1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies expensive constants to hoist and coalesces them to
11 // better prepare it for SelectionDAG-based code generation. This works around
12 // the limitations of the basic-block-at-a-time approach.
13 //
14 // First it scans all instructions for integer constants and calculates its
15 // cost. If the constant can be folded into the instruction (the cost is
16 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
17 // consider it expensive and leave it alone. This is the default behavior and
18 // the default implementation of getIntImmCost will always return TCC_Free.
19 //
20 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
21 // into the instruction and it might be beneficial to hoist the constant.
22 // Similar constants are coalesced to reduce register pressure and
23 // materialization code.
24 //
25 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
26 // be live-out of the basic block. Otherwise the constant would be just
27 // duplicated and each basic block would have its own copy in the SelectionDAG.
28 // The SelectionDAG recognizes such constants as opaque and doesn't perform
29 // certain transformations on them, which would create a new expensive constant.
30 //
31 // This optimization is only applied to integer constants in instructions and
32 // simple (this means not nested) constant cast expressions. For example:
33 // %0 = load i64* inttoptr (i64 big_constant to i64*)
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/ADT/SmallSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <tuple>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "consthoist"
52 
53 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
54 STATISTIC(NumConstantsRebased, "Number of constants rebased");
55 
56 namespace {
57 struct ConstantUser;
58 struct RebasedConstantInfo;
59 
60 typedef SmallVector<ConstantUser, 8> ConstantUseListType;
61 typedef SmallVector<RebasedConstantInfo, 4> RebasedConstantListType;
62 
63 /// \brief Keeps track of the user of a constant and the operand index where the
64 /// constant is used.
65 struct ConstantUser {
66   Instruction *Inst;
67   unsigned OpndIdx;
68 
69   ConstantUser(Instruction *Inst, unsigned Idx) : Inst(Inst), OpndIdx(Idx) { }
70 };
71 
72 /// \brief Keeps track of a constant candidate and its uses.
73 struct ConstantCandidate {
74   ConstantUseListType Uses;
75   ConstantInt *ConstInt;
76   unsigned CumulativeCost;
77 
78   ConstantCandidate(ConstantInt *ConstInt)
79     : ConstInt(ConstInt), CumulativeCost(0) { }
80 
81   /// \brief Add the user to the use list and update the cost.
82   void addUser(Instruction *Inst, unsigned Idx, unsigned Cost) {
83     CumulativeCost += Cost;
84     Uses.push_back(ConstantUser(Inst, Idx));
85   }
86 };
87 
88 /// \brief This represents a constant that has been rebased with respect to a
89 /// base constant. The difference to the base constant is recorded in Offset.
90 struct RebasedConstantInfo {
91   ConstantUseListType Uses;
92   Constant *Offset;
93 
94   RebasedConstantInfo(ConstantUseListType &&Uses, Constant *Offset)
95     : Uses(std::move(Uses)), Offset(Offset) { }
96 };
97 
98 /// \brief A base constant and all its rebased constants.
99 struct ConstantInfo {
100   ConstantInt *BaseConstant;
101   RebasedConstantListType RebasedConstants;
102 };
103 
104 /// \brief The constant hoisting pass.
105 class ConstantHoisting : public FunctionPass {
106   typedef DenseMap<ConstantInt *, unsigned> ConstCandMapType;
107   typedef std::vector<ConstantCandidate> ConstCandVecType;
108 
109   const TargetTransformInfo *TTI;
110   DominatorTree *DT;
111   BasicBlock *Entry;
112 
113   /// Keeps track of constant candidates found in the function.
114   ConstCandVecType ConstCandVec;
115 
116   /// Keep track of cast instructions we already cloned.
117   SmallDenseMap<Instruction *, Instruction *> ClonedCastMap;
118 
119   /// These are the final constants we decided to hoist.
120   SmallVector<ConstantInfo, 8> ConstantVec;
121 public:
122   static char ID; // Pass identification, replacement for typeid
123   ConstantHoisting() : FunctionPass(ID), TTI(nullptr), DT(nullptr),
124                        Entry(nullptr) {
125     initializeConstantHoistingPass(*PassRegistry::getPassRegistry());
126   }
127 
128   bool runOnFunction(Function &Fn) override;
129 
130   const char *getPassName() const override { return "Constant Hoisting"; }
131 
132   void getAnalysisUsage(AnalysisUsage &AU) const override {
133     AU.setPreservesCFG();
134     AU.addRequired<DominatorTreeWrapperPass>();
135     AU.addRequired<TargetTransformInfoWrapperPass>();
136   }
137 
138 private:
139   /// \brief Initialize the pass.
140   void setup(Function &Fn) {
141     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
142     TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn);
143     Entry = &Fn.getEntryBlock();
144   }
145 
146   /// \brief Cleanup.
147   void cleanup() {
148     ConstantVec.clear();
149     ClonedCastMap.clear();
150     ConstCandVec.clear();
151 
152     TTI = nullptr;
153     DT = nullptr;
154     Entry = nullptr;
155   }
156 
157   Instruction *findMatInsertPt(Instruction *Inst, unsigned Idx = ~0U) const;
158   Instruction *findConstantInsertionPoint(const ConstantInfo &ConstInfo) const;
159   void collectConstantCandidates(ConstCandMapType &ConstCandMap,
160                                  Instruction *Inst, unsigned Idx,
161                                  ConstantInt *ConstInt);
162   void collectConstantCandidates(ConstCandMapType &ConstCandMap,
163                                  Instruction *Inst);
164   void collectConstantCandidates(Function &Fn);
165   void findAndMakeBaseConstant(ConstCandVecType::iterator S,
166                                ConstCandVecType::iterator E);
167   void findBaseConstants();
168   void emitBaseConstants(Instruction *Base, Constant *Offset,
169                          const ConstantUser &ConstUser);
170   bool emitBaseConstants();
171   void deleteDeadCastInst() const;
172   bool optimizeConstants(Function &Fn);
173 };
174 }
175 
176 char ConstantHoisting::ID = 0;
177 INITIALIZE_PASS_BEGIN(ConstantHoisting, "consthoist", "Constant Hoisting",
178                       false, false)
179 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
180 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
181 INITIALIZE_PASS_END(ConstantHoisting, "consthoist", "Constant Hoisting",
182                     false, false)
183 
184 FunctionPass *llvm::createConstantHoistingPass() {
185   return new ConstantHoisting();
186 }
187 
188 /// \brief Perform the constant hoisting optimization for the given function.
189 bool ConstantHoisting::runOnFunction(Function &Fn) {
190   if (skipOptnoneFunction(Fn))
191     return false;
192 
193   DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
194   DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
195 
196   setup(Fn);
197 
198   bool MadeChange = optimizeConstants(Fn);
199 
200   if (MadeChange) {
201     DEBUG(dbgs() << "********** Function after Constant Hoisting: "
202                  << Fn.getName() << '\n');
203     DEBUG(dbgs() << Fn);
204   }
205   DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
206 
207   cleanup();
208 
209   return MadeChange;
210 }
211 
212 
213 /// \brief Find the constant materialization insertion point.
214 Instruction *ConstantHoisting::findMatInsertPt(Instruction *Inst,
215                                                unsigned Idx) const {
216   // If the operand is a cast instruction, then we have to materialize the
217   // constant before the cast instruction.
218   if (Idx != ~0U) {
219     Value *Opnd = Inst->getOperand(Idx);
220     if (auto CastInst = dyn_cast<Instruction>(Opnd))
221       if (CastInst->isCast())
222         return CastInst;
223   }
224 
225   // The simple and common case. This also includes constant expressions.
226   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
227     return Inst;
228 
229   // We can't insert directly before a phi node or an eh pad. Insert before
230   // the terminator of the incoming or dominating block.
231   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
232   if (Idx != ~0U && isa<PHINode>(Inst))
233     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
234 
235   BasicBlock *IDom = DT->getNode(Inst->getParent())->getIDom()->getBlock();
236   return IDom->getTerminator();
237 }
238 
239 /// \brief Find an insertion point that dominates all uses.
240 Instruction *ConstantHoisting::
241 findConstantInsertionPoint(const ConstantInfo &ConstInfo) const {
242   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
243   // Collect all basic blocks.
244   SmallPtrSet<BasicBlock *, 8> BBs;
245   for (auto const &RCI : ConstInfo.RebasedConstants)
246     for (auto const &U : RCI.Uses)
247       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
248 
249   if (BBs.count(Entry))
250     return &Entry->front();
251 
252   while (BBs.size() >= 2) {
253     BasicBlock *BB, *BB1, *BB2;
254     BB1 = *BBs.begin();
255     BB2 = *std::next(BBs.begin());
256     BB = DT->findNearestCommonDominator(BB1, BB2);
257     if (BB == Entry)
258       return &Entry->front();
259     BBs.erase(BB1);
260     BBs.erase(BB2);
261     BBs.insert(BB);
262   }
263   assert((BBs.size() == 1) && "Expected only one element.");
264   Instruction &FirstInst = (*BBs.begin())->front();
265   return findMatInsertPt(&FirstInst);
266 }
267 
268 
269 /// \brief Record constant integer ConstInt for instruction Inst at operand
270 /// index Idx.
271 ///
272 /// The operand at index Idx is not necessarily the constant integer itself. It
273 /// could also be a cast instruction or a constant expression that uses the
274 // constant integer.
275 void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
276                                                  Instruction *Inst,
277                                                  unsigned Idx,
278                                                  ConstantInt *ConstInt) {
279   unsigned Cost;
280   // Ask the target about the cost of materializing the constant for the given
281   // instruction and operand index.
282   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
283     Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
284                               ConstInt->getValue(), ConstInt->getType());
285   else
286     Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
287                               ConstInt->getType());
288 
289   // Ignore cheap integer constants.
290   if (Cost > TargetTransformInfo::TCC_Basic) {
291     ConstCandMapType::iterator Itr;
292     bool Inserted;
293     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
294     if (Inserted) {
295       ConstCandVec.push_back(ConstantCandidate(ConstInt));
296       Itr->second = ConstCandVec.size() - 1;
297     }
298     ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
299     DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
300             dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
301                    << " with cost " << Cost << '\n';
302           else
303           dbgs() << "Collect constant " << *ConstInt << " indirectly from "
304                  << *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
305                  << Cost << '\n';
306     );
307   }
308 }
309 
310 /// \brief Scan the instruction for expensive integer constants and record them
311 /// in the constant candidate vector.
312 void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
313                                                  Instruction *Inst) {
314   // Skip all cast instructions. They are visited indirectly later on.
315   if (Inst->isCast())
316     return;
317 
318   // Can't handle inline asm. Skip it.
319   if (auto Call = dyn_cast<CallInst>(Inst))
320     if (isa<InlineAsm>(Call->getCalledValue()))
321       return;
322 
323   // Switch cases must remain constant, and if the value being tested is
324   // constant the entire thing should disappear.
325   if (isa<SwitchInst>(Inst))
326     return;
327 
328   // Static allocas (constant size in the entry block) are handled by
329   // prologue/epilogue insertion so they're free anyway. We definitely don't
330   // want to make them non-constant.
331   auto AI = dyn_cast<AllocaInst>(Inst);
332   if (AI && AI->isStaticAlloca())
333     return;
334 
335   // Scan all operands.
336   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
337     Value *Opnd = Inst->getOperand(Idx);
338 
339     // Visit constant integers.
340     if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
341       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
342       continue;
343     }
344 
345     // Visit cast instructions that have constant integers.
346     if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
347       // Only visit cast instructions, which have been skipped. All other
348       // instructions should have already been visited.
349       if (!CastInst->isCast())
350         continue;
351 
352       if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
353         // Pretend the constant is directly used by the instruction and ignore
354         // the cast instruction.
355         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
356         continue;
357       }
358     }
359 
360     // Visit constant expressions that have constant integers.
361     if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
362       // Only visit constant cast expressions.
363       if (!ConstExpr->isCast())
364         continue;
365 
366       if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
367         // Pretend the constant is directly used by the instruction and ignore
368         // the constant expression.
369         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
370         continue;
371       }
372     }
373   } // end of for all operands
374 }
375 
376 /// \brief Collect all integer constants in the function that cannot be folded
377 /// into an instruction itself.
378 void ConstantHoisting::collectConstantCandidates(Function &Fn) {
379   ConstCandMapType ConstCandMap;
380   for (BasicBlock &BB : Fn)
381     for (Instruction &Inst : BB)
382       collectConstantCandidates(ConstCandMap, &Inst);
383 }
384 
385 /// \brief Find the base constant within the given range and rebase all other
386 /// constants with respect to the base constant.
387 void ConstantHoisting::findAndMakeBaseConstant(ConstCandVecType::iterator S,
388                                                ConstCandVecType::iterator E) {
389   auto MaxCostItr = S;
390   unsigned NumUses = 0;
391   // Use the constant that has the maximum cost as base constant.
392   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
393     NumUses += ConstCand->Uses.size();
394     if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
395       MaxCostItr = ConstCand;
396   }
397 
398   // Don't hoist constants that have only one use.
399   if (NumUses <= 1)
400     return;
401 
402   ConstantInfo ConstInfo;
403   ConstInfo.BaseConstant = MaxCostItr->ConstInt;
404   Type *Ty = ConstInfo.BaseConstant->getType();
405 
406   // Rebase the constants with respect to the base constant.
407   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
408     APInt Diff = ConstCand->ConstInt->getValue() -
409                  ConstInfo.BaseConstant->getValue();
410     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
411     ConstInfo.RebasedConstants.push_back(
412       RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
413   }
414   ConstantVec.push_back(std::move(ConstInfo));
415 }
416 
417 /// \brief Finds and combines constant candidates that can be easily
418 /// rematerialized with an add from a common base constant.
419 void ConstantHoisting::findBaseConstants() {
420   // Sort the constants by value and type. This invalidates the mapping!
421   std::sort(ConstCandVec.begin(), ConstCandVec.end(),
422             [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
423     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
424       return LHS.ConstInt->getType()->getBitWidth() <
425              RHS.ConstInt->getType()->getBitWidth();
426     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
427   });
428 
429   // Simple linear scan through the sorted constant candidate vector for viable
430   // merge candidates.
431   auto MinValItr = ConstCandVec.begin();
432   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
433        CC != E; ++CC) {
434     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
435       // Check if the constant is in range of an add with immediate.
436       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
437       if ((Diff.getBitWidth() <= 64) &&
438           TTI->isLegalAddImmediate(Diff.getSExtValue()))
439         continue;
440     }
441     // We either have now a different constant type or the constant is not in
442     // range of an add with immediate anymore.
443     findAndMakeBaseConstant(MinValItr, CC);
444     // Start a new base constant search.
445     MinValItr = CC;
446   }
447   // Finalize the last base constant search.
448   findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
449 }
450 
451 /// \brief Updates the operand at Idx in instruction Inst with the result of
452 ///        instruction Mat. If the instruction is a PHI node then special
453 ///        handling for duplicate values form the same incomming basic block is
454 ///        required.
455 /// \return The update will always succeed, but the return value indicated if
456 ///         Mat was used for the update or not.
457 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
458   if (auto PHI = dyn_cast<PHINode>(Inst)) {
459     // Check if any previous operand of the PHI node has the same incoming basic
460     // block. This is a very odd case that happens when the incoming basic block
461     // has a switch statement. In this case use the same value as the previous
462     // operand(s), otherwise we will fail verification due to different values.
463     // The values are actually the same, but the variable names are different
464     // and the verifier doesn't like that.
465     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
466     for (unsigned i = 0; i < Idx; ++i) {
467       if (PHI->getIncomingBlock(i) == IncomingBB) {
468         Value *IncomingVal = PHI->getIncomingValue(i);
469         Inst->setOperand(Idx, IncomingVal);
470         return false;
471       }
472     }
473   }
474 
475   Inst->setOperand(Idx, Mat);
476   return true;
477 }
478 
479 /// \brief Emit materialization code for all rebased constants and update their
480 /// users.
481 void ConstantHoisting::emitBaseConstants(Instruction *Base, Constant *Offset,
482                                          const ConstantUser &ConstUser) {
483   Instruction *Mat = Base;
484   if (Offset) {
485     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
486                                                ConstUser.OpndIdx);
487     Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
488                                  "const_mat", InsertionPt);
489 
490     DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
491                  << " + " << *Offset << ") in BB "
492                  << Mat->getParent()->getName() << '\n' << *Mat << '\n');
493     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
494   }
495   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
496 
497   // Visit constant integer.
498   if (isa<ConstantInt>(Opnd)) {
499     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
500     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
501       Mat->eraseFromParent();
502     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
503     return;
504   }
505 
506   // Visit cast instruction.
507   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
508     assert(CastInst->isCast() && "Expected an cast instruction!");
509     // Check if we already have visited this cast instruction before to avoid
510     // unnecessary cloning.
511     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
512     if (!ClonedCastInst) {
513       ClonedCastInst = CastInst->clone();
514       ClonedCastInst->setOperand(0, Mat);
515       ClonedCastInst->insertAfter(CastInst);
516       // Use the same debug location as the original cast instruction.
517       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
518       DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
519                    << "To               : " << *ClonedCastInst << '\n');
520     }
521 
522     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
523     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
524     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
525     return;
526   }
527 
528   // Visit constant expression.
529   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
530     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
531     ConstExprInst->setOperand(0, Mat);
532     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
533                                                 ConstUser.OpndIdx));
534 
535     // Use the same debug location as the instruction we are about to update.
536     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
537 
538     DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
539                  << "From              : " << *ConstExpr << '\n');
540     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
541     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
542       ConstExprInst->eraseFromParent();
543       if (Offset)
544         Mat->eraseFromParent();
545     }
546     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
547     return;
548   }
549 }
550 
551 /// \brief Hoist and hide the base constant behind a bitcast and emit
552 /// materialization code for derived constants.
553 bool ConstantHoisting::emitBaseConstants() {
554   bool MadeChange = false;
555   for (auto const &ConstInfo : ConstantVec) {
556     // Hoist and hide the base constant behind a bitcast.
557     Instruction *IP = findConstantInsertionPoint(ConstInfo);
558     IntegerType *Ty = ConstInfo.BaseConstant->getType();
559     Instruction *Base =
560       new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
561     DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant << ") to BB "
562                  << IP->getParent()->getName() << '\n' << *Base << '\n');
563     NumConstantsHoisted++;
564 
565     // Emit materialization code for all rebased constants.
566     for (auto const &RCI : ConstInfo.RebasedConstants) {
567       NumConstantsRebased++;
568       for (auto const &U : RCI.Uses)
569         emitBaseConstants(Base, RCI.Offset, U);
570     }
571 
572     // Use the same debug location as the last user of the constant.
573     assert(!Base->use_empty() && "The use list is empty!?");
574     assert(isa<Instruction>(Base->user_back()) &&
575            "All uses should be instructions.");
576     Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
577 
578     // Correct for base constant, which we counted above too.
579     NumConstantsRebased--;
580     MadeChange = true;
581   }
582   return MadeChange;
583 }
584 
585 /// \brief Check all cast instructions we made a copy of and remove them if they
586 /// have no more users.
587 void ConstantHoisting::deleteDeadCastInst() const {
588   for (auto const &I : ClonedCastMap)
589     if (I.first->use_empty())
590       I.first->eraseFromParent();
591 }
592 
593 /// \brief Optimize expensive integer constants in the given function.
594 bool ConstantHoisting::optimizeConstants(Function &Fn) {
595   // Collect all constant candidates.
596   collectConstantCandidates(Fn);
597 
598   // There are no constant candidates to worry about.
599   if (ConstCandVec.empty())
600     return false;
601 
602   // Combine constants that can be easily materialized with an add from a common
603   // base constant.
604   findBaseConstants();
605 
606   // There are no constants to emit.
607   if (ConstantVec.empty())
608     return false;
609 
610   // Finally hoist the base constant and emit materialization code for dependent
611   // constants.
612   bool MadeChange = emitBaseConstants();
613 
614   // Cleanup dead instructions.
615   deleteDeadCastInst();
616 
617   return MadeChange;
618 }
619