1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer, a race detector. 11 // 12 // The tool is under development, for the details about previous versions see 13 // http://code.google.com/p/data-race-test 14 // 15 // The instrumentation phase is quite simple: 16 // - Insert calls to run-time library before every memory access. 17 // - Optimizations may apply to avoid instrumenting some of the accesses. 18 // - Insert calls at function entry/exit. 19 // The rest is handled by the run-time library. 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/ProfileData/InstrProf.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Instrumentation.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/EscapeEnumerator.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ModuleUtils.h" 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "tsan" 53 54 static cl::opt<bool> ClInstrumentMemoryAccesses( 55 "tsan-instrument-memory-accesses", cl::init(true), 56 cl::desc("Instrument memory accesses"), cl::Hidden); 57 static cl::opt<bool> ClInstrumentFuncEntryExit( 58 "tsan-instrument-func-entry-exit", cl::init(true), 59 cl::desc("Instrument function entry and exit"), cl::Hidden); 60 static cl::opt<bool> ClHandleCxxExceptions( 61 "tsan-handle-cxx-exceptions", cl::init(true), 62 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), 63 cl::Hidden); 64 static cl::opt<bool> ClInstrumentAtomics( 65 "tsan-instrument-atomics", cl::init(true), 66 cl::desc("Instrument atomics"), cl::Hidden); 67 static cl::opt<bool> ClInstrumentMemIntrinsics( 68 "tsan-instrument-memintrinsics", cl::init(true), 69 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 70 71 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 72 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 73 STATISTIC(NumOmittedReadsBeforeWrite, 74 "Number of reads ignored due to following writes"); 75 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 76 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 77 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 78 STATISTIC(NumOmittedReadsFromConstantGlobals, 79 "Number of reads from constant globals"); 80 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 81 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 82 83 static const char *const kTsanModuleCtorName = "tsan.module_ctor"; 84 static const char *const kTsanInitName = "__tsan_init"; 85 86 namespace { 87 88 /// ThreadSanitizer: instrument the code in module to find races. 89 struct ThreadSanitizer : public FunctionPass { 90 ThreadSanitizer() : FunctionPass(ID) {} 91 StringRef getPassName() const override; 92 void getAnalysisUsage(AnalysisUsage &AU) const override; 93 bool runOnFunction(Function &F) override; 94 bool doInitialization(Module &M) override; 95 static char ID; // Pass identification, replacement for typeid. 96 97 private: 98 void initializeCallbacks(Module &M); 99 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); 100 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 101 bool instrumentMemIntrinsic(Instruction *I); 102 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 103 SmallVectorImpl<Instruction *> &All, 104 const DataLayout &DL); 105 bool addrPointsToConstantData(Value *Addr); 106 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); 107 void InsertRuntimeIgnores(Function &F); 108 109 Type *IntptrTy; 110 IntegerType *OrdTy; 111 // Callbacks to run-time library are computed in doInitialization. 112 Function *TsanFuncEntry; 113 Function *TsanFuncExit; 114 Function *TsanIgnoreBegin; 115 Function *TsanIgnoreEnd; 116 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 117 static const size_t kNumberOfAccessSizes = 5; 118 Function *TsanRead[kNumberOfAccessSizes]; 119 Function *TsanWrite[kNumberOfAccessSizes]; 120 Function *TsanUnalignedRead[kNumberOfAccessSizes]; 121 Function *TsanUnalignedWrite[kNumberOfAccessSizes]; 122 Function *TsanAtomicLoad[kNumberOfAccessSizes]; 123 Function *TsanAtomicStore[kNumberOfAccessSizes]; 124 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes]; 125 Function *TsanAtomicCAS[kNumberOfAccessSizes]; 126 Function *TsanAtomicThreadFence; 127 Function *TsanAtomicSignalFence; 128 Function *TsanVptrUpdate; 129 Function *TsanVptrLoad; 130 Function *MemmoveFn, *MemcpyFn, *MemsetFn; 131 Function *TsanCtorFunction; 132 }; 133 } // namespace 134 135 char ThreadSanitizer::ID = 0; 136 INITIALIZE_PASS_BEGIN( 137 ThreadSanitizer, "tsan", 138 "ThreadSanitizer: detects data races.", 139 false, false) 140 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 141 INITIALIZE_PASS_END( 142 ThreadSanitizer, "tsan", 143 "ThreadSanitizer: detects data races.", 144 false, false) 145 146 StringRef ThreadSanitizer::getPassName() const { return "ThreadSanitizer"; } 147 148 void ThreadSanitizer::getAnalysisUsage(AnalysisUsage &AU) const { 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 } 151 152 FunctionPass *llvm::createThreadSanitizerPass() { 153 return new ThreadSanitizer(); 154 } 155 156 void ThreadSanitizer::initializeCallbacks(Module &M) { 157 IRBuilder<> IRB(M.getContext()); 158 AttributeList Attr; 159 Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex, 160 Attribute::NoUnwind); 161 // Initialize the callbacks. 162 TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 163 "__tsan_func_entry", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 164 TsanFuncExit = checkSanitizerInterfaceFunction( 165 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy())); 166 TsanIgnoreBegin = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 167 "__tsan_ignore_thread_begin", Attr, IRB.getVoidTy())); 168 TsanIgnoreEnd = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 169 "__tsan_ignore_thread_end", Attr, IRB.getVoidTy())); 170 OrdTy = IRB.getInt32Ty(); 171 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 172 const unsigned ByteSize = 1U << i; 173 const unsigned BitSize = ByteSize * 8; 174 std::string ByteSizeStr = utostr(ByteSize); 175 std::string BitSizeStr = utostr(BitSize); 176 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 177 TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 178 ReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 179 180 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 181 TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 182 WriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 183 184 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 185 TsanUnalignedRead[i] = 186 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 187 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 188 189 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 190 TsanUnalignedWrite[i] = 191 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 192 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 193 194 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 195 Type *PtrTy = Ty->getPointerTo(); 196 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 197 TsanAtomicLoad[i] = checkSanitizerInterfaceFunction( 198 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy)); 199 200 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 201 TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 202 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy)); 203 204 for (int op = AtomicRMWInst::FIRST_BINOP; 205 op <= AtomicRMWInst::LAST_BINOP; ++op) { 206 TsanAtomicRMW[op][i] = nullptr; 207 const char *NamePart = nullptr; 208 if (op == AtomicRMWInst::Xchg) 209 NamePart = "_exchange"; 210 else if (op == AtomicRMWInst::Add) 211 NamePart = "_fetch_add"; 212 else if (op == AtomicRMWInst::Sub) 213 NamePart = "_fetch_sub"; 214 else if (op == AtomicRMWInst::And) 215 NamePart = "_fetch_and"; 216 else if (op == AtomicRMWInst::Or) 217 NamePart = "_fetch_or"; 218 else if (op == AtomicRMWInst::Xor) 219 NamePart = "_fetch_xor"; 220 else if (op == AtomicRMWInst::Nand) 221 NamePart = "_fetch_nand"; 222 else 223 continue; 224 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 225 TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction( 226 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy)); 227 } 228 229 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 230 "_compare_exchange_val"); 231 TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 232 AtomicCASName, Attr, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy)); 233 } 234 TsanVptrUpdate = checkSanitizerInterfaceFunction( 235 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), 236 IRB.getInt8PtrTy(), IRB.getInt8PtrTy())); 237 TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 238 "__tsan_vptr_read", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 239 TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 240 "__tsan_atomic_thread_fence", Attr, IRB.getVoidTy(), OrdTy)); 241 TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 242 "__tsan_atomic_signal_fence", Attr, IRB.getVoidTy(), OrdTy)); 243 244 MemmoveFn = checkSanitizerInterfaceFunction( 245 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 246 IRB.getInt8PtrTy(), IntptrTy)); 247 MemcpyFn = checkSanitizerInterfaceFunction( 248 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 249 IRB.getInt8PtrTy(), IntptrTy)); 250 MemsetFn = checkSanitizerInterfaceFunction( 251 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 252 IRB.getInt32Ty(), IntptrTy)); 253 } 254 255 bool ThreadSanitizer::doInitialization(Module &M) { 256 const DataLayout &DL = M.getDataLayout(); 257 IntptrTy = DL.getIntPtrType(M.getContext()); 258 std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 259 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 260 /*InitArgs=*/{}); 261 262 appendToGlobalCtors(M, TsanCtorFunction, 0); 263 264 return true; 265 } 266 267 static bool isVtableAccess(Instruction *I) { 268 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 269 return Tag->isTBAAVtableAccess(); 270 return false; 271 } 272 273 // Do not instrument known races/"benign races" that come from compiler 274 // instrumentatin. The user has no way of suppressing them. 275 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { 276 // Peel off GEPs and BitCasts. 277 Addr = Addr->stripInBoundsOffsets(); 278 279 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 280 if (GV->hasSection()) { 281 StringRef SectionName = GV->getSection(); 282 // Check if the global is in the PGO counters section. 283 auto OF = Triple(M->getTargetTriple()).getObjectFormat(); 284 if (SectionName.endswith( 285 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) 286 return false; 287 } 288 289 // Check if the global is private gcov data. 290 if (GV->getName().startswith("__llvm_gcov") || 291 GV->getName().startswith("__llvm_gcda")) 292 return false; 293 } 294 295 // Do not instrument acesses from different address spaces; we cannot deal 296 // with them. 297 if (Addr) { 298 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 299 if (PtrTy->getPointerAddressSpace() != 0) 300 return false; 301 } 302 303 return true; 304 } 305 306 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 307 // If this is a GEP, just analyze its pointer operand. 308 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 309 Addr = GEP->getPointerOperand(); 310 311 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 312 if (GV->isConstant()) { 313 // Reads from constant globals can not race with any writes. 314 NumOmittedReadsFromConstantGlobals++; 315 return true; 316 } 317 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 318 if (isVtableAccess(L)) { 319 // Reads from a vtable pointer can not race with any writes. 320 NumOmittedReadsFromVtable++; 321 return true; 322 } 323 } 324 return false; 325 } 326 327 // Instrumenting some of the accesses may be proven redundant. 328 // Currently handled: 329 // - read-before-write (within same BB, no calls between) 330 // - not captured variables 331 // 332 // We do not handle some of the patterns that should not survive 333 // after the classic compiler optimizations. 334 // E.g. two reads from the same temp should be eliminated by CSE, 335 // two writes should be eliminated by DSE, etc. 336 // 337 // 'Local' is a vector of insns within the same BB (no calls between). 338 // 'All' is a vector of insns that will be instrumented. 339 void ThreadSanitizer::chooseInstructionsToInstrument( 340 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All, 341 const DataLayout &DL) { 342 SmallSet<Value*, 8> WriteTargets; 343 // Iterate from the end. 344 for (Instruction *I : reverse(Local)) { 345 if (StoreInst *Store = dyn_cast<StoreInst>(I)) { 346 Value *Addr = Store->getPointerOperand(); 347 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) 348 continue; 349 WriteTargets.insert(Addr); 350 } else { 351 LoadInst *Load = cast<LoadInst>(I); 352 Value *Addr = Load->getPointerOperand(); 353 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) 354 continue; 355 if (WriteTargets.count(Addr)) { 356 // We will write to this temp, so no reason to analyze the read. 357 NumOmittedReadsBeforeWrite++; 358 continue; 359 } 360 if (addrPointsToConstantData(Addr)) { 361 // Addr points to some constant data -- it can not race with any writes. 362 continue; 363 } 364 } 365 Value *Addr = isa<StoreInst>(*I) 366 ? cast<StoreInst>(I)->getPointerOperand() 367 : cast<LoadInst>(I)->getPointerOperand(); 368 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 369 !PointerMayBeCaptured(Addr, true, true)) { 370 // The variable is addressable but not captured, so it cannot be 371 // referenced from a different thread and participate in a data race 372 // (see llvm/Analysis/CaptureTracking.h for details). 373 NumOmittedNonCaptured++; 374 continue; 375 } 376 All.push_back(I); 377 } 378 Local.clear(); 379 } 380 381 static bool isAtomic(Instruction *I) { 382 // TODO: Ask TTI whether synchronization scope is between threads. 383 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 384 return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread; 385 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 386 return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread; 387 if (isa<AtomicRMWInst>(I)) 388 return true; 389 if (isa<AtomicCmpXchgInst>(I)) 390 return true; 391 if (isa<FenceInst>(I)) 392 return true; 393 return false; 394 } 395 396 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { 397 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 398 IRB.CreateCall(TsanIgnoreBegin); 399 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); 400 while (IRBuilder<> *AtExit = EE.Next()) { 401 AtExit->CreateCall(TsanIgnoreEnd); 402 } 403 } 404 405 bool ThreadSanitizer::runOnFunction(Function &F) { 406 // This is required to prevent instrumenting call to __tsan_init from within 407 // the module constructor. 408 if (&F == TsanCtorFunction) 409 return false; 410 initializeCallbacks(*F.getParent()); 411 SmallVector<Instruction*, 8> AllLoadsAndStores; 412 SmallVector<Instruction*, 8> LocalLoadsAndStores; 413 SmallVector<Instruction*, 8> AtomicAccesses; 414 SmallVector<Instruction*, 8> MemIntrinCalls; 415 bool Res = false; 416 bool HasCalls = false; 417 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 418 const DataLayout &DL = F.getParent()->getDataLayout(); 419 const TargetLibraryInfo *TLI = 420 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 421 422 // Traverse all instructions, collect loads/stores/returns, check for calls. 423 for (auto &BB : F) { 424 for (auto &Inst : BB) { 425 if (isAtomic(&Inst)) 426 AtomicAccesses.push_back(&Inst); 427 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 428 LocalLoadsAndStores.push_back(&Inst); 429 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 430 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 431 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 432 if (isa<MemIntrinsic>(Inst)) 433 MemIntrinCalls.push_back(&Inst); 434 HasCalls = true; 435 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 436 DL); 437 } 438 } 439 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 440 } 441 442 // We have collected all loads and stores. 443 // FIXME: many of these accesses do not need to be checked for races 444 // (e.g. variables that do not escape, etc). 445 446 // Instrument memory accesses only if we want to report bugs in the function. 447 if (ClInstrumentMemoryAccesses && SanitizeFunction) 448 for (auto Inst : AllLoadsAndStores) { 449 Res |= instrumentLoadOrStore(Inst, DL); 450 } 451 452 // Instrument atomic memory accesses in any case (they can be used to 453 // implement synchronization). 454 if (ClInstrumentAtomics) 455 for (auto Inst : AtomicAccesses) { 456 Res |= instrumentAtomic(Inst, DL); 457 } 458 459 if (ClInstrumentMemIntrinsics && SanitizeFunction) 460 for (auto Inst : MemIntrinCalls) { 461 Res |= instrumentMemIntrinsic(Inst); 462 } 463 464 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { 465 assert(!F.hasFnAttribute(Attribute::SanitizeThread)); 466 if (HasCalls) 467 InsertRuntimeIgnores(F); 468 } 469 470 // Instrument function entry/exit points if there were instrumented accesses. 471 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 472 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 473 Value *ReturnAddress = IRB.CreateCall( 474 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 475 IRB.getInt32(0)); 476 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 477 478 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); 479 while (IRBuilder<> *AtExit = EE.Next()) { 480 AtExit->CreateCall(TsanFuncExit, {}); 481 } 482 Res = true; 483 } 484 return Res; 485 } 486 487 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I, 488 const DataLayout &DL) { 489 IRBuilder<> IRB(I); 490 bool IsWrite = isa<StoreInst>(*I); 491 Value *Addr = IsWrite 492 ? cast<StoreInst>(I)->getPointerOperand() 493 : cast<LoadInst>(I)->getPointerOperand(); 494 495 // swifterror memory addresses are mem2reg promoted by instruction selection. 496 // As such they cannot have regular uses like an instrumentation function and 497 // it makes no sense to track them as memory. 498 if (Addr->isSwiftError()) 499 return false; 500 501 int Idx = getMemoryAccessFuncIndex(Addr, DL); 502 if (Idx < 0) 503 return false; 504 if (IsWrite && isVtableAccess(I)) { 505 DEBUG(dbgs() << " VPTR : " << *I << "\n"); 506 Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); 507 // StoredValue may be a vector type if we are storing several vptrs at once. 508 // In this case, just take the first element of the vector since this is 509 // enough to find vptr races. 510 if (isa<VectorType>(StoredValue->getType())) 511 StoredValue = IRB.CreateExtractElement( 512 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 513 if (StoredValue->getType()->isIntegerTy()) 514 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 515 // Call TsanVptrUpdate. 516 IRB.CreateCall(TsanVptrUpdate, 517 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 518 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 519 NumInstrumentedVtableWrites++; 520 return true; 521 } 522 if (!IsWrite && isVtableAccess(I)) { 523 IRB.CreateCall(TsanVptrLoad, 524 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 525 NumInstrumentedVtableReads++; 526 return true; 527 } 528 const unsigned Alignment = IsWrite 529 ? cast<StoreInst>(I)->getAlignment() 530 : cast<LoadInst>(I)->getAlignment(); 531 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 532 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 533 Value *OnAccessFunc = nullptr; 534 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) 535 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 536 else 537 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 538 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 539 if (IsWrite) NumInstrumentedWrites++; 540 else NumInstrumentedReads++; 541 return true; 542 } 543 544 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 545 uint32_t v = 0; 546 switch (ord) { 547 case AtomicOrdering::NotAtomic: 548 llvm_unreachable("unexpected atomic ordering!"); 549 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; 550 case AtomicOrdering::Monotonic: v = 0; break; 551 // Not specified yet: 552 // case AtomicOrdering::Consume: v = 1; break; 553 case AtomicOrdering::Acquire: v = 2; break; 554 case AtomicOrdering::Release: v = 3; break; 555 case AtomicOrdering::AcquireRelease: v = 4; break; 556 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 557 } 558 return IRB->getInt32(v); 559 } 560 561 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 562 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 563 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 564 // instead we simply replace them with regular function calls, which are then 565 // intercepted by the run-time. 566 // Since tsan is running after everyone else, the calls should not be 567 // replaced back with intrinsics. If that becomes wrong at some point, 568 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 569 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 570 IRBuilder<> IRB(I); 571 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 572 IRB.CreateCall( 573 MemsetFn, 574 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 575 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 576 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 577 I->eraseFromParent(); 578 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 579 IRB.CreateCall( 580 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 581 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 582 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 583 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 584 I->eraseFromParent(); 585 } 586 return false; 587 } 588 589 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 590 // standards. For background see C++11 standard. A slightly older, publicly 591 // available draft of the standard (not entirely up-to-date, but close enough 592 // for casual browsing) is available here: 593 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 594 // The following page contains more background information: 595 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 596 597 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 598 IRBuilder<> IRB(I); 599 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 600 Value *Addr = LI->getPointerOperand(); 601 int Idx = getMemoryAccessFuncIndex(Addr, DL); 602 if (Idx < 0) 603 return false; 604 const unsigned ByteSize = 1U << Idx; 605 const unsigned BitSize = ByteSize * 8; 606 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 607 Type *PtrTy = Ty->getPointerTo(); 608 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 609 createOrdering(&IRB, LI->getOrdering())}; 610 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 611 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 612 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); 613 I->replaceAllUsesWith(Cast); 614 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 615 Value *Addr = SI->getPointerOperand(); 616 int Idx = getMemoryAccessFuncIndex(Addr, DL); 617 if (Idx < 0) 618 return false; 619 const unsigned ByteSize = 1U << Idx; 620 const unsigned BitSize = ByteSize * 8; 621 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 622 Type *PtrTy = Ty->getPointerTo(); 623 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 624 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), 625 createOrdering(&IRB, SI->getOrdering())}; 626 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 627 ReplaceInstWithInst(I, C); 628 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 629 Value *Addr = RMWI->getPointerOperand(); 630 int Idx = getMemoryAccessFuncIndex(Addr, DL); 631 if (Idx < 0) 632 return false; 633 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 634 if (!F) 635 return false; 636 const unsigned ByteSize = 1U << Idx; 637 const unsigned BitSize = ByteSize * 8; 638 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 639 Type *PtrTy = Ty->getPointerTo(); 640 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 641 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 642 createOrdering(&IRB, RMWI->getOrdering())}; 643 CallInst *C = CallInst::Create(F, Args); 644 ReplaceInstWithInst(I, C); 645 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 646 Value *Addr = CASI->getPointerOperand(); 647 int Idx = getMemoryAccessFuncIndex(Addr, DL); 648 if (Idx < 0) 649 return false; 650 const unsigned ByteSize = 1U << Idx; 651 const unsigned BitSize = ByteSize * 8; 652 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 653 Type *PtrTy = Ty->getPointerTo(); 654 Value *CmpOperand = 655 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); 656 Value *NewOperand = 657 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); 658 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 659 CmpOperand, 660 NewOperand, 661 createOrdering(&IRB, CASI->getSuccessOrdering()), 662 createOrdering(&IRB, CASI->getFailureOrdering())}; 663 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 664 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 665 Value *OldVal = C; 666 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 667 if (Ty != OrigOldValTy) { 668 // The value is a pointer, so we need to cast the return value. 669 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 670 } 671 672 Value *Res = 673 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 674 Res = IRB.CreateInsertValue(Res, Success, 1); 675 676 I->replaceAllUsesWith(Res); 677 I->eraseFromParent(); 678 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 679 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 680 Function *F = FI->getSyncScopeID() == SyncScope::SingleThread ? 681 TsanAtomicSignalFence : TsanAtomicThreadFence; 682 CallInst *C = CallInst::Create(F, Args); 683 ReplaceInstWithInst(I, C); 684 } 685 return true; 686 } 687 688 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, 689 const DataLayout &DL) { 690 Type *OrigPtrTy = Addr->getType(); 691 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 692 assert(OrigTy->isSized()); 693 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 694 if (TypeSize != 8 && TypeSize != 16 && 695 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 696 NumAccessesWithBadSize++; 697 // Ignore all unusual sizes. 698 return -1; 699 } 700 size_t Idx = countTrailingZeros(TypeSize / 8); 701 assert(Idx < kNumberOfAccessSizes); 702 return Idx; 703 } 704