1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
12 //
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
18 //
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
23 //
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
29 //
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
34
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/SizeOpts.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <iterator>
71 #include <tuple>
72 #include <utility>
73
74 using namespace llvm;
75 using namespace consthoist;
76
77 #define DEBUG_TYPE "consthoist"
78
79 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
80 STATISTIC(NumConstantsRebased, "Number of constants rebased");
81
82 static cl::opt<bool> ConstHoistWithBlockFrequency(
83 "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
84 cl::desc("Enable the use of the block frequency analysis to reduce the "
85 "chance to execute const materialization more frequently than "
86 "without hoisting."));
87
88 static cl::opt<bool> ConstHoistGEP(
89 "consthoist-gep", cl::init(false), cl::Hidden,
90 cl::desc("Try hoisting constant gep expressions"));
91
92 static cl::opt<unsigned>
93 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
94 cl::desc("Do not rebase if number of dependent constants of a Base is less "
95 "than this number."),
96 cl::init(0), cl::Hidden);
97
98 namespace {
99
100 /// The constant hoisting pass.
101 class ConstantHoistingLegacyPass : public FunctionPass {
102 public:
103 static char ID; // Pass identification, replacement for typeid
104
ConstantHoistingLegacyPass()105 ConstantHoistingLegacyPass() : FunctionPass(ID) {
106 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
107 }
108
109 bool runOnFunction(Function &Fn) override;
110
getPassName() const111 StringRef getPassName() const override { return "Constant Hoisting"; }
112
getAnalysisUsage(AnalysisUsage & AU) const113 void getAnalysisUsage(AnalysisUsage &AU) const override {
114 AU.setPreservesCFG();
115 if (ConstHoistWithBlockFrequency)
116 AU.addRequired<BlockFrequencyInfoWrapperPass>();
117 AU.addRequired<DominatorTreeWrapperPass>();
118 AU.addRequired<ProfileSummaryInfoWrapperPass>();
119 AU.addRequired<TargetTransformInfoWrapperPass>();
120 }
121
122 private:
123 ConstantHoistingPass Impl;
124 };
125
126 } // end anonymous namespace
127
128 char ConstantHoistingLegacyPass::ID = 0;
129
130 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
131 "Constant Hoisting", false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)132 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
135 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
136 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
137 "Constant Hoisting", false, false)
138
139 FunctionPass *llvm::createConstantHoistingPass() {
140 return new ConstantHoistingLegacyPass();
141 }
142
143 /// Perform the constant hoisting optimization for the given function.
runOnFunction(Function & Fn)144 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
145 if (skipFunction(Fn))
146 return false;
147
148 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
149 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
150
151 bool MadeChange =
152 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
153 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
154 ConstHoistWithBlockFrequency
155 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
156 : nullptr,
157 Fn.getEntryBlock(),
158 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
159
160 if (MadeChange) {
161 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
162 << Fn.getName() << '\n');
163 LLVM_DEBUG(dbgs() << Fn);
164 }
165 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
166
167 return MadeChange;
168 }
169
170 /// Find the constant materialization insertion point.
findMatInsertPt(Instruction * Inst,unsigned Idx) const171 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
172 unsigned Idx) const {
173 // If the operand is a cast instruction, then we have to materialize the
174 // constant before the cast instruction.
175 if (Idx != ~0U) {
176 Value *Opnd = Inst->getOperand(Idx);
177 if (auto CastInst = dyn_cast<Instruction>(Opnd))
178 if (CastInst->isCast())
179 return CastInst;
180 }
181
182 // The simple and common case. This also includes constant expressions.
183 if (!isa<PHINode>(Inst) && !Inst->isEHPad())
184 return Inst;
185
186 // We can't insert directly before a phi node or an eh pad. Insert before
187 // the terminator of the incoming or dominating block.
188 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
189 BasicBlock *InsertionBlock = nullptr;
190 if (Idx != ~0U && isa<PHINode>(Inst)) {
191 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
192 if (!InsertionBlock->isEHPad()) {
193 return InsertionBlock->getTerminator();
194 }
195 } else {
196 InsertionBlock = Inst->getParent();
197 }
198
199 // This must be an EH pad. Iterate over immediate dominators until we find a
200 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
201 // and terminators.
202 auto *IDom = DT->getNode(InsertionBlock)->getIDom();
203 while (IDom->getBlock()->isEHPad()) {
204 assert(Entry != IDom->getBlock() && "eh pad in entry block");
205 IDom = IDom->getIDom();
206 }
207
208 return IDom->getBlock()->getTerminator();
209 }
210
211 /// Given \p BBs as input, find another set of BBs which collectively
212 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
213 /// set found in \p BBs.
findBestInsertionSet(DominatorTree & DT,BlockFrequencyInfo & BFI,BasicBlock * Entry,SetVector<BasicBlock * > & BBs)214 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
215 BasicBlock *Entry,
216 SetVector<BasicBlock *> &BBs) {
217 assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
218 // Nodes on the current path to the root.
219 SmallPtrSet<BasicBlock *, 8> Path;
220 // Candidates includes any block 'BB' in set 'BBs' that is not strictly
221 // dominated by any other blocks in set 'BBs', and all nodes in the path
222 // in the dominator tree from Entry to 'BB'.
223 SmallPtrSet<BasicBlock *, 16> Candidates;
224 for (auto BB : BBs) {
225 // Ignore unreachable basic blocks.
226 if (!DT.isReachableFromEntry(BB))
227 continue;
228 Path.clear();
229 // Walk up the dominator tree until Entry or another BB in BBs
230 // is reached. Insert the nodes on the way to the Path.
231 BasicBlock *Node = BB;
232 // The "Path" is a candidate path to be added into Candidates set.
233 bool isCandidate = false;
234 do {
235 Path.insert(Node);
236 if (Node == Entry || Candidates.count(Node)) {
237 isCandidate = true;
238 break;
239 }
240 assert(DT.getNode(Node)->getIDom() &&
241 "Entry doens't dominate current Node");
242 Node = DT.getNode(Node)->getIDom()->getBlock();
243 } while (!BBs.count(Node));
244
245 // If isCandidate is false, Node is another Block in BBs dominating
246 // current 'BB'. Drop the nodes on the Path.
247 if (!isCandidate)
248 continue;
249
250 // Add nodes on the Path into Candidates.
251 Candidates.insert(Path.begin(), Path.end());
252 }
253
254 // Sort the nodes in Candidates in top-down order and save the nodes
255 // in Orders.
256 unsigned Idx = 0;
257 SmallVector<BasicBlock *, 16> Orders;
258 Orders.push_back(Entry);
259 while (Idx != Orders.size()) {
260 BasicBlock *Node = Orders[Idx++];
261 for (auto ChildDomNode : DT.getNode(Node)->children()) {
262 if (Candidates.count(ChildDomNode->getBlock()))
263 Orders.push_back(ChildDomNode->getBlock());
264 }
265 }
266
267 // Visit Orders in bottom-up order.
268 using InsertPtsCostPair =
269 std::pair<SetVector<BasicBlock *>, BlockFrequency>;
270
271 // InsertPtsMap is a map from a BB to the best insertion points for the
272 // subtree of BB (subtree not including the BB itself).
273 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
274 InsertPtsMap.reserve(Orders.size() + 1);
275 for (BasicBlock *Node : llvm::reverse(Orders)) {
276 bool NodeInBBs = BBs.count(Node);
277 auto &InsertPts = InsertPtsMap[Node].first;
278 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
279
280 // Return the optimal insert points in BBs.
281 if (Node == Entry) {
282 BBs.clear();
283 if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
284 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
285 BBs.insert(Entry);
286 else
287 BBs.insert(InsertPts.begin(), InsertPts.end());
288 break;
289 }
290
291 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
292 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
293 // will update its parent's ParentInsertPts and ParentPtsFreq.
294 auto &ParentInsertPts = InsertPtsMap[Parent].first;
295 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
296 // Choose to insert in Node or in subtree of Node.
297 // Don't hoist to EHPad because we may not find a proper place to insert
298 // in EHPad.
299 // If the total frequency of InsertPts is the same as the frequency of the
300 // target Node, and InsertPts contains more than one nodes, choose hoisting
301 // to reduce code size.
302 if (NodeInBBs ||
303 (!Node->isEHPad() &&
304 (InsertPtsFreq > BFI.getBlockFreq(Node) ||
305 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
306 ParentInsertPts.insert(Node);
307 ParentPtsFreq += BFI.getBlockFreq(Node);
308 } else {
309 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
310 ParentPtsFreq += InsertPtsFreq;
311 }
312 }
313 }
314
315 /// Find an insertion point that dominates all uses.
findConstantInsertionPoint(const ConstantInfo & ConstInfo) const316 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
317 const ConstantInfo &ConstInfo) const {
318 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
319 // Collect all basic blocks.
320 SetVector<BasicBlock *> BBs;
321 SetVector<Instruction *> InsertPts;
322 for (auto const &RCI : ConstInfo.RebasedConstants)
323 for (auto const &U : RCI.Uses)
324 BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
325
326 if (BBs.count(Entry)) {
327 InsertPts.insert(&Entry->front());
328 return InsertPts;
329 }
330
331 if (BFI) {
332 findBestInsertionSet(*DT, *BFI, Entry, BBs);
333 for (auto BB : BBs) {
334 BasicBlock::iterator InsertPt = BB->begin();
335 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
336 ;
337 InsertPts.insert(&*InsertPt);
338 }
339 return InsertPts;
340 }
341
342 while (BBs.size() >= 2) {
343 BasicBlock *BB, *BB1, *BB2;
344 BB1 = BBs.pop_back_val();
345 BB2 = BBs.pop_back_val();
346 BB = DT->findNearestCommonDominator(BB1, BB2);
347 if (BB == Entry) {
348 InsertPts.insert(&Entry->front());
349 return InsertPts;
350 }
351 BBs.insert(BB);
352 }
353 assert((BBs.size() == 1) && "Expected only one element.");
354 Instruction &FirstInst = (*BBs.begin())->front();
355 InsertPts.insert(findMatInsertPt(&FirstInst));
356 return InsertPts;
357 }
358
359 /// Record constant integer ConstInt for instruction Inst at operand
360 /// index Idx.
361 ///
362 /// The operand at index Idx is not necessarily the constant integer itself. It
363 /// could also be a cast instruction or a constant expression that uses the
364 /// constant integer.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst,unsigned Idx,ConstantInt * ConstInt)365 void ConstantHoistingPass::collectConstantCandidates(
366 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
367 ConstantInt *ConstInt) {
368 InstructionCost Cost;
369 // Ask the target about the cost of materializing the constant for the given
370 // instruction and operand index.
371 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
372 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
373 ConstInt->getValue(), ConstInt->getType(),
374 TargetTransformInfo::TCK_SizeAndLatency);
375 else
376 Cost = TTI->getIntImmCostInst(
377 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
378 TargetTransformInfo::TCK_SizeAndLatency, Inst);
379
380 // Ignore cheap integer constants.
381 if (Cost > TargetTransformInfo::TCC_Basic) {
382 ConstCandMapType::iterator Itr;
383 bool Inserted;
384 ConstPtrUnionType Cand = ConstInt;
385 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
386 if (Inserted) {
387 ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
388 Itr->second = ConstIntCandVec.size() - 1;
389 }
390 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
391 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
392 << "Collect constant " << *ConstInt << " from " << *Inst
393 << " with cost " << Cost << '\n';
394 else dbgs() << "Collect constant " << *ConstInt
395 << " indirectly from " << *Inst << " via "
396 << *Inst->getOperand(Idx) << " with cost " << Cost
397 << '\n';);
398 }
399 }
400
401 /// Record constant GEP expression for instruction Inst at operand index Idx.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst,unsigned Idx,ConstantExpr * ConstExpr)402 void ConstantHoistingPass::collectConstantCandidates(
403 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
404 ConstantExpr *ConstExpr) {
405 // TODO: Handle vector GEPs
406 if (ConstExpr->getType()->isVectorTy())
407 return;
408
409 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
410 if (!BaseGV)
411 return;
412
413 // Get offset from the base GV.
414 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
415 IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
416 APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
417 auto *GEPO = cast<GEPOperator>(ConstExpr);
418
419 // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a
420 // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to
421 // inbounds GEP for now -- alternatively, we could drop inbounds from the
422 // constant expression,
423 if (!GEPO->isInBounds())
424 return;
425
426 if (!GEPO->accumulateConstantOffset(*DL, Offset))
427 return;
428
429 if (!Offset.isIntN(32))
430 return;
431
432 // A constant GEP expression that has a GlobalVariable as base pointer is
433 // usually lowered to a load from constant pool. Such operation is unlikely
434 // to be cheaper than compute it by <Base + Offset>, which can be lowered to
435 // an ADD instruction or folded into Load/Store instruction.
436 InstructionCost Cost =
437 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
438 TargetTransformInfo::TCK_SizeAndLatency, Inst);
439 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
440 ConstCandMapType::iterator Itr;
441 bool Inserted;
442 ConstPtrUnionType Cand = ConstExpr;
443 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
444 if (Inserted) {
445 ExprCandVec.push_back(ConstantCandidate(
446 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
447 ConstExpr));
448 Itr->second = ExprCandVec.size() - 1;
449 }
450 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
451 }
452
453 /// Check the operand for instruction Inst at index Idx.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst,unsigned Idx)454 void ConstantHoistingPass::collectConstantCandidates(
455 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
456 Value *Opnd = Inst->getOperand(Idx);
457
458 // Visit constant integers.
459 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
460 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
461 return;
462 }
463
464 // Visit cast instructions that have constant integers.
465 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
466 // Only visit cast instructions, which have been skipped. All other
467 // instructions should have already been visited.
468 if (!CastInst->isCast())
469 return;
470
471 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
472 // Pretend the constant is directly used by the instruction and ignore
473 // the cast instruction.
474 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
475 return;
476 }
477 }
478
479 // Visit constant expressions that have constant integers.
480 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
481 // Handle constant gep expressions.
482 if (ConstHoistGEP && isa<GEPOperator>(ConstExpr))
483 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
484
485 // Only visit constant cast expressions.
486 if (!ConstExpr->isCast())
487 return;
488
489 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
490 // Pretend the constant is directly used by the instruction and ignore
491 // the constant expression.
492 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
493 return;
494 }
495 }
496 }
497
498 /// Scan the instruction for expensive integer constants and record them
499 /// in the constant candidate vector.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst)500 void ConstantHoistingPass::collectConstantCandidates(
501 ConstCandMapType &ConstCandMap, Instruction *Inst) {
502 // Skip all cast instructions. They are visited indirectly later on.
503 if (Inst->isCast())
504 return;
505
506 // Scan all operands.
507 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
508 // The cost of materializing the constants (defined in
509 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
510 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
511 // So it's safe for us to collect constant candidates from all
512 // IntrinsicInsts.
513 if (canReplaceOperandWithVariable(Inst, Idx)) {
514 collectConstantCandidates(ConstCandMap, Inst, Idx);
515 }
516 } // end of for all operands
517 }
518
519 /// Collect all integer constants in the function that cannot be folded
520 /// into an instruction itself.
collectConstantCandidates(Function & Fn)521 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
522 ConstCandMapType ConstCandMap;
523 for (BasicBlock &BB : Fn) {
524 // Ignore unreachable basic blocks.
525 if (!DT->isReachableFromEntry(&BB))
526 continue;
527 for (Instruction &Inst : BB)
528 collectConstantCandidates(ConstCandMap, &Inst);
529 }
530 }
531
532 // This helper function is necessary to deal with values that have different
533 // bit widths (APInt Operator- does not like that). If the value cannot be
534 // represented in uint64 we return an "empty" APInt. This is then interpreted
535 // as the value is not in range.
calculateOffsetDiff(const APInt & V1,const APInt & V2)536 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
537 Optional<APInt> Res = None;
538 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
539 V1.getBitWidth() : V2.getBitWidth();
540 uint64_t LimVal1 = V1.getLimitedValue();
541 uint64_t LimVal2 = V2.getLimitedValue();
542
543 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
544 return Res;
545
546 uint64_t Diff = LimVal1 - LimVal2;
547 return APInt(BW, Diff, true);
548 }
549
550 // From a list of constants, one needs to picked as the base and the other
551 // constants will be transformed into an offset from that base constant. The
552 // question is which we can pick best? For example, consider these constants
553 // and their number of uses:
554 //
555 // Constants| 2 | 4 | 12 | 42 |
556 // NumUses | 3 | 2 | 8 | 7 |
557 //
558 // Selecting constant 12 because it has the most uses will generate negative
559 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
560 // offsets lead to less optimal code generation, then there might be better
561 // solutions. Suppose immediates in the range of 0..35 are most optimally
562 // supported by the architecture, then selecting constant 2 is most optimal
563 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
564 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
565 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
566 // selecting the base constant the range of the offsets is a very important
567 // factor too that we take into account here. This algorithm calculates a total
568 // costs for selecting a constant as the base and substract the costs if
569 // immediates are out of range. It has quadratic complexity, so we call this
570 // function only when we're optimising for size and there are less than 100
571 // constants, we fall back to the straightforward algorithm otherwise
572 // which does not do all the offset calculations.
573 unsigned
maximizeConstantsInRange(ConstCandVecType::iterator S,ConstCandVecType::iterator E,ConstCandVecType::iterator & MaxCostItr)574 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
575 ConstCandVecType::iterator E,
576 ConstCandVecType::iterator &MaxCostItr) {
577 unsigned NumUses = 0;
578
579 bool OptForSize = Entry->getParent()->hasOptSize() ||
580 llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
581 PGSOQueryType::IRPass);
582 if (!OptForSize || std::distance(S,E) > 100) {
583 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
584 NumUses += ConstCand->Uses.size();
585 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
586 MaxCostItr = ConstCand;
587 }
588 return NumUses;
589 }
590
591 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
592 InstructionCost MaxCost = -1;
593 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
594 auto Value = ConstCand->ConstInt->getValue();
595 Type *Ty = ConstCand->ConstInt->getType();
596 InstructionCost Cost = 0;
597 NumUses += ConstCand->Uses.size();
598 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
599 << "\n");
600
601 for (auto User : ConstCand->Uses) {
602 unsigned Opcode = User.Inst->getOpcode();
603 unsigned OpndIdx = User.OpndIdx;
604 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
605 TargetTransformInfo::TCK_SizeAndLatency);
606 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
607
608 for (auto C2 = S; C2 != E; ++C2) {
609 Optional<APInt> Diff = calculateOffsetDiff(
610 C2->ConstInt->getValue(),
611 ConstCand->ConstInt->getValue());
612 if (Diff) {
613 const InstructionCost ImmCosts =
614 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.value(), Ty);
615 Cost -= ImmCosts;
616 LLVM_DEBUG(dbgs() << "Offset " << Diff.value() << " "
617 << "has penalty: " << ImmCosts << "\n"
618 << "Adjusted cost: " << Cost << "\n");
619 }
620 }
621 }
622 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
623 if (Cost > MaxCost) {
624 MaxCost = Cost;
625 MaxCostItr = ConstCand;
626 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
627 << "\n");
628 }
629 }
630 return NumUses;
631 }
632
633 /// Find the base constant within the given range and rebase all other
634 /// constants with respect to the base constant.
findAndMakeBaseConstant(ConstCandVecType::iterator S,ConstCandVecType::iterator E,SmallVectorImpl<consthoist::ConstantInfo> & ConstInfoVec)635 void ConstantHoistingPass::findAndMakeBaseConstant(
636 ConstCandVecType::iterator S, ConstCandVecType::iterator E,
637 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
638 auto MaxCostItr = S;
639 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
640
641 // Don't hoist constants that have only one use.
642 if (NumUses <= 1)
643 return;
644
645 ConstantInt *ConstInt = MaxCostItr->ConstInt;
646 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
647 ConstantInfo ConstInfo;
648 ConstInfo.BaseInt = ConstInt;
649 ConstInfo.BaseExpr = ConstExpr;
650 Type *Ty = ConstInt->getType();
651
652 // Rebase the constants with respect to the base constant.
653 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
654 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
655 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
656 Type *ConstTy =
657 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
658 ConstInfo.RebasedConstants.push_back(
659 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
660 }
661 ConstInfoVec.push_back(std::move(ConstInfo));
662 }
663
664 /// Finds and combines constant candidates that can be easily
665 /// rematerialized with an add from a common base constant.
findBaseConstants(GlobalVariable * BaseGV)666 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
667 // If BaseGV is nullptr, find base among candidate constant integers;
668 // Otherwise find base among constant GEPs that share the same BaseGV.
669 ConstCandVecType &ConstCandVec = BaseGV ?
670 ConstGEPCandMap[BaseGV] : ConstIntCandVec;
671 ConstInfoVecType &ConstInfoVec = BaseGV ?
672 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
673
674 // Sort the constants by value and type. This invalidates the mapping!
675 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
676 const ConstantCandidate &RHS) {
677 if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
678 return LHS.ConstInt->getType()->getBitWidth() <
679 RHS.ConstInt->getType()->getBitWidth();
680 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
681 });
682
683 // Simple linear scan through the sorted constant candidate vector for viable
684 // merge candidates.
685 auto MinValItr = ConstCandVec.begin();
686 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
687 CC != E; ++CC) {
688 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
689 Type *MemUseValTy = nullptr;
690 for (auto &U : CC->Uses) {
691 auto *UI = U.Inst;
692 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
693 MemUseValTy = LI->getType();
694 break;
695 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
696 // Make sure the constant is used as pointer operand of the StoreInst.
697 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
698 MemUseValTy = SI->getValueOperand()->getType();
699 break;
700 }
701 }
702 }
703
704 // Check if the constant is in range of an add with immediate.
705 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
706 if ((Diff.getBitWidth() <= 64) &&
707 TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
708 // Check if Diff can be used as offset in addressing mode of the user
709 // memory instruction.
710 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
711 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
712 /*HasBaseReg*/true, /*Scale*/0)))
713 continue;
714 }
715 // We either have now a different constant type or the constant is not in
716 // range of an add with immediate anymore.
717 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
718 // Start a new base constant search.
719 MinValItr = CC;
720 }
721 // Finalize the last base constant search.
722 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
723 }
724
725 /// Updates the operand at Idx in instruction Inst with the result of
726 /// instruction Mat. If the instruction is a PHI node then special
727 /// handling for duplicate values form the same incoming basic block is
728 /// required.
729 /// \return The update will always succeed, but the return value indicated if
730 /// Mat was used for the update or not.
updateOperand(Instruction * Inst,unsigned Idx,Instruction * Mat)731 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
732 if (auto PHI = dyn_cast<PHINode>(Inst)) {
733 // Check if any previous operand of the PHI node has the same incoming basic
734 // block. This is a very odd case that happens when the incoming basic block
735 // has a switch statement. In this case use the same value as the previous
736 // operand(s), otherwise we will fail verification due to different values.
737 // The values are actually the same, but the variable names are different
738 // and the verifier doesn't like that.
739 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
740 for (unsigned i = 0; i < Idx; ++i) {
741 if (PHI->getIncomingBlock(i) == IncomingBB) {
742 Value *IncomingVal = PHI->getIncomingValue(i);
743 Inst->setOperand(Idx, IncomingVal);
744 return false;
745 }
746 }
747 }
748
749 Inst->setOperand(Idx, Mat);
750 return true;
751 }
752
753 /// Emit materialization code for all rebased constants and update their
754 /// users.
emitBaseConstants(Instruction * Base,Constant * Offset,Type * Ty,const ConstantUser & ConstUser)755 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
756 Constant *Offset,
757 Type *Ty,
758 const ConstantUser &ConstUser) {
759 Instruction *Mat = Base;
760
761 // The same offset can be dereferenced to different types in nested struct.
762 if (!Offset && Ty && Ty != Base->getType())
763 Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
764
765 if (Offset) {
766 Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
767 ConstUser.OpndIdx);
768 if (Ty) {
769 // Constant being rebased is a ConstantExpr.
770 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
771 cast<PointerType>(Ty)->getAddressSpace());
772 Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
773 Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base,
774 Offset, "mat_gep", InsertionPt);
775 Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
776 } else
777 // Constant being rebased is a ConstantInt.
778 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
779 "const_mat", InsertionPt);
780
781 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
782 << " + " << *Offset << ") in BB "
783 << Mat->getParent()->getName() << '\n'
784 << *Mat << '\n');
785 Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
786 }
787 Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
788
789 // Visit constant integer.
790 if (isa<ConstantInt>(Opnd)) {
791 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
792 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
793 Mat->eraseFromParent();
794 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
795 return;
796 }
797
798 // Visit cast instruction.
799 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
800 assert(CastInst->isCast() && "Expected an cast instruction!");
801 // Check if we already have visited this cast instruction before to avoid
802 // unnecessary cloning.
803 Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
804 if (!ClonedCastInst) {
805 ClonedCastInst = CastInst->clone();
806 ClonedCastInst->setOperand(0, Mat);
807 ClonedCastInst->insertAfter(CastInst);
808 // Use the same debug location as the original cast instruction.
809 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
810 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
811 << "To : " << *ClonedCastInst << '\n');
812 }
813
814 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
815 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
816 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
817 return;
818 }
819
820 // Visit constant expression.
821 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
822 if (isa<GEPOperator>(ConstExpr)) {
823 // Operand is a ConstantGEP, replace it.
824 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
825 return;
826 }
827
828 // Aside from constant GEPs, only constant cast expressions are collected.
829 assert(ConstExpr->isCast() && "ConstExpr should be a cast");
830 Instruction *ConstExprInst = ConstExpr->getAsInstruction(
831 findMatInsertPt(ConstUser.Inst, ConstUser.OpndIdx));
832 ConstExprInst->setOperand(0, Mat);
833
834 // Use the same debug location as the instruction we are about to update.
835 ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
836
837 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
838 << "From : " << *ConstExpr << '\n');
839 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
840 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
841 ConstExprInst->eraseFromParent();
842 if (Offset)
843 Mat->eraseFromParent();
844 }
845 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
846 return;
847 }
848 }
849
850 /// Hoist and hide the base constant behind a bitcast and emit
851 /// materialization code for derived constants.
emitBaseConstants(GlobalVariable * BaseGV)852 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
853 bool MadeChange = false;
854 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
855 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
856 for (auto const &ConstInfo : ConstInfoVec) {
857 SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
858 // We can have an empty set if the function contains unreachable blocks.
859 if (IPSet.empty())
860 continue;
861
862 unsigned UsesNum = 0;
863 unsigned ReBasesNum = 0;
864 unsigned NotRebasedNum = 0;
865 for (Instruction *IP : IPSet) {
866 // First, collect constants depending on this IP of the base.
867 unsigned Uses = 0;
868 using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
869 SmallVector<RebasedUse, 4> ToBeRebased;
870 for (auto const &RCI : ConstInfo.RebasedConstants) {
871 for (auto const &U : RCI.Uses) {
872 Uses++;
873 BasicBlock *OrigMatInsertBB =
874 findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
875 // If Base constant is to be inserted in multiple places,
876 // generate rebase for U using the Base dominating U.
877 if (IPSet.size() == 1 ||
878 DT->dominates(IP->getParent(), OrigMatInsertBB))
879 ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
880 }
881 }
882 UsesNum = Uses;
883
884 // If only few constants depend on this IP of base, skip rebasing,
885 // assuming the base and the rebased have the same materialization cost.
886 if (ToBeRebased.size() < MinNumOfDependentToRebase) {
887 NotRebasedNum += ToBeRebased.size();
888 continue;
889 }
890
891 // Emit an instance of the base at this IP.
892 Instruction *Base = nullptr;
893 // Hoist and hide the base constant behind a bitcast.
894 if (ConstInfo.BaseExpr) {
895 assert(BaseGV && "A base constant expression must have an base GV");
896 Type *Ty = ConstInfo.BaseExpr->getType();
897 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
898 } else {
899 IntegerType *Ty = ConstInfo.BaseInt->getType();
900 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
901 }
902
903 Base->setDebugLoc(IP->getDebugLoc());
904
905 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
906 << ") to BB " << IP->getParent()->getName() << '\n'
907 << *Base << '\n');
908
909 // Emit materialization code for rebased constants depending on this IP.
910 for (auto const &R : ToBeRebased) {
911 Constant *Off = std::get<0>(R);
912 Type *Ty = std::get<1>(R);
913 ConstantUser U = std::get<2>(R);
914 emitBaseConstants(Base, Off, Ty, U);
915 ReBasesNum++;
916 // Use the same debug location as the last user of the constant.
917 Base->setDebugLoc(DILocation::getMergedLocation(
918 Base->getDebugLoc(), U.Inst->getDebugLoc()));
919 }
920 assert(!Base->use_empty() && "The use list is empty!?");
921 assert(isa<Instruction>(Base->user_back()) &&
922 "All uses should be instructions.");
923 }
924 (void)UsesNum;
925 (void)ReBasesNum;
926 (void)NotRebasedNum;
927 // Expect all uses are rebased after rebase is done.
928 assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
929 "Not all uses are rebased");
930
931 NumConstantsHoisted++;
932
933 // Base constant is also included in ConstInfo.RebasedConstants, so
934 // deduct 1 from ConstInfo.RebasedConstants.size().
935 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
936
937 MadeChange = true;
938 }
939 return MadeChange;
940 }
941
942 /// Check all cast instructions we made a copy of and remove them if they
943 /// have no more users.
deleteDeadCastInst() const944 void ConstantHoistingPass::deleteDeadCastInst() const {
945 for (auto const &I : ClonedCastMap)
946 if (I.first->use_empty())
947 I.first->eraseFromParent();
948 }
949
950 /// Optimize expensive integer constants in the given function.
runImpl(Function & Fn,TargetTransformInfo & TTI,DominatorTree & DT,BlockFrequencyInfo * BFI,BasicBlock & Entry,ProfileSummaryInfo * PSI)951 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
952 DominatorTree &DT, BlockFrequencyInfo *BFI,
953 BasicBlock &Entry, ProfileSummaryInfo *PSI) {
954 this->TTI = &TTI;
955 this->DT = &DT;
956 this->BFI = BFI;
957 this->DL = &Fn.getParent()->getDataLayout();
958 this->Ctx = &Fn.getContext();
959 this->Entry = &Entry;
960 this->PSI = PSI;
961 // Collect all constant candidates.
962 collectConstantCandidates(Fn);
963
964 // Combine constants that can be easily materialized with an add from a common
965 // base constant.
966 if (!ConstIntCandVec.empty())
967 findBaseConstants(nullptr);
968 for (const auto &MapEntry : ConstGEPCandMap)
969 if (!MapEntry.second.empty())
970 findBaseConstants(MapEntry.first);
971
972 // Finally hoist the base constant and emit materialization code for dependent
973 // constants.
974 bool MadeChange = false;
975 if (!ConstIntInfoVec.empty())
976 MadeChange = emitBaseConstants(nullptr);
977 for (const auto &MapEntry : ConstGEPInfoMap)
978 if (!MapEntry.second.empty())
979 MadeChange |= emitBaseConstants(MapEntry.first);
980
981
982 // Cleanup dead instructions.
983 deleteDeadCastInst();
984
985 cleanup();
986
987 return MadeChange;
988 }
989
run(Function & F,FunctionAnalysisManager & AM)990 PreservedAnalyses ConstantHoistingPass::run(Function &F,
991 FunctionAnalysisManager &AM) {
992 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
993 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
994 auto BFI = ConstHoistWithBlockFrequency
995 ? &AM.getResult<BlockFrequencyAnalysis>(F)
996 : nullptr;
997 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
998 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
999 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
1000 return PreservedAnalyses::all();
1001
1002 PreservedAnalyses PA;
1003 PA.preserveSet<CFGAnalyses>();
1004 return PA;
1005 }
1006