return true;
186 Pred = ICmpInst::getSwappedPredicate(Pred);
187 }
188
189 switch (Pred) {
190 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
191 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
192 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
193 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
194 // Non-strict inequalities.
195 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break;
196 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break;
197 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break;
198 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break;
199 default: break;
200 }
201
202 return true;
203 }
204
getHashValueImpl(SimpleValue Val)205 static unsigned getHashValueImpl(SimpleValue Val) {
206 Instruction *Inst = Val.Inst;
207 // Hash in all of the operands as pointers.
208 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
209 Value *LHS = BinOp->getOperand(0);
210 Value *RHS = BinOp->getOperand(1);
211 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
212 std::swap(LHS, RHS);
213
214 return hash_combine(BinOp->getOpcode(), LHS, RHS);
215 }
216
217 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
218 // Compares can be commuted by swapping the comparands and
219 // updating the predicate. Choose the form that has the
220 // comparands in sorted order, or in the case of a tie, the
221 // one with the lower predicate.
222 Value *LHS = CI->getOperand(0);
223 Value *RHS = CI->getOperand(1);
224 CmpInst::Predicate Pred = CI->getPredicate();
225 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
226 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
227 std::swap(LHS, RHS);
228 Pred = SwappedPred;
229 }
230 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
231 }
232
233 // Hash general selects to allow matching commuted true/false operands.
234 SelectPatternFlavor SPF;
235 Value *Cond, *A, *B;
236 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
237 // Hash min/max (cmp + select) to allow for commuted operands.
238 // Min/max may also have non-canonical compare predicate (eg, the compare for
239 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
240 // compare.
241 // TODO: We should also detect FP min/max.
242 if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
243 SPF == SPF_UMIN || SPF == SPF_UMAX) {
244 if (A > B)
245 std::swap(A, B);
246 return hash_combine(Inst->getOpcode(), SPF, A, B);
247 }
248
249 // Hash general selects to allow matching commuted true/false operands.
250
251 // If we do not have a compare as the condition, just hash in the condition.
252 CmpInst::Predicate Pred;
253 Value *X, *Y;
254 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
255 return hash_combine(Inst->getOpcode(), Cond, A, B);
256
257 // Similar to cmp normalization (above) - canonicalize the predicate value:
258 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
259 if (CmpInst::getInversePredicate(Pred) < Pred) {
260 Pred = CmpInst::getInversePredicate(Pred);
261 std::swap(A, B);
262 }
263 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
264 }
265
266 if (CastInst *CI = dyn_cast<CastInst>(Inst))
267 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
268
269 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
270 return hash_combine(FI->getOpcode(), FI->getOperand(0));
271
272 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
273 return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
274 hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
275
276 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
277 return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
278 IVI->getOperand(1),
279 hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
280
281 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
282 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
283 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
284 isa<FreezeInst>(Inst)) &&
285 "Invalid/unknown instruction");
286
287 // Handle intrinsics with commutative operands.
288 // TODO: Extend this to handle intrinsics with >2 operands where the 1st
289 // 2 operands are commutative.
290 auto *II = dyn_cast<IntrinsicInst>(Inst);
291 if (II && II->isCommutative() && II->arg_size() == 2) {
292 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
293 if (LHS > RHS)
294 std::swap(LHS, RHS);
295 return hash_combine(II->getOpcode(), LHS, RHS);
296 }
297
298 // gc.relocate is 'special' call: its second and third operands are
299 // not real values, but indices into statepoint's argument list.
300 // Get values they point to.
301 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
302 return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
303 GCR->getBasePtr(), GCR->getDerivedPtr());
304
305 // Mix in the opcode.
306 return hash_combine(
307 Inst->getOpcode(),
308 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
309 }
310
getHashValue(SimpleValue Val)311 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
312 #ifndef NDEBUG
313 // If -earlycse-debug-hash was specified, return a constant -- this
314 // will force all hashing to collide, so we'll exhaustively search
315 // the table for a match, and the assertion in isEqual will fire if
316 // there's a bug causing equal keys to hash differently.
317 if (EarlyCSEDebugHash)
318 return 0;
319 #endif
320 return getHashValueImpl(Val);
321 }
322
isEqualImpl(SimpleValue LHS,SimpleValue RHS)323 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
324 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
325
326 if (LHS.isSentinel() || RHS.isSentinel())
327 return LHSI == RHSI;
328
329 if (LHSI->getOpcode() != RHSI->getOpcode())
330 return false;
331 if (LHSI->isIdenticalToWhenDefined(RHSI))
332 return true;
333
334 // If we're not strictly identical, we still might be a commutable instruction
335 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
336 if (!LHSBinOp->isCommutative())
337 return false;
338
339 assert(isa<BinaryOperator>(RHSI) &&
340 "same opcode, but different instruction type?");
341 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
342
343 // Commuted equality
344 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
345 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
346 }
347 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
348 assert(isa<CmpInst>(RHSI) &&
349 "same opcode, but different instruction type?");
350 CmpInst *RHSCmp = cast<CmpInst>(RHSI);
351 // Commuted equality
352 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
353 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
354 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
355 }
356
357 // TODO: Extend this for >2 args by matching the trailing N-2 args.
358 auto *LII = dyn_cast<IntrinsicInst>(LHSI);
359 auto *RII = dyn_cast<IntrinsicInst>(RHSI);
360 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
361 LII->isCommutative() && LII->arg_size() == 2) {
362 return LII->getArgOperand(0) == RII->getArgOperand(1) &&
363 LII->getArgOperand(1) == RII->getArgOperand(0);
364 }
365
366 // See comment above in `getHashValue()`.
367 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
368 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
369 return GCR1->getOperand(0) == GCR2->getOperand(0) &&
370 GCR1->getBasePtr() == GCR2->getBasePtr() &&
371 GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
372
373 // Min/max can occur with commuted operands, non-canonical predicates,
374 // and/or non-canonical operands.
375 // Selects can be non-trivially equivalent via inverted conditions and swaps.
376 SelectPatternFlavor LSPF, RSPF;
377 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
378 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
379 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
380 if (LSPF == RSPF) {
381 // TODO: We should also detect FP min/max.
382 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
383 LSPF == SPF_UMIN || LSPF == SPF_UMAX)
384 return ((LHSA == RHSA && LHSB == RHSB) ||
385 (LHSA == RHSB && LHSB == RHSA));
386
387 // select Cond, A, B <--> select not(Cond), B, A
388 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
389 return true;
390 }
391
392 // If the true/false operands are swapped and the conditions are compares
393 // with inverted predicates, the selects are equal:
394 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
395 //
396 // This also handles patterns with a double-negation in the sense of not +
397 // inverse, because we looked through a 'not' in the matching function and
398 // swapped A/B:
399 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
400 //
401 // This intentionally does NOT handle patterns with a double-negation in
402 // the sense of not + not, because doing so could result in values
403 // comparing
404 // as equal that hash differently in the min/max cases like:
405 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
406 // ^ hashes as min ^ would not hash as min
407 // In the context of the EarlyCSE pass, however, such cases never reach
408 // this code, as we simplify the double-negation before hashing the second
409 // select (and so still succeed at CSEing them).
410 if (LHSA == RHSB && LHSB == RHSA) {
411 CmpInst::Predicate PredL, PredR;
412 Value *X, *Y;
413 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
414 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
415 CmpInst::getInversePredicate(PredL) == PredR)
416 return true;
417 }
418 }
419
420 return false;
421 }
422
isEqual(SimpleValue LHS,SimpleValue RHS)423 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
424 // These comparisons are nontrivial, so assert that equality implies
425 // hash equality (DenseMap demands this as an invariant).
426 bool Result = isEqualImpl(LHS, RHS);
427 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
428 getHashValueImpl(LHS) == getHashValueImpl(RHS));
429 return Result;
430 }
431
432 //===----------------------------------------------------------------------===//
433 // CallValue
434 //===----------------------------------------------------------------------===//
435
436 namespace {
437
438 /// Struct representing the available call values in the scoped hash
439 /// table.
440 struct CallValue {
441 Instruction *Inst;
442
CallValue__anon5cb5eb3b0211::CallValue443 CallValue(Instruction *I) : Inst(I) {
444 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
445 }
446
isSentinel__anon5cb5eb3b0211::CallValue447 bool isSentinel() const {
448 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
449 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
450 }
451
canHandle__anon5cb5eb3b0211::CallValue452 static bool canHandle(Instruction *Inst) {
453 // Don't value number anything that returns void.
454 if (Inst->getType()->isVoidTy())
455 return false;
456
457 CallInst *CI = dyn_cast<CallInst>(Inst);
458 if (!CI || !CI->onlyReadsMemory())
459 return false;
460 return true;
461 }
462 };
463
464 } // end anonymous namespace
465
466 namespace llvm {
467
468 template <> struct DenseMapInfo<CallValue> {
getEmptyKeyllvm::DenseMapInfo469 static inline CallValue getEmptyKey() {
470 return DenseMapInfo<Instruction *>::getEmptyKey();
471 }
472
getTombstoneKeyllvm::DenseMapInfo473 static inline CallValue getTombstoneKey() {
474 return DenseMapInfo<Instruction *>::getTombstoneKey();
475 }
476
477 static unsigned getHashValue(CallValue Val);
478 static bool isEqual(CallValue LHS, CallValue RHS);
479 };
480
481 } // end namespace llvm
482
getHashValue(CallValue Val)483 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
484 Instruction *Inst = Val.Inst;
485
486 // Hash all of the operands as pointers and mix in the opcode.
487 return hash_combine(
488 Inst->getOpcode(),
489 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
490 }
491
isEqual(CallValue LHS,CallValue RHS)492 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
493 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
494 if (LHS.isSentinel() || RHS.isSentinel())
495 return LHSI == RHSI;
496
497 return LHSI->isIdenticalTo(RHSI);
498 }
499
500 //===----------------------------------------------------------------------===//
501 // EarlyCSE implementation
502 //===----------------------------------------------------------------------===//
503
504 namespace {
505
506 /// A simple and fast domtree-based CSE pass.
507 ///
508 /// This pass does a simple depth-first walk over the dominator tree,
509 /// eliminating trivially redundant instructions and using instsimplify to
510 /// canonicalize things as it goes. It is intended to be fast and catch obvious
511 /// cases so that instcombine and other passes are more effective. It is
512 /// expected that a later pass of GVN will catch the interesting/hard cases.
513 class EarlyCSE {
514 public:
515 const TargetLibraryInfo &TLI;
516 const TargetTransformInfo &TTI;
517 DominatorTree &DT;
518 AssumptionCache &AC;
519 const SimplifyQuery SQ;
520 MemorySSA *MSSA;
521 std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
522
523 using AllocatorTy =
524 RecyclingAllocator<BumpPtrAllocator,
525 ScopedHashTableVal<SimpleValue, Value *>>;
526 using ScopedHTType =
527 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
528 AllocatorTy>;
529
530 /// A scoped hash table of the current values of all of our simple
531 /// scalar expressions.
532 ///
533 /// As we walk down the domtree, we look to see if instructions are in this:
534 /// if so, we replace them with what we find, otherwise we insert them so
535 /// that dominated values can succeed in their lookup.
536 ScopedHTType AvailableValues;
537
538 /// A scoped hash table of the current values of previously encountered
539 /// memory locations.
540 ///
541 /// This allows us to get efficient access to dominating loads or stores when
542 /// we have a fully redundant load. In addition to the most recent load, we
543 /// keep track of a generation count of the read, which is compared against
544 /// the current generation count. The current generation count is incremented
545 /// after every possibly writing memory operation, which ensures that we only
546 /// CSE loads with other loads that have no intervening store. Ordering
547 /// events (such as fences or atomic instructions) increment the generation
548 /// count as well; essentially, we model these as writes to all possible
549 /// locations. Note that atomic and/or volatile loads and stores can be
550 /// present the table; it is the responsibility of the consumer to inspect
551 /// the atomicity/volatility if needed.
552 struct LoadValue {
553 Instruction *DefInst = nullptr;
554 unsigned Generation = 0;
555 int MatchingId = -1;
556 bool IsAtomic = false;
557
558 LoadValue() = default;
LoadValue__anon5cb5eb3b0311::EarlyCSE::LoadValue559 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
560 bool IsAtomic)
561 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
562 IsAtomic(IsAtomic) {}
563 };
564
565 using LoadMapAllocator =
566 RecyclingAllocator<BumpPtrAllocator,
567 ScopedHashTableVal<Value *, LoadValue>>;
568 using LoadHTType =
569 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
570 LoadMapAllocator>;
571
572 LoadHTType AvailableLoads;
573
574 // A scoped hash table mapping memory locations (represented as typed
575 // addresses) to generation numbers at which that memory location became
576 // (henceforth indefinitely) invariant.
577 using InvariantMapAllocator =
578 RecyclingAllocator<BumpPtrAllocator,
579 ScopedHashTableVal<MemoryLocation, unsigned>>;
580 using InvariantHTType =
581 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
582 InvariantMapAllocator>;
583 InvariantHTType AvailableInvariants;
584
585 /// A scoped hash table of the current values of read-only call
586 /// values.
587 ///
588 /// It uses the same generation count as loads.
589 using CallHTType =
590 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
591 CallHTType AvailableCalls;
592
593 /// This is the current generation of the memory value.
594 unsigned CurrentGeneration = 0;
595
596 /// Set up the EarlyCSE runner for a particular function.
EarlyCSE(const DataLayout & DL,const TargetLibraryInfo & TLI,const TargetTransformInfo & TTI,DominatorTree & DT,AssumptionCache & AC,MemorySSA * MSSA)597 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
598 const TargetTransformInfo &TTI, DominatorTree &DT,
599 AssumptionCache &AC, MemorySSA *MSSA)
600 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
601 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
602
603 bool run();
604
605 private:
606 unsigned ClobberCounter = 0;
607 // Almost a POD, but needs to call the constructors for the scoped hash
608 // tables so that a new scope gets pushed on. These are RAII so that the
609 // scope gets popped when the NodeScope is destroyed.
610 class NodeScope {
611 public:
NodeScope(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,InvariantHTType & AvailableInvariants,CallHTType & AvailableCalls)612 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
613 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
614 : Scope(AvailableValues), LoadScope(AvailableLoads),
615 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
616 NodeScope(const NodeScope &) = delete;
617 NodeScope &operator=(const NodeScope &) = delete;
618
619 private:
620 ScopedHTType::ScopeTy Scope;
621 LoadHTType::ScopeTy LoadScope;
622 InvariantHTType::ScopeTy InvariantScope;
623 CallHTType::ScopeTy CallScope;
624 };
625
626 // Contains all the needed information to create a stack for doing a depth
627 // first traversal of the tree. This includes scopes for values, loads, and
628 // calls as well as the generation. There is a child iterator so that the
629 // children do not need to be store separately.
630 class StackNode {
631 public:
StackNode(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,InvariantHTType & AvailableInvariants,CallHTType & AvailableCalls,unsigned cg,DomTreeNode * n,DomTreeNode::const_iterator child,DomTreeNode::const_iterator end)632 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
633 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
634 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
635 DomTreeNode::const_iterator end)
636 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
637 EndIter(end),
638 Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
639 AvailableCalls)
640 {}
641 StackNode(const StackNode &) = delete;
642 StackNode &operator=(const StackNode &) = delete;
643
644 // Accessors.
currentGeneration() const645 unsigned currentGeneration() const { return CurrentGeneration; }
childGeneration() const646 unsigned childGeneration() const { return ChildGeneration; }
childGeneration(unsigned generation)647 void childGeneration(unsigned generation) { ChildGeneration = generation; }
node()648 DomTreeNode *node() { return Node; }
childIter() const649 DomTreeNode::const_iterator childIter() const { return ChildIter; }
650
nextChild()651 DomTreeNode *nextChild() {
652 DomTreeNode *child = *ChildIter;
653 ++ChildIter;
654 return child;
655 }
656
end() const657 DomTreeNode::const_iterator end() const { return EndIter; }
isProcessed() const658 bool isProcessed() const { return Processed; }
process()659 void process() { Processed = true; }
660
661 private:
662 unsigned CurrentGeneration;
663 unsigned ChildGeneration;
664 DomTreeNode *Node;
665 DomTreeNode::const_iterator ChildIter;
666 DomTreeNode::const_iterator EndIter;
667 NodeScope Scopes;
668 bool Processed = false;
669 };
670
671 /// Wrapper class to handle memory instructions, including loads,
672 /// stores and intrinsic loads and stores defined by the target.
673 class ParseMemoryInst {
674 public:
ParseMemoryInst(Instruction * Inst,const TargetTransformInfo & TTI)675 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
676 : Inst(Inst) {
677 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
678 IntrID = II->getIntrinsicID();
679 if (TTI.getTgtMemIntrinsic(II, Info))
680 return;
681 if (isHandledNonTargetIntrinsic(IntrID)) {
682 switch (IntrID) {
683 case Intrinsic::masked_load:
684 Info.PtrVal = Inst->getOperand(0);
685 Info.MatchingId = Intrinsic::masked_load;
686 Info.ReadMem = true;
687 Info.WriteMem = false;
688 Info.IsVolatile = false;
689 break;
690 case Intrinsic::masked_store:
691 Info.PtrVal = Inst->getOperand(1);
692 // Use the ID of masked load as the "matching id". This will
693 // prevent matching non-masked loads/stores with masked ones
694 // (which could be done), but at the moment, the code here
695 // does not support matching intrinsics with non-intrinsics,
696 // so keep the MatchingIds specific to masked instructions
697 // for now (TODO).
698 Info.MatchingId = Intrinsic::masked_load;
699 Info.ReadMem = false;
700 Info.WriteMem = true;
701 Info.IsVolatile = false;
702 break;
703 }
704 }
705 }
706 }
707
get()708 Instruction *get() { return Inst; }
get() const709 const Instruction *get() const { return Inst; }
710
isLoad() const711 bool isLoad() const {
712 if (IntrID != 0)
713 return Info.ReadMem;
714 return isa<LoadInst>(Inst);
715 }
716
isStore() const717 bool isStore() const {
718 if (IntrID != 0)
719 return Info.WriteMem;
720 return isa<StoreInst>(Inst);
721 }
722
isAtomic() const723 bool isAtomic() const {
724 if (IntrID != 0)
725 return Info.Ordering != AtomicOrdering::NotAtomic;
726 return Inst->isAtomic();
727 }
728
isUnordered() const729 bool isUnordered() const {
730 if (IntrID != 0)
731 return Info.isUnordered();
732
733 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
734 return LI->isUnordered();
735 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
736 return SI->isUnordered();
737 }
738 // Conservative answer
739 return !Inst->isAtomic();
740 }
741
isVolatile() const742 bool isVolatile() const {
743 if (IntrID != 0)
744 return Info.IsVolatile;
745
746 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
747 return LI->isVolatile();
748 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
749 return SI->isVolatile();
750 }
751 // Conservative answer
752 return true;
753 }
754
isInvariantLoad() const755 bool isInvariantLoad() const {
756 if (auto *LI = dyn_cast<LoadInst>(Inst))
757 return LI->hasMetadata(LLVMContext::MD_invariant_load);
758 return false;
759 }
760
isValid() const761 bool isValid() const { return getPointerOperand() != nullptr; }
762
763 // For regular (non-intrinsic) loads/stores, this is set to -1. For
764 // intrinsic loads/stores, the id is retrieved from the corresponding
765 // field in the MemIntrinsicInfo structure. That field contains
766 // non-negative values only.
getMatchingId() const767 int getMatchingId() const {
768 if (IntrID != 0)
769 return Info.MatchingId;
770 return -1;
771 }
772
getPointerOperand() const773 Value *getPointerOperand() const {
774 if (IntrID != 0)
775 return Info.PtrVal;
776 return getLoadStorePointerOperand(Inst);
777 }
778
getValueType() const779 Type *getValueType() const {
780 // TODO: handle target-specific intrinsics.
781 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
782 switch (II->getIntrinsicID()) {
783 case Intrinsic::masked_load:
784 return II->getType();
785 case Intrinsic::masked_store:
786 return II->getArgOperand(0)->getType();
787 default:
788 return nullptr;
789 }
790 }
791 return getLoadStoreType(Inst);
792 }
793
mayReadFromMemory() const794 bool mayReadFromMemory() const {
795 if (IntrID != 0)
796 return Info.ReadMem;
797 return Inst->mayReadFromMemory();
798 }
799
mayWriteToMemory() const800 bool mayWriteToMemory() const {
801 if (IntrID != 0)
802 return Info.WriteMem;
803 return Inst->mayWriteToMemory();
804 }
805
806 private:
807 Intrinsic::ID IntrID = 0;
808 MemIntrinsicInfo Info;
809 Instruction *Inst;
810 };
811
812 // This function is to prevent accidentally passing a non-target
813 // intrinsic ID to TargetTransformInfo.
isHandledNonTargetIntrinsic(Intrinsic::ID ID)814 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) {
815 switch (ID) {
816 case Intrinsic::masked_load:
817 case Intrinsic::masked_store:
818 return true;
819 }
820 return false;
821 }
isHandledNonTargetIntrinsic(const Value * V)822 static bool isHandledNonTargetIntrinsic(const Value *V) {
823 if (auto *II = dyn_cast<IntrinsicInst>(V))
824 return isHandledNonTargetIntrinsic(II->getIntrinsicID());
825 return false;
826 }
827
828 bool processNode(DomTreeNode *Node);
829
830 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
831 const BasicBlock *BB, const BasicBlock *Pred);
832
833 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
834 unsigned CurrentGeneration);
835
836 bool overridingStores(const ParseMemoryInst &Earlier,
837 const ParseMemoryInst &Later);
838
getOrCreateResult(Value * Inst,Type * ExpectedType) const839 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
840 // TODO: We could insert relevant casts on type mismatch here.
841 if (auto *LI = dyn_cast<LoadInst>(Inst))
842 return LI->getType() == ExpectedType ? LI : nullptr;
843 else if (auto *SI = dyn_cast<StoreInst>(Inst)) {
844 Value *V = SI->getValueOperand();
845 return V->getType() == ExpectedType ? V : nullptr;
846 }
847 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
848 auto *II = cast<IntrinsicInst>(Inst);
849 if (isHandledNonTargetIntrinsic(II->getIntrinsicID()))
850 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType);
851 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType);
852 }
853
getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst * II,Type * ExpectedType) const854 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II,
855 Type *ExpectedType) const {
856 switch (II->getIntrinsicID()) {
857 case Intrinsic::masked_load:
858 return II;
859 case Intrinsic::masked_store:
860 return II->getOperand(0);
861 }
862 return nullptr;
863 }
864
865 /// Return true if the instruction is known to only operate on memory
866 /// provably invariant in the given "generation".
867 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
868
869 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
870 Instruction *EarlierInst, Instruction *LaterInst);
871
isNonTargetIntrinsicMatch(const IntrinsicInst * Earlier,const IntrinsicInst * Later)872 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier,
873 const IntrinsicInst *Later) {
874 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) {
875 // Is Mask0 a submask of Mask1?
876 if (Mask0 == Mask1)
877 return true;
878 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1))
879 return false;
880 auto *Vec0 = dyn_cast<ConstantVector>(Mask0);
881 auto *Vec1 = dyn_cast<ConstantVector>(Mask1);
882 if (!Vec0 || !Vec1)
883 return false;
884 assert(Vec0->getType() == Vec1->getType() &&
885 "Masks should have the same type");
886 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) {
887 Constant *Elem0 = Vec0->getOperand(i);
888 Constant *Elem1 = Vec1->getOperand(i);
889 auto *Int0 = dyn_cast<ConstantInt>(Elem0);
890 if (Int0 && Int0->isZero())
891 continue;
892 auto *Int1 = dyn_cast<ConstantInt>(Elem1);
893 if (Int1 && !Int1->isZero())
894 continue;
895 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1))
896 return false;
897 if (Elem0 == Elem1)
898 continue;
899 return false;
900 }
901 return true;
902 };
903 auto PtrOp = [](const IntrinsicInst *II) {
904 if (II->getIntrinsicID() == Intrinsic::masked_load)
905 return II->getOperand(0);
906 if (II->getIntrinsicID() == Intrinsic::masked_store)
907 return II->getOperand(1);
908 llvm_unreachable("Unexpected IntrinsicInst");
909 };
910 auto MaskOp = [](const IntrinsicInst *II) {
911 if (II->getIntrinsicID() == Intrinsic::masked_load)
912 return II->getOperand(2);
913 if (II->getIntrinsicID() == Intrinsic::masked_store)
914 return II->getOperand(3);
915 llvm_unreachable("Unexpected IntrinsicInst");
916 };
917 auto ThruOp = [](const IntrinsicInst *II) {
918 if (II->getIntrinsicID() == Intrinsic::masked_load)
919 return II->getOperand(3);
920 llvm_unreachable("Unexpected IntrinsicInst");
921 };
922
923 if (PtrOp(Earlier) != PtrOp(Later))
924 return false;
925
926 Intrinsic::ID IDE = Earlier->getIntrinsicID();
927 Intrinsic::ID IDL = Later->getIntrinsicID();
928 // We could really use specific intrinsic classes for masked loads
929 // and stores in IntrinsicInst.h.
930 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) {
931 // Trying to replace later masked load with the earlier one.
932 // Check that the pointers are the same, and
933 // - masks and pass-throughs are the same, or
934 // - replacee's pass-through is "undef" and replacer's mask is a
935 // super-set of the replacee's mask.
936 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later))
937 return true;
938 if (!isa<UndefValue>(ThruOp(Later)))
939 return false;
940 return IsSubmask(MaskOp(Later), MaskOp(Earlier));
941 }
942 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) {
943 // Trying to replace a load of a stored value with the store's value.
944 // Check that the pointers are the same, and
945 // - load's mask is a subset of store's mask, and
946 // - load's pass-through is "undef".
947 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier)))
948 return false;
949 return isa<UndefValue>(ThruOp(Later));
950 }
951 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) {
952 // Trying to remove a store of the loaded value.
953 // Check that the pointers are the same, and
954 // - store's mask is a subset of the load's mask.
955 return IsSubmask(MaskOp(Later), MaskOp(Earlier));
956 }
957 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) {
958 // Trying to remove a dead store (earlier).
959 // Check that the pointers are the same,
960 // - the to-be-removed store's mask is a subset of the other store's
961 // mask.
962 return IsSubmask(MaskOp(Earlier), MaskOp(Later));
963 }
964 return false;
965 }
966
removeMSSA(Instruction & Inst)967 void removeMSSA(Instruction &Inst) {
968 if (!MSSA)
969 return;
970 if (VerifyMemorySSA)
971 MSSA->verifyMemorySSA();
972 // Removing a store here can leave MemorySSA in an unoptimized state by
973 // creating MemoryPhis that have identical arguments and by creating
974 // MemoryUses whose defining access is not an actual clobber. The phi case
975 // is handled by MemorySSA when passing OptimizePhis = true to
976 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated
977 // by MemorySSA's getClobberingMemoryAccess.
978 MSSAUpdater->removeMemoryAccess(&Inst, true);
979 }
980 };
981
982 } // end anonymous namespace
983
984 /// Determine if the memory referenced by LaterInst is from the same heap
985 /// version as EarlierInst.
986 /// This is currently called in two scenarios:
987 ///
988 /// load p
989 /// ...
990 /// load p
991 ///
992 /// and
993 ///
994 /// x = load p
995 /// ...
996 /// store x, p
997 ///
998 /// in both cases we want to verify that there are no possible writes to the
999 /// memory referenced by p between the earlier and later instruction.
isSameMemGeneration(unsigned EarlierGeneration,unsigned LaterGeneration,Instruction * EarlierInst,Instruction * LaterInst)1000 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
1001 unsigned LaterGeneration,
1002 Instruction *EarlierInst,
1003 Instruction *LaterInst) {
1004 // Check the simple memory generation tracking first.
1005 if (EarlierGeneration == LaterGeneration)
1006 return true;
1007
1008 if (!MSSA)
1009 return false;
1010
1011 // If MemorySSA has determined that one of EarlierInst or LaterInst does not
1012 // read/write memory, then we can safely return true here.
1013 // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
1014 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
1015 // by also checking the MemorySSA MemoryAccess on the instruction. Initial
1016 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
1017 // with the default optimization pipeline.
1018 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
1019 if (!EarlierMA)
1020 return true;
1021 auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
1022 if (!LaterMA)
1023 return true;
1024
1025 // Since we know LaterDef dominates LaterInst and EarlierInst dominates
1026 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
1027 // EarlierInst and LaterInst and neither can any other write that potentially
1028 // clobbers LaterInst.
1029 MemoryAccess *LaterDef;
1030 if (ClobberCounter < EarlyCSEMssaOptCap) {
1031 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
1032 ClobberCounter++;
1033 } else
1034 LaterDef = LaterMA->getDefiningAccess();
1035
1036 return MSSA->dominates(LaterDef, EarlierMA);
1037 }
1038
isOperatingOnInvariantMemAt(Instruction * I,unsigned GenAt)1039 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
1040 // A location loaded from with an invariant_load is assumed to *never* change
1041 // within the visible scope of the compilation.
1042 if (auto *LI = dyn_cast<LoadInst>(I))
1043 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1044 return true;
1045
1046 auto MemLocOpt = MemoryLocation::getOrNone(I);
1047 if (!MemLocOpt)
1048 // "target" intrinsic forms of loads aren't currently known to
1049 // MemoryLocation::get. TODO
1050 return false;
1051 MemoryLocation MemLoc = *MemLocOpt;
1052 if (!AvailableInvariants.count(MemLoc))
1053 return false;
1054
1055 // Is the generation at which this became invariant older than the
1056 // current one?
1057 return AvailableInvariants.lookup(MemLoc) <= GenAt;
1058 }
1059
handleBranchCondition(Instruction * CondInst,const BranchInst * BI,const BasicBlock * BB,const BasicBlock * Pred)1060 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
1061 const BranchInst *BI, const BasicBlock *BB,
1062 const BasicBlock *Pred) {
1063 assert(BI->isConditional() && "Should be a conditional branch!");
1064 assert(BI->getCondition() == CondInst && "Wrong condition?");
1065 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
1066 auto *TorF = (BI->getSuccessor(0) == BB)
1067 ? ConstantInt::getTrue(BB->getContext())
1068 : ConstantInt::getFalse(BB->getContext());
1069 auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS,
1070 Value *&RHS) {
1071 if (Opcode == Instruction::And &&
1072 match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
1073 return true;
1074 else if (Opcode == Instruction::Or &&
1075 match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
1076 return true;
1077 return false;
1078 };
1079 // If the condition is AND operation, we can propagate its operands into the
1080 // true branch. If it is OR operation, we can propagate them into the false
1081 // branch.
1082 unsigned PropagateOpcode =
1083 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
1084
1085 bool MadeChanges = false;
1086 SmallVector<Instruction *, 4> WorkList;
1087 SmallPtrSet<Instruction *, 4> Visited;
1088 WorkList.push_back(CondInst);
1089 while (!WorkList.empty()) {
1090 Instruction *Curr = WorkList.pop_back_val();
1091
1092 AvailableValues.insert(Curr, TorF);
1093 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
1094 << Curr->getName() << "' as " << *TorF << " in "
1095 << BB->getName() << "\n");
1096 if (!DebugCounter::shouldExecute(CSECounter)) {
1097 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1098 } else {
1099 // Replace all dominated uses with the known value.
1100 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
1101 BasicBlockEdge(Pred, BB))) {
1102 NumCSECVP += Count;
1103 MadeChanges = true;
1104 }
1105 }
1106
1107 Value *LHS, *RHS;
1108 if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS))
1109 for (auto &Op : { LHS, RHS })
1110 if (Instruction *OPI = dyn_cast<Instruction>(Op))
1111 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
1112 WorkList.push_back(OPI);
1113 }
1114
1115 return MadeChanges;
1116 }
1117
getMatchingValue(LoadValue & InVal,ParseMemoryInst & MemInst,unsigned CurrentGeneration)1118 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
1119 unsigned CurrentGeneration) {
1120 if (InVal.DefInst == nullptr)
1121 return nullptr;
1122 if (InVal.MatchingId != MemInst.getMatchingId())
1123 return nullptr;
1124 // We don't yet handle removing loads with ordering of any kind.
1125 if (MemInst.isVolatile() || !MemInst.isUnordered())
1126 return nullptr;
1127 // We can't replace an atomic load with one which isn't also atomic.
1128 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic())
1129 return nullptr;
1130 // The value V returned from this function is used differently depending
1131 // on whether MemInst is a load or a store. If it's a load, we will replace
1132 // MemInst with V, if it's a store, we will check if V is the same as the
1133 // available value.
1134 bool MemInstMatching = !MemInst.isLoad();
1135 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst;
1136 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get();
1137
1138 // For stores check the result values before checking memory generation
1139 // (otherwise isSameMemGeneration may crash).
1140 Value *Result = MemInst.isStore()
1141 ? getOrCreateResult(Matching, Other->getType())
1142 : nullptr;
1143 if (MemInst.isStore() && InVal.DefInst != Result)
1144 return nullptr;
1145
1146 // Deal with non-target memory intrinsics.
1147 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching);
1148 bool OtherNTI = isHandledNonTargetIntrinsic(Other);
1149 if (OtherNTI != MatchingNTI)
1150 return nullptr;
1151 if (OtherNTI && MatchingNTI) {
1152 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst),
1153 cast<IntrinsicInst>(MemInst.get())))
1154 return nullptr;
1155 }
1156
1157 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) &&
1158 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst,
1159 MemInst.get()))
1160 return nullptr;
1161
1162 if (!Result)
1163 Result = getOrCreateResult(Matching, Other->getType());
1164 return Result;
1165 }
1166
overridingStores(const ParseMemoryInst & Earlier,const ParseMemoryInst & Later)1167 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier,
1168 const ParseMemoryInst &Later) {
1169 // Can we remove Earlier store because of Later store?
1170
1171 assert(Earlier.isUnordered() && !Earlier.isVolatile() &&
1172 "Violated invariant");
1173 if (Earlier.getPointerOperand() != Later.getPointerOperand())
1174 return false;
1175 if (!Earlier.getValueType() || !Later.getValueType() ||
1176 Earlier.getValueType() != Later.getValueType())
1177 return false;
1178 if (Earlier.getMatchingId() != Later.getMatchingId())
1179 return false;
1180 // At the moment, we don't remove ordered stores, but do remove
1181 // unordered atomic stores. There's no special requirement (for
1182 // unordered atomics) about removing atomic stores only in favor of
1183 // other atomic stores since we were going to execute the non-atomic
1184 // one anyway and the atomic one might never have become visible.
1185 if (!Earlier.isUnordered() || !Later.isUnordered())
1186 return false;
1187
1188 // Deal with non-target memory intrinsics.
1189 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get());
1190 bool LNTI = isHandledNonTargetIntrinsic(Later.get());
1191 if (ENTI && LNTI)
1192 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()),
1193 cast<IntrinsicInst>(Later.get()));
1194
1195 // Because of the check above, at least one of them is false.
1196 // For now disallow matching intrinsics with non-intrinsics,
1197 // so assume that the stores match if neither is an intrinsic.
1198 return ENTI == LNTI;
1199 }
1200
processNode(DomTreeNode * Node)1201 bool EarlyCSE::processNode(DomTreeNode *Node) {
1202 bool Changed = false;
1203 BasicBlock *BB = Node->getBlock();
1204
1205 // If this block has a single predecessor, then the predecessor is the parent
1206 // of the domtree node and all of the live out memory values are still current
1207 // in this block. If this block has multiple predecessors, then they could
1208 // have invalidated the live-out memory values of our parent value. For now,
1209 // just be conservative and invalidate memory if this block has multiple
1210 // predecessors.
1211 if (!BB->getSinglePredecessor())
1212 ++CurrentGeneration;
1213
1214 // If this node has a single predecessor which ends in a conditional branch,
1215 // we can infer the value of the branch condition given that we took this
1216 // path. We need the single predecessor to ensure there's not another path
1217 // which reaches this block where the condition might hold a different
1218 // value. Since we're adding this to the scoped hash table (like any other
1219 // def), it will have been popped if we encounter a future merge block.
1220 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1221 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
1222 if (BI && BI->isConditional()) {
1223 auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
1224 if (CondInst && SimpleValue::canHandle(CondInst))
1225 Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
1226 }
1227 }
1228
1229 /// LastStore - Keep track of the last non-volatile store that we saw... for
1230 /// as long as there in no instruction that reads memory. If we see a store
1231 /// to the same location, we delete the dead store. This zaps trivial dead
1232 /// stores which can occur in bitfield code among other things.
1233 Instruction *LastStore = nullptr;
1234
1235 // See if any instructions in the block can be eliminated. If so, do it. If
1236 // not, add them to AvailableValues.
1237 for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
1238 // Dead instructions should just be removed.
1239 if (isInstructionTriviallyDead(&Inst, &TLI)) {
1240 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
1241 if (!DebugCounter::shouldExecute(CSECounter)) {
1242 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1243 continue;
1244 }
1245
1246 salvageKnowledge(&Inst, &AC);
1247 salvageDebugInfo(Inst);
1248 removeMSSA(Inst);
1249 Inst.eraseFromParent();
1250 Changed = true;
1251 ++NumSimplify;
1252 continue;
1253 }
1254
1255 // Skip assume intrinsics, they don't really have side effects (although
1256 // they're marked as such to ensure preservation of control dependencies),
1257 // and this pass will not bother with its removal. However, we should mark
1258 // its condition as true for all dominated blocks.
1259 if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) {
1260 auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0));
1261 if (CondI && SimpleValue::canHandle(CondI)) {
1262 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
1263 << '\n');
1264 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1265 } else
1266 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
1267 continue;
1268 }
1269
1270 // Likewise, noalias intrinsics don't actually write.
1271 if (match(&Inst,
1272 m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) {
1273 LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst
1274 << '\n');
1275 continue;
1276 }
1277
1278 // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
1279 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
1280 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
1281 continue;
1282 }
1283
1284 // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics.
1285 if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) {
1286 LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n');
1287 continue;
1288 }
1289
1290 // We can skip all invariant.start intrinsics since they only read memory,
1291 // and we can forward values across it. For invariant starts without
1292 // invariant ends, we can use the fact that the invariantness never ends to
1293 // start a scope in the current generaton which is true for all future
1294 // generations. Also, we dont need to consume the last store since the
1295 // semantics of invariant.start allow us to perform DSE of the last
1296 // store, if there was a store following invariant.start. Consider:
1297 //
1298 // store 30, i8* p
1299 // invariant.start(p)
1300 // store 40, i8* p
1301 // We can DSE the store to 30, since the store 40 to invariant location p
1302 // causes undefined behaviour.
1303 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
1304 // If there are any uses, the scope might end.
1305 if (!Inst.use_empty())
1306 continue;
1307 MemoryLocation MemLoc =
1308 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
1309 // Don't start a scope if we already have a better one pushed
1310 if (!AvailableInvariants.count(MemLoc))
1311 AvailableInvariants.insert(MemLoc, CurrentGeneration);
1312 continue;
1313 }
1314
1315 if (isGuard(&Inst)) {
1316 if (auto *CondI =
1317 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
1318 if (SimpleValue::canHandle(CondI)) {
1319 // Do we already know the actual value of this condition?
1320 if (auto *KnownCond = AvailableValues.lookup(CondI)) {
1321 // Is the condition known to be true?
1322 if (isa<ConstantInt>(KnownCond) &&
1323 cast<ConstantInt>(KnownCond)->isOne()) {
1324 LLVM_DEBUG(dbgs()
1325 << "EarlyCSE removing guard: " << Inst << '\n');
1326 salvageKnowledge(&Inst, &AC);
1327 removeMSSA(Inst);
1328 Inst.eraseFromParent();
1329 Changed = true;
1330 continue;
1331 } else
1332 // Use the known value if it wasn't true.
1333 cast<CallInst>(Inst).setArgOperand(0, KnownCond);
1334 }
1335 // The condition we're on guarding here is true for all dominated
1336 // locations.
1337 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1338 }
1339 }
1340
1341 // Guard intrinsics read all memory, but don't write any memory.
1342 // Accordingly, don't update the generation but consume the last store (to
1343 // avoid an incorrect DSE).
1344 LastStore = nullptr;
1345 continue;
1346 }
1347
1348 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
1349 // its simpler value.
1350 if (Value *V = simplifyInstruction(&Inst, SQ)) {
1351 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V
1352 << '\n');
1353 if (!DebugCounter::shouldExecute(CSECounter)) {
1354 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1355 } else {
1356 bool Killed = false;
1357 if (!Inst.use_empty()) {
1358 Inst.replaceAllUsesWith(V);
1359 Changed = true;
1360 }
1361 if (isInstructionTriviallyDead(&Inst, &TLI)) {
1362 salvageKnowledge(&Inst, &AC);
1363 removeMSSA(Inst);
1364 Inst.eraseFromParent();
1365 Changed = true;
1366 Killed = true;
1367 }
1368 if (Changed)
1369 ++NumSimplify;
1370 if (Killed)
1371 continue;
1372 }
1373 }
1374
1375 // If this is a simple instruction that we can value number, process it.
1376 if (SimpleValue::canHandle(&Inst)) {
1377 // See if the instruction has an available value. If so, use it.
1378 if (Value *V = AvailableValues.lookup(&Inst)) {
1379 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V
1380 << '\n');
1381 if (!DebugCounter::shouldExecute(CSECounter)) {
1382 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1383 continue;
1384 }
1385 if (auto *I = dyn_cast<Instruction>(V)) {
1386 // If I being poison triggers UB, there is no need to drop those
1387 // flags. Otherwise, only retain flags present on both I and Inst.
1388 // TODO: Currently some fast-math flags are not treated as
1389 // poison-generating even though they should. Until this is fixed,
1390 // always retain flags present on both I and Inst for floating point
1391 // instructions.
1392 if (isa<FPMathOperator>(I) || (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)))
1393 I->andIRFlags(&Inst);
1394 }
1395 Inst.replaceAllUsesWith(V);
1396 salvageKnowledge(&Inst, &AC);
1397 removeMSSA(Inst);
1398 Inst.eraseFromParent();
1399 Changed = true;
1400 ++NumCSE;
1401 continue;
1402 }
1403
1404 // Otherwise, just remember that this value is available.
1405 AvailableValues.insert(&Inst, &Inst);
1406 continue;
1407 }
1408
1409 ParseMemoryInst MemInst(&Inst, TTI);
1410 // If this is a non-volatile load, process it.
1411 if (MemInst.isValid() && MemInst.isLoad()) {
1412 // (conservatively) we can't peak past the ordering implied by this
1413 // operation, but we can add this load to our set of available values
1414 if (MemInst.isVolatile() || !MemInst.isUnordered()) {
1415 LastStore = nullptr;
1416 ++CurrentGeneration;
1417 }
1418
1419 if (MemInst.isInvariantLoad()) {
1420 // If we pass an invariant load, we know that memory location is
1421 // indefinitely constant from the moment of first dereferenceability.
1422 // We conservatively treat the invariant_load as that moment. If we
1423 // pass a invariant load after already establishing a scope, don't
1424 // restart it since we want to preserve the earliest point seen.
1425 auto MemLoc = MemoryLocation::get(&Inst);
1426 if (!AvailableInvariants.count(MemLoc))
1427 AvailableInvariants.insert(MemLoc, CurrentGeneration);
1428 }
1429
1430 // If we have an available version of this load, and if it is the right
1431 // generation or the load is known to be from an invariant location,
1432 // replace this instruction.
1433 //
1434 // If either the dominating load or the current load are invariant, then
1435 // we can assume the current load loads the same value as the dominating
1436 // load.
1437 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1438 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1439 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
1440 << " to: " << *InVal.DefInst << '\n');
1441 if (!DebugCounter::shouldExecute(CSECounter)) {
1442 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1443 continue;
1444 }
1445 if (!Inst.use_empty())
1446 Inst.replaceAllUsesWith(Op);
1447 salvageKnowledge(&Inst, &AC);
1448 removeMSSA(Inst);
1449 Inst.eraseFromParent();
1450 Changed = true;
1451 ++NumCSELoad;
1452 continue;
1453 }
1454
1455 // Otherwise, remember that we have this instruction.
1456 AvailableLoads.insert(MemInst.getPointerOperand(),
1457 LoadValue(&Inst, CurrentGeneration,
1458 MemInst.getMatchingId(),
1459 MemInst.isAtomic()));
1460 LastStore = nullptr;
1461 continue;
1462 }
1463
1464 // If this instruction may read from memory or throw (and potentially read
1465 // from memory in the exception handler), forget LastStore. Load/store
1466 // intrinsics will indicate both a read and a write to memory. The target
1467 // may override this (e.g. so that a store intrinsic does not read from
1468 // memory, and thus will be treated the same as a regular store for
1469 // commoning purposes).
1470 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
1471 !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1472 LastStore = nullptr;
1473
1474 // If this is a read-only call, process it.
1475 if (CallValue::canHandle(&Inst)) {
1476 // If we have an available version of this call, and if it is the right
1477 // generation, replace this instruction.
1478 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
1479 if (InVal.first != nullptr &&
1480 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1481 &Inst)) {
1482 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
1483 << " to: " << *InVal.first << '\n');
1484 if (!DebugCounter::shouldExecute(CSECounter)) {
1485 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1486 continue;
1487 }
1488 if (!Inst.use_empty())
1489 Inst.replaceAllUsesWith(InVal.first);
1490 salvageKnowledge(&Inst, &AC);
1491 removeMSSA(Inst);
1492 Inst.eraseFromParent();
1493 Changed = true;
1494 ++NumCSECall;
1495 continue;
1496 }
1497
1498 // Otherwise, remember that we have this instruction.
1499 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
1500 continue;
1501 }
1502
1503 // A release fence requires that all stores complete before it, but does
1504 // not prevent the reordering of following loads 'before' the fence. As a
1505 // result, we don't need to consider it as writing to memory and don't need
1506 // to advance the generation. We do need to prevent DSE across the fence,
1507 // but that's handled above.
1508 if (auto *FI = dyn_cast<FenceInst>(&Inst))
1509 if (FI->getOrdering() == AtomicOrdering::Release) {
1510 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
1511 continue;
1512 }
1513
1514 // write back DSE - If we write back the same value we just loaded from
1515 // the same location and haven't passed any intervening writes or ordering
1516 // operations, we can remove the write. The primary benefit is in allowing
1517 // the available load table to remain valid and value forward past where
1518 // the store originally was.
1519 if (MemInst.isValid() && MemInst.isStore()) {
1520 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1521 if (InVal.DefInst &&
1522 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1523 // It is okay to have a LastStore to a different pointer here if MemorySSA
1524 // tells us that the load and store are from the same memory generation.
1525 // In that case, LastStore should keep its present value since we're
1526 // removing the current store.
1527 assert((!LastStore ||
1528 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1529 MemInst.getPointerOperand() ||
1530 MSSA) &&
1531 "can't have an intervening store if not using MemorySSA!");
1532 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
1533 if (!DebugCounter::shouldExecute(CSECounter)) {
1534 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1535 continue;
1536 }
1537 salvageKnowledge(&Inst, &AC);
1538 removeMSSA(Inst);
1539 Inst.eraseFromParent();
1540 Changed = true;
1541 ++NumDSE;
1542 // We can avoid incrementing the generation count since we were able
1543 // to eliminate this store.
1544 continue;
1545 }
1546 }
1547
1548 // Okay, this isn't something we can CSE at all. Check to see if it is
1549 // something that could modify memory. If so, our available memory values
1550 // cannot be used so bump the generation count.
1551 if (Inst.mayWriteToMemory()) {
1552 ++CurrentGeneration;
1553
1554 if (MemInst.isValid() && MemInst.isStore()) {
1555 // We do a trivial form of DSE if there are two stores to the same
1556 // location with no intervening loads. Delete the earlier store.
1557 if (LastStore) {
1558 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) {
1559 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1560 << " due to: " << Inst << '\n');
1561 if (!DebugCounter::shouldExecute(CSECounter)) {
1562 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1563 } else {
1564 salvageKnowledge(&Inst, &AC);
1565 removeMSSA(*LastStore);
1566 LastStore->eraseFromParent();
1567 Changed = true;
1568 ++NumDSE;
1569 LastStore = nullptr;
1570 }
1571 }
1572 // fallthrough - we can exploit information about this store
1573 }
1574
1575 // Okay, we just invalidated anything we knew about loaded values. Try
1576 // to salvage *something* by remembering that the stored value is a live
1577 // version of the pointer. It is safe to forward from volatile stores
1578 // to non-volatile loads, so we don't have to check for volatility of
1579 // the store.
1580 AvailableLoads.insert(MemInst.getPointerOperand(),
1581 LoadValue(&Inst, CurrentGeneration,
1582 MemInst.getMatchingId(),
1583 MemInst.isAtomic()));
1584
1585 // Remember that this was the last unordered store we saw for DSE. We
1586 // don't yet handle DSE on ordered or volatile stores since we don't
1587 // have a good way to model the ordering requirement for following
1588 // passes once the store is removed. We could insert a fence, but
1589 // since fences are slightly stronger than stores in their ordering,
1590 // it's not clear this is a profitable transform. Another option would
1591 // be to merge the ordering with that of the post dominating store.
1592 if (MemInst.isUnordered() && !MemInst.isVolatile())
1593 LastStore = &Inst;
1594 else
1595 LastStore = nullptr;
1596 }
1597 }
1598 }
1599
1600 return Changed;
1601 }
1602
run()1603 bool EarlyCSE::run() {
1604 // Note, deque is being used here because there is significant performance
1605 // gains over vector when the container becomes very large due to the
1606 // specific access patterns. For more information see the mailing list
1607 // discussion on this:
1608 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1609 std::deque<StackNode *> nodesToProcess;
1610
1611 bool Changed = false;
1612
1613 // Process the root node.
1614 nodesToProcess.push_back(new StackNode(
1615 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1616 CurrentGeneration, DT.getRootNode(),
1617 DT.getRootNode()->begin(), DT.getRootNode()->end()));
1618
1619 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
1620
1621 // Process the stack.
1622 while (!nodesToProcess.empty()) {
1623 // Grab the first item off the stack. Set the current generation, remove
1624 // the node from the stack, and process it.
1625 StackNode *NodeToProcess = nodesToProcess.back();
1626
1627 // Initialize class members.
1628 CurrentGeneration = NodeToProcess->currentGeneration();
1629
1630 // Check if the node needs to be processed.
1631 if (!NodeToProcess->isProcessed()) {
1632 // Process the node.
1633 Changed |= processNode(NodeToProcess->node());
1634 NodeToProcess->childGeneration(CurrentGeneration);
1635 NodeToProcess->process();
1636 } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1637 // Push the next child onto the stack.
1638 DomTreeNode *child = NodeToProcess->nextChild();
1639 nodesToProcess.push_back(
1640 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1641 AvailableCalls, NodeToProcess->childGeneration(),
1642 child, child->begin(), child->end()));
1643 } else {
1644 // It has been processed, and there are no more children to process,
1645 // so delete it and pop it off the stack.
1646 delete NodeToProcess;
1647 nodesToProcess.pop_back();
1648 }
1649 } // while (!nodes...)
1650
1651 return Changed;
1652 }
1653
run(Function & F,FunctionAnalysisManager & AM)1654 PreservedAnalyses EarlyCSEPass::run(Function &F,
1655 FunctionAnalysisManager &AM) {
1656 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1657 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1658 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1659 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1660 auto *MSSA =
1661 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1662
1663 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1664
1665 if (!CSE.run())
1666 return PreservedAnalyses::all();
1667
1668 PreservedAnalyses PA;
1669 PA.preserveSet<CFGAnalyses>();
1670 if (UseMemorySSA)
1671 PA.preserve<MemorySSAAnalysis>();
1672 return PA;
1673 }
1674
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)1675 void EarlyCSEPass::printPipeline(
1676 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1677 static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline(
1678 OS, MapClassName2PassName);
1679 OS << "<";
1680 if (UseMemorySSA)
1681 OS << "memssa";
1682 OS << ">";
1683 }
1684
1685 namespace {
1686
1687 /// A simple and fast domtree-based CSE pass.
1688 ///
1689 /// This pass does a simple depth-first walk over the dominator tree,
1690 /// eliminating trivially redundant instructions and using instsimplify to
1691 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1692 /// cases so that instcombine and other passes are more effective. It is
1693 /// expected that a later pass of GVN will catch the interesting/hard cases.
1694 template<bool UseMemorySSA>
1695 class EarlyCSELegacyCommonPass : public FunctionPass {
1696 public:
1697 static char ID;
1698
EarlyCSELegacyCommonPass()1699 EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1700 if (UseMemorySSA)
1701 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1702 else
1703 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1704 }
1705
runOnFunction(Function & F)1706 bool runOnFunction(Function &F) override {
1707 if (skipFunction(F))
1708 return false;
1709
1710 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1711 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1712 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1713 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1714 auto *MSSA =
1715 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1716
1717 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1718
1719 return CSE.run();
1720 }
1721
getAnalysisUsage(AnalysisUsage & AU) const1722 void getAnalysisUsage(AnalysisUsage &AU) const override {
1723 AU.addRequired<AssumptionCacheTracker>();
1724 AU.addRequired<DominatorTreeWrapperPass>();
1725 AU.addRequired<TargetLibraryInfoWrapperPass>();
1726 AU.addRequired<TargetTransformInfoWrapperPass>();
1727 if (UseMemorySSA) {
1728 AU.addRequired<AAResultsWrapperPass>();
1729 AU.addRequired<MemorySSAWrapperPass>();
1730 AU.addPreserved<MemorySSAWrapperPass>();
1731 }
1732 AU.addPreserved<GlobalsAAWrapperPass>();
1733 AU.addPreserved<AAResultsWrapperPass>();
1734 AU.setPreservesCFG();
1735 }
1736 };
1737
1738 } // end anonymous namespace
1739
1740 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1741
1742 template<>
1743 char EarlyCSELegacyPass::ID = 0;
1744
1745 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1746 false)
1747 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1748 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1749 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1750 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1751 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1752
1753 using EarlyCSEMemSSALegacyPass =
1754 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1755
1756 template<>
1757 char EarlyCSEMemSSALegacyPass::ID = 0;
1758
createEarlyCSEPass(bool UseMemorySSA)1759 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1760 if (UseMemorySSA)
1761 return new EarlyCSEMemSSALegacyPass();
1762 else
1763 return new EarlyCSELegacyPass();
1764 }
1765
1766 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1767 "Early CSE w/ MemorySSA", false, false)
1768 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1769 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1770 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1771 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1772 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1773 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1774 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1775 "Early CSE w/ MemorySSA", false, false)
1776