1 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Correlated Value Propagation pass.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
14 #include "llvm/ADT/DepthFirstIterator.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LazyValueInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PassManager.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Transforms/Scalar.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include <cassert>
47 #include <utility>
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "correlated-value-propagation"
52
53 static cl::opt<bool> CanonicalizeICmpPredicatesToUnsigned(
54 "canonicalize-icmp-predicates-to-unsigned", cl::init(true), cl::Hidden,
55 cl::desc("Enables canonicalization of signed relational predicates to "
56 "unsigned (e.g. sgt => ugt)"));
57
58 STATISTIC(NumPhis, "Number of phis propagated");
59 STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
60 STATISTIC(NumSelects, "Number of selects propagated");
61 STATISTIC(NumMemAccess, "Number of memory access targets propagated");
62 STATISTIC(NumCmps, "Number of comparisons propagated");
63 STATISTIC(NumReturns, "Number of return values propagated");
64 STATISTIC(NumDeadCases, "Number of switch cases removed");
65 STATISTIC(NumSDivSRemsNarrowed,
66 "Number of sdivs/srems whose width was decreased");
67 STATISTIC(NumSDivs, "Number of sdiv converted to udiv");
68 STATISTIC(NumUDivURemsNarrowed,
69 "Number of udivs/urems whose width was decreased");
70 STATISTIC(NumAShrsConverted, "Number of ashr converted to lshr");
71 STATISTIC(NumAShrsRemoved, "Number of ashr removed");
72 STATISTIC(NumSRems, "Number of srem converted to urem");
73 STATISTIC(NumSExt, "Number of sext converted to zext");
74 STATISTIC(NumSICmps, "Number of signed icmp preds simplified to unsigned");
75 STATISTIC(NumAnd, "Number of ands removed");
76 STATISTIC(NumNW, "Number of no-wrap deductions");
77 STATISTIC(NumNSW, "Number of no-signed-wrap deductions");
78 STATISTIC(NumNUW, "Number of no-unsigned-wrap deductions");
79 STATISTIC(NumAddNW, "Number of no-wrap deductions for add");
80 STATISTIC(NumAddNSW, "Number of no-signed-wrap deductions for add");
81 STATISTIC(NumAddNUW, "Number of no-unsigned-wrap deductions for add");
82 STATISTIC(NumSubNW, "Number of no-wrap deductions for sub");
83 STATISTIC(NumSubNSW, "Number of no-signed-wrap deductions for sub");
84 STATISTIC(NumSubNUW, "Number of no-unsigned-wrap deductions for sub");
85 STATISTIC(NumMulNW, "Number of no-wrap deductions for mul");
86 STATISTIC(NumMulNSW, "Number of no-signed-wrap deductions for mul");
87 STATISTIC(NumMulNUW, "Number of no-unsigned-wrap deductions for mul");
88 STATISTIC(NumShlNW, "Number of no-wrap deductions for shl");
89 STATISTIC(NumShlNSW, "Number of no-signed-wrap deductions for shl");
90 STATISTIC(NumShlNUW, "Number of no-unsigned-wrap deductions for shl");
91 STATISTIC(NumAbs, "Number of llvm.abs intrinsics removed");
92 STATISTIC(NumOverflows, "Number of overflow checks removed");
93 STATISTIC(NumSaturating,
94 "Number of saturating arithmetics converted to normal arithmetics");
95 STATISTIC(NumNonNull, "Number of function pointer arguments marked non-null");
96 STATISTIC(NumMinMax, "Number of llvm.[us]{min,max} intrinsics removed");
97
98 namespace {
99
100 class CorrelatedValuePropagation : public FunctionPass {
101 public:
102 static char ID;
103
CorrelatedValuePropagation()104 CorrelatedValuePropagation(): FunctionPass(ID) {
105 initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
106 }
107
108 bool runOnFunction(Function &F) override;
109
getAnalysisUsage(AnalysisUsage & AU) const110 void getAnalysisUsage(AnalysisUsage &AU) const override {
111 AU.addRequired<DominatorTreeWrapperPass>();
112 AU.addRequired<LazyValueInfoWrapperPass>();
113 AU.addPreserved<GlobalsAAWrapperPass>();
114 AU.addPreserved<DominatorTreeWrapperPass>();
115 AU.addPreserved<LazyValueInfoWrapperPass>();
116 }
117 };
118
119 } // end anonymous namespace
120
121 char CorrelatedValuePropagation::ID = 0;
122
123 INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
124 "Value Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)125 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
126 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
127 INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
128 "Value Propagation", false, false)
129
130 // Public interface to the Value Propagation pass
131 Pass *llvm::createCorrelatedValuePropagationPass() {
132 return new CorrelatedValuePropagation();
133 }
134
processSelect(SelectInst * S,LazyValueInfo * LVI)135 static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
136 if (S->getType()->isVectorTy()) return false;
137 if (isa<Constant>(S->getCondition())) return false;
138
139 Constant *C = LVI->getConstant(S->getCondition(), S);
140 if (!C) return false;
141
142 ConstantInt *CI = dyn_cast<ConstantInt>(C);
143 if (!CI) return false;
144
145 Value *ReplaceWith = CI->isOne() ? S->getTrueValue() : S->getFalseValue();
146 S->replaceAllUsesWith(ReplaceWith);
147 S->eraseFromParent();
148
149 ++NumSelects;
150
151 return true;
152 }
153
154 /// Try to simplify a phi with constant incoming values that match the edge
155 /// values of a non-constant value on all other edges:
156 /// bb0:
157 /// %isnull = icmp eq i8* %x, null
158 /// br i1 %isnull, label %bb2, label %bb1
159 /// bb1:
160 /// br label %bb2
161 /// bb2:
162 /// %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
163 /// -->
164 /// %r = %x
simplifyCommonValuePhi(PHINode * P,LazyValueInfo * LVI,DominatorTree * DT)165 static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
166 DominatorTree *DT) {
167 // Collect incoming constants and initialize possible common value.
168 SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
169 Value *CommonValue = nullptr;
170 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
171 Value *Incoming = P->getIncomingValue(i);
172 if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
173 IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
174 } else if (!CommonValue) {
175 // The potential common value is initialized to the first non-constant.
176 CommonValue = Incoming;
177 } else if (Incoming != CommonValue) {
178 // There can be only one non-constant common value.
179 return false;
180 }
181 }
182
183 if (!CommonValue || IncomingConstants.empty())
184 return false;
185
186 // The common value must be valid in all incoming blocks.
187 BasicBlock *ToBB = P->getParent();
188 if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
189 if (!DT->dominates(CommonInst, ToBB))
190 return false;
191
192 // We have a phi with exactly 1 variable incoming value and 1 or more constant
193 // incoming values. See if all constant incoming values can be mapped back to
194 // the same incoming variable value.
195 for (auto &IncomingConstant : IncomingConstants) {
196 Constant *C = IncomingConstant.first;
197 BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
198 if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
199 return false;
200 }
201
202 // LVI only guarantees that the value matches a certain constant if the value
203 // is not poison. Make sure we don't replace a well-defined value with poison.
204 // This is usually satisfied due to a prior branch on the value.
205 if (!isGuaranteedNotToBePoison(CommonValue, nullptr, P, DT))
206 return false;
207
208 // All constant incoming values map to the same variable along the incoming
209 // edges of the phi. The phi is unnecessary.
210 P->replaceAllUsesWith(CommonValue);
211 P->eraseFromParent();
212 ++NumPhiCommon;
213 return true;
214 }
215
getValueOnEdge(LazyValueInfo * LVI,Value * Incoming,BasicBlock * From,BasicBlock * To,Instruction * CxtI)216 static Value *getValueOnEdge(LazyValueInfo *LVI, Value *Incoming,
217 BasicBlock *From, BasicBlock *To,
218 Instruction *CxtI) {
219 if (Constant *C = LVI->getConstantOnEdge(Incoming, From, To, CxtI))
220 return C;
221
222 // Look if the incoming value is a select with a scalar condition for which
223 // LVI can tells us the value. In that case replace the incoming value with
224 // the appropriate value of the select. This often allows us to remove the
225 // select later.
226 auto *SI = dyn_cast<SelectInst>(Incoming);
227 if (!SI)
228 return nullptr;
229
230 // Once LVI learns to handle vector types, we could also add support
231 // for vector type constants that are not all zeroes or all ones.
232 Value *Condition = SI->getCondition();
233 if (!Condition->getType()->isVectorTy()) {
234 if (Constant *C = LVI->getConstantOnEdge(Condition, From, To, CxtI)) {
235 if (C->isOneValue())
236 return SI->getTrueValue();
237 if (C->isZeroValue())
238 return SI->getFalseValue();
239 }
240 }
241
242 // Look if the select has a constant but LVI tells us that the incoming
243 // value can never be that constant. In that case replace the incoming
244 // value with the other value of the select. This often allows us to
245 // remove the select later.
246
247 // The "false" case
248 if (auto *C = dyn_cast<Constant>(SI->getFalseValue()))
249 if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI) ==
250 LazyValueInfo::False)
251 return SI->getTrueValue();
252
253 // The "true" case,
254 // similar to the select "false" case, but try the select "true" value
255 if (auto *C = dyn_cast<Constant>(SI->getTrueValue()))
256 if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI) ==
257 LazyValueInfo::False)
258 return SI->getFalseValue();
259
260 return nullptr;
261 }
262
processPHI(PHINode * P,LazyValueInfo * LVI,DominatorTree * DT,const SimplifyQuery & SQ)263 static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
264 const SimplifyQuery &SQ) {
265 bool Changed = false;
266
267 BasicBlock *BB = P->getParent();
268 for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
269 Value *Incoming = P->getIncomingValue(i);
270 if (isa<Constant>(Incoming)) continue;
271
272 Value *V = getValueOnEdge(LVI, Incoming, P->getIncomingBlock(i), BB, P);
273 if (V) {
274 P->setIncomingValue(i, V);
275 Changed = true;
276 }
277 }
278
279 if (Value *V = simplifyInstruction(P, SQ)) {
280 P->replaceAllUsesWith(V);
281 P->eraseFromParent();
282 Changed = true;
283 }
284
285 if (!Changed)
286 Changed = simplifyCommonValuePhi(P, LVI, DT);
287
288 if (Changed)
289 ++NumPhis;
290
291 return Changed;
292 }
293
processMemAccess(Instruction * I,LazyValueInfo * LVI)294 static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) {
295 Value *Pointer = nullptr;
296 if (LoadInst *L = dyn_cast<LoadInst>(I))
297 Pointer = L->getPointerOperand();
298 else
299 Pointer = cast<StoreInst>(I)->getPointerOperand();
300
301 if (isa<Constant>(Pointer)) return false;
302
303 Constant *C = LVI->getConstant(Pointer, I);
304 if (!C) return false;
305
306 ++NumMemAccess;
307 I->replaceUsesOfWith(Pointer, C);
308 return true;
309 }
310
processICmp(ICmpInst * Cmp,LazyValueInfo * LVI)311 static bool processICmp(ICmpInst *Cmp, LazyValueInfo *LVI) {
312 if (!CanonicalizeICmpPredicatesToUnsigned)
313 return false;
314
315 // Only for signed relational comparisons of scalar integers.
316 if (Cmp->getType()->isVectorTy() ||
317 !Cmp->getOperand(0)->getType()->isIntegerTy())
318 return false;
319
320 if (!Cmp->isSigned())
321 return false;
322
323 ICmpInst::Predicate UnsignedPred =
324 ConstantRange::getEquivalentPredWithFlippedSignedness(
325 Cmp->getPredicate(), LVI->getConstantRange(Cmp->getOperand(0), Cmp),
326 LVI->getConstantRange(Cmp->getOperand(1), Cmp));
327
328 if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE)
329 return false;
330
331 ++NumSICmps;
332 Cmp->setPredicate(UnsignedPred);
333
334 return true;
335 }
336
337 /// See if LazyValueInfo's ability to exploit edge conditions or range
338 /// information is sufficient to prove this comparison. Even for local
339 /// conditions, this can sometimes prove conditions instcombine can't by
340 /// exploiting range information.
constantFoldCmp(CmpInst * Cmp,LazyValueInfo * LVI)341 static bool constantFoldCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
342 Value *Op0 = Cmp->getOperand(0);
343 auto *C = dyn_cast<Constant>(Cmp->getOperand(1));
344 if (!C)
345 return false;
346
347 LazyValueInfo::Tristate Result =
348 LVI->getPredicateAt(Cmp->getPredicate(), Op0, C, Cmp,
349 /*UseBlockValue=*/true);
350 if (Result == LazyValueInfo::Unknown)
351 return false;
352
353 ++NumCmps;
354 Constant *TorF = ConstantInt::get(Type::getInt1Ty(Cmp->getContext()), Result);
355 Cmp->replaceAllUsesWith(TorF);
356 Cmp->eraseFromParent();
357 return true;
358 }
359
processCmp(CmpInst * Cmp,LazyValueInfo * LVI)360 static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
361 if (constantFoldCmp(Cmp, LVI))
362 return true;
363
364 if (auto *ICmp = dyn_cast<ICmpInst>(Cmp))
365 if (processICmp(ICmp, LVI))
366 return true;
367
368 return false;
369 }
370
371 /// Simplify a switch instruction by removing cases which can never fire. If the
372 /// uselessness of a case could be determined locally then constant propagation
373 /// would already have figured it out. Instead, walk the predecessors and
374 /// statically evaluate cases based on information available on that edge. Cases
375 /// that cannot fire no matter what the incoming edge can safely be removed. If
376 /// a case fires on every incoming edge then the entire switch can be removed
377 /// and replaced with a branch to the case destination.
processSwitch(SwitchInst * I,LazyValueInfo * LVI,DominatorTree * DT)378 static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
379 DominatorTree *DT) {
380 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
381 Value *Cond = I->getCondition();
382 BasicBlock *BB = I->getParent();
383
384 // Analyse each switch case in turn.
385 bool Changed = false;
386 DenseMap<BasicBlock*, int> SuccessorsCount;
387 for (auto *Succ : successors(BB))
388 SuccessorsCount[Succ]++;
389
390 { // Scope for SwitchInstProfUpdateWrapper. It must not live during
391 // ConstantFoldTerminator() as the underlying SwitchInst can be changed.
392 SwitchInstProfUpdateWrapper SI(*I);
393
394 for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
395 ConstantInt *Case = CI->getCaseValue();
396 LazyValueInfo::Tristate State =
397 LVI->getPredicateAt(CmpInst::ICMP_EQ, Cond, Case, I,
398 /* UseBlockValue */ true);
399
400 if (State == LazyValueInfo::False) {
401 // This case never fires - remove it.
402 BasicBlock *Succ = CI->getCaseSuccessor();
403 Succ->removePredecessor(BB);
404 CI = SI.removeCase(CI);
405 CE = SI->case_end();
406
407 // The condition can be modified by removePredecessor's PHI simplification
408 // logic.
409 Cond = SI->getCondition();
410
411 ++NumDeadCases;
412 Changed = true;
413 if (--SuccessorsCount[Succ] == 0)
414 DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
415 continue;
416 }
417 if (State == LazyValueInfo::True) {
418 // This case always fires. Arrange for the switch to be turned into an
419 // unconditional branch by replacing the switch condition with the case
420 // value.
421 SI->setCondition(Case);
422 NumDeadCases += SI->getNumCases();
423 Changed = true;
424 break;
425 }
426
427 // Increment the case iterator since we didn't delete it.
428 ++CI;
429 }
430 }
431
432 if (Changed)
433 // If the switch has been simplified to the point where it can be replaced
434 // by a branch then do so now.
435 ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
436 /*TLI = */ nullptr, &DTU);
437 return Changed;
438 }
439
440 // See if we can prove that the given binary op intrinsic will not overflow.
willNotOverflow(BinaryOpIntrinsic * BO,LazyValueInfo * LVI)441 static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
442 ConstantRange LRange = LVI->getConstantRange(BO->getLHS(), BO);
443 ConstantRange RRange = LVI->getConstantRange(BO->getRHS(), BO);
444 ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
445 BO->getBinaryOp(), RRange, BO->getNoWrapKind());
446 return NWRegion.contains(LRange);
447 }
448
setDeducedOverflowingFlags(Value * V,Instruction::BinaryOps Opcode,bool NewNSW,bool NewNUW)449 static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
450 bool NewNSW, bool NewNUW) {
451 Statistic *OpcNW, *OpcNSW, *OpcNUW;
452 switch (Opcode) {
453 case Instruction::Add:
454 OpcNW = &NumAddNW;
455 OpcNSW = &NumAddNSW;
456 OpcNUW = &NumAddNUW;
457 break;
458 case Instruction::Sub:
459 OpcNW = &NumSubNW;
460 OpcNSW = &NumSubNSW;
461 OpcNUW = &NumSubNUW;
462 break;
463 case Instruction::Mul:
464 OpcNW = &NumMulNW;
465 OpcNSW = &NumMulNSW;
466 OpcNUW = &NumMulNUW;
467 break;
468 case Instruction::Shl:
469 OpcNW = &NumShlNW;
470 OpcNSW = &NumShlNSW;
471 OpcNUW = &NumShlNUW;
472 break;
473 default:
474 llvm_unreachable("Will not be called with other binops");
475 }
476
477 auto *Inst = dyn_cast<Instruction>(V);
478 if (NewNSW) {
479 ++NumNW;
480 ++*OpcNW;
481 ++NumNSW;
482 ++*OpcNSW;
483 if (Inst)
484 Inst->setHasNoSignedWrap();
485 }
486 if (NewNUW) {
487 ++NumNW;
488 ++*OpcNW;
489 ++NumNUW;
490 ++*OpcNUW;
491 if (Inst)
492 Inst->setHasNoUnsignedWrap();
493 }
494 }
495
496 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);
497
498 // See if @llvm.abs argument is alays positive/negative, and simplify.
499 // Notably, INT_MIN can belong to either range, regardless of the NSW,
500 // because it is negation-invariant.
processAbsIntrinsic(IntrinsicInst * II,LazyValueInfo * LVI)501 static bool processAbsIntrinsic(IntrinsicInst *II, LazyValueInfo *LVI) {
502 Value *X = II->getArgOperand(0);
503 bool IsIntMinPoison = cast<ConstantInt>(II->getArgOperand(1))->isOne();
504
505 Type *Ty = X->getType();
506 Constant *IntMin =
507 ConstantInt::get(Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits()));
508 LazyValueInfo::Tristate Result;
509
510 // Is X in [0, IntMin]? NOTE: INT_MIN is fine!
511 Result = LVI->getPredicateAt(CmpInst::Predicate::ICMP_ULE, X, IntMin, II,
512 /*UseBlockValue=*/true);
513 if (Result == LazyValueInfo::True) {
514 ++NumAbs;
515 II->replaceAllUsesWith(X);
516 II->eraseFromParent();
517 return true;
518 }
519
520 // Is X in [IntMin, 0]? NOTE: INT_MIN is fine!
521 Constant *Zero = ConstantInt::getNullValue(Ty);
522 Result = LVI->getPredicateAt(CmpInst::Predicate::ICMP_SLE, X, Zero, II,
523 /*UseBlockValue=*/true);
524 assert(Result != LazyValueInfo::False && "Should have been handled already.");
525
526 if (Result == LazyValueInfo::Unknown) {
527 // Argument's range crosses zero.
528 bool Changed = false;
529 if (!IsIntMinPoison) {
530 // Can we at least tell that the argument is never INT_MIN?
531 Result = LVI->getPredicateAt(CmpInst::Predicate::ICMP_NE, X, IntMin, II,
532 /*UseBlockValue=*/true);
533 if (Result == LazyValueInfo::True) {
534 ++NumNSW;
535 ++NumSubNSW;
536 II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
537 Changed = true;
538 }
539 }
540 return Changed;
541 }
542
543 IRBuilder<> B(II);
544 Value *NegX = B.CreateNeg(X, II->getName(), /*HasNUW=*/false,
545 /*HasNSW=*/IsIntMinPoison);
546 ++NumAbs;
547 II->replaceAllUsesWith(NegX);
548 II->eraseFromParent();
549
550 // See if we can infer some no-wrap flags.
551 if (auto *BO = dyn_cast<BinaryOperator>(NegX))
552 processBinOp(BO, LVI);
553
554 return true;
555 }
556
557 // See if this min/max intrinsic always picks it's one specific operand.
processMinMaxIntrinsic(MinMaxIntrinsic * MM,LazyValueInfo * LVI)558 static bool processMinMaxIntrinsic(MinMaxIntrinsic *MM, LazyValueInfo *LVI) {
559 CmpInst::Predicate Pred = CmpInst::getNonStrictPredicate(MM->getPredicate());
560 LazyValueInfo::Tristate Result = LVI->getPredicateAt(
561 Pred, MM->getLHS(), MM->getRHS(), MM, /*UseBlockValue=*/true);
562 if (Result == LazyValueInfo::Unknown)
563 return false;
564
565 ++NumMinMax;
566 MM->replaceAllUsesWith(MM->getOperand(!Result));
567 MM->eraseFromParent();
568 return true;
569 }
570
571 // Rewrite this with.overflow intrinsic as non-overflowing.
processOverflowIntrinsic(WithOverflowInst * WO,LazyValueInfo * LVI)572 static bool processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
573 IRBuilder<> B(WO);
574 Instruction::BinaryOps Opcode = WO->getBinaryOp();
575 bool NSW = WO->isSigned();
576 bool NUW = !WO->isSigned();
577
578 Value *NewOp =
579 B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
580 setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);
581
582 StructType *ST = cast<StructType>(WO->getType());
583 Constant *Struct = ConstantStruct::get(ST,
584 { PoisonValue::get(ST->getElementType(0)),
585 ConstantInt::getFalse(ST->getElementType(1)) });
586 Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
587 WO->replaceAllUsesWith(NewI);
588 WO->eraseFromParent();
589 ++NumOverflows;
590
591 // See if we can infer the other no-wrap too.
592 if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
593 processBinOp(BO, LVI);
594
595 return true;
596 }
597
processSaturatingInst(SaturatingInst * SI,LazyValueInfo * LVI)598 static bool processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
599 Instruction::BinaryOps Opcode = SI->getBinaryOp();
600 bool NSW = SI->isSigned();
601 bool NUW = !SI->isSigned();
602 BinaryOperator *BinOp = BinaryOperator::Create(
603 Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI);
604 BinOp->setDebugLoc(SI->getDebugLoc());
605 setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);
606
607 SI->replaceAllUsesWith(BinOp);
608 SI->eraseFromParent();
609 ++NumSaturating;
610
611 // See if we can infer the other no-wrap too.
612 if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
613 processBinOp(BO, LVI);
614
615 return true;
616 }
617
618 /// Infer nonnull attributes for the arguments at the specified callsite.
processCallSite(CallBase & CB,LazyValueInfo * LVI)619 static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {
620
621 if (CB.getIntrinsicID() == Intrinsic::abs) {
622 return processAbsIntrinsic(&cast<IntrinsicInst>(CB), LVI);
623 }
624
625 if (auto *MM = dyn_cast<MinMaxIntrinsic>(&CB)) {
626 return processMinMaxIntrinsic(MM, LVI);
627 }
628
629 if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
630 if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) {
631 return processOverflowIntrinsic(WO, LVI);
632 }
633 }
634
635 if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
636 if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) {
637 return processSaturatingInst(SI, LVI);
638 }
639 }
640
641 bool Changed = false;
642
643 // Deopt bundle operands are intended to capture state with minimal
644 // perturbance of the code otherwise. If we can find a constant value for
645 // any such operand and remove a use of the original value, that's
646 // desireable since it may allow further optimization of that value (e.g. via
647 // single use rules in instcombine). Since deopt uses tend to,
648 // idiomatically, appear along rare conditional paths, it's reasonable likely
649 // we may have a conditional fact with which LVI can fold.
650 if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) {
651 for (const Use &ConstU : DeoptBundle->Inputs) {
652 Use &U = const_cast<Use&>(ConstU);
653 Value *V = U.get();
654 if (V->getType()->isVectorTy()) continue;
655 if (isa<Constant>(V)) continue;
656
657 Constant *C = LVI->getConstant(V, &CB);
658 if (!C) continue;
659 U.set(C);
660 Changed = true;
661 }
662 }
663
664 SmallVector<unsigned, 4> ArgNos;
665 unsigned ArgNo = 0;
666
667 for (Value *V : CB.args()) {
668 PointerType *Type = dyn_cast<PointerType>(V->getType());
669 // Try to mark pointer typed parameters as non-null. We skip the
670 // relatively expensive analysis for constants which are obviously either
671 // null or non-null to start with.
672 if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) &&
673 !isa<Constant>(V) &&
674 LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
675 ConstantPointerNull::get(Type), &CB,
676 /*UseBlockValue=*/false) == LazyValueInfo::False)
677 ArgNos.push_back(ArgNo);
678 ArgNo++;
679 }
680
681 assert(ArgNo == CB.arg_size() && "Call arguments not processed correctly.");
682
683 if (ArgNos.empty())
684 return Changed;
685
686 NumNonNull += ArgNos.size();
687 AttributeList AS = CB.getAttributes();
688 LLVMContext &Ctx = CB.getContext();
689 AS = AS.addParamAttribute(Ctx, ArgNos,
690 Attribute::get(Ctx, Attribute::NonNull));
691 CB.setAttributes(AS);
692
693 return true;
694 }
695
isNonNegative(Value * V,LazyValueInfo * LVI,Instruction * CxtI)696 static bool isNonNegative(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
697 Constant *Zero = ConstantInt::get(V->getType(), 0);
698 auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, V, Zero, CxtI,
699 /*UseBlockValue=*/true);
700 return Result == LazyValueInfo::True;
701 }
702
isNonPositive(Value * V,LazyValueInfo * LVI,Instruction * CxtI)703 static bool isNonPositive(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
704 Constant *Zero = ConstantInt::get(V->getType(), 0);
705 auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SLE, V, Zero, CxtI,
706 /*UseBlockValue=*/true);
707 return Result == LazyValueInfo::True;
708 }
709
710 enum class Domain { NonNegative, NonPositive, Unknown };
711
getDomain(Value * V,LazyValueInfo * LVI,Instruction * CxtI)712 Domain getDomain(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
713 if (isNonNegative(V, LVI, CxtI))
714 return Domain::NonNegative;
715 if (isNonPositive(V, LVI, CxtI))
716 return Domain::NonPositive;
717 return Domain::Unknown;
718 }
719
720 /// Try to shrink a sdiv/srem's width down to the smallest power of two that's
721 /// sufficient to contain its operands.
narrowSDivOrSRem(BinaryOperator * Instr,LazyValueInfo * LVI)722 static bool narrowSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
723 assert(Instr->getOpcode() == Instruction::SDiv ||
724 Instr->getOpcode() == Instruction::SRem);
725 if (Instr->getType()->isVectorTy())
726 return false;
727
728 // Find the smallest power of two bitwidth that's sufficient to hold Instr's
729 // operands.
730 unsigned OrigWidth = Instr->getType()->getIntegerBitWidth();
731
732 // What is the smallest bit width that can accomodate the entire value ranges
733 // of both of the operands?
734 std::array<Optional<ConstantRange>, 2> CRs;
735 unsigned MinSignedBits = 0;
736 for (auto I : zip(Instr->operands(), CRs)) {
737 std::get<1>(I) = LVI->getConstantRange(std::get<0>(I), Instr);
738 MinSignedBits = std::max(std::get<1>(I)->getMinSignedBits(), MinSignedBits);
739 }
740
741 // sdiv/srem is UB if divisor is -1 and divident is INT_MIN, so unless we can
742 // prove that such a combination is impossible, we need to bump the bitwidth.
743 if (CRs[1]->contains(APInt::getAllOnes(OrigWidth)) &&
744 CRs[0]->contains(APInt::getSignedMinValue(MinSignedBits).sext(OrigWidth)))
745 ++MinSignedBits;
746
747 // Don't shrink below 8 bits wide.
748 unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MinSignedBits), 8);
749
750 // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
751 // two.
752 if (NewWidth >= OrigWidth)
753 return false;
754
755 ++NumSDivSRemsNarrowed;
756 IRBuilder<> B{Instr};
757 auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
758 auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
759 Instr->getName() + ".lhs.trunc");
760 auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
761 Instr->getName() + ".rhs.trunc");
762 auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
763 auto *Sext = B.CreateSExt(BO, Instr->getType(), Instr->getName() + ".sext");
764 if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
765 if (BinOp->getOpcode() == Instruction::SDiv)
766 BinOp->setIsExact(Instr->isExact());
767
768 Instr->replaceAllUsesWith(Sext);
769 Instr->eraseFromParent();
770 return true;
771 }
772
773 /// Try to shrink a udiv/urem's width down to the smallest power of two that's
774 /// sufficient to contain its operands.
processUDivOrURem(BinaryOperator * Instr,LazyValueInfo * LVI)775 static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
776 assert(Instr->getOpcode() == Instruction::UDiv ||
777 Instr->getOpcode() == Instruction::URem);
778 if (Instr->getType()->isVectorTy())
779 return false;
780
781 // Find the smallest power of two bitwidth that's sufficient to hold Instr's
782 // operands.
783
784 // What is the smallest bit width that can accomodate the entire value ranges
785 // of both of the operands?
786 unsigned MaxActiveBits = 0;
787 for (Value *Operand : Instr->operands()) {
788 ConstantRange CR = LVI->getConstantRange(Operand, Instr);
789 MaxActiveBits = std::max(CR.getActiveBits(), MaxActiveBits);
790 }
791 // Don't shrink below 8 bits wide.
792 unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MaxActiveBits), 8);
793
794 // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
795 // two.
796 if (NewWidth >= Instr->getType()->getIntegerBitWidth())
797 return false;
798
799 ++NumUDivURemsNarrowed;
800 IRBuilder<> B{Instr};
801 auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
802 auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
803 Instr->getName() + ".lhs.trunc");
804 auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
805 Instr->getName() + ".rhs.trunc");
806 auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
807 auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
808 if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
809 if (BinOp->getOpcode() == Instruction::UDiv)
810 BinOp->setIsExact(Instr->isExact());
811
812 Instr->replaceAllUsesWith(Zext);
813 Instr->eraseFromParent();
814 return true;
815 }
816
processSRem(BinaryOperator * SDI,LazyValueInfo * LVI)817 static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) {
818 assert(SDI->getOpcode() == Instruction::SRem);
819 if (SDI->getType()->isVectorTy())
820 return false;
821
822 struct Operand {
823 Value *V;
824 Domain D;
825 };
826 std::array<Operand, 2> Ops;
827
828 for (const auto I : zip(Ops, SDI->operands())) {
829 Operand &Op = std::get<0>(I);
830 Op.V = std::get<1>(I);
831 Op.D = getDomain(Op.V, LVI, SDI);
832 if (Op.D == Domain::Unknown)
833 return false;
834 }
835
836 // We know domains of both of the operands!
837 ++NumSRems;
838
839 // We need operands to be non-negative, so negate each one that isn't.
840 for (Operand &Op : Ops) {
841 if (Op.D == Domain::NonNegative)
842 continue;
843 auto *BO =
844 BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
845 BO->setDebugLoc(SDI->getDebugLoc());
846 Op.V = BO;
847 }
848
849 auto *URem =
850 BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
851 URem->setDebugLoc(SDI->getDebugLoc());
852
853 Value *Res = URem;
854
855 // If the divident was non-positive, we need to negate the result.
856 if (Ops[0].D == Domain::NonPositive)
857 Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);
858
859 SDI->replaceAllUsesWith(Res);
860 SDI->eraseFromParent();
861
862 // Try to simplify our new urem.
863 processUDivOrURem(URem, LVI);
864
865 return true;
866 }
867
868 /// See if LazyValueInfo's ability to exploit edge conditions or range
869 /// information is sufficient to prove the signs of both operands of this SDiv.
870 /// If this is the case, replace the SDiv with a UDiv. Even for local
871 /// conditions, this can sometimes prove conditions instcombine can't by
872 /// exploiting range information.
processSDiv(BinaryOperator * SDI,LazyValueInfo * LVI)873 static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) {
874 assert(SDI->getOpcode() == Instruction::SDiv);
875 if (SDI->getType()->isVectorTy())
876 return false;
877
878 struct Operand {
879 Value *V;
880 Domain D;
881 };
882 std::array<Operand, 2> Ops;
883
884 for (const auto I : zip(Ops, SDI->operands())) {
885 Operand &Op = std::get<0>(I);
886 Op.V = std::get<1>(I);
887 Op.D = getDomain(Op.V, LVI, SDI);
888 if (Op.D == Domain::Unknown)
889 return false;
890 }
891
892 // We know domains of both of the operands!
893 ++NumSDivs;
894
895 // We need operands to be non-negative, so negate each one that isn't.
896 for (Operand &Op : Ops) {
897 if (Op.D == Domain::NonNegative)
898 continue;
899 auto *BO =
900 BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
901 BO->setDebugLoc(SDI->getDebugLoc());
902 Op.V = BO;
903 }
904
905 auto *UDiv =
906 BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
907 UDiv->setDebugLoc(SDI->getDebugLoc());
908 UDiv->setIsExact(SDI->isExact());
909
910 Value *Res = UDiv;
911
912 // If the operands had two different domains, we need to negate the result.
913 if (Ops[0].D != Ops[1].D)
914 Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);
915
916 SDI->replaceAllUsesWith(Res);
917 SDI->eraseFromParent();
918
919 // Try to simplify our new udiv.
920 processUDivOrURem(UDiv, LVI);
921
922 return true;
923 }
924
processSDivOrSRem(BinaryOperator * Instr,LazyValueInfo * LVI)925 static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
926 assert(Instr->getOpcode() == Instruction::SDiv ||
927 Instr->getOpcode() == Instruction::SRem);
928 if (Instr->getType()->isVectorTy())
929 return false;
930
931 if (Instr->getOpcode() == Instruction::SDiv)
932 if (processSDiv(Instr, LVI))
933 return true;
934
935 if (Instr->getOpcode() == Instruction::SRem)
936 if (processSRem(Instr, LVI))
937 return true;
938
939 return narrowSDivOrSRem(Instr, LVI);
940 }
941
processAShr(BinaryOperator * SDI,LazyValueInfo * LVI)942 static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
943 if (SDI->getType()->isVectorTy())
944 return false;
945
946 ConstantRange LRange = LVI->getConstantRange(SDI->getOperand(0), SDI);
947 unsigned OrigWidth = SDI->getType()->getIntegerBitWidth();
948 ConstantRange NegOneOrZero =
949 ConstantRange(APInt(OrigWidth, (uint64_t)-1, true), APInt(OrigWidth, 1));
950 if (NegOneOrZero.contains(LRange)) {
951 // ashr of -1 or 0 never changes the value, so drop the whole instruction
952 ++NumAShrsRemoved;
953 SDI->replaceAllUsesWith(SDI->getOperand(0));
954 SDI->eraseFromParent();
955 return true;
956 }
957
958 if (!isNonNegative(SDI->getOperand(0), LVI, SDI))
959 return false;
960
961 ++NumAShrsConverted;
962 auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
963 "", SDI);
964 BO->takeName(SDI);
965 BO->setDebugLoc(SDI->getDebugLoc());
966 BO->setIsExact(SDI->isExact());
967 SDI->replaceAllUsesWith(BO);
968 SDI->eraseFromParent();
969
970 return true;
971 }
972
processSExt(SExtInst * SDI,LazyValueInfo * LVI)973 static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
974 if (SDI->getType()->isVectorTy())
975 return false;
976
977 Value *Base = SDI->getOperand(0);
978
979 if (!isNonNegative(Base, LVI, SDI))
980 return false;
981
982 ++NumSExt;
983 auto *ZExt = CastInst::CreateZExtOrBitCast(Base, SDI->getType(), "", SDI);
984 ZExt->takeName(SDI);
985 ZExt->setDebugLoc(SDI->getDebugLoc());
986 SDI->replaceAllUsesWith(ZExt);
987 SDI->eraseFromParent();
988
989 return true;
990 }
991
processBinOp(BinaryOperator * BinOp,LazyValueInfo * LVI)992 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
993 using OBO = OverflowingBinaryOperator;
994
995 if (BinOp->getType()->isVectorTy())
996 return false;
997
998 bool NSW = BinOp->hasNoSignedWrap();
999 bool NUW = BinOp->hasNoUnsignedWrap();
1000 if (NSW && NUW)
1001 return false;
1002
1003 Instruction::BinaryOps Opcode = BinOp->getOpcode();
1004 Value *LHS = BinOp->getOperand(0);
1005 Value *RHS = BinOp->getOperand(1);
1006
1007 ConstantRange LRange = LVI->getConstantRange(LHS, BinOp);
1008 ConstantRange RRange = LVI->getConstantRange(RHS, BinOp);
1009
1010 bool Changed = false;
1011 bool NewNUW = false, NewNSW = false;
1012 if (!NUW) {
1013 ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1014 Opcode, RRange, OBO::NoUnsignedWrap);
1015 NewNUW = NUWRange.contains(LRange);
1016 Changed |= NewNUW;
1017 }
1018 if (!NSW) {
1019 ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1020 Opcode, RRange, OBO::NoSignedWrap);
1021 NewNSW = NSWRange.contains(LRange);
1022 Changed |= NewNSW;
1023 }
1024
1025 setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);
1026
1027 return Changed;
1028 }
1029
processAnd(BinaryOperator * BinOp,LazyValueInfo * LVI)1030 static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
1031 if (BinOp->getType()->isVectorTy())
1032 return false;
1033
1034 // Pattern match (and lhs, C) where C includes a superset of bits which might
1035 // be set in lhs. This is a common truncation idiom created by instcombine.
1036 Value *LHS = BinOp->getOperand(0);
1037 ConstantInt *RHS = dyn_cast<ConstantInt>(BinOp->getOperand(1));
1038 if (!RHS || !RHS->getValue().isMask())
1039 return false;
1040
1041 // We can only replace the AND with LHS based on range info if the range does
1042 // not include undef.
1043 ConstantRange LRange =
1044 LVI->getConstantRange(LHS, BinOp, /*UndefAllowed=*/false);
1045 if (!LRange.getUnsignedMax().ule(RHS->getValue()))
1046 return false;
1047
1048 BinOp->replaceAllUsesWith(LHS);
1049 BinOp->eraseFromParent();
1050 NumAnd++;
1051 return true;
1052 }
1053
1054
getConstantAt(Value * V,Instruction * At,LazyValueInfo * LVI)1055 static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
1056 if (Constant *C = LVI->getConstant(V, At))
1057 return C;
1058
1059 // TODO: The following really should be sunk inside LVI's core algorithm, or
1060 // at least the outer shims around such.
1061 auto *C = dyn_cast<CmpInst>(V);
1062 if (!C) return nullptr;
1063
1064 Value *Op0 = C->getOperand(0);
1065 Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
1066 if (!Op1) return nullptr;
1067
1068 LazyValueInfo::Tristate Result = LVI->getPredicateAt(
1069 C->getPredicate(), Op0, Op1, At, /*UseBlockValue=*/false);
1070 if (Result == LazyValueInfo::Unknown)
1071 return nullptr;
1072
1073 return (Result == LazyValueInfo::True) ?
1074 ConstantInt::getTrue(C->getContext()) :
1075 ConstantInt::getFalse(C->getContext());
1076 }
1077
runImpl(Function & F,LazyValueInfo * LVI,DominatorTree * DT,const SimplifyQuery & SQ)1078 static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
1079 const SimplifyQuery &SQ) {
1080 bool FnChanged = false;
1081 // Visiting in a pre-order depth-first traversal causes us to simplify early
1082 // blocks before querying later blocks (which require us to analyze early
1083 // blocks). Eagerly simplifying shallow blocks means there is strictly less
1084 // work to do for deep blocks. This also means we don't visit unreachable
1085 // blocks.
1086 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1087 bool BBChanged = false;
1088 for (Instruction &II : llvm::make_early_inc_range(*BB)) {
1089 switch (II.getOpcode()) {
1090 case Instruction::Select:
1091 BBChanged |= processSelect(cast<SelectInst>(&II), LVI);
1092 break;
1093 case Instruction::PHI:
1094 BBChanged |= processPHI(cast<PHINode>(&II), LVI, DT, SQ);
1095 break;
1096 case Instruction::ICmp:
1097 case Instruction::FCmp:
1098 BBChanged |= processCmp(cast<CmpInst>(&II), LVI);
1099 break;
1100 case Instruction::Load:
1101 case Instruction::Store:
1102 BBChanged |= processMemAccess(&II, LVI);
1103 break;
1104 case Instruction::Call:
1105 case Instruction::Invoke:
1106 BBChanged |= processCallSite(cast<CallBase>(II), LVI);
1107 break;
1108 case Instruction::SRem:
1109 case Instruction::SDiv:
1110 BBChanged |= processSDivOrSRem(cast<BinaryOperator>(&II), LVI);
1111 break;
1112 case Instruction::UDiv:
1113 case Instruction::URem:
1114 BBChanged |= processUDivOrURem(cast<BinaryOperator>(&II), LVI);
1115 break;
1116 case Instruction::AShr:
1117 BBChanged |= processAShr(cast<BinaryOperator>(&II), LVI);
1118 break;
1119 case Instruction::SExt:
1120 BBChanged |= processSExt(cast<SExtInst>(&II), LVI);
1121 break;
1122 case Instruction::Add:
1123 case Instruction::Sub:
1124 case Instruction::Mul:
1125 case Instruction::Shl:
1126 BBChanged |= processBinOp(cast<BinaryOperator>(&II), LVI);
1127 break;
1128 case Instruction::And:
1129 BBChanged |= processAnd(cast<BinaryOperator>(&II), LVI);
1130 break;
1131 }
1132 }
1133
1134 Instruction *Term = BB->getTerminator();
1135 switch (Term->getOpcode()) {
1136 case Instruction::Switch:
1137 BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
1138 break;
1139 case Instruction::Ret: {
1140 auto *RI = cast<ReturnInst>(Term);
1141 // Try to determine the return value if we can. This is mainly here to
1142 // simplify the writing of unit tests, but also helps to enable IPO by
1143 // constant folding the return values of callees.
1144 auto *RetVal = RI->getReturnValue();
1145 if (!RetVal) break; // handle "ret void"
1146 if (isa<Constant>(RetVal)) break; // nothing to do
1147 if (auto *C = getConstantAt(RetVal, RI, LVI)) {
1148 ++NumReturns;
1149 RI->replaceUsesOfWith(RetVal, C);
1150 BBChanged = true;
1151 }
1152 }
1153 }
1154
1155 FnChanged |= BBChanged;
1156 }
1157
1158 return FnChanged;
1159 }
1160
runOnFunction(Function & F)1161 bool CorrelatedValuePropagation::runOnFunction(Function &F) {
1162 if (skipFunction(F))
1163 return false;
1164
1165 LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
1166 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1167
1168 return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F));
1169 }
1170
1171 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)1172 CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
1173 LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
1174 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1175
1176 bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));
1177
1178 PreservedAnalyses PA;
1179 if (!Changed) {
1180 PA = PreservedAnalyses::all();
1181 } else {
1182 PA.preserve<DominatorTreeAnalysis>();
1183 PA.preserve<LazyValueAnalysis>();
1184 }
1185
1186 // Keeping LVI alive is expensive, both because it uses a lot of memory, and
1187 // because invalidating values in LVI is expensive. While CVP does preserve
1188 // LVI, we know that passes after JumpThreading+CVP will not need the result
1189 // of this analysis, so we forcefully discard it early.
1190 PA.abandon<LazyValueAnalysis>();
1191 return PA;
1192 }
1193