1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33
34 #include <string>
35
36 using namespace llvm;
37 using namespace PatternMatch;
38
39 #define DEBUG_TYPE "constraint-elimination"
40
41 STATISTIC(NumCondsRemoved, "Number of instructions removed");
42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
43 "Controls which conditions are eliminated");
44
45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
47
48 namespace {
49
50 class ConstraintInfo;
51
52 struct StackEntry {
53 unsigned NumIn;
54 unsigned NumOut;
55 bool IsNot;
56 bool IsSigned = false;
57 /// Variables that can be removed from the system once the stack entry gets
58 /// removed.
59 SmallVector<Value *, 2> ValuesToRelease;
60
StackEntry__anon0e91cfc10111::StackEntry61 StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned,
62 SmallVector<Value *, 2> ValuesToRelease)
63 : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned),
64 ValuesToRelease(ValuesToRelease) {}
65 };
66
67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
68 struct PreconditionTy {
69 CmpInst::Predicate Pred;
70 Value *Op0;
71 Value *Op1;
72
PreconditionTy__anon0e91cfc10111::PreconditionTy73 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
74 : Pred(Pred), Op0(Op0), Op1(Op1) {}
75 };
76
77 struct ConstraintTy {
78 SmallVector<int64_t, 8> Coefficients;
79 SmallVector<PreconditionTy, 2> Preconditions;
80
81 bool IsSigned = false;
82 bool IsEq = false;
83
84 ConstraintTy() = default;
85
ConstraintTy__anon0e91cfc10111::ConstraintTy86 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
87 : Coefficients(Coefficients), IsSigned(IsSigned) {}
88
size__anon0e91cfc10111::ConstraintTy89 unsigned size() const { return Coefficients.size(); }
90
empty__anon0e91cfc10111::ConstraintTy91 unsigned empty() const { return Coefficients.empty(); }
92
93 /// Returns true if any constraint has a non-zero coefficient for any of the
94 /// newly added indices. Zero coefficients for new indices are removed. If it
95 /// returns true, no new variable need to be added to the system.
needsNewIndices__anon0e91cfc10111::ConstraintTy96 bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
97 for (unsigned I = 0; I < NewIndices.size(); ++I) {
98 int64_t Last = Coefficients.pop_back_val();
99 if (Last != 0)
100 return true;
101 }
102 return false;
103 }
104
105 /// Returns true if all preconditions for this list of constraints are
106 /// satisfied given \p CS and the corresponding \p Value2Index mapping.
107 bool isValid(const ConstraintInfo &Info) const;
108 };
109
110 /// Wrapper encapsulating separate constraint systems and corresponding value
111 /// mappings for both unsigned and signed information. Facts are added to and
112 /// conditions are checked against the corresponding system depending on the
113 /// signed-ness of their predicates. While the information is kept separate
114 /// based on signed-ness, certain conditions can be transferred between the two
115 /// systems.
116 class ConstraintInfo {
117 DenseMap<Value *, unsigned> UnsignedValue2Index;
118 DenseMap<Value *, unsigned> SignedValue2Index;
119
120 ConstraintSystem UnsignedCS;
121 ConstraintSystem SignedCS;
122
123 public:
getValue2Index(bool Signed)124 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
125 return Signed ? SignedValue2Index : UnsignedValue2Index;
126 }
getValue2Index(bool Signed) const127 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
128 return Signed ? SignedValue2Index : UnsignedValue2Index;
129 }
130
getCS(bool Signed)131 ConstraintSystem &getCS(bool Signed) {
132 return Signed ? SignedCS : UnsignedCS;
133 }
getCS(bool Signed) const134 const ConstraintSystem &getCS(bool Signed) const {
135 return Signed ? SignedCS : UnsignedCS;
136 }
137
popLastConstraint(bool Signed)138 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
popLastNVariables(bool Signed,unsigned N)139 void popLastNVariables(bool Signed, unsigned N) {
140 getCS(Signed).popLastNVariables(N);
141 }
142
143 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
144
145 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated,
146 unsigned NumIn, unsigned NumOut,
147 SmallVectorImpl<StackEntry> &DFSInStack);
148
149 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
150 /// constraints, using indices from the corresponding constraint system.
151 /// Additional indices for newly discovered values are added to \p NewIndices.
152 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
153 DenseMap<Value *, unsigned> &NewIndices) const;
154
155 /// Turn a condition \p CmpI into a vector of constraints, using indices from
156 /// the corresponding constraint system. Additional indices for newly
157 /// discovered values are added to \p NewIndices.
getConstraint(CmpInst * Cmp,DenseMap<Value *,unsigned> & NewIndices) const158 ConstraintTy getConstraint(CmpInst *Cmp,
159 DenseMap<Value *, unsigned> &NewIndices) const {
160 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
161 Cmp->getOperand(1), NewIndices);
162 }
163
164 /// Try to add information from \p A \p Pred \p B to the unsigned/signed
165 /// system if \p Pred is signed/unsigned.
166 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
167 bool IsNegated, unsigned NumIn, unsigned NumOut,
168 SmallVectorImpl<StackEntry> &DFSInStack);
169 };
170
171 } // namespace
172
173 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
174 // sum of the pairs equals \p V. The first pair is the constant-factor and X
175 // must be nullptr. If the expression cannot be decomposed, returns an empty
176 // vector.
177 static SmallVector<std::pair<int64_t, Value *>, 4>
decompose(Value * V,SmallVector<PreconditionTy,4> & Preconditions,bool IsSigned)178 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
179 bool IsSigned) {
180
181 auto CanUseSExt = [](ConstantInt *CI) {
182 const APInt &Val = CI->getValue();
183 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
184 };
185 // Decompose \p V used with a signed predicate.
186 if (IsSigned) {
187 if (auto *CI = dyn_cast<ConstantInt>(V)) {
188 if (CanUseSExt(CI))
189 return {{CI->getSExtValue(), nullptr}};
190 }
191
192 return {{0, nullptr}, {1, V}};
193 }
194
195 if (auto *CI = dyn_cast<ConstantInt>(V)) {
196 if (CI->uge(MaxConstraintValue))
197 return {};
198 return {{CI->getZExtValue(), nullptr}};
199 }
200 auto *GEP = dyn_cast<GetElementPtrInst>(V);
201 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
202 Value *Op0, *Op1;
203 ConstantInt *CI;
204
205 // If the index is zero-extended, it is guaranteed to be positive.
206 if (match(GEP->getOperand(GEP->getNumOperands() - 1),
207 m_ZExt(m_Value(Op0)))) {
208 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
209 CanUseSExt(CI))
210 return {{0, nullptr},
211 {1, GEP->getPointerOperand()},
212 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
213 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
214 CanUseSExt(CI))
215 return {{CI->getSExtValue(), nullptr},
216 {1, GEP->getPointerOperand()},
217 {1, Op1}};
218 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
219 }
220
221 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
222 !CI->isNegative() && CanUseSExt(CI))
223 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
224
225 SmallVector<std::pair<int64_t, Value *>, 4> Result;
226 if (match(GEP->getOperand(GEP->getNumOperands() - 1),
227 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
228 CanUseSExt(CI))
229 Result = {{0, nullptr},
230 {1, GEP->getPointerOperand()},
231 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
232 else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
233 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
234 CanUseSExt(CI))
235 Result = {{CI->getSExtValue(), nullptr},
236 {1, GEP->getPointerOperand()},
237 {1, Op0}};
238 else {
239 Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
240 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
241 }
242 // If Op0 is signed non-negative, the GEP is increasing monotonically and
243 // can be de-composed.
244 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
245 ConstantInt::get(Op0->getType(), 0));
246 return Result;
247 }
248
249 Value *Op0;
250 if (match(V, m_ZExt(m_Value(Op0))))
251 V = Op0;
252
253 Value *Op1;
254 ConstantInt *CI;
255 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
256 !CI->uge(MaxConstraintValue))
257 return {{CI->getZExtValue(), nullptr}, {1, Op0}};
258 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
259 CanUseSExt(CI)) {
260 Preconditions.emplace_back(
261 CmpInst::ICMP_UGE, Op0,
262 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
263 return {{CI->getSExtValue(), nullptr}, {1, Op0}};
264 }
265 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
266 return {{0, nullptr}, {1, Op0}, {1, Op1}};
267
268 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
269 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
270 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
271 return {{0, nullptr}, {1, Op0}, {-1, Op1}};
272
273 return {{0, nullptr}, {1, V}};
274 }
275
276 ConstraintTy
getConstraint(CmpInst::Predicate Pred,Value * Op0,Value * Op1,DenseMap<Value *,unsigned> & NewIndices) const277 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
278 DenseMap<Value *, unsigned> &NewIndices) const {
279 bool IsEq = false;
280 // Try to convert Pred to one of ULE/SLT/SLE/SLT.
281 switch (Pred) {
282 case CmpInst::ICMP_UGT:
283 case CmpInst::ICMP_UGE:
284 case CmpInst::ICMP_SGT:
285 case CmpInst::ICMP_SGE: {
286 Pred = CmpInst::getSwappedPredicate(Pred);
287 std::swap(Op0, Op1);
288 break;
289 }
290 case CmpInst::ICMP_EQ:
291 if (match(Op1, m_Zero())) {
292 Pred = CmpInst::ICMP_ULE;
293 } else {
294 IsEq = true;
295 Pred = CmpInst::ICMP_ULE;
296 }
297 break;
298 case CmpInst::ICMP_NE:
299 if (!match(Op1, m_Zero()))
300 return {};
301 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
302 std::swap(Op0, Op1);
303 break;
304 default:
305 break;
306 }
307
308 // Only ULE and ULT predicates are supported at the moment.
309 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
310 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
311 return {};
312
313 SmallVector<PreconditionTy, 4> Preconditions;
314 bool IsSigned = CmpInst::isSigned(Pred);
315 auto &Value2Index = getValue2Index(IsSigned);
316 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
317 Preconditions, IsSigned);
318 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
319 Preconditions, IsSigned);
320 // Skip if decomposing either of the values failed.
321 if (ADec.empty() || BDec.empty())
322 return {};
323
324 int64_t Offset1 = ADec[0].first;
325 int64_t Offset2 = BDec[0].first;
326 Offset1 *= -1;
327
328 // Create iterator ranges that skip the constant-factor.
329 auto VariablesA = llvm::drop_begin(ADec);
330 auto VariablesB = llvm::drop_begin(BDec);
331
332 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
333 // new entry to NewIndices.
334 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
335 auto V2I = Value2Index.find(V);
336 if (V2I != Value2Index.end())
337 return V2I->second;
338 auto Insert =
339 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
340 return Insert.first->second;
341 };
342
343 // Make sure all variables have entries in Value2Index or NewIndices.
344 for (const auto &KV :
345 concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
346 GetOrAddIndex(KV.second);
347
348 // Build result constraint, by first adding all coefficients from A and then
349 // subtracting all coefficients from B.
350 ConstraintTy Res(
351 SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
352 IsSigned);
353 Res.IsEq = IsEq;
354 auto &R = Res.Coefficients;
355 for (const auto &KV : VariablesA)
356 R[GetOrAddIndex(KV.second)] += KV.first;
357
358 for (const auto &KV : VariablesB)
359 R[GetOrAddIndex(KV.second)] -= KV.first;
360
361 int64_t OffsetSum;
362 if (AddOverflow(Offset1, Offset2, OffsetSum))
363 return {};
364 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
365 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
366 return {};
367 R[0] = OffsetSum;
368 Res.Preconditions = std::move(Preconditions);
369 return Res;
370 }
371
isValid(const ConstraintInfo & Info) const372 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
373 return Coefficients.size() > 0 &&
374 all_of(Preconditions, [&Info](const PreconditionTy &C) {
375 return Info.doesHold(C.Pred, C.Op0, C.Op1);
376 });
377 }
378
doesHold(CmpInst::Predicate Pred,Value * A,Value * B) const379 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
380 Value *B) const {
381 DenseMap<Value *, unsigned> NewIndices;
382 auto R = getConstraint(Pred, A, B, NewIndices);
383
384 if (!NewIndices.empty())
385 return false;
386
387 // TODO: properly check NewIndices.
388 return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
389 !R.empty() &&
390 getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients);
391 }
392
transferToOtherSystem(CmpInst::Predicate Pred,Value * A,Value * B,bool IsNegated,unsigned NumIn,unsigned NumOut,SmallVectorImpl<StackEntry> & DFSInStack)393 void ConstraintInfo::transferToOtherSystem(
394 CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn,
395 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
396 // Check if we can combine facts from the signed and unsigned systems to
397 // derive additional facts.
398 if (!A->getType()->isIntegerTy())
399 return;
400 // FIXME: This currently depends on the order we add facts. Ideally we
401 // would first add all known facts and only then try to add additional
402 // facts.
403 switch (Pred) {
404 default:
405 break;
406 case CmpInst::ICMP_ULT:
407 // If B is a signed positive constant, A >=s 0 and A <s B.
408 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
409 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0),
410 IsNegated, NumIn, NumOut, DFSInStack);
411 addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack);
412 }
413 break;
414 case CmpInst::ICMP_SLT:
415 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
416 addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack);
417 break;
418 case CmpInst::ICMP_SGT:
419 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
420 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0),
421 IsNegated, NumIn, NumOut, DFSInStack);
422 break;
423 case CmpInst::ICMP_SGE:
424 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
425 addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack);
426 }
427 break;
428 }
429 }
430
431 namespace {
432 /// Represents either a condition that holds on entry to a block or a basic
433 /// block, with their respective Dominator DFS in and out numbers.
434 struct ConstraintOrBlock {
435 unsigned NumIn;
436 unsigned NumOut;
437 bool IsBlock;
438 bool Not;
439 union {
440 BasicBlock *BB;
441 CmpInst *Condition;
442 };
443
ConstraintOrBlock__anon0e91cfc10511::ConstraintOrBlock444 ConstraintOrBlock(DomTreeNode *DTN)
445 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
446 BB(DTN->getBlock()) {}
ConstraintOrBlock__anon0e91cfc10511::ConstraintOrBlock447 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
448 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
449 Not(Not), Condition(Condition) {}
450 };
451
452 /// Keep state required to build worklist.
453 struct State {
454 DominatorTree &DT;
455 SmallVector<ConstraintOrBlock, 64> WorkList;
456
State__anon0e91cfc10511::State457 State(DominatorTree &DT) : DT(DT) {}
458
459 /// Process block \p BB and add known facts to work-list.
460 void addInfoFor(BasicBlock &BB);
461
462 /// Returns true if we can add a known condition from BB to its successor
463 /// block Succ. Each predecessor of Succ can either be BB or be dominated
464 /// by Succ (e.g. the case when adding a condition from a pre-header to a
465 /// loop header).
canAddSuccessor__anon0e91cfc10511::State466 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
467 if (BB.getSingleSuccessor()) {
468 assert(BB.getSingleSuccessor() == Succ);
469 return DT.properlyDominates(&BB, Succ);
470 }
471 return any_of(successors(&BB),
472 [Succ](const BasicBlock *S) { return S != Succ; }) &&
473 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
474 return Pred == &BB || DT.dominates(Succ, Pred);
475 });
476 }
477 };
478
479 } // namespace
480
481 #ifndef NDEBUG
dumpWithNames(const ConstraintSystem & CS,DenseMap<Value *,unsigned> & Value2Index)482 static void dumpWithNames(const ConstraintSystem &CS,
483 DenseMap<Value *, unsigned> &Value2Index) {
484 SmallVector<std::string> Names(Value2Index.size(), "");
485 for (auto &KV : Value2Index) {
486 Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
487 }
488 CS.dump(Names);
489 }
490
dumpWithNames(ArrayRef<int64_t> C,DenseMap<Value *,unsigned> & Value2Index)491 static void dumpWithNames(ArrayRef<int64_t> C,
492 DenseMap<Value *, unsigned> &Value2Index) {
493 ConstraintSystem CS;
494 CS.addVariableRowFill(C);
495 dumpWithNames(CS, Value2Index);
496 }
497 #endif
498
addInfoFor(BasicBlock & BB)499 void State::addInfoFor(BasicBlock &BB) {
500 WorkList.emplace_back(DT.getNode(&BB));
501
502 // True as long as long as the current instruction is guaranteed to execute.
503 bool GuaranteedToExecute = true;
504 // Scan BB for assume calls.
505 // TODO: also use this scan to queue conditions to simplify, so we can
506 // interleave facts from assumes and conditions to simplify in a single
507 // basic block. And to skip another traversal of each basic block when
508 // simplifying.
509 for (Instruction &I : BB) {
510 Value *Cond;
511 // For now, just handle assumes with a single compare as condition.
512 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
513 isa<ICmpInst>(Cond)) {
514 if (GuaranteedToExecute) {
515 // The assume is guaranteed to execute when BB is entered, hence Cond
516 // holds on entry to BB.
517 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
518 } else {
519 // Otherwise the condition only holds in the successors.
520 for (BasicBlock *Succ : successors(&BB)) {
521 if (!canAddSuccessor(BB, Succ))
522 continue;
523 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
524 }
525 }
526 }
527 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
528 }
529
530 auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
531 if (!Br || !Br->isConditional())
532 return;
533
534 // If the condition is an OR of 2 compares and the false successor only has
535 // the current block as predecessor, queue both negated conditions for the
536 // false successor.
537 Value *Op0, *Op1;
538 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
539 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
540 BasicBlock *FalseSuccessor = Br->getSuccessor(1);
541 if (canAddSuccessor(BB, FalseSuccessor)) {
542 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
543 true);
544 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
545 true);
546 }
547 return;
548 }
549
550 // If the condition is an AND of 2 compares and the true successor only has
551 // the current block as predecessor, queue both conditions for the true
552 // successor.
553 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
554 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
555 BasicBlock *TrueSuccessor = Br->getSuccessor(0);
556 if (canAddSuccessor(BB, TrueSuccessor)) {
557 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
558 false);
559 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
560 false);
561 }
562 return;
563 }
564
565 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
566 if (!CmpI)
567 return;
568 if (canAddSuccessor(BB, Br->getSuccessor(0)))
569 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
570 if (canAddSuccessor(BB, Br->getSuccessor(1)))
571 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
572 }
573
addFact(CmpInst::Predicate Pred,Value * A,Value * B,bool IsNegated,unsigned NumIn,unsigned NumOut,SmallVectorImpl<StackEntry> & DFSInStack)574 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
575 bool IsNegated, unsigned NumIn, unsigned NumOut,
576 SmallVectorImpl<StackEntry> &DFSInStack) {
577 // If the constraint has a pre-condition, skip the constraint if it does not
578 // hold.
579 DenseMap<Value *, unsigned> NewIndices;
580 auto R = getConstraint(Pred, A, B, NewIndices);
581 if (!R.isValid(*this))
582 return;
583
584 //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n");
585 bool Added = false;
586 assert(CmpInst::isSigned(Pred) == R.IsSigned &&
587 "condition and constraint signs must match");
588 auto &CSToUse = getCS(R.IsSigned);
589 if (R.Coefficients.empty())
590 return;
591
592 Added |= CSToUse.addVariableRowFill(R.Coefficients);
593
594 // If R has been added to the system, queue it for removal once it goes
595 // out-of-scope.
596 if (Added) {
597 SmallVector<Value *, 2> ValuesToRelease;
598 for (auto &KV : NewIndices) {
599 getValue2Index(R.IsSigned).insert(KV);
600 ValuesToRelease.push_back(KV.first);
601 }
602
603 LLVM_DEBUG({
604 dbgs() << " constraint: ";
605 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
606 });
607
608 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
609 ValuesToRelease);
610
611 if (R.IsEq) {
612 // Also add the inverted constraint for equality constraints.
613 for (auto &Coeff : R.Coefficients)
614 Coeff *= -1;
615 CSToUse.addVariableRowFill(R.Coefficients);
616
617 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
618 SmallVector<Value *, 2>());
619 }
620 }
621 }
622
623 static void
tryToSimplifyOverflowMath(IntrinsicInst * II,ConstraintInfo & Info,SmallVectorImpl<Instruction * > & ToRemove)624 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
625 SmallVectorImpl<Instruction *> &ToRemove) {
626 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
627 ConstraintInfo &Info) {
628 DenseMap<Value *, unsigned> NewIndices;
629 auto R = Info.getConstraint(Pred, A, B, NewIndices);
630 if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info))
631 return false;
632
633 auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
634 return CSToUse.isConditionImplied(R.Coefficients);
635 };
636
637 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
638 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
639 // can be simplified to a regular sub.
640 Value *A = II->getArgOperand(0);
641 Value *B = II->getArgOperand(1);
642 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
643 !DoesConditionHold(CmpInst::ICMP_SGE, B,
644 ConstantInt::get(A->getType(), 0), Info))
645 return;
646
647 IRBuilder<> Builder(II->getParent(), II->getIterator());
648 Value *Sub = nullptr;
649 for (User *U : make_early_inc_range(II->users())) {
650 if (match(U, m_ExtractValue<0>(m_Value()))) {
651 if (!Sub)
652 Sub = Builder.CreateSub(A, B);
653 U->replaceAllUsesWith(Sub);
654 } else if (match(U, m_ExtractValue<1>(m_Value())))
655 U->replaceAllUsesWith(Builder.getFalse());
656 else
657 continue;
658
659 if (U->use_empty()) {
660 auto *I = cast<Instruction>(U);
661 ToRemove.push_back(I);
662 I->setOperand(0, PoisonValue::get(II->getType()));
663 }
664 }
665
666 if (II->use_empty())
667 II->eraseFromParent();
668 }
669 }
670
eliminateConstraints(Function & F,DominatorTree & DT)671 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
672 bool Changed = false;
673 DT.updateDFSNumbers();
674
675 ConstraintInfo Info;
676 State S(DT);
677
678 // First, collect conditions implied by branches and blocks with their
679 // Dominator DFS in and out numbers.
680 for (BasicBlock &BB : F) {
681 if (!DT.getNode(&BB))
682 continue;
683 S.addInfoFor(BB);
684 }
685
686 // Next, sort worklist by dominance, so that dominating blocks and conditions
687 // come before blocks and conditions dominated by them. If a block and a
688 // condition have the same numbers, the condition comes before the block, as
689 // it holds on entry to the block.
690 stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
691 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
692 });
693
694 SmallVector<Instruction *> ToRemove;
695
696 // Finally, process ordered worklist and eliminate implied conditions.
697 SmallVector<StackEntry, 16> DFSInStack;
698 for (ConstraintOrBlock &CB : S.WorkList) {
699 // First, pop entries from the stack that are out-of-scope for CB. Remove
700 // the corresponding entry from the constraint system.
701 while (!DFSInStack.empty()) {
702 auto &E = DFSInStack.back();
703 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
704 << "\n");
705 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
706 assert(E.NumIn <= CB.NumIn);
707 if (CB.NumOut <= E.NumOut)
708 break;
709 LLVM_DEBUG({
710 dbgs() << "Removing ";
711 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
712 Info.getValue2Index(E.IsSigned));
713 dbgs() << "\n";
714 });
715
716 Info.popLastConstraint(E.IsSigned);
717 // Remove variables in the system that went out of scope.
718 auto &Mapping = Info.getValue2Index(E.IsSigned);
719 for (Value *V : E.ValuesToRelease)
720 Mapping.erase(V);
721 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
722 DFSInStack.pop_back();
723 }
724
725 LLVM_DEBUG({
726 dbgs() << "Processing ";
727 if (CB.IsBlock)
728 dbgs() << *CB.BB;
729 else
730 dbgs() << *CB.Condition;
731 dbgs() << "\n";
732 });
733
734 // For a block, check if any CmpInsts become known based on the current set
735 // of constraints.
736 if (CB.IsBlock) {
737 for (Instruction &I : make_early_inc_range(*CB.BB)) {
738 if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
739 tryToSimplifyOverflowMath(II, Info, ToRemove);
740 continue;
741 }
742 auto *Cmp = dyn_cast<ICmpInst>(&I);
743 if (!Cmp)
744 continue;
745
746 DenseMap<Value *, unsigned> NewIndices;
747 auto R = Info.getConstraint(Cmp, NewIndices);
748 if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) ||
749 !R.isValid(Info))
750 continue;
751
752 auto &CSToUse = Info.getCS(R.IsSigned);
753 if (CSToUse.isConditionImplied(R.Coefficients)) {
754 if (!DebugCounter::shouldExecute(EliminatedCounter))
755 continue;
756
757 LLVM_DEBUG({
758 dbgs() << "Condition " << *Cmp
759 << " implied by dominating constraints\n";
760 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
761 });
762 Cmp->replaceUsesWithIf(
763 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
764 // Conditions in an assume trivially simplify to true. Skip uses
765 // in assume calls to not destroy the available information.
766 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
767 return !II || II->getIntrinsicID() != Intrinsic::assume;
768 });
769 NumCondsRemoved++;
770 Changed = true;
771 }
772 if (CSToUse.isConditionImplied(
773 ConstraintSystem::negate(R.Coefficients))) {
774 if (!DebugCounter::shouldExecute(EliminatedCounter))
775 continue;
776
777 LLVM_DEBUG({
778 dbgs() << "Condition !" << *Cmp
779 << " implied by dominating constraints\n";
780 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
781 });
782 Cmp->replaceAllUsesWith(
783 ConstantInt::getFalse(F.getParent()->getContext()));
784 NumCondsRemoved++;
785 Changed = true;
786 }
787 }
788 continue;
789 }
790
791 // Set up a function to restore the predicate at the end of the scope if it
792 // has been negated. Negate the predicate in-place, if required.
793 auto *CI = dyn_cast<ICmpInst>(CB.Condition);
794 auto PredicateRestorer = make_scope_exit([CI, &CB]() {
795 if (CB.Not && CI)
796 CI->setPredicate(CI->getInversePredicate());
797 });
798 if (CB.Not) {
799 if (CI) {
800 CI->setPredicate(CI->getInversePredicate());
801 } else {
802 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
803 continue;
804 }
805 }
806
807 ICmpInst::Predicate Pred;
808 Value *A, *B;
809 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
810 // Otherwise, add the condition to the system and stack, if we can
811 // transform it into a constraint.
812 Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack);
813 Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut,
814 DFSInStack);
815 }
816 }
817
818 #ifndef NDEBUG
819 unsigned SignedEntries =
820 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
821 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
822 "updates to CS and DFSInStack are out of sync");
823 assert(Info.getCS(true).size() == SignedEntries &&
824 "updates to CS and DFSInStack are out of sync");
825 #endif
826
827 for (Instruction *I : ToRemove)
828 I->eraseFromParent();
829 return Changed;
830 }
831
run(Function & F,FunctionAnalysisManager & AM)832 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
833 FunctionAnalysisManager &AM) {
834 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
835 if (!eliminateConstraints(F, DT))
836 return PreservedAnalyses::all();
837
838 PreservedAnalyses PA;
839 PA.preserve<DominatorTreeAnalysis>();
840 PA.preserveSet<CFGAnalyses>();
841 return PA;
842 }
843
844 namespace {
845
846 class ConstraintElimination : public FunctionPass {
847 public:
848 static char ID;
849
ConstraintElimination()850 ConstraintElimination() : FunctionPass(ID) {
851 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
852 }
853
runOnFunction(Function & F)854 bool runOnFunction(Function &F) override {
855 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
856 return eliminateConstraints(F, DT);
857 }
858
getAnalysisUsage(AnalysisUsage & AU) const859 void getAnalysisUsage(AnalysisUsage &AU) const override {
860 AU.setPreservesCFG();
861 AU.addRequired<DominatorTreeWrapperPass>();
862 AU.addPreserved<GlobalsAAWrapperPass>();
863 AU.addPreserved<DominatorTreeWrapperPass>();
864 }
865 };
866
867 } // end anonymous namespace
868
869 char ConstraintElimination::ID = 0;
870
871 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
872 "Constraint Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)873 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
874 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
875 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
876 "Constraint Elimination", false, false)
877
878 FunctionPass *llvm::createConstraintEliminationPass() {
879 return new ConstraintElimination();
880 }
881