1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
10 //
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
13 //
14 // The instrumentation phase is quite simple:
15 // - Insert calls to run-time library before every memory access.
16 // - Optimizations may apply to avoid instrumenting some of the accesses.
17 // - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
20
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/ProfileData/InstrProf.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Instrumentation.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/ModuleUtils.h"
51
52 using namespace llvm;
53
54 #define DEBUG_TYPE "tsan"
55
56 static cl::opt<bool> ClInstrumentMemoryAccesses(
57 "tsan-instrument-memory-accesses", cl::init(true),
58 cl::desc("Instrument memory accesses"), cl::Hidden);
59 static cl::opt<bool>
60 ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
61 cl::desc("Instrument function entry and exit"),
62 cl::Hidden);
63 static cl::opt<bool> ClHandleCxxExceptions(
64 "tsan-handle-cxx-exceptions", cl::init(true),
65 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
66 cl::Hidden);
67 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics",
68 cl::init(true),
69 cl::desc("Instrument atomics"),
70 cl::Hidden);
71 static cl::opt<bool> ClInstrumentMemIntrinsics(
72 "tsan-instrument-memintrinsics", cl::init(true),
73 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
74 static cl::opt<bool> ClDistinguishVolatile(
75 "tsan-distinguish-volatile", cl::init(false),
76 cl::desc("Emit special instrumentation for accesses to volatiles"),
77 cl::Hidden);
78 static cl::opt<bool> ClInstrumentReadBeforeWrite(
79 "tsan-instrument-read-before-write", cl::init(false),
80 cl::desc("Do not eliminate read instrumentation for read-before-writes"),
81 cl::Hidden);
82 static cl::opt<bool> ClCompoundReadBeforeWrite(
83 "tsan-compound-read-before-write", cl::init(false),
84 cl::desc("Emit special compound instrumentation for reads-before-writes"),
85 cl::Hidden);
86
87 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
88 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
89 STATISTIC(NumOmittedReadsBeforeWrite,
90 "Number of reads ignored due to following writes");
91 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
92 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
93 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
94 STATISTIC(NumOmittedReadsFromConstantGlobals,
95 "Number of reads from constant globals");
96 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
97 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
98
99 const char kTsanModuleCtorName[] = "tsan.module_ctor";
100 const char kTsanInitName[] = "__tsan_init";
101
102 namespace {
103
104 /// ThreadSanitizer: instrument the code in module to find races.
105 ///
106 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
107 /// declarations into the module if they don't exist already. Instantiating
108 /// ensures the __tsan_init function is in the list of global constructors for
109 /// the module.
110 struct ThreadSanitizer {
ThreadSanitizer__anona509a5d20111::ThreadSanitizer111 ThreadSanitizer() {
112 // Check options and warn user.
113 if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) {
114 errs()
115 << "warning: Option -tsan-compound-read-before-write has no effect "
116 "when -tsan-instrument-read-before-write is set.\n";
117 }
118 }
119
120 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
121
122 private:
123 // Internal Instruction wrapper that contains more information about the
124 // Instruction from prior analysis.
125 struct InstructionInfo {
126 // Instrumentation emitted for this instruction is for a compounded set of
127 // read and write operations in the same basic block.
128 static constexpr unsigned kCompoundRW = (1U << 0);
129
InstructionInfo__anona509a5d20111::ThreadSanitizer::InstructionInfo130 explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {}
131
132 Instruction *Inst;
133 unsigned Flags = 0;
134 };
135
136 void initialize(Module &M);
137 bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL);
138 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
139 bool instrumentMemIntrinsic(Instruction *I);
140 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
141 SmallVectorImpl<InstructionInfo> &All,
142 const DataLayout &DL);
143 bool addrPointsToConstantData(Value *Addr);
144 int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL);
145 void InsertRuntimeIgnores(Function &F);
146
147 Type *IntptrTy;
148 FunctionCallee TsanFuncEntry;
149 FunctionCallee TsanFuncExit;
150 FunctionCallee TsanIgnoreBegin;
151 FunctionCallee TsanIgnoreEnd;
152 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
153 static const size_t kNumberOfAccessSizes = 5;
154 FunctionCallee TsanRead[kNumberOfAccessSizes];
155 FunctionCallee TsanWrite[kNumberOfAccessSizes];
156 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
157 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
158 FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
159 FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
160 FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
161 FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
162 FunctionCallee TsanCompoundRW[kNumberOfAccessSizes];
163 FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes];
164 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
165 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
166 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
167 [kNumberOfAccessSizes];
168 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
169 FunctionCallee TsanAtomicThreadFence;
170 FunctionCallee TsanAtomicSignalFence;
171 FunctionCallee TsanVptrUpdate;
172 FunctionCallee TsanVptrLoad;
173 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
174 };
175
insertModuleCtor(Module & M)176 void insertModuleCtor(Module &M) {
177 getOrCreateSanitizerCtorAndInitFunctions(
178 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
179 /*InitArgs=*/{},
180 // This callback is invoked when the functions are created the first
181 // time. Hook them into the global ctors list in that case:
182 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
183 }
184 } // namespace
185
run(Function & F,FunctionAnalysisManager & FAM)186 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
187 FunctionAnalysisManager &FAM) {
188 ThreadSanitizer TSan;
189 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
190 return PreservedAnalyses::none();
191 return PreservedAnalyses::all();
192 }
193
run(Module & M,ModuleAnalysisManager & MAM)194 PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M,
195 ModuleAnalysisManager &MAM) {
196 insertModuleCtor(M);
197 return PreservedAnalyses::none();
198 }
initialize(Module & M)199 void ThreadSanitizer::initialize(Module &M) {
200 const DataLayout &DL = M.getDataLayout();
201 IntptrTy = DL.getIntPtrType(M.getContext());
202
203 IRBuilder<> IRB(M.getContext());
204 AttributeList Attr;
205 Attr = Attr.addFnAttribute(M.getContext(), Attribute::NoUnwind);
206 // Initialize the callbacks.
207 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
208 IRB.getVoidTy(), IRB.getInt8PtrTy());
209 TsanFuncExit =
210 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
211 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
212 IRB.getVoidTy());
213 TsanIgnoreEnd =
214 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
215 IntegerType *OrdTy = IRB.getInt32Ty();
216 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
217 const unsigned ByteSize = 1U << i;
218 const unsigned BitSize = ByteSize * 8;
219 std::string ByteSizeStr = utostr(ByteSize);
220 std::string BitSizeStr = utostr(BitSize);
221 SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
222 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
223 IRB.getInt8PtrTy());
224
225 SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
226 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
227 IRB.getInt8PtrTy());
228
229 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
230 TsanUnalignedRead[i] = M.getOrInsertFunction(
231 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
232
233 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
234 TsanUnalignedWrite[i] = M.getOrInsertFunction(
235 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
236
237 SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
238 TsanVolatileRead[i] = M.getOrInsertFunction(
239 VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
240
241 SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
242 TsanVolatileWrite[i] = M.getOrInsertFunction(
243 VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
244
245 SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
246 ByteSizeStr);
247 TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
248 UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
249
250 SmallString<64> UnalignedVolatileWriteName(
251 "__tsan_unaligned_volatile_write" + ByteSizeStr);
252 TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
253 UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
254
255 SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr);
256 TsanCompoundRW[i] = M.getOrInsertFunction(
257 CompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
258
259 SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
260 ByteSizeStr);
261 TsanUnalignedCompoundRW[i] = M.getOrInsertFunction(
262 UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
263
264 Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
265 Type *PtrTy = Ty->getPointerTo();
266 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
267 {
268 AttributeList AL = Attr;
269 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
270 TsanAtomicLoad[i] =
271 M.getOrInsertFunction(AtomicLoadName, AL, Ty, PtrTy, OrdTy);
272 }
273
274 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
275 {
276 AttributeList AL = Attr;
277 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
278 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt);
279 TsanAtomicStore[i] = M.getOrInsertFunction(
280 AtomicStoreName, AL, IRB.getVoidTy(), PtrTy, Ty, OrdTy);
281 }
282
283 for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
284 Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
285 TsanAtomicRMW[Op][i] = nullptr;
286 const char *NamePart = nullptr;
287 if (Op == AtomicRMWInst::Xchg)
288 NamePart = "_exchange";
289 else if (Op == AtomicRMWInst::Add)
290 NamePart = "_fetch_add";
291 else if (Op == AtomicRMWInst::Sub)
292 NamePart = "_fetch_sub";
293 else if (Op == AtomicRMWInst::And)
294 NamePart = "_fetch_and";
295 else if (Op == AtomicRMWInst::Or)
296 NamePart = "_fetch_or";
297 else if (Op == AtomicRMWInst::Xor)
298 NamePart = "_fetch_xor";
299 else if (Op == AtomicRMWInst::Nand)
300 NamePart = "_fetch_nand";
301 else
302 continue;
303 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
304 {
305 AttributeList AL = Attr;
306 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
307 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt);
308 TsanAtomicRMW[Op][i] =
309 M.getOrInsertFunction(RMWName, AL, Ty, PtrTy, Ty, OrdTy);
310 }
311 }
312
313 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
314 "_compare_exchange_val");
315 {
316 AttributeList AL = Attr;
317 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
318 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt);
319 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
320 AL = AL.addParamAttribute(M.getContext(), 4, Attribute::ZExt);
321 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, AL, Ty, PtrTy, Ty,
322 Ty, OrdTy, OrdTy);
323 }
324 }
325 TsanVptrUpdate =
326 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
327 IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
328 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
329 IRB.getVoidTy(), IRB.getInt8PtrTy());
330 {
331 AttributeList AL = Attr;
332 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
333 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence",
334 AL, IRB.getVoidTy(), OrdTy);
335 }
336 {
337 AttributeList AL = Attr;
338 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
339 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence",
340 AL, IRB.getVoidTy(), OrdTy);
341 }
342
343 MemmoveFn =
344 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(),
345 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
346 MemcpyFn =
347 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(),
348 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
349 MemsetFn =
350 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(),
351 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
352 }
353
isVtableAccess(Instruction * I)354 static bool isVtableAccess(Instruction *I) {
355 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
356 return Tag->isTBAAVtableAccess();
357 return false;
358 }
359
360 // Do not instrument known races/"benign races" that come from compiler
361 // instrumentatin. The user has no way of suppressing them.
shouldInstrumentReadWriteFromAddress(const Module * M,Value * Addr)362 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
363 // Peel off GEPs and BitCasts.
364 Addr = Addr->stripInBoundsOffsets();
365
366 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
367 if (GV->hasSection()) {
368 StringRef SectionName = GV->getSection();
369 // Check if the global is in the PGO counters section.
370 auto OF = Triple(M->getTargetTriple()).getObjectFormat();
371 if (SectionName.endswith(
372 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
373 return false;
374 }
375
376 // Check if the global is private gcov data.
377 if (GV->getName().startswith("__llvm_gcov") ||
378 GV->getName().startswith("__llvm_gcda"))
379 return false;
380 }
381
382 // Do not instrument acesses from different address spaces; we cannot deal
383 // with them.
384 if (Addr) {
385 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
386 if (PtrTy->getPointerAddressSpace() != 0)
387 return false;
388 }
389
390 return true;
391 }
392
addrPointsToConstantData(Value * Addr)393 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
394 // If this is a GEP, just analyze its pointer operand.
395 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
396 Addr = GEP->getPointerOperand();
397
398 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
399 if (GV->isConstant()) {
400 // Reads from constant globals can not race with any writes.
401 NumOmittedReadsFromConstantGlobals++;
402 return true;
403 }
404 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
405 if (isVtableAccess(L)) {
406 // Reads from a vtable pointer can not race with any writes.
407 NumOmittedReadsFromVtable++;
408 return true;
409 }
410 }
411 return false;
412 }
413
414 // Instrumenting some of the accesses may be proven redundant.
415 // Currently handled:
416 // - read-before-write (within same BB, no calls between)
417 // - not captured variables
418 //
419 // We do not handle some of the patterns that should not survive
420 // after the classic compiler optimizations.
421 // E.g. two reads from the same temp should be eliminated by CSE,
422 // two writes should be eliminated by DSE, etc.
423 //
424 // 'Local' is a vector of insns within the same BB (no calls between).
425 // 'All' is a vector of insns that will be instrumented.
chooseInstructionsToInstrument(SmallVectorImpl<Instruction * > & Local,SmallVectorImpl<InstructionInfo> & All,const DataLayout & DL)426 void ThreadSanitizer::chooseInstructionsToInstrument(
427 SmallVectorImpl<Instruction *> &Local,
428 SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) {
429 DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All
430 // Iterate from the end.
431 for (Instruction *I : reverse(Local)) {
432 const bool IsWrite = isa<StoreInst>(*I);
433 Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand()
434 : cast<LoadInst>(I)->getPointerOperand();
435
436 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
437 continue;
438
439 if (!IsWrite) {
440 const auto WriteEntry = WriteTargets.find(Addr);
441 if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) {
442 auto &WI = All[WriteEntry->second];
443 // If we distinguish volatile accesses and if either the read or write
444 // is volatile, do not omit any instrumentation.
445 const bool AnyVolatile =
446 ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() ||
447 cast<StoreInst>(WI.Inst)->isVolatile());
448 if (!AnyVolatile) {
449 // We will write to this temp, so no reason to analyze the read.
450 // Mark the write instruction as compound.
451 WI.Flags |= InstructionInfo::kCompoundRW;
452 NumOmittedReadsBeforeWrite++;
453 continue;
454 }
455 }
456
457 if (addrPointsToConstantData(Addr)) {
458 // Addr points to some constant data -- it can not race with any writes.
459 continue;
460 }
461 }
462
463 if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
464 !PointerMayBeCaptured(Addr, true, true)) {
465 // The variable is addressable but not captured, so it cannot be
466 // referenced from a different thread and participate in a data race
467 // (see llvm/Analysis/CaptureTracking.h for details).
468 NumOmittedNonCaptured++;
469 continue;
470 }
471
472 // Instrument this instruction.
473 All.emplace_back(I);
474 if (IsWrite) {
475 // For read-before-write and compound instrumentation we only need one
476 // write target, and we can override any previous entry if it exists.
477 WriteTargets[Addr] = All.size() - 1;
478 }
479 }
480 Local.clear();
481 }
482
isTsanAtomic(const Instruction * I)483 static bool isTsanAtomic(const Instruction *I) {
484 // TODO: Ask TTI whether synchronization scope is between threads.
485 auto SSID = getAtomicSyncScopeID(I);
486 if (!SSID)
487 return false;
488 if (isa<LoadInst>(I) || isa<StoreInst>(I))
489 return SSID.value() != SyncScope::SingleThread;
490 return true;
491 }
492
InsertRuntimeIgnores(Function & F)493 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
494 InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
495 IRB.CreateCall(TsanIgnoreBegin);
496 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
497 while (IRBuilder<> *AtExit = EE.Next()) {
498 InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
499 AtExit->CreateCall(TsanIgnoreEnd);
500 }
501 }
502
sanitizeFunction(Function & F,const TargetLibraryInfo & TLI)503 bool ThreadSanitizer::sanitizeFunction(Function &F,
504 const TargetLibraryInfo &TLI) {
505 // This is required to prevent instrumenting call to __tsan_init from within
506 // the module constructor.
507 if (F.getName() == kTsanModuleCtorName)
508 return false;
509 // Naked functions can not have prologue/epilogue
510 // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
511 // all.
512 if (F.hasFnAttribute(Attribute::Naked))
513 return false;
514
515 // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of
516 // instrumentation.
517 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
518 return false;
519
520 initialize(*F.getParent());
521 SmallVector<InstructionInfo, 8> AllLoadsAndStores;
522 SmallVector<Instruction*, 8> LocalLoadsAndStores;
523 SmallVector<Instruction*, 8> AtomicAccesses;
524 SmallVector<Instruction*, 8> MemIntrinCalls;
525 bool Res = false;
526 bool HasCalls = false;
527 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
528 const DataLayout &DL = F.getParent()->getDataLayout();
529
530 // Traverse all instructions, collect loads/stores/returns, check for calls.
531 for (auto &BB : F) {
532 for (auto &Inst : BB) {
533 if (isTsanAtomic(&Inst))
534 AtomicAccesses.push_back(&Inst);
535 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
536 LocalLoadsAndStores.push_back(&Inst);
537 else if ((isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) ||
538 isa<InvokeInst>(Inst)) {
539 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
540 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
541 if (isa<MemIntrinsic>(Inst))
542 MemIntrinCalls.push_back(&Inst);
543 HasCalls = true;
544 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
545 DL);
546 }
547 }
548 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
549 }
550
551 // We have collected all loads and stores.
552 // FIXME: many of these accesses do not need to be checked for races
553 // (e.g. variables that do not escape, etc).
554
555 // Instrument memory accesses only if we want to report bugs in the function.
556 if (ClInstrumentMemoryAccesses && SanitizeFunction)
557 for (const auto &II : AllLoadsAndStores) {
558 Res |= instrumentLoadOrStore(II, DL);
559 }
560
561 // Instrument atomic memory accesses in any case (they can be used to
562 // implement synchronization).
563 if (ClInstrumentAtomics)
564 for (auto Inst : AtomicAccesses) {
565 Res |= instrumentAtomic(Inst, DL);
566 }
567
568 if (ClInstrumentMemIntrinsics && SanitizeFunction)
569 for (auto Inst : MemIntrinCalls) {
570 Res |= instrumentMemIntrinsic(Inst);
571 }
572
573 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
574 assert(!F.hasFnAttribute(Attribute::SanitizeThread));
575 if (HasCalls)
576 InsertRuntimeIgnores(F);
577 }
578
579 // Instrument function entry/exit points if there were instrumented accesses.
580 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
581 InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
582 Value *ReturnAddress = IRB.CreateCall(
583 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
584 IRB.getInt32(0));
585 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
586
587 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
588 while (IRBuilder<> *AtExit = EE.Next()) {
589 InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
590 AtExit->CreateCall(TsanFuncExit, {});
591 }
592 Res = true;
593 }
594 return Res;
595 }
596
instrumentLoadOrStore(const InstructionInfo & II,const DataLayout & DL)597 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II,
598 const DataLayout &DL) {
599 InstrumentationIRBuilder IRB(II.Inst);
600 const bool IsWrite = isa<StoreInst>(*II.Inst);
601 Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand()
602 : cast<LoadInst>(II.Inst)->getPointerOperand();
603 Type *OrigTy = getLoadStoreType(II.Inst);
604
605 // swifterror memory addresses are mem2reg promoted by instruction selection.
606 // As such they cannot have regular uses like an instrumentation function and
607 // it makes no sense to track them as memory.
608 if (Addr->isSwiftError())
609 return false;
610
611 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
612 if (Idx < 0)
613 return false;
614 if (IsWrite && isVtableAccess(II.Inst)) {
615 LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n");
616 Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand();
617 // StoredValue may be a vector type if we are storing several vptrs at once.
618 // In this case, just take the first element of the vector since this is
619 // enough to find vptr races.
620 if (isa<VectorType>(StoredValue->getType()))
621 StoredValue = IRB.CreateExtractElement(
622 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
623 if (StoredValue->getType()->isIntegerTy())
624 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
625 // Call TsanVptrUpdate.
626 IRB.CreateCall(TsanVptrUpdate,
627 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
628 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
629 NumInstrumentedVtableWrites++;
630 return true;
631 }
632 if (!IsWrite && isVtableAccess(II.Inst)) {
633 IRB.CreateCall(TsanVptrLoad,
634 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
635 NumInstrumentedVtableReads++;
636 return true;
637 }
638
639 const Align Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlign()
640 : cast<LoadInst>(II.Inst)->getAlign();
641 const bool IsCompoundRW =
642 ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW);
643 const bool IsVolatile = ClDistinguishVolatile &&
644 (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile()
645 : cast<LoadInst>(II.Inst)->isVolatile());
646 assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!");
647
648 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
649 FunctionCallee OnAccessFunc = nullptr;
650 if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) {
651 if (IsCompoundRW)
652 OnAccessFunc = TsanCompoundRW[Idx];
653 else if (IsVolatile)
654 OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
655 else
656 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
657 } else {
658 if (IsCompoundRW)
659 OnAccessFunc = TsanUnalignedCompoundRW[Idx];
660 else if (IsVolatile)
661 OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
662 : TsanUnalignedVolatileRead[Idx];
663 else
664 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
665 }
666 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
667 if (IsCompoundRW || IsWrite)
668 NumInstrumentedWrites++;
669 if (IsCompoundRW || !IsWrite)
670 NumInstrumentedReads++;
671 return true;
672 }
673
createOrdering(IRBuilder<> * IRB,AtomicOrdering ord)674 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
675 uint32_t v = 0;
676 switch (ord) {
677 case AtomicOrdering::NotAtomic:
678 llvm_unreachable("unexpected atomic ordering!");
679 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH;
680 case AtomicOrdering::Monotonic: v = 0; break;
681 // Not specified yet:
682 // case AtomicOrdering::Consume: v = 1; break;
683 case AtomicOrdering::Acquire: v = 2; break;
684 case AtomicOrdering::Release: v = 3; break;
685 case AtomicOrdering::AcquireRelease: v = 4; break;
686 case AtomicOrdering::SequentiallyConsistent: v = 5; break;
687 }
688 return IRB->getInt32(v);
689 }
690
691 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
692 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
693 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
694 // instead we simply replace them with regular function calls, which are then
695 // intercepted by the run-time.
696 // Since tsan is running after everyone else, the calls should not be
697 // replaced back with intrinsics. If that becomes wrong at some point,
698 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
instrumentMemIntrinsic(Instruction * I)699 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
700 IRBuilder<> IRB(I);
701 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
702 IRB.CreateCall(
703 MemsetFn,
704 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
705 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
706 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
707 I->eraseFromParent();
708 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
709 IRB.CreateCall(
710 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
711 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
712 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
713 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
714 I->eraseFromParent();
715 }
716 return false;
717 }
718
719 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
720 // standards. For background see C++11 standard. A slightly older, publicly
721 // available draft of the standard (not entirely up-to-date, but close enough
722 // for casual browsing) is available here:
723 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
724 // The following page contains more background information:
725 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
726
instrumentAtomic(Instruction * I,const DataLayout & DL)727 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
728 InstrumentationIRBuilder IRB(I);
729 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
730 Value *Addr = LI->getPointerOperand();
731 Type *OrigTy = LI->getType();
732 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
733 if (Idx < 0)
734 return false;
735 const unsigned ByteSize = 1U << Idx;
736 const unsigned BitSize = ByteSize * 8;
737 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
738 Type *PtrTy = Ty->getPointerTo();
739 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
740 createOrdering(&IRB, LI->getOrdering())};
741 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
742 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
743 I->replaceAllUsesWith(Cast);
744 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
745 Value *Addr = SI->getPointerOperand();
746 int Idx =
747 getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL);
748 if (Idx < 0)
749 return false;
750 const unsigned ByteSize = 1U << Idx;
751 const unsigned BitSize = ByteSize * 8;
752 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
753 Type *PtrTy = Ty->getPointerTo();
754 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
755 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
756 createOrdering(&IRB, SI->getOrdering())};
757 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
758 ReplaceInstWithInst(I, C);
759 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
760 Value *Addr = RMWI->getPointerOperand();
761 int Idx =
762 getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL);
763 if (Idx < 0)
764 return false;
765 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
766 if (!F)
767 return false;
768 const unsigned ByteSize = 1U << Idx;
769 const unsigned BitSize = ByteSize * 8;
770 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
771 Type *PtrTy = Ty->getPointerTo();
772 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
773 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
774 createOrdering(&IRB, RMWI->getOrdering())};
775 CallInst *C = CallInst::Create(F, Args);
776 ReplaceInstWithInst(I, C);
777 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
778 Value *Addr = CASI->getPointerOperand();
779 Type *OrigOldValTy = CASI->getNewValOperand()->getType();
780 int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL);
781 if (Idx < 0)
782 return false;
783 const unsigned ByteSize = 1U << Idx;
784 const unsigned BitSize = ByteSize * 8;
785 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
786 Type *PtrTy = Ty->getPointerTo();
787 Value *CmpOperand =
788 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
789 Value *NewOperand =
790 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
791 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
792 CmpOperand,
793 NewOperand,
794 createOrdering(&IRB, CASI->getSuccessOrdering()),
795 createOrdering(&IRB, CASI->getFailureOrdering())};
796 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
797 Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
798 Value *OldVal = C;
799 if (Ty != OrigOldValTy) {
800 // The value is a pointer, so we need to cast the return value.
801 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
802 }
803
804 Value *Res =
805 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
806 Res = IRB.CreateInsertValue(Res, Success, 1);
807
808 I->replaceAllUsesWith(Res);
809 I->eraseFromParent();
810 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
811 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
812 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
813 ? TsanAtomicSignalFence
814 : TsanAtomicThreadFence;
815 CallInst *C = CallInst::Create(F, Args);
816 ReplaceInstWithInst(I, C);
817 }
818 return true;
819 }
820
getMemoryAccessFuncIndex(Type * OrigTy,Value * Addr,const DataLayout & DL)821 int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr,
822 const DataLayout &DL) {
823 assert(OrigTy->isSized());
824 assert(
825 cast<PointerType>(Addr->getType())->isOpaqueOrPointeeTypeMatches(OrigTy));
826 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
827 if (TypeSize != 8 && TypeSize != 16 &&
828 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
829 NumAccessesWithBadSize++;
830 // Ignore all unusual sizes.
831 return -1;
832 }
833 size_t Idx = countTrailingZeros(TypeSize / 8);
834 assert(Idx < kNumberOfAccessSizes);
835 return Idx;
836 }
837