1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer, a race detector. 11 // 12 // The tool is under development, for the details about previous versions see 13 // http://code.google.com/p/data-race-test 14 // 15 // The instrumentation phase is quite simple: 16 // - Insert calls to run-time library before every memory access. 17 // - Optimizations may apply to avoid instrumenting some of the accesses. 18 // - Insert calls at function entry/exit. 19 // The rest is handled by the run-time library. 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Instrumentation.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/ProfileData/InstrProf.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/EscapeEnumerator.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ModuleUtils.h" 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "tsan" 53 54 static cl::opt<bool> ClInstrumentMemoryAccesses( 55 "tsan-instrument-memory-accesses", cl::init(true), 56 cl::desc("Instrument memory accesses"), cl::Hidden); 57 static cl::opt<bool> ClInstrumentFuncEntryExit( 58 "tsan-instrument-func-entry-exit", cl::init(true), 59 cl::desc("Instrument function entry and exit"), cl::Hidden); 60 static cl::opt<bool> ClHandleCxxExceptions( 61 "tsan-handle-cxx-exceptions", cl::init(true), 62 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), 63 cl::Hidden); 64 static cl::opt<bool> ClInstrumentAtomics( 65 "tsan-instrument-atomics", cl::init(true), 66 cl::desc("Instrument atomics"), cl::Hidden); 67 static cl::opt<bool> ClInstrumentMemIntrinsics( 68 "tsan-instrument-memintrinsics", cl::init(true), 69 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 70 71 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 72 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 73 STATISTIC(NumOmittedReadsBeforeWrite, 74 "Number of reads ignored due to following writes"); 75 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 76 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 77 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 78 STATISTIC(NumOmittedReadsFromConstantGlobals, 79 "Number of reads from constant globals"); 80 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 81 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 82 83 static const char *const kTsanModuleCtorName = "tsan.module_ctor"; 84 static const char *const kTsanInitName = "__tsan_init"; 85 86 namespace { 87 88 /// ThreadSanitizer: instrument the code in module to find races. 89 struct ThreadSanitizer : public FunctionPass { 90 ThreadSanitizer() : FunctionPass(ID) {} 91 StringRef getPassName() const override; 92 void getAnalysisUsage(AnalysisUsage &AU) const override; 93 bool runOnFunction(Function &F) override; 94 bool doInitialization(Module &M) override; 95 static char ID; // Pass identification, replacement for typeid. 96 97 private: 98 void initializeCallbacks(Module &M); 99 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); 100 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 101 bool instrumentMemIntrinsic(Instruction *I); 102 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 103 SmallVectorImpl<Instruction *> &All, 104 const DataLayout &DL); 105 bool addrPointsToConstantData(Value *Addr); 106 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); 107 void InsertRuntimeIgnores(Function &F); 108 109 Type *IntptrTy; 110 IntegerType *OrdTy; 111 // Callbacks to run-time library are computed in doInitialization. 112 Function *TsanFuncEntry; 113 Function *TsanFuncExit; 114 Function *TsanIgnoreBegin; 115 Function *TsanIgnoreEnd; 116 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 117 static const size_t kNumberOfAccessSizes = 5; 118 Function *TsanRead[kNumberOfAccessSizes]; 119 Function *TsanWrite[kNumberOfAccessSizes]; 120 Function *TsanUnalignedRead[kNumberOfAccessSizes]; 121 Function *TsanUnalignedWrite[kNumberOfAccessSizes]; 122 Function *TsanAtomicLoad[kNumberOfAccessSizes]; 123 Function *TsanAtomicStore[kNumberOfAccessSizes]; 124 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes]; 125 Function *TsanAtomicCAS[kNumberOfAccessSizes]; 126 Function *TsanAtomicThreadFence; 127 Function *TsanAtomicSignalFence; 128 Function *TsanVptrUpdate; 129 Function *TsanVptrLoad; 130 Function *MemmoveFn, *MemcpyFn, *MemsetFn; 131 Function *TsanCtorFunction; 132 }; 133 } // namespace 134 135 char ThreadSanitizer::ID = 0; 136 INITIALIZE_PASS_BEGIN( 137 ThreadSanitizer, "tsan", 138 "ThreadSanitizer: detects data races.", 139 false, false) 140 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 141 INITIALIZE_PASS_END( 142 ThreadSanitizer, "tsan", 143 "ThreadSanitizer: detects data races.", 144 false, false) 145 146 StringRef ThreadSanitizer::getPassName() const { return "ThreadSanitizer"; } 147 148 void ThreadSanitizer::getAnalysisUsage(AnalysisUsage &AU) const { 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 } 151 152 FunctionPass *llvm::createThreadSanitizerPass() { 153 return new ThreadSanitizer(); 154 } 155 156 void ThreadSanitizer::initializeCallbacks(Module &M) { 157 IRBuilder<> IRB(M.getContext()); 158 AttributeSet Attr; 159 Attr = Attr.addAttribute(M.getContext(), AttributeSet::FunctionIndex, Attribute::NoUnwind); 160 // Initialize the callbacks. 161 TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 162 "__tsan_func_entry", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 163 TsanFuncExit = checkSanitizerInterfaceFunction( 164 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy(), nullptr)); 165 TsanIgnoreBegin = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 166 "__tsan_ignore_thread_begin", Attr, IRB.getVoidTy(), nullptr)); 167 TsanIgnoreEnd = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 168 "__tsan_ignore_thread_end", Attr, IRB.getVoidTy(), nullptr)); 169 OrdTy = IRB.getInt32Ty(); 170 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 171 const unsigned ByteSize = 1U << i; 172 const unsigned BitSize = ByteSize * 8; 173 std::string ByteSizeStr = utostr(ByteSize); 174 std::string BitSizeStr = utostr(BitSize); 175 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 176 TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 177 ReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 178 179 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 180 TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 181 WriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 182 183 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 184 TsanUnalignedRead[i] = 185 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 186 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 187 188 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 189 TsanUnalignedWrite[i] = 190 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 191 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 192 193 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 194 Type *PtrTy = Ty->getPointerTo(); 195 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 196 TsanAtomicLoad[i] = checkSanitizerInterfaceFunction( 197 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy, nullptr)); 198 199 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 200 TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 201 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr)); 202 203 for (int op = AtomicRMWInst::FIRST_BINOP; 204 op <= AtomicRMWInst::LAST_BINOP; ++op) { 205 TsanAtomicRMW[op][i] = nullptr; 206 const char *NamePart = nullptr; 207 if (op == AtomicRMWInst::Xchg) 208 NamePart = "_exchange"; 209 else if (op == AtomicRMWInst::Add) 210 NamePart = "_fetch_add"; 211 else if (op == AtomicRMWInst::Sub) 212 NamePart = "_fetch_sub"; 213 else if (op == AtomicRMWInst::And) 214 NamePart = "_fetch_and"; 215 else if (op == AtomicRMWInst::Or) 216 NamePart = "_fetch_or"; 217 else if (op == AtomicRMWInst::Xor) 218 NamePart = "_fetch_xor"; 219 else if (op == AtomicRMWInst::Nand) 220 NamePart = "_fetch_nand"; 221 else 222 continue; 223 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 224 TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction( 225 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy, nullptr)); 226 } 227 228 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 229 "_compare_exchange_val"); 230 TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 231 AtomicCASName, Attr, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr)); 232 } 233 TsanVptrUpdate = checkSanitizerInterfaceFunction( 234 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), 235 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr)); 236 TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 237 "__tsan_vptr_read", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 238 TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 239 "__tsan_atomic_thread_fence", Attr, IRB.getVoidTy(), OrdTy, nullptr)); 240 TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 241 "__tsan_atomic_signal_fence", Attr, IRB.getVoidTy(), OrdTy, nullptr)); 242 243 MemmoveFn = checkSanitizerInterfaceFunction( 244 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 245 IRB.getInt8PtrTy(), IntptrTy, nullptr)); 246 MemcpyFn = checkSanitizerInterfaceFunction( 247 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 248 IRB.getInt8PtrTy(), IntptrTy, nullptr)); 249 MemsetFn = checkSanitizerInterfaceFunction( 250 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 251 IRB.getInt32Ty(), IntptrTy, nullptr)); 252 } 253 254 bool ThreadSanitizer::doInitialization(Module &M) { 255 const DataLayout &DL = M.getDataLayout(); 256 IntptrTy = DL.getIntPtrType(M.getContext()); 257 std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 258 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 259 /*InitArgs=*/{}); 260 261 appendToGlobalCtors(M, TsanCtorFunction, 0); 262 263 return true; 264 } 265 266 static bool isVtableAccess(Instruction *I) { 267 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 268 return Tag->isTBAAVtableAccess(); 269 return false; 270 } 271 272 // Do not instrument known races/"benign races" that come from compiler 273 // instrumentatin. The user has no way of suppressing them. 274 static bool shouldInstrumentReadWriteFromAddress(Value *Addr) { 275 // Peel off GEPs and BitCasts. 276 Addr = Addr->stripInBoundsOffsets(); 277 278 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 279 if (GV->hasSection()) { 280 StringRef SectionName = GV->getSection(); 281 // Check if the global is in the PGO counters section. 282 if (SectionName.endswith(getInstrProfCountersSectionName( 283 /*AddSegment=*/false))) 284 return false; 285 } 286 287 // Check if the global is private gcov data. 288 if (GV->getName().startswith("__llvm_gcov") || 289 GV->getName().startswith("__llvm_gcda")) 290 return false; 291 } 292 293 // Do not instrument acesses from different address spaces; we cannot deal 294 // with them. 295 if (Addr) { 296 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 297 if (PtrTy->getPointerAddressSpace() != 0) 298 return false; 299 } 300 301 return true; 302 } 303 304 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 305 // If this is a GEP, just analyze its pointer operand. 306 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 307 Addr = GEP->getPointerOperand(); 308 309 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 310 if (GV->isConstant()) { 311 // Reads from constant globals can not race with any writes. 312 NumOmittedReadsFromConstantGlobals++; 313 return true; 314 } 315 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 316 if (isVtableAccess(L)) { 317 // Reads from a vtable pointer can not race with any writes. 318 NumOmittedReadsFromVtable++; 319 return true; 320 } 321 } 322 return false; 323 } 324 325 // Instrumenting some of the accesses may be proven redundant. 326 // Currently handled: 327 // - read-before-write (within same BB, no calls between) 328 // - not captured variables 329 // 330 // We do not handle some of the patterns that should not survive 331 // after the classic compiler optimizations. 332 // E.g. two reads from the same temp should be eliminated by CSE, 333 // two writes should be eliminated by DSE, etc. 334 // 335 // 'Local' is a vector of insns within the same BB (no calls between). 336 // 'All' is a vector of insns that will be instrumented. 337 void ThreadSanitizer::chooseInstructionsToInstrument( 338 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All, 339 const DataLayout &DL) { 340 SmallSet<Value*, 8> WriteTargets; 341 // Iterate from the end. 342 for (Instruction *I : reverse(Local)) { 343 if (StoreInst *Store = dyn_cast<StoreInst>(I)) { 344 Value *Addr = Store->getPointerOperand(); 345 if (!shouldInstrumentReadWriteFromAddress(Addr)) 346 continue; 347 WriteTargets.insert(Addr); 348 } else { 349 LoadInst *Load = cast<LoadInst>(I); 350 Value *Addr = Load->getPointerOperand(); 351 if (!shouldInstrumentReadWriteFromAddress(Addr)) 352 continue; 353 if (WriteTargets.count(Addr)) { 354 // We will write to this temp, so no reason to analyze the read. 355 NumOmittedReadsBeforeWrite++; 356 continue; 357 } 358 if (addrPointsToConstantData(Addr)) { 359 // Addr points to some constant data -- it can not race with any writes. 360 continue; 361 } 362 } 363 Value *Addr = isa<StoreInst>(*I) 364 ? cast<StoreInst>(I)->getPointerOperand() 365 : cast<LoadInst>(I)->getPointerOperand(); 366 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 367 !PointerMayBeCaptured(Addr, true, true)) { 368 // The variable is addressable but not captured, so it cannot be 369 // referenced from a different thread and participate in a data race 370 // (see llvm/Analysis/CaptureTracking.h for details). 371 NumOmittedNonCaptured++; 372 continue; 373 } 374 All.push_back(I); 375 } 376 Local.clear(); 377 } 378 379 static bool isAtomic(Instruction *I) { 380 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 381 return LI->isAtomic() && LI->getSynchScope() == CrossThread; 382 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 383 return SI->isAtomic() && SI->getSynchScope() == CrossThread; 384 if (isa<AtomicRMWInst>(I)) 385 return true; 386 if (isa<AtomicCmpXchgInst>(I)) 387 return true; 388 if (isa<FenceInst>(I)) 389 return true; 390 return false; 391 } 392 393 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { 394 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 395 IRB.CreateCall(TsanIgnoreBegin); 396 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); 397 while (IRBuilder<> *AtExit = EE.Next()) { 398 AtExit->CreateCall(TsanIgnoreEnd); 399 } 400 } 401 402 bool ThreadSanitizer::runOnFunction(Function &F) { 403 // This is required to prevent instrumenting call to __tsan_init from within 404 // the module constructor. 405 if (&F == TsanCtorFunction) 406 return false; 407 initializeCallbacks(*F.getParent()); 408 SmallVector<Instruction*, 8> AllLoadsAndStores; 409 SmallVector<Instruction*, 8> LocalLoadsAndStores; 410 SmallVector<Instruction*, 8> AtomicAccesses; 411 SmallVector<Instruction*, 8> MemIntrinCalls; 412 bool Res = false; 413 bool HasCalls = false; 414 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 415 const DataLayout &DL = F.getParent()->getDataLayout(); 416 const TargetLibraryInfo *TLI = 417 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 418 419 // Traverse all instructions, collect loads/stores/returns, check for calls. 420 for (auto &BB : F) { 421 for (auto &Inst : BB) { 422 if (isAtomic(&Inst)) 423 AtomicAccesses.push_back(&Inst); 424 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 425 LocalLoadsAndStores.push_back(&Inst); 426 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 427 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 428 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 429 if (isa<MemIntrinsic>(Inst)) 430 MemIntrinCalls.push_back(&Inst); 431 HasCalls = true; 432 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 433 DL); 434 } 435 } 436 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 437 } 438 439 // We have collected all loads and stores. 440 // FIXME: many of these accesses do not need to be checked for races 441 // (e.g. variables that do not escape, etc). 442 443 // Instrument memory accesses only if we want to report bugs in the function. 444 if (ClInstrumentMemoryAccesses && SanitizeFunction) 445 for (auto Inst : AllLoadsAndStores) { 446 Res |= instrumentLoadOrStore(Inst, DL); 447 } 448 449 // Instrument atomic memory accesses in any case (they can be used to 450 // implement synchronization). 451 if (ClInstrumentAtomics) 452 for (auto Inst : AtomicAccesses) { 453 Res |= instrumentAtomic(Inst, DL); 454 } 455 456 if (ClInstrumentMemIntrinsics && SanitizeFunction) 457 for (auto Inst : MemIntrinCalls) { 458 Res |= instrumentMemIntrinsic(Inst); 459 } 460 461 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { 462 assert(!F.hasFnAttribute(Attribute::SanitizeThread)); 463 if (HasCalls) 464 InsertRuntimeIgnores(F); 465 } 466 467 // Instrument function entry/exit points if there were instrumented accesses. 468 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 469 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 470 Value *ReturnAddress = IRB.CreateCall( 471 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 472 IRB.getInt32(0)); 473 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 474 475 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); 476 while (IRBuilder<> *AtExit = EE.Next()) { 477 AtExit->CreateCall(TsanFuncExit, {}); 478 } 479 Res = true; 480 } 481 return Res; 482 } 483 484 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I, 485 const DataLayout &DL) { 486 IRBuilder<> IRB(I); 487 bool IsWrite = isa<StoreInst>(*I); 488 Value *Addr = IsWrite 489 ? cast<StoreInst>(I)->getPointerOperand() 490 : cast<LoadInst>(I)->getPointerOperand(); 491 int Idx = getMemoryAccessFuncIndex(Addr, DL); 492 if (Idx < 0) 493 return false; 494 if (IsWrite && isVtableAccess(I)) { 495 DEBUG(dbgs() << " VPTR : " << *I << "\n"); 496 Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); 497 // StoredValue may be a vector type if we are storing several vptrs at once. 498 // In this case, just take the first element of the vector since this is 499 // enough to find vptr races. 500 if (isa<VectorType>(StoredValue->getType())) 501 StoredValue = IRB.CreateExtractElement( 502 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 503 if (StoredValue->getType()->isIntegerTy()) 504 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 505 // Call TsanVptrUpdate. 506 IRB.CreateCall(TsanVptrUpdate, 507 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 508 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 509 NumInstrumentedVtableWrites++; 510 return true; 511 } 512 if (!IsWrite && isVtableAccess(I)) { 513 IRB.CreateCall(TsanVptrLoad, 514 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 515 NumInstrumentedVtableReads++; 516 return true; 517 } 518 const unsigned Alignment = IsWrite 519 ? cast<StoreInst>(I)->getAlignment() 520 : cast<LoadInst>(I)->getAlignment(); 521 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 522 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 523 Value *OnAccessFunc = nullptr; 524 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) 525 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 526 else 527 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 528 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 529 if (IsWrite) NumInstrumentedWrites++; 530 else NumInstrumentedReads++; 531 return true; 532 } 533 534 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 535 uint32_t v = 0; 536 switch (ord) { 537 case AtomicOrdering::NotAtomic: 538 llvm_unreachable("unexpected atomic ordering!"); 539 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; 540 case AtomicOrdering::Monotonic: v = 0; break; 541 // Not specified yet: 542 // case AtomicOrdering::Consume: v = 1; break; 543 case AtomicOrdering::Acquire: v = 2; break; 544 case AtomicOrdering::Release: v = 3; break; 545 case AtomicOrdering::AcquireRelease: v = 4; break; 546 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 547 } 548 return IRB->getInt32(v); 549 } 550 551 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 552 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 553 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 554 // instead we simply replace them with regular function calls, which are then 555 // intercepted by the run-time. 556 // Since tsan is running after everyone else, the calls should not be 557 // replaced back with intrinsics. If that becomes wrong at some point, 558 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 559 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 560 IRBuilder<> IRB(I); 561 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 562 IRB.CreateCall( 563 MemsetFn, 564 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 565 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 566 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 567 I->eraseFromParent(); 568 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 569 IRB.CreateCall( 570 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 571 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 572 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 573 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 574 I->eraseFromParent(); 575 } 576 return false; 577 } 578 579 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 580 // standards. For background see C++11 standard. A slightly older, publicly 581 // available draft of the standard (not entirely up-to-date, but close enough 582 // for casual browsing) is available here: 583 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 584 // The following page contains more background information: 585 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 586 587 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 588 IRBuilder<> IRB(I); 589 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 590 Value *Addr = LI->getPointerOperand(); 591 int Idx = getMemoryAccessFuncIndex(Addr, DL); 592 if (Idx < 0) 593 return false; 594 const unsigned ByteSize = 1U << Idx; 595 const unsigned BitSize = ByteSize * 8; 596 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 597 Type *PtrTy = Ty->getPointerTo(); 598 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 599 createOrdering(&IRB, LI->getOrdering())}; 600 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 601 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 602 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); 603 I->replaceAllUsesWith(Cast); 604 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 605 Value *Addr = SI->getPointerOperand(); 606 int Idx = getMemoryAccessFuncIndex(Addr, DL); 607 if (Idx < 0) 608 return false; 609 const unsigned ByteSize = 1U << Idx; 610 const unsigned BitSize = ByteSize * 8; 611 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 612 Type *PtrTy = Ty->getPointerTo(); 613 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 614 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), 615 createOrdering(&IRB, SI->getOrdering())}; 616 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 617 ReplaceInstWithInst(I, C); 618 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 619 Value *Addr = RMWI->getPointerOperand(); 620 int Idx = getMemoryAccessFuncIndex(Addr, DL); 621 if (Idx < 0) 622 return false; 623 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 624 if (!F) 625 return false; 626 const unsigned ByteSize = 1U << Idx; 627 const unsigned BitSize = ByteSize * 8; 628 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 629 Type *PtrTy = Ty->getPointerTo(); 630 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 631 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 632 createOrdering(&IRB, RMWI->getOrdering())}; 633 CallInst *C = CallInst::Create(F, Args); 634 ReplaceInstWithInst(I, C); 635 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 636 Value *Addr = CASI->getPointerOperand(); 637 int Idx = getMemoryAccessFuncIndex(Addr, DL); 638 if (Idx < 0) 639 return false; 640 const unsigned ByteSize = 1U << Idx; 641 const unsigned BitSize = ByteSize * 8; 642 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 643 Type *PtrTy = Ty->getPointerTo(); 644 Value *CmpOperand = 645 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); 646 Value *NewOperand = 647 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); 648 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 649 CmpOperand, 650 NewOperand, 651 createOrdering(&IRB, CASI->getSuccessOrdering()), 652 createOrdering(&IRB, CASI->getFailureOrdering())}; 653 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 654 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 655 Value *OldVal = C; 656 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 657 if (Ty != OrigOldValTy) { 658 // The value is a pointer, so we need to cast the return value. 659 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 660 } 661 662 Value *Res = 663 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 664 Res = IRB.CreateInsertValue(Res, Success, 1); 665 666 I->replaceAllUsesWith(Res); 667 I->eraseFromParent(); 668 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 669 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 670 Function *F = FI->getSynchScope() == SingleThread ? 671 TsanAtomicSignalFence : TsanAtomicThreadFence; 672 CallInst *C = CallInst::Create(F, Args); 673 ReplaceInstWithInst(I, C); 674 } 675 return true; 676 } 677 678 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, 679 const DataLayout &DL) { 680 Type *OrigPtrTy = Addr->getType(); 681 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 682 assert(OrigTy->isSized()); 683 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 684 if (TypeSize != 8 && TypeSize != 16 && 685 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 686 NumAccessesWithBadSize++; 687 // Ignore all unusual sizes. 688 return -1; 689 } 690 size_t Idx = countTrailingZeros(TypeSize / 8); 691 assert(Idx < kNumberOfAccessSizes); 692 return Idx; 693 } 694