1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies expensive constants to hoist and coalesces them to
11 // better prepare it for SelectionDAG-based code generation. This works around
12 // the limitations of the basic-block-at-a-time approach.
13 //
14 // First it scans all instructions for integer constants and calculates its
15 // cost. If the constant can be folded into the instruction (the cost is
16 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
17 // consider it expensive and leave it alone. This is the default behavior and
18 // the default implementation of getIntImmCost will always return TCC_Free.
19 //
20 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
21 // into the instruction and it might be beneficial to hoist the constant.
22 // Similar constants are coalesced to reduce register pressure and
23 // materialization code.
24 //
25 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
26 // be live-out of the basic block. Otherwise the constant would be just
27 // duplicated and each basic block would have its own copy in the SelectionDAG.
28 // The SelectionDAG recognizes such constants as opaque and doesn't perform
29 // certain transformations on them, which would create a new expensive constant.
30 //
31 // This optimization is only applied to integer constants in instructions and
32 // simple (this means not nested) constant cast expressions. For example:
33 // %0 = load i64* inttoptr (i64 big_constant to i64*)
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/None.h"
40 #include "llvm/ADT/Optional.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/Analysis/BlockFrequencyInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils/Local.h"
63 #include "llvm/IR/DebugInfoMetadata.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <tuple>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace consthoist;
73 
74 #define DEBUG_TYPE "consthoist"
75 
76 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
77 STATISTIC(NumConstantsRebased, "Number of constants rebased");
78 
79 static cl::opt<bool> ConstHoistWithBlockFrequency(
80     "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
81     cl::desc("Enable the use of the block frequency analysis to reduce the "
82              "chance to execute const materialization more frequently than "
83              "without hoisting."));
84 
85 namespace {
86 
87 /// \brief The constant hoisting pass.
88 class ConstantHoistingLegacyPass : public FunctionPass {
89 public:
90   static char ID; // Pass identification, replacement for typeid
91 
92   ConstantHoistingLegacyPass() : FunctionPass(ID) {
93     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
94   }
95 
96   bool runOnFunction(Function &Fn) override;
97 
98   StringRef getPassName() const override { return "Constant Hoisting"; }
99 
100   void getAnalysisUsage(AnalysisUsage &AU) const override {
101     AU.setPreservesCFG();
102     if (ConstHoistWithBlockFrequency)
103       AU.addRequired<BlockFrequencyInfoWrapperPass>();
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
108   void releaseMemory() override { Impl.releaseMemory(); }
109 
110 private:
111   ConstantHoistingPass Impl;
112 };
113 
114 } // end anonymous namespace
115 
116 char ConstantHoistingLegacyPass::ID = 0;
117 
118 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
119                       "Constant Hoisting", false, false)
120 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
122 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
123 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
124                     "Constant Hoisting", false, false)
125 
126 FunctionPass *llvm::createConstantHoistingPass() {
127   return new ConstantHoistingLegacyPass();
128 }
129 
130 /// \brief Perform the constant hoisting optimization for the given function.
131 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
132   if (skipFunction(Fn))
133     return false;
134 
135   DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
136   DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
137 
138   bool MadeChange =
139       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
140                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
141                    ConstHoistWithBlockFrequency
142                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
143                        : nullptr,
144                    Fn.getEntryBlock());
145 
146   if (MadeChange) {
147     DEBUG(dbgs() << "********** Function after Constant Hoisting: "
148                  << Fn.getName() << '\n');
149     DEBUG(dbgs() << Fn);
150   }
151   DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
152 
153   return MadeChange;
154 }
155 
156 /// \brief Find the constant materialization insertion point.
157 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
158                                                    unsigned Idx) const {
159   // If the operand is a cast instruction, then we have to materialize the
160   // constant before the cast instruction.
161   if (Idx != ~0U) {
162     Value *Opnd = Inst->getOperand(Idx);
163     if (auto CastInst = dyn_cast<Instruction>(Opnd))
164       if (CastInst->isCast())
165         return CastInst;
166   }
167 
168   // The simple and common case. This also includes constant expressions.
169   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
170     return Inst;
171 
172   // We can't insert directly before a phi node or an eh pad. Insert before
173   // the terminator of the incoming or dominating block.
174   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
175   if (Idx != ~0U && isa<PHINode>(Inst))
176     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
177 
178   // This must be an EH pad. Iterate over immediate dominators until we find a
179   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
180   // and terminators.
181   auto IDom = DT->getNode(Inst->getParent())->getIDom();
182   while (IDom->getBlock()->isEHPad()) {
183     assert(Entry != IDom->getBlock() && "eh pad in entry block");
184     IDom = IDom->getIDom();
185   }
186 
187   return IDom->getBlock()->getTerminator();
188 }
189 
190 /// \brief Given \p BBs as input, find another set of BBs which collectively
191 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
192 /// set found in \p BBs.
193 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
194                                  BasicBlock *Entry,
195                                  SmallPtrSet<BasicBlock *, 8> &BBs) {
196   assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
197   // Nodes on the current path to the root.
198   SmallPtrSet<BasicBlock *, 8> Path;
199   // Candidates includes any block 'BB' in set 'BBs' that is not strictly
200   // dominated by any other blocks in set 'BBs', and all nodes in the path
201   // in the dominator tree from Entry to 'BB'.
202   SmallPtrSet<BasicBlock *, 16> Candidates;
203   for (auto BB : BBs) {
204     Path.clear();
205     // Walk up the dominator tree until Entry or another BB in BBs
206     // is reached. Insert the nodes on the way to the Path.
207     BasicBlock *Node = BB;
208     // The "Path" is a candidate path to be added into Candidates set.
209     bool isCandidate = false;
210     do {
211       Path.insert(Node);
212       if (Node == Entry || Candidates.count(Node)) {
213         isCandidate = true;
214         break;
215       }
216       assert(DT.getNode(Node)->getIDom() &&
217              "Entry doens't dominate current Node");
218       Node = DT.getNode(Node)->getIDom()->getBlock();
219     } while (!BBs.count(Node));
220 
221     // If isCandidate is false, Node is another Block in BBs dominating
222     // current 'BB'. Drop the nodes on the Path.
223     if (!isCandidate)
224       continue;
225 
226     // Add nodes on the Path into Candidates.
227     Candidates.insert(Path.begin(), Path.end());
228   }
229 
230   // Sort the nodes in Candidates in top-down order and save the nodes
231   // in Orders.
232   unsigned Idx = 0;
233   SmallVector<BasicBlock *, 16> Orders;
234   Orders.push_back(Entry);
235   while (Idx != Orders.size()) {
236     BasicBlock *Node = Orders[Idx++];
237     for (auto ChildDomNode : DT.getNode(Node)->getChildren()) {
238       if (Candidates.count(ChildDomNode->getBlock()))
239         Orders.push_back(ChildDomNode->getBlock());
240     }
241   }
242 
243   // Visit Orders in bottom-up order.
244   using InsertPtsCostPair =
245       std::pair<SmallPtrSet<BasicBlock *, 16>, BlockFrequency>;
246 
247   // InsertPtsMap is a map from a BB to the best insertion points for the
248   // subtree of BB (subtree not including the BB itself).
249   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
250   InsertPtsMap.reserve(Orders.size() + 1);
251   for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
252     BasicBlock *Node = *RIt;
253     bool NodeInBBs = BBs.count(Node);
254     SmallPtrSet<BasicBlock *, 16> &InsertPts = InsertPtsMap[Node].first;
255     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
256 
257     // Return the optimal insert points in BBs.
258     if (Node == Entry) {
259       BBs.clear();
260       if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
261           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
262         BBs.insert(Entry);
263       else
264         BBs.insert(InsertPts.begin(), InsertPts.end());
265       break;
266     }
267 
268     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
269     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
270     // will update its parent's ParentInsertPts and ParentPtsFreq.
271     SmallPtrSet<BasicBlock *, 16> &ParentInsertPts = InsertPtsMap[Parent].first;
272     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
273     // Choose to insert in Node or in subtree of Node.
274     // Don't hoist to EHPad because we may not find a proper place to insert
275     // in EHPad.
276     // If the total frequency of InsertPts is the same as the frequency of the
277     // target Node, and InsertPts contains more than one nodes, choose hoisting
278     // to reduce code size.
279     if (NodeInBBs ||
280         (!Node->isEHPad() &&
281          (InsertPtsFreq > BFI.getBlockFreq(Node) ||
282           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
283       ParentInsertPts.insert(Node);
284       ParentPtsFreq += BFI.getBlockFreq(Node);
285     } else {
286       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
287       ParentPtsFreq += InsertPtsFreq;
288     }
289   }
290 }
291 
292 /// \brief Find an insertion point that dominates all uses.
293 SmallPtrSet<Instruction *, 8> ConstantHoistingPass::findConstantInsertionPoint(
294     const ConstantInfo &ConstInfo) const {
295   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
296   // Collect all basic blocks.
297   SmallPtrSet<BasicBlock *, 8> BBs;
298   SmallPtrSet<Instruction *, 8> InsertPts;
299   for (auto const &RCI : ConstInfo.RebasedConstants)
300     for (auto const &U : RCI.Uses)
301       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
302 
303   if (BBs.count(Entry)) {
304     InsertPts.insert(&Entry->front());
305     return InsertPts;
306   }
307 
308   if (BFI) {
309     findBestInsertionSet(*DT, *BFI, Entry, BBs);
310     for (auto BB : BBs) {
311       BasicBlock::iterator InsertPt = BB->begin();
312       for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
313         ;
314       InsertPts.insert(&*InsertPt);
315     }
316     return InsertPts;
317   }
318 
319   while (BBs.size() >= 2) {
320     BasicBlock *BB, *BB1, *BB2;
321     BB1 = *BBs.begin();
322     BB2 = *std::next(BBs.begin());
323     BB = DT->findNearestCommonDominator(BB1, BB2);
324     if (BB == Entry) {
325       InsertPts.insert(&Entry->front());
326       return InsertPts;
327     }
328     BBs.erase(BB1);
329     BBs.erase(BB2);
330     BBs.insert(BB);
331   }
332   assert((BBs.size() == 1) && "Expected only one element.");
333   Instruction &FirstInst = (*BBs.begin())->front();
334   InsertPts.insert(findMatInsertPt(&FirstInst));
335   return InsertPts;
336 }
337 
338 /// \brief Record constant integer ConstInt for instruction Inst at operand
339 /// index Idx.
340 ///
341 /// The operand at index Idx is not necessarily the constant integer itself. It
342 /// could also be a cast instruction or a constant expression that uses the
343 // constant integer.
344 void ConstantHoistingPass::collectConstantCandidates(
345     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
346     ConstantInt *ConstInt) {
347   unsigned Cost;
348   // Ask the target about the cost of materializing the constant for the given
349   // instruction and operand index.
350   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
351     Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
352                               ConstInt->getValue(), ConstInt->getType());
353   else
354     Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
355                               ConstInt->getType());
356 
357   // Ignore cheap integer constants.
358   if (Cost > TargetTransformInfo::TCC_Basic) {
359     ConstCandMapType::iterator Itr;
360     bool Inserted;
361     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
362     if (Inserted) {
363       ConstCandVec.push_back(ConstantCandidate(ConstInt));
364       Itr->second = ConstCandVec.size() - 1;
365     }
366     ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
367     DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
368             dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
369                    << " with cost " << Cost << '\n';
370           else
371           dbgs() << "Collect constant " << *ConstInt << " indirectly from "
372                  << *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
373                  << Cost << '\n';
374     );
375   }
376 }
377 
378 /// \brief Check the operand for instruction Inst at index Idx.
379 void ConstantHoistingPass::collectConstantCandidates(
380     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
381   Value *Opnd = Inst->getOperand(Idx);
382 
383   // Visit constant integers.
384   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
385     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
386     return;
387   }
388 
389   // Visit cast instructions that have constant integers.
390   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
391     // Only visit cast instructions, which have been skipped. All other
392     // instructions should have already been visited.
393     if (!CastInst->isCast())
394       return;
395 
396     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
397       // Pretend the constant is directly used by the instruction and ignore
398       // the cast instruction.
399       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
400       return;
401     }
402   }
403 
404   // Visit constant expressions that have constant integers.
405   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
406     // Only visit constant cast expressions.
407     if (!ConstExpr->isCast())
408       return;
409 
410     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
411       // Pretend the constant is directly used by the instruction and ignore
412       // the constant expression.
413       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
414       return;
415     }
416   }
417 }
418 
419 /// \brief Scan the instruction for expensive integer constants and record them
420 /// in the constant candidate vector.
421 void ConstantHoistingPass::collectConstantCandidates(
422     ConstCandMapType &ConstCandMap, Instruction *Inst) {
423   // Skip all cast instructions. They are visited indirectly later on.
424   if (Inst->isCast())
425     return;
426 
427   // Scan all operands.
428   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
429     // The cost of materializing the constants (defined in
430     // `TargetTransformInfo::getIntImmCost`) for instructions which only take
431     // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So
432     // it's safe for us to collect constant candidates from all IntrinsicInsts.
433     if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) {
434       collectConstantCandidates(ConstCandMap, Inst, Idx);
435     }
436   } // end of for all operands
437 }
438 
439 /// \brief Collect all integer constants in the function that cannot be folded
440 /// into an instruction itself.
441 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
442   ConstCandMapType ConstCandMap;
443   for (BasicBlock &BB : Fn)
444     for (Instruction &Inst : BB)
445       collectConstantCandidates(ConstCandMap, &Inst);
446 }
447 
448 // This helper function is necessary to deal with values that have different
449 // bit widths (APInt Operator- does not like that). If the value cannot be
450 // represented in uint64 we return an "empty" APInt. This is then interpreted
451 // as the value is not in range.
452 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
453   Optional<APInt> Res = None;
454   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
455                 V1.getBitWidth() : V2.getBitWidth();
456   uint64_t LimVal1 = V1.getLimitedValue();
457   uint64_t LimVal2 = V2.getLimitedValue();
458 
459   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
460     return Res;
461 
462   uint64_t Diff = LimVal1 - LimVal2;
463   return APInt(BW, Diff, true);
464 }
465 
466 // From a list of constants, one needs to picked as the base and the other
467 // constants will be transformed into an offset from that base constant. The
468 // question is which we can pick best? For example, consider these constants
469 // and their number of uses:
470 //
471 //  Constants| 2 | 4 | 12 | 42 |
472 //  NumUses  | 3 | 2 |  8 |  7 |
473 //
474 // Selecting constant 12 because it has the most uses will generate negative
475 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
476 // offsets lead to less optimal code generation, then there might be better
477 // solutions. Suppose immediates in the range of 0..35 are most optimally
478 // supported by the architecture, then selecting constant 2 is most optimal
479 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
480 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
481 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
482 // selecting the base constant the range of the offsets is a very important
483 // factor too that we take into account here. This algorithm calculates a total
484 // costs for selecting a constant as the base and substract the costs if
485 // immediates are out of range. It has quadratic complexity, so we call this
486 // function only when we're optimising for size and there are less than 100
487 // constants, we fall back to the straightforward algorithm otherwise
488 // which does not do all the offset calculations.
489 unsigned
490 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
491                                            ConstCandVecType::iterator E,
492                                            ConstCandVecType::iterator &MaxCostItr) {
493   unsigned NumUses = 0;
494 
495   if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) {
496     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
497       NumUses += ConstCand->Uses.size();
498       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
499         MaxCostItr = ConstCand;
500     }
501     return NumUses;
502   }
503 
504   DEBUG(dbgs() << "== Maximize constants in range ==\n");
505   int MaxCost = -1;
506   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
507     auto Value = ConstCand->ConstInt->getValue();
508     Type *Ty = ConstCand->ConstInt->getType();
509     int Cost = 0;
510     NumUses += ConstCand->Uses.size();
511     DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() << "\n");
512 
513     for (auto User : ConstCand->Uses) {
514       unsigned Opcode = User.Inst->getOpcode();
515       unsigned OpndIdx = User.OpndIdx;
516       Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
517       DEBUG(dbgs() << "Cost: " << Cost << "\n");
518 
519       for (auto C2 = S; C2 != E; ++C2) {
520         Optional<APInt> Diff = calculateOffsetDiff(
521                                    C2->ConstInt->getValue(),
522                                    ConstCand->ConstInt->getValue());
523         if (Diff) {
524           const int ImmCosts =
525             TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
526           Cost -= ImmCosts;
527           DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
528                        << "has penalty: " << ImmCosts << "\n"
529                        << "Adjusted cost: " << Cost << "\n");
530         }
531       }
532     }
533     DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
534     if (Cost > MaxCost) {
535       MaxCost = Cost;
536       MaxCostItr = ConstCand;
537       DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
538                    << "\n");
539     }
540   }
541   return NumUses;
542 }
543 
544 /// \brief Find the base constant within the given range and rebase all other
545 /// constants with respect to the base constant.
546 void ConstantHoistingPass::findAndMakeBaseConstant(
547     ConstCandVecType::iterator S, ConstCandVecType::iterator E) {
548   auto MaxCostItr = S;
549   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
550 
551   // Don't hoist constants that have only one use.
552   if (NumUses <= 1)
553     return;
554 
555   ConstantInfo ConstInfo;
556   ConstInfo.BaseConstant = MaxCostItr->ConstInt;
557   Type *Ty = ConstInfo.BaseConstant->getType();
558 
559   // Rebase the constants with respect to the base constant.
560   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
561     APInt Diff = ConstCand->ConstInt->getValue() -
562                  ConstInfo.BaseConstant->getValue();
563     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
564     ConstInfo.RebasedConstants.push_back(
565       RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
566   }
567   ConstantVec.push_back(std::move(ConstInfo));
568 }
569 
570 /// \brief Finds and combines constant candidates that can be easily
571 /// rematerialized with an add from a common base constant.
572 void ConstantHoistingPass::findBaseConstants() {
573   // Sort the constants by value and type. This invalidates the mapping!
574   std::sort(ConstCandVec.begin(), ConstCandVec.end(),
575             [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
576     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
577       return LHS.ConstInt->getType()->getBitWidth() <
578              RHS.ConstInt->getType()->getBitWidth();
579     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
580   });
581 
582   // Simple linear scan through the sorted constant candidate vector for viable
583   // merge candidates.
584   auto MinValItr = ConstCandVec.begin();
585   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
586        CC != E; ++CC) {
587     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
588       // Check if the constant is in range of an add with immediate.
589       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
590       if ((Diff.getBitWidth() <= 64) &&
591           TTI->isLegalAddImmediate(Diff.getSExtValue()))
592         continue;
593     }
594     // We either have now a different constant type or the constant is not in
595     // range of an add with immediate anymore.
596     findAndMakeBaseConstant(MinValItr, CC);
597     // Start a new base constant search.
598     MinValItr = CC;
599   }
600   // Finalize the last base constant search.
601   findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
602 }
603 
604 /// \brief Updates the operand at Idx in instruction Inst with the result of
605 ///        instruction Mat. If the instruction is a PHI node then special
606 ///        handling for duplicate values form the same incoming basic block is
607 ///        required.
608 /// \return The update will always succeed, but the return value indicated if
609 ///         Mat was used for the update or not.
610 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
611   if (auto PHI = dyn_cast<PHINode>(Inst)) {
612     // Check if any previous operand of the PHI node has the same incoming basic
613     // block. This is a very odd case that happens when the incoming basic block
614     // has a switch statement. In this case use the same value as the previous
615     // operand(s), otherwise we will fail verification due to different values.
616     // The values are actually the same, but the variable names are different
617     // and the verifier doesn't like that.
618     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
619     for (unsigned i = 0; i < Idx; ++i) {
620       if (PHI->getIncomingBlock(i) == IncomingBB) {
621         Value *IncomingVal = PHI->getIncomingValue(i);
622         Inst->setOperand(Idx, IncomingVal);
623         return false;
624       }
625     }
626   }
627 
628   Inst->setOperand(Idx, Mat);
629   return true;
630 }
631 
632 /// \brief Emit materialization code for all rebased constants and update their
633 /// users.
634 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
635                                              Constant *Offset,
636                                              const ConstantUser &ConstUser) {
637   Instruction *Mat = Base;
638   if (Offset) {
639     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
640                                                ConstUser.OpndIdx);
641     Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
642                                  "const_mat", InsertionPt);
643 
644     DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
645                  << " + " << *Offset << ") in BB "
646                  << Mat->getParent()->getName() << '\n' << *Mat << '\n');
647     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
648   }
649   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
650 
651   // Visit constant integer.
652   if (isa<ConstantInt>(Opnd)) {
653     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
654     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
655       Mat->eraseFromParent();
656     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
657     return;
658   }
659 
660   // Visit cast instruction.
661   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
662     assert(CastInst->isCast() && "Expected an cast instruction!");
663     // Check if we already have visited this cast instruction before to avoid
664     // unnecessary cloning.
665     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
666     if (!ClonedCastInst) {
667       ClonedCastInst = CastInst->clone();
668       ClonedCastInst->setOperand(0, Mat);
669       ClonedCastInst->insertAfter(CastInst);
670       // Use the same debug location as the original cast instruction.
671       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
672       DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
673                    << "To               : " << *ClonedCastInst << '\n');
674     }
675 
676     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
677     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
678     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
679     return;
680   }
681 
682   // Visit constant expression.
683   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
684     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
685     ConstExprInst->setOperand(0, Mat);
686     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
687                                                 ConstUser.OpndIdx));
688 
689     // Use the same debug location as the instruction we are about to update.
690     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
691 
692     DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
693                  << "From              : " << *ConstExpr << '\n');
694     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
695     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
696       ConstExprInst->eraseFromParent();
697       if (Offset)
698         Mat->eraseFromParent();
699     }
700     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
701     return;
702   }
703 }
704 
705 /// \brief Hoist and hide the base constant behind a bitcast and emit
706 /// materialization code for derived constants.
707 bool ConstantHoistingPass::emitBaseConstants() {
708   bool MadeChange = false;
709   for (auto const &ConstInfo : ConstantVec) {
710     // Hoist and hide the base constant behind a bitcast.
711     SmallPtrSet<Instruction *, 8> IPSet = findConstantInsertionPoint(ConstInfo);
712     assert(!IPSet.empty() && "IPSet is empty");
713 
714     unsigned UsesNum = 0;
715     unsigned ReBasesNum = 0;
716     for (Instruction *IP : IPSet) {
717       IntegerType *Ty = ConstInfo.BaseConstant->getType();
718       Instruction *Base =
719           new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
720 
721       Base->setDebugLoc(IP->getDebugLoc());
722 
723       DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant
724                    << ") to BB " << IP->getParent()->getName() << '\n'
725                    << *Base << '\n');
726 
727       // Emit materialization code for all rebased constants.
728       unsigned Uses = 0;
729       for (auto const &RCI : ConstInfo.RebasedConstants) {
730         for (auto const &U : RCI.Uses) {
731           Uses++;
732           BasicBlock *OrigMatInsertBB =
733               findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
734           // If Base constant is to be inserted in multiple places,
735           // generate rebase for U using the Base dominating U.
736           if (IPSet.size() == 1 ||
737               DT->dominates(Base->getParent(), OrigMatInsertBB)) {
738             emitBaseConstants(Base, RCI.Offset, U);
739             ReBasesNum++;
740           }
741 
742           Base->setDebugLoc(DILocation::getMergedLocation(Base->getDebugLoc(), U.Inst->getDebugLoc()));
743         }
744       }
745       UsesNum = Uses;
746 
747       // Use the same debug location as the last user of the constant.
748       assert(!Base->use_empty() && "The use list is empty!?");
749       assert(isa<Instruction>(Base->user_back()) &&
750              "All uses should be instructions.");
751     }
752     (void)UsesNum;
753     (void)ReBasesNum;
754     // Expect all uses are rebased after rebase is done.
755     assert(UsesNum == ReBasesNum && "Not all uses are rebased");
756 
757     NumConstantsHoisted++;
758 
759     // Base constant is also included in ConstInfo.RebasedConstants, so
760     // deduct 1 from ConstInfo.RebasedConstants.size().
761     NumConstantsRebased = ConstInfo.RebasedConstants.size() - 1;
762 
763     MadeChange = true;
764   }
765   return MadeChange;
766 }
767 
768 /// \brief Check all cast instructions we made a copy of and remove them if they
769 /// have no more users.
770 void ConstantHoistingPass::deleteDeadCastInst() const {
771   for (auto const &I : ClonedCastMap)
772     if (I.first->use_empty())
773       I.first->eraseFromParent();
774 }
775 
776 /// \brief Optimize expensive integer constants in the given function.
777 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
778                                    DominatorTree &DT, BlockFrequencyInfo *BFI,
779                                    BasicBlock &Entry) {
780   this->TTI = &TTI;
781   this->DT = &DT;
782   this->BFI = BFI;
783   this->Entry = &Entry;
784   // Collect all constant candidates.
785   collectConstantCandidates(Fn);
786 
787   // There are no constant candidates to worry about.
788   if (ConstCandVec.empty())
789     return false;
790 
791   // Combine constants that can be easily materialized with an add from a common
792   // base constant.
793   findBaseConstants();
794 
795   // There are no constants to emit.
796   if (ConstantVec.empty())
797     return false;
798 
799   // Finally hoist the base constant and emit materialization code for dependent
800   // constants.
801   bool MadeChange = emitBaseConstants();
802 
803   // Cleanup dead instructions.
804   deleteDeadCastInst();
805 
806   return MadeChange;
807 }
808 
809 PreservedAnalyses ConstantHoistingPass::run(Function &F,
810                                             FunctionAnalysisManager &AM) {
811   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
812   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
813   auto BFI = ConstHoistWithBlockFrequency
814                  ? &AM.getResult<BlockFrequencyAnalysis>(F)
815                  : nullptr;
816   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock()))
817     return PreservedAnalyses::all();
818 
819   PreservedAnalyses PA;
820   PA.preserveSet<CFGAnalyses>();
821   return PA;
822 }
823