1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer, a race detector. 10 // 11 // The tool is under development, for the details about previous versions see 12 // http://code.google.com/p/data-race-test 13 // 14 // The instrumentation phase is quite simple: 15 // - Insert calls to run-time library before every memory access. 16 // - Optimizations may apply to avoid instrumenting some of the accesses. 17 // - Insert calls at function entry/exit. 18 // The rest is handled by the run-time library. 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/ProfileData/InstrProf.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Instrumentation.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/EscapeEnumerator.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/ModuleUtils.h" 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "tsan" 54 55 static cl::opt<bool> ClInstrumentMemoryAccesses( 56 "tsan-instrument-memory-accesses", cl::init(true), 57 cl::desc("Instrument memory accesses"), cl::Hidden); 58 static cl::opt<bool> ClInstrumentFuncEntryExit( 59 "tsan-instrument-func-entry-exit", cl::init(true), 60 cl::desc("Instrument function entry and exit"), cl::Hidden); 61 static cl::opt<bool> ClHandleCxxExceptions( 62 "tsan-handle-cxx-exceptions", cl::init(true), 63 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), 64 cl::Hidden); 65 static cl::opt<bool> ClInstrumentAtomics( 66 "tsan-instrument-atomics", cl::init(true), 67 cl::desc("Instrument atomics"), cl::Hidden); 68 static cl::opt<bool> ClInstrumentMemIntrinsics( 69 "tsan-instrument-memintrinsics", cl::init(true), 70 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 71 static cl::opt<bool> ClDistinguishVolatile( 72 "tsan-distinguish-volatile", cl::init(false), 73 cl::desc("Emit special instrumentation for accesses to volatiles"), 74 cl::Hidden); 75 76 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 77 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 78 STATISTIC(NumOmittedReadsBeforeWrite, 79 "Number of reads ignored due to following writes"); 80 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 81 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 82 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 83 STATISTIC(NumOmittedReadsFromConstantGlobals, 84 "Number of reads from constant globals"); 85 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 86 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 87 88 static const char *const kTsanModuleCtorName = "tsan.module_ctor"; 89 static const char *const kTsanInitName = "__tsan_init"; 90 91 namespace { 92 93 /// ThreadSanitizer: instrument the code in module to find races. 94 /// 95 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function 96 /// declarations into the module if they don't exist already. Instantiating 97 /// ensures the __tsan_init function is in the list of global constructors for 98 /// the module. 99 struct ThreadSanitizer { 100 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); 101 102 private: 103 void initialize(Module &M); 104 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); 105 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 106 bool instrumentMemIntrinsic(Instruction *I); 107 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 108 SmallVectorImpl<Instruction *> &All, 109 const DataLayout &DL); 110 bool addrPointsToConstantData(Value *Addr); 111 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); 112 void InsertRuntimeIgnores(Function &F); 113 114 Type *IntptrTy; 115 FunctionCallee TsanFuncEntry; 116 FunctionCallee TsanFuncExit; 117 FunctionCallee TsanIgnoreBegin; 118 FunctionCallee TsanIgnoreEnd; 119 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 120 static const size_t kNumberOfAccessSizes = 5; 121 FunctionCallee TsanRead[kNumberOfAccessSizes]; 122 FunctionCallee TsanWrite[kNumberOfAccessSizes]; 123 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes]; 124 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes]; 125 FunctionCallee TsanVolatileRead[kNumberOfAccessSizes]; 126 FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes]; 127 FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes]; 128 FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes]; 129 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes]; 130 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes]; 131 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1] 132 [kNumberOfAccessSizes]; 133 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes]; 134 FunctionCallee TsanAtomicThreadFence; 135 FunctionCallee TsanAtomicSignalFence; 136 FunctionCallee TsanVptrUpdate; 137 FunctionCallee TsanVptrLoad; 138 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 139 }; 140 141 struct ThreadSanitizerLegacyPass : FunctionPass { 142 ThreadSanitizerLegacyPass() : FunctionPass(ID) {} 143 StringRef getPassName() const override; 144 void getAnalysisUsage(AnalysisUsage &AU) const override; 145 bool runOnFunction(Function &F) override; 146 bool doInitialization(Module &M) override; 147 static char ID; // Pass identification, replacement for typeid. 148 private: 149 Optional<ThreadSanitizer> TSan; 150 }; 151 152 void insertModuleCtor(Module &M) { 153 getOrCreateSanitizerCtorAndInitFunctions( 154 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 155 /*InitArgs=*/{}, 156 // This callback is invoked when the functions are created the first 157 // time. Hook them into the global ctors list in that case: 158 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); }); 159 } 160 161 } // namespace 162 163 PreservedAnalyses ThreadSanitizerPass::run(Function &F, 164 FunctionAnalysisManager &FAM) { 165 ThreadSanitizer TSan; 166 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 167 return PreservedAnalyses::none(); 168 return PreservedAnalyses::all(); 169 } 170 171 PreservedAnalyses ThreadSanitizerPass::run(Module &M, 172 ModuleAnalysisManager &MAM) { 173 insertModuleCtor(M); 174 return PreservedAnalyses::none(); 175 } 176 177 char ThreadSanitizerLegacyPass::ID = 0; 178 INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan", 179 "ThreadSanitizer: detects data races.", false, false) 180 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 181 INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan", 182 "ThreadSanitizer: detects data races.", false, false) 183 184 StringRef ThreadSanitizerLegacyPass::getPassName() const { 185 return "ThreadSanitizerLegacyPass"; 186 } 187 188 void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 189 AU.addRequired<TargetLibraryInfoWrapperPass>(); 190 } 191 192 bool ThreadSanitizerLegacyPass::doInitialization(Module &M) { 193 insertModuleCtor(M); 194 TSan.emplace(); 195 return true; 196 } 197 198 bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) { 199 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 200 TSan->sanitizeFunction(F, TLI); 201 return true; 202 } 203 204 FunctionPass *llvm::createThreadSanitizerLegacyPassPass() { 205 return new ThreadSanitizerLegacyPass(); 206 } 207 208 void ThreadSanitizer::initialize(Module &M) { 209 const DataLayout &DL = M.getDataLayout(); 210 IntptrTy = DL.getIntPtrType(M.getContext()); 211 212 IRBuilder<> IRB(M.getContext()); 213 AttributeList Attr; 214 Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex, 215 Attribute::NoUnwind); 216 // Initialize the callbacks. 217 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr, 218 IRB.getVoidTy(), IRB.getInt8PtrTy()); 219 TsanFuncExit = 220 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy()); 221 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr, 222 IRB.getVoidTy()); 223 TsanIgnoreEnd = 224 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy()); 225 IntegerType *OrdTy = IRB.getInt32Ty(); 226 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 227 const unsigned ByteSize = 1U << i; 228 const unsigned BitSize = ByteSize * 8; 229 std::string ByteSizeStr = utostr(ByteSize); 230 std::string BitSizeStr = utostr(BitSize); 231 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 232 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(), 233 IRB.getInt8PtrTy()); 234 235 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 236 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(), 237 IRB.getInt8PtrTy()); 238 239 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 240 TsanUnalignedRead[i] = M.getOrInsertFunction( 241 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 242 243 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 244 TsanUnalignedWrite[i] = M.getOrInsertFunction( 245 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 246 247 SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr); 248 TsanVolatileRead[i] = M.getOrInsertFunction( 249 VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 250 251 SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr); 252 TsanVolatileWrite[i] = M.getOrInsertFunction( 253 VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 254 255 SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" + 256 ByteSizeStr); 257 TsanUnalignedVolatileRead[i] = M.getOrInsertFunction( 258 UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 259 260 SmallString<64> UnalignedVolatileWriteName( 261 "__tsan_unaligned_volatile_write" + ByteSizeStr); 262 TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction( 263 UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 264 265 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 266 Type *PtrTy = Ty->getPointerTo(); 267 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 268 TsanAtomicLoad[i] = 269 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy); 270 271 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 272 TsanAtomicStore[i] = M.getOrInsertFunction( 273 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy); 274 275 for (int op = AtomicRMWInst::FIRST_BINOP; 276 op <= AtomicRMWInst::LAST_BINOP; ++op) { 277 TsanAtomicRMW[op][i] = nullptr; 278 const char *NamePart = nullptr; 279 if (op == AtomicRMWInst::Xchg) 280 NamePart = "_exchange"; 281 else if (op == AtomicRMWInst::Add) 282 NamePart = "_fetch_add"; 283 else if (op == AtomicRMWInst::Sub) 284 NamePart = "_fetch_sub"; 285 else if (op == AtomicRMWInst::And) 286 NamePart = "_fetch_and"; 287 else if (op == AtomicRMWInst::Or) 288 NamePart = "_fetch_or"; 289 else if (op == AtomicRMWInst::Xor) 290 NamePart = "_fetch_xor"; 291 else if (op == AtomicRMWInst::Nand) 292 NamePart = "_fetch_nand"; 293 else 294 continue; 295 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 296 TsanAtomicRMW[op][i] = 297 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy); 298 } 299 300 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 301 "_compare_exchange_val"); 302 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty, 303 Ty, OrdTy, OrdTy); 304 } 305 TsanVptrUpdate = 306 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), 307 IRB.getInt8PtrTy(), IRB.getInt8PtrTy()); 308 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr, 309 IRB.getVoidTy(), IRB.getInt8PtrTy()); 310 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence", 311 Attr, IRB.getVoidTy(), OrdTy); 312 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence", 313 Attr, IRB.getVoidTy(), OrdTy); 314 315 MemmoveFn = 316 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), 317 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 318 MemcpyFn = 319 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), 320 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 321 MemsetFn = 322 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), 323 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); 324 } 325 326 static bool isVtableAccess(Instruction *I) { 327 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 328 return Tag->isTBAAVtableAccess(); 329 return false; 330 } 331 332 // Do not instrument known races/"benign races" that come from compiler 333 // instrumentatin. The user has no way of suppressing them. 334 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { 335 // Peel off GEPs and BitCasts. 336 Addr = Addr->stripInBoundsOffsets(); 337 338 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 339 if (GV->hasSection()) { 340 StringRef SectionName = GV->getSection(); 341 // Check if the global is in the PGO counters section. 342 auto OF = Triple(M->getTargetTriple()).getObjectFormat(); 343 if (SectionName.endswith( 344 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) 345 return false; 346 } 347 348 // Check if the global is private gcov data. 349 if (GV->getName().startswith("__llvm_gcov") || 350 GV->getName().startswith("__llvm_gcda")) 351 return false; 352 } 353 354 // Do not instrument acesses from different address spaces; we cannot deal 355 // with them. 356 if (Addr) { 357 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 358 if (PtrTy->getPointerAddressSpace() != 0) 359 return false; 360 } 361 362 return true; 363 } 364 365 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 366 // If this is a GEP, just analyze its pointer operand. 367 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 368 Addr = GEP->getPointerOperand(); 369 370 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 371 if (GV->isConstant()) { 372 // Reads from constant globals can not race with any writes. 373 NumOmittedReadsFromConstantGlobals++; 374 return true; 375 } 376 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 377 if (isVtableAccess(L)) { 378 // Reads from a vtable pointer can not race with any writes. 379 NumOmittedReadsFromVtable++; 380 return true; 381 } 382 } 383 return false; 384 } 385 386 // Instrumenting some of the accesses may be proven redundant. 387 // Currently handled: 388 // - read-before-write (within same BB, no calls between) 389 // - not captured variables 390 // 391 // We do not handle some of the patterns that should not survive 392 // after the classic compiler optimizations. 393 // E.g. two reads from the same temp should be eliminated by CSE, 394 // two writes should be eliminated by DSE, etc. 395 // 396 // 'Local' is a vector of insns within the same BB (no calls between). 397 // 'All' is a vector of insns that will be instrumented. 398 void ThreadSanitizer::chooseInstructionsToInstrument( 399 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All, 400 const DataLayout &DL) { 401 SmallPtrSet<Value*, 8> WriteTargets; 402 // Iterate from the end. 403 for (Instruction *I : reverse(Local)) { 404 if (StoreInst *Store = dyn_cast<StoreInst>(I)) { 405 Value *Addr = Store->getPointerOperand(); 406 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) 407 continue; 408 WriteTargets.insert(Addr); 409 } else { 410 LoadInst *Load = cast<LoadInst>(I); 411 Value *Addr = Load->getPointerOperand(); 412 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) 413 continue; 414 if (WriteTargets.count(Addr)) { 415 // We will write to this temp, so no reason to analyze the read. 416 NumOmittedReadsBeforeWrite++; 417 continue; 418 } 419 if (addrPointsToConstantData(Addr)) { 420 // Addr points to some constant data -- it can not race with any writes. 421 continue; 422 } 423 } 424 Value *Addr = isa<StoreInst>(*I) 425 ? cast<StoreInst>(I)->getPointerOperand() 426 : cast<LoadInst>(I)->getPointerOperand(); 427 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 428 !PointerMayBeCaptured(Addr, true, true)) { 429 // The variable is addressable but not captured, so it cannot be 430 // referenced from a different thread and participate in a data race 431 // (see llvm/Analysis/CaptureTracking.h for details). 432 NumOmittedNonCaptured++; 433 continue; 434 } 435 All.push_back(I); 436 } 437 Local.clear(); 438 } 439 440 static bool isAtomic(Instruction *I) { 441 // TODO: Ask TTI whether synchronization scope is between threads. 442 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 443 return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread; 444 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 445 return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread; 446 if (isa<AtomicRMWInst>(I)) 447 return true; 448 if (isa<AtomicCmpXchgInst>(I)) 449 return true; 450 if (isa<FenceInst>(I)) 451 return true; 452 return false; 453 } 454 455 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { 456 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 457 IRB.CreateCall(TsanIgnoreBegin); 458 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); 459 while (IRBuilder<> *AtExit = EE.Next()) { 460 AtExit->CreateCall(TsanIgnoreEnd); 461 } 462 } 463 464 bool ThreadSanitizer::sanitizeFunction(Function &F, 465 const TargetLibraryInfo &TLI) { 466 // This is required to prevent instrumenting call to __tsan_init from within 467 // the module constructor. 468 if (F.getName() == kTsanModuleCtorName) 469 return false; 470 // Naked functions can not have prologue/epilogue 471 // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at 472 // all. 473 if (F.hasFnAttribute(Attribute::Naked)) 474 return false; 475 initialize(*F.getParent()); 476 SmallVector<Instruction*, 8> AllLoadsAndStores; 477 SmallVector<Instruction*, 8> LocalLoadsAndStores; 478 SmallVector<Instruction*, 8> AtomicAccesses; 479 SmallVector<Instruction*, 8> MemIntrinCalls; 480 bool Res = false; 481 bool HasCalls = false; 482 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 483 const DataLayout &DL = F.getParent()->getDataLayout(); 484 485 // Traverse all instructions, collect loads/stores/returns, check for calls. 486 for (auto &BB : F) { 487 for (auto &Inst : BB) { 488 if (isAtomic(&Inst)) 489 AtomicAccesses.push_back(&Inst); 490 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 491 LocalLoadsAndStores.push_back(&Inst); 492 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 493 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 494 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI); 495 if (isa<MemIntrinsic>(Inst)) 496 MemIntrinCalls.push_back(&Inst); 497 HasCalls = true; 498 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 499 DL); 500 } 501 } 502 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 503 } 504 505 // We have collected all loads and stores. 506 // FIXME: many of these accesses do not need to be checked for races 507 // (e.g. variables that do not escape, etc). 508 509 // Instrument memory accesses only if we want to report bugs in the function. 510 if (ClInstrumentMemoryAccesses && SanitizeFunction) 511 for (auto Inst : AllLoadsAndStores) { 512 Res |= instrumentLoadOrStore(Inst, DL); 513 } 514 515 // Instrument atomic memory accesses in any case (they can be used to 516 // implement synchronization). 517 if (ClInstrumentAtomics) 518 for (auto Inst : AtomicAccesses) { 519 Res |= instrumentAtomic(Inst, DL); 520 } 521 522 if (ClInstrumentMemIntrinsics && SanitizeFunction) 523 for (auto Inst : MemIntrinCalls) { 524 Res |= instrumentMemIntrinsic(Inst); 525 } 526 527 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { 528 assert(!F.hasFnAttribute(Attribute::SanitizeThread)); 529 if (HasCalls) 530 InsertRuntimeIgnores(F); 531 } 532 533 // Instrument function entry/exit points if there were instrumented accesses. 534 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 535 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 536 Value *ReturnAddress = IRB.CreateCall( 537 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 538 IRB.getInt32(0)); 539 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 540 541 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); 542 while (IRBuilder<> *AtExit = EE.Next()) { 543 AtExit->CreateCall(TsanFuncExit, {}); 544 } 545 Res = true; 546 } 547 return Res; 548 } 549 550 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I, 551 const DataLayout &DL) { 552 IRBuilder<> IRB(I); 553 bool IsWrite = isa<StoreInst>(*I); 554 Value *Addr = IsWrite 555 ? cast<StoreInst>(I)->getPointerOperand() 556 : cast<LoadInst>(I)->getPointerOperand(); 557 558 // swifterror memory addresses are mem2reg promoted by instruction selection. 559 // As such they cannot have regular uses like an instrumentation function and 560 // it makes no sense to track them as memory. 561 if (Addr->isSwiftError()) 562 return false; 563 564 int Idx = getMemoryAccessFuncIndex(Addr, DL); 565 if (Idx < 0) 566 return false; 567 if (IsWrite && isVtableAccess(I)) { 568 LLVM_DEBUG(dbgs() << " VPTR : " << *I << "\n"); 569 Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); 570 // StoredValue may be a vector type if we are storing several vptrs at once. 571 // In this case, just take the first element of the vector since this is 572 // enough to find vptr races. 573 if (isa<VectorType>(StoredValue->getType())) 574 StoredValue = IRB.CreateExtractElement( 575 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 576 if (StoredValue->getType()->isIntegerTy()) 577 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 578 // Call TsanVptrUpdate. 579 IRB.CreateCall(TsanVptrUpdate, 580 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 581 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 582 NumInstrumentedVtableWrites++; 583 return true; 584 } 585 if (!IsWrite && isVtableAccess(I)) { 586 IRB.CreateCall(TsanVptrLoad, 587 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 588 NumInstrumentedVtableReads++; 589 return true; 590 } 591 const unsigned Alignment = IsWrite 592 ? cast<StoreInst>(I)->getAlignment() 593 : cast<LoadInst>(I)->getAlignment(); 594 const bool IsVolatile = 595 ClDistinguishVolatile && (IsWrite ? cast<StoreInst>(I)->isVolatile() 596 : cast<LoadInst>(I)->isVolatile()); 597 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 598 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 599 FunctionCallee OnAccessFunc = nullptr; 600 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) { 601 if (IsVolatile) 602 OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx]; 603 else 604 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 605 } else { 606 if (IsVolatile) 607 OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx] 608 : TsanUnalignedVolatileRead[Idx]; 609 else 610 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 611 } 612 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 613 if (IsWrite) NumInstrumentedWrites++; 614 else NumInstrumentedReads++; 615 return true; 616 } 617 618 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 619 uint32_t v = 0; 620 switch (ord) { 621 case AtomicOrdering::NotAtomic: 622 llvm_unreachable("unexpected atomic ordering!"); 623 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; 624 case AtomicOrdering::Monotonic: v = 0; break; 625 // Not specified yet: 626 // case AtomicOrdering::Consume: v = 1; break; 627 case AtomicOrdering::Acquire: v = 2; break; 628 case AtomicOrdering::Release: v = 3; break; 629 case AtomicOrdering::AcquireRelease: v = 4; break; 630 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 631 } 632 return IRB->getInt32(v); 633 } 634 635 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 636 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 637 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 638 // instead we simply replace them with regular function calls, which are then 639 // intercepted by the run-time. 640 // Since tsan is running after everyone else, the calls should not be 641 // replaced back with intrinsics. If that becomes wrong at some point, 642 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 643 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 644 IRBuilder<> IRB(I); 645 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 646 IRB.CreateCall( 647 MemsetFn, 648 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 649 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 650 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 651 I->eraseFromParent(); 652 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 653 IRB.CreateCall( 654 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 655 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 656 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 657 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 658 I->eraseFromParent(); 659 } 660 return false; 661 } 662 663 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 664 // standards. For background see C++11 standard. A slightly older, publicly 665 // available draft of the standard (not entirely up-to-date, but close enough 666 // for casual browsing) is available here: 667 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 668 // The following page contains more background information: 669 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 670 671 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 672 IRBuilder<> IRB(I); 673 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 674 Value *Addr = LI->getPointerOperand(); 675 int Idx = getMemoryAccessFuncIndex(Addr, DL); 676 if (Idx < 0) 677 return false; 678 const unsigned ByteSize = 1U << Idx; 679 const unsigned BitSize = ByteSize * 8; 680 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 681 Type *PtrTy = Ty->getPointerTo(); 682 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 683 createOrdering(&IRB, LI->getOrdering())}; 684 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 685 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 686 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); 687 I->replaceAllUsesWith(Cast); 688 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 689 Value *Addr = SI->getPointerOperand(); 690 int Idx = getMemoryAccessFuncIndex(Addr, DL); 691 if (Idx < 0) 692 return false; 693 const unsigned ByteSize = 1U << Idx; 694 const unsigned BitSize = ByteSize * 8; 695 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 696 Type *PtrTy = Ty->getPointerTo(); 697 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 698 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), 699 createOrdering(&IRB, SI->getOrdering())}; 700 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 701 ReplaceInstWithInst(I, C); 702 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 703 Value *Addr = RMWI->getPointerOperand(); 704 int Idx = getMemoryAccessFuncIndex(Addr, DL); 705 if (Idx < 0) 706 return false; 707 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 708 if (!F) 709 return false; 710 const unsigned ByteSize = 1U << Idx; 711 const unsigned BitSize = ByteSize * 8; 712 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 713 Type *PtrTy = Ty->getPointerTo(); 714 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 715 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 716 createOrdering(&IRB, RMWI->getOrdering())}; 717 CallInst *C = CallInst::Create(F, Args); 718 ReplaceInstWithInst(I, C); 719 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 720 Value *Addr = CASI->getPointerOperand(); 721 int Idx = getMemoryAccessFuncIndex(Addr, DL); 722 if (Idx < 0) 723 return false; 724 const unsigned ByteSize = 1U << Idx; 725 const unsigned BitSize = ByteSize * 8; 726 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 727 Type *PtrTy = Ty->getPointerTo(); 728 Value *CmpOperand = 729 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); 730 Value *NewOperand = 731 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); 732 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 733 CmpOperand, 734 NewOperand, 735 createOrdering(&IRB, CASI->getSuccessOrdering()), 736 createOrdering(&IRB, CASI->getFailureOrdering())}; 737 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 738 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 739 Value *OldVal = C; 740 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 741 if (Ty != OrigOldValTy) { 742 // The value is a pointer, so we need to cast the return value. 743 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 744 } 745 746 Value *Res = 747 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 748 Res = IRB.CreateInsertValue(Res, Success, 1); 749 750 I->replaceAllUsesWith(Res); 751 I->eraseFromParent(); 752 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 753 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 754 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread 755 ? TsanAtomicSignalFence 756 : TsanAtomicThreadFence; 757 CallInst *C = CallInst::Create(F, Args); 758 ReplaceInstWithInst(I, C); 759 } 760 return true; 761 } 762 763 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, 764 const DataLayout &DL) { 765 Type *OrigPtrTy = Addr->getType(); 766 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 767 assert(OrigTy->isSized()); 768 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 769 if (TypeSize != 8 && TypeSize != 16 && 770 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 771 NumAccessesWithBadSize++; 772 // Ignore all unusual sizes. 773 return -1; 774 } 775 size_t Idx = countTrailingZeros(TypeSize / 8); 776 assert(Idx < kNumberOfAccessSizes); 777 return Idx; 778 } 779