1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer, a race detector. 10 // 11 // The tool is under development, for the details about previous versions see 12 // http://code.google.com/p/data-race-test 13 // 14 // The instrumentation phase is quite simple: 15 // - Insert calls to run-time library before every memory access. 16 // - Optimizations may apply to avoid instrumenting some of the accesses. 17 // - Insert calls at function entry/exit. 18 // The rest is handled by the run-time library. 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/ProfileData/InstrProf.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Instrumentation.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/EscapeEnumerator.h" 50 #include "llvm/Transforms/Utils/Local.h" 51 #include "llvm/Transforms/Utils/ModuleUtils.h" 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "tsan" 56 57 static cl::opt<bool> ClInstrumentMemoryAccesses( 58 "tsan-instrument-memory-accesses", cl::init(true), 59 cl::desc("Instrument memory accesses"), cl::Hidden); 60 static cl::opt<bool> 61 ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true), 62 cl::desc("Instrument function entry and exit"), 63 cl::Hidden); 64 static cl::opt<bool> ClHandleCxxExceptions( 65 "tsan-handle-cxx-exceptions", cl::init(true), 66 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), 67 cl::Hidden); 68 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics", 69 cl::init(true), 70 cl::desc("Instrument atomics"), 71 cl::Hidden); 72 static cl::opt<bool> ClInstrumentMemIntrinsics( 73 "tsan-instrument-memintrinsics", cl::init(true), 74 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 75 static cl::opt<bool> ClDistinguishVolatile( 76 "tsan-distinguish-volatile", cl::init(false), 77 cl::desc("Emit special instrumentation for accesses to volatiles"), 78 cl::Hidden); 79 static cl::opt<bool> ClInstrumentReadBeforeWrite( 80 "tsan-instrument-read-before-write", cl::init(false), 81 cl::desc("Do not eliminate read instrumentation for read-before-writes"), 82 cl::Hidden); 83 static cl::opt<bool> ClCompoundReadBeforeWrite( 84 "tsan-compound-read-before-write", cl::init(false), 85 cl::desc("Emit special compound instrumentation for reads-before-writes"), 86 cl::Hidden); 87 88 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 89 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 90 STATISTIC(NumOmittedReadsBeforeWrite, 91 "Number of reads ignored due to following writes"); 92 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 93 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 94 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 95 STATISTIC(NumOmittedReadsFromConstantGlobals, 96 "Number of reads from constant globals"); 97 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 98 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 99 100 const char kTsanModuleCtorName[] = "tsan.module_ctor"; 101 const char kTsanInitName[] = "__tsan_init"; 102 103 namespace { 104 105 /// ThreadSanitizer: instrument the code in module to find races. 106 /// 107 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function 108 /// declarations into the module if they don't exist already. Instantiating 109 /// ensures the __tsan_init function is in the list of global constructors for 110 /// the module. 111 struct ThreadSanitizer { 112 ThreadSanitizer() { 113 // Sanity check options and warn user. 114 if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) { 115 errs() 116 << "warning: Option -tsan-compound-read-before-write has no effect " 117 "when -tsan-instrument-read-before-write is set.\n"; 118 } 119 } 120 121 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); 122 123 private: 124 // Internal Instruction wrapper that contains more information about the 125 // Instruction from prior analysis. 126 struct InstructionInfo { 127 // Instrumentation emitted for this instruction is for a compounded set of 128 // read and write operations in the same basic block. 129 static constexpr unsigned kCompoundRW = (1U << 0); 130 131 explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {} 132 133 Instruction *Inst; 134 unsigned Flags = 0; 135 }; 136 137 void initialize(Module &M); 138 bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL); 139 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 140 bool instrumentMemIntrinsic(Instruction *I); 141 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 142 SmallVectorImpl<InstructionInfo> &All, 143 const DataLayout &DL); 144 bool addrPointsToConstantData(Value *Addr); 145 int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL); 146 void InsertRuntimeIgnores(Function &F); 147 148 Type *IntptrTy; 149 FunctionCallee TsanFuncEntry; 150 FunctionCallee TsanFuncExit; 151 FunctionCallee TsanIgnoreBegin; 152 FunctionCallee TsanIgnoreEnd; 153 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 154 static const size_t kNumberOfAccessSizes = 5; 155 FunctionCallee TsanRead[kNumberOfAccessSizes]; 156 FunctionCallee TsanWrite[kNumberOfAccessSizes]; 157 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes]; 158 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes]; 159 FunctionCallee TsanVolatileRead[kNumberOfAccessSizes]; 160 FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes]; 161 FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes]; 162 FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes]; 163 FunctionCallee TsanCompoundRW[kNumberOfAccessSizes]; 164 FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes]; 165 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes]; 166 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes]; 167 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1] 168 [kNumberOfAccessSizes]; 169 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes]; 170 FunctionCallee TsanAtomicThreadFence; 171 FunctionCallee TsanAtomicSignalFence; 172 FunctionCallee TsanVptrUpdate; 173 FunctionCallee TsanVptrLoad; 174 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 175 }; 176 177 struct ThreadSanitizerLegacyPass : FunctionPass { 178 ThreadSanitizerLegacyPass() : FunctionPass(ID) { 179 initializeThreadSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 180 } 181 StringRef getPassName() const override; 182 void getAnalysisUsage(AnalysisUsage &AU) const override; 183 bool runOnFunction(Function &F) override; 184 bool doInitialization(Module &M) override; 185 static char ID; // Pass identification, replacement for typeid. 186 private: 187 Optional<ThreadSanitizer> TSan; 188 }; 189 190 void insertModuleCtor(Module &M) { 191 getOrCreateSanitizerCtorAndInitFunctions( 192 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 193 /*InitArgs=*/{}, 194 // This callback is invoked when the functions are created the first 195 // time. Hook them into the global ctors list in that case: 196 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); }); 197 } 198 199 } // namespace 200 201 PreservedAnalyses ThreadSanitizerPass::run(Function &F, 202 FunctionAnalysisManager &FAM) { 203 ThreadSanitizer TSan; 204 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 205 return PreservedAnalyses::none(); 206 return PreservedAnalyses::all(); 207 } 208 209 PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M, 210 ModuleAnalysisManager &MAM) { 211 insertModuleCtor(M); 212 return PreservedAnalyses::none(); 213 } 214 215 char ThreadSanitizerLegacyPass::ID = 0; 216 INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan", 217 "ThreadSanitizer: detects data races.", false, false) 218 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 219 INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan", 220 "ThreadSanitizer: detects data races.", false, false) 221 222 StringRef ThreadSanitizerLegacyPass::getPassName() const { 223 return "ThreadSanitizerLegacyPass"; 224 } 225 226 void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 227 AU.addRequired<TargetLibraryInfoWrapperPass>(); 228 } 229 230 bool ThreadSanitizerLegacyPass::doInitialization(Module &M) { 231 insertModuleCtor(M); 232 TSan.emplace(); 233 return true; 234 } 235 236 bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) { 237 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 238 TSan->sanitizeFunction(F, TLI); 239 return true; 240 } 241 242 FunctionPass *llvm::createThreadSanitizerLegacyPassPass() { 243 return new ThreadSanitizerLegacyPass(); 244 } 245 246 void ThreadSanitizer::initialize(Module &M) { 247 const DataLayout &DL = M.getDataLayout(); 248 IntptrTy = DL.getIntPtrType(M.getContext()); 249 250 IRBuilder<> IRB(M.getContext()); 251 AttributeList Attr; 252 Attr = Attr.addFnAttribute(M.getContext(), Attribute::NoUnwind); 253 // Initialize the callbacks. 254 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr, 255 IRB.getVoidTy(), IRB.getInt8PtrTy()); 256 TsanFuncExit = 257 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy()); 258 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr, 259 IRB.getVoidTy()); 260 TsanIgnoreEnd = 261 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy()); 262 IntegerType *OrdTy = IRB.getInt32Ty(); 263 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 264 const unsigned ByteSize = 1U << i; 265 const unsigned BitSize = ByteSize * 8; 266 std::string ByteSizeStr = utostr(ByteSize); 267 std::string BitSizeStr = utostr(BitSize); 268 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 269 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(), 270 IRB.getInt8PtrTy()); 271 272 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 273 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(), 274 IRB.getInt8PtrTy()); 275 276 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 277 TsanUnalignedRead[i] = M.getOrInsertFunction( 278 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 279 280 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 281 TsanUnalignedWrite[i] = M.getOrInsertFunction( 282 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 283 284 SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr); 285 TsanVolatileRead[i] = M.getOrInsertFunction( 286 VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 287 288 SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr); 289 TsanVolatileWrite[i] = M.getOrInsertFunction( 290 VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 291 292 SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" + 293 ByteSizeStr); 294 TsanUnalignedVolatileRead[i] = M.getOrInsertFunction( 295 UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 296 297 SmallString<64> UnalignedVolatileWriteName( 298 "__tsan_unaligned_volatile_write" + ByteSizeStr); 299 TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction( 300 UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 301 302 SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr); 303 TsanCompoundRW[i] = M.getOrInsertFunction( 304 CompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 305 306 SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" + 307 ByteSizeStr); 308 TsanUnalignedCompoundRW[i] = M.getOrInsertFunction( 309 UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 310 311 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 312 Type *PtrTy = Ty->getPointerTo(); 313 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 314 { 315 AttributeList AL = Attr; 316 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 317 TsanAtomicLoad[i] = 318 M.getOrInsertFunction(AtomicLoadName, AL, Ty, PtrTy, OrdTy); 319 } 320 321 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 322 { 323 AttributeList AL = Attr; 324 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 325 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt); 326 TsanAtomicStore[i] = M.getOrInsertFunction( 327 AtomicStoreName, AL, IRB.getVoidTy(), PtrTy, Ty, OrdTy); 328 } 329 330 for (unsigned Op = AtomicRMWInst::FIRST_BINOP; 331 Op <= AtomicRMWInst::LAST_BINOP; ++Op) { 332 TsanAtomicRMW[Op][i] = nullptr; 333 const char *NamePart = nullptr; 334 if (Op == AtomicRMWInst::Xchg) 335 NamePart = "_exchange"; 336 else if (Op == AtomicRMWInst::Add) 337 NamePart = "_fetch_add"; 338 else if (Op == AtomicRMWInst::Sub) 339 NamePart = "_fetch_sub"; 340 else if (Op == AtomicRMWInst::And) 341 NamePart = "_fetch_and"; 342 else if (Op == AtomicRMWInst::Or) 343 NamePart = "_fetch_or"; 344 else if (Op == AtomicRMWInst::Xor) 345 NamePart = "_fetch_xor"; 346 else if (Op == AtomicRMWInst::Nand) 347 NamePart = "_fetch_nand"; 348 else 349 continue; 350 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 351 { 352 AttributeList AL = Attr; 353 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 354 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt); 355 TsanAtomicRMW[Op][i] = 356 M.getOrInsertFunction(RMWName, AL, Ty, PtrTy, Ty, OrdTy); 357 } 358 } 359 360 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 361 "_compare_exchange_val"); 362 { 363 AttributeList AL = Attr; 364 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 365 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt); 366 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 367 AL = AL.addParamAttribute(M.getContext(), 4, Attribute::ZExt); 368 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, AL, Ty, PtrTy, Ty, 369 Ty, OrdTy, OrdTy); 370 } 371 } 372 TsanVptrUpdate = 373 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), 374 IRB.getInt8PtrTy(), IRB.getInt8PtrTy()); 375 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr, 376 IRB.getVoidTy(), IRB.getInt8PtrTy()); 377 { 378 AttributeList AL = Attr; 379 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 380 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence", 381 AL, IRB.getVoidTy(), OrdTy); 382 } 383 { 384 AttributeList AL = Attr; 385 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 386 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence", 387 AL, IRB.getVoidTy(), OrdTy); 388 } 389 390 MemmoveFn = 391 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), 392 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 393 MemcpyFn = 394 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), 395 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 396 MemsetFn = 397 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), 398 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); 399 } 400 401 static bool isVtableAccess(Instruction *I) { 402 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 403 return Tag->isTBAAVtableAccess(); 404 return false; 405 } 406 407 // Do not instrument known races/"benign races" that come from compiler 408 // instrumentatin. The user has no way of suppressing them. 409 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { 410 // Peel off GEPs and BitCasts. 411 Addr = Addr->stripInBoundsOffsets(); 412 413 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 414 if (GV->hasSection()) { 415 StringRef SectionName = GV->getSection(); 416 // Check if the global is in the PGO counters section. 417 auto OF = Triple(M->getTargetTriple()).getObjectFormat(); 418 if (SectionName.endswith( 419 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) 420 return false; 421 } 422 423 // Check if the global is private gcov data. 424 if (GV->getName().startswith("__llvm_gcov") || 425 GV->getName().startswith("__llvm_gcda")) 426 return false; 427 } 428 429 // Do not instrument acesses from different address spaces; we cannot deal 430 // with them. 431 if (Addr) { 432 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 433 if (PtrTy->getPointerAddressSpace() != 0) 434 return false; 435 } 436 437 return true; 438 } 439 440 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 441 // If this is a GEP, just analyze its pointer operand. 442 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 443 Addr = GEP->getPointerOperand(); 444 445 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 446 if (GV->isConstant()) { 447 // Reads from constant globals can not race with any writes. 448 NumOmittedReadsFromConstantGlobals++; 449 return true; 450 } 451 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 452 if (isVtableAccess(L)) { 453 // Reads from a vtable pointer can not race with any writes. 454 NumOmittedReadsFromVtable++; 455 return true; 456 } 457 } 458 return false; 459 } 460 461 // Instrumenting some of the accesses may be proven redundant. 462 // Currently handled: 463 // - read-before-write (within same BB, no calls between) 464 // - not captured variables 465 // 466 // We do not handle some of the patterns that should not survive 467 // after the classic compiler optimizations. 468 // E.g. two reads from the same temp should be eliminated by CSE, 469 // two writes should be eliminated by DSE, etc. 470 // 471 // 'Local' is a vector of insns within the same BB (no calls between). 472 // 'All' is a vector of insns that will be instrumented. 473 void ThreadSanitizer::chooseInstructionsToInstrument( 474 SmallVectorImpl<Instruction *> &Local, 475 SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) { 476 DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All 477 // Iterate from the end. 478 for (Instruction *I : reverse(Local)) { 479 const bool IsWrite = isa<StoreInst>(*I); 480 Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand() 481 : cast<LoadInst>(I)->getPointerOperand(); 482 483 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) 484 continue; 485 486 if (!IsWrite) { 487 const auto WriteEntry = WriteTargets.find(Addr); 488 if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) { 489 auto &WI = All[WriteEntry->second]; 490 // If we distinguish volatile accesses and if either the read or write 491 // is volatile, do not omit any instrumentation. 492 const bool AnyVolatile = 493 ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() || 494 cast<StoreInst>(WI.Inst)->isVolatile()); 495 if (!AnyVolatile) { 496 // We will write to this temp, so no reason to analyze the read. 497 // Mark the write instruction as compound. 498 WI.Flags |= InstructionInfo::kCompoundRW; 499 NumOmittedReadsBeforeWrite++; 500 continue; 501 } 502 } 503 504 if (addrPointsToConstantData(Addr)) { 505 // Addr points to some constant data -- it can not race with any writes. 506 continue; 507 } 508 } 509 510 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 511 !PointerMayBeCaptured(Addr, true, true)) { 512 // The variable is addressable but not captured, so it cannot be 513 // referenced from a different thread and participate in a data race 514 // (see llvm/Analysis/CaptureTracking.h for details). 515 NumOmittedNonCaptured++; 516 continue; 517 } 518 519 // Instrument this instruction. 520 All.emplace_back(I); 521 if (IsWrite) { 522 // For read-before-write and compound instrumentation we only need one 523 // write target, and we can override any previous entry if it exists. 524 WriteTargets[Addr] = All.size() - 1; 525 } 526 } 527 Local.clear(); 528 } 529 530 static bool isAtomic(Instruction *I) { 531 // TODO: Ask TTI whether synchronization scope is between threads. 532 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 533 return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread; 534 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 535 return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread; 536 if (isa<AtomicRMWInst>(I)) 537 return true; 538 if (isa<AtomicCmpXchgInst>(I)) 539 return true; 540 if (isa<FenceInst>(I)) 541 return true; 542 return false; 543 } 544 545 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { 546 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 547 IRB.CreateCall(TsanIgnoreBegin); 548 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); 549 while (IRBuilder<> *AtExit = EE.Next()) { 550 AtExit->CreateCall(TsanIgnoreEnd); 551 } 552 } 553 554 bool ThreadSanitizer::sanitizeFunction(Function &F, 555 const TargetLibraryInfo &TLI) { 556 // This is required to prevent instrumenting call to __tsan_init from within 557 // the module constructor. 558 if (F.getName() == kTsanModuleCtorName) 559 return false; 560 // Naked functions can not have prologue/epilogue 561 // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at 562 // all. 563 if (F.hasFnAttribute(Attribute::Naked)) 564 return false; 565 566 // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of 567 // instrumentation. 568 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 569 return false; 570 571 initialize(*F.getParent()); 572 SmallVector<InstructionInfo, 8> AllLoadsAndStores; 573 SmallVector<Instruction*, 8> LocalLoadsAndStores; 574 SmallVector<Instruction*, 8> AtomicAccesses; 575 SmallVector<Instruction*, 8> MemIntrinCalls; 576 bool Res = false; 577 bool HasCalls = false; 578 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 579 const DataLayout &DL = F.getParent()->getDataLayout(); 580 581 // Traverse all instructions, collect loads/stores/returns, check for calls. 582 for (auto &BB : F) { 583 for (auto &Inst : BB) { 584 if (isAtomic(&Inst)) 585 AtomicAccesses.push_back(&Inst); 586 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 587 LocalLoadsAndStores.push_back(&Inst); 588 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 589 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 590 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI); 591 if (isa<MemIntrinsic>(Inst)) 592 MemIntrinCalls.push_back(&Inst); 593 HasCalls = true; 594 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 595 DL); 596 } 597 } 598 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 599 } 600 601 // We have collected all loads and stores. 602 // FIXME: many of these accesses do not need to be checked for races 603 // (e.g. variables that do not escape, etc). 604 605 // Instrument memory accesses only if we want to report bugs in the function. 606 if (ClInstrumentMemoryAccesses && SanitizeFunction) 607 for (const auto &II : AllLoadsAndStores) { 608 Res |= instrumentLoadOrStore(II, DL); 609 } 610 611 // Instrument atomic memory accesses in any case (they can be used to 612 // implement synchronization). 613 if (ClInstrumentAtomics) 614 for (auto Inst : AtomicAccesses) { 615 Res |= instrumentAtomic(Inst, DL); 616 } 617 618 if (ClInstrumentMemIntrinsics && SanitizeFunction) 619 for (auto Inst : MemIntrinCalls) { 620 Res |= instrumentMemIntrinsic(Inst); 621 } 622 623 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { 624 assert(!F.hasFnAttribute(Attribute::SanitizeThread)); 625 if (HasCalls) 626 InsertRuntimeIgnores(F); 627 } 628 629 // Instrument function entry/exit points if there were instrumented accesses. 630 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 631 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 632 Value *ReturnAddress = IRB.CreateCall( 633 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 634 IRB.getInt32(0)); 635 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 636 637 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); 638 while (IRBuilder<> *AtExit = EE.Next()) { 639 AtExit->CreateCall(TsanFuncExit, {}); 640 } 641 Res = true; 642 } 643 return Res; 644 } 645 646 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II, 647 const DataLayout &DL) { 648 IRBuilder<> IRB(II.Inst); 649 const bool IsWrite = isa<StoreInst>(*II.Inst); 650 Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand() 651 : cast<LoadInst>(II.Inst)->getPointerOperand(); 652 Type *OrigTy = getLoadStoreType(II.Inst); 653 654 // swifterror memory addresses are mem2reg promoted by instruction selection. 655 // As such they cannot have regular uses like an instrumentation function and 656 // it makes no sense to track them as memory. 657 if (Addr->isSwiftError()) 658 return false; 659 660 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); 661 if (Idx < 0) 662 return false; 663 if (IsWrite && isVtableAccess(II.Inst)) { 664 LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n"); 665 Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand(); 666 // StoredValue may be a vector type if we are storing several vptrs at once. 667 // In this case, just take the first element of the vector since this is 668 // enough to find vptr races. 669 if (isa<VectorType>(StoredValue->getType())) 670 StoredValue = IRB.CreateExtractElement( 671 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 672 if (StoredValue->getType()->isIntegerTy()) 673 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 674 // Call TsanVptrUpdate. 675 IRB.CreateCall(TsanVptrUpdate, 676 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 677 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 678 NumInstrumentedVtableWrites++; 679 return true; 680 } 681 if (!IsWrite && isVtableAccess(II.Inst)) { 682 IRB.CreateCall(TsanVptrLoad, 683 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 684 NumInstrumentedVtableReads++; 685 return true; 686 } 687 688 const unsigned Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlignment() 689 : cast<LoadInst>(II.Inst)->getAlignment(); 690 const bool IsCompoundRW = 691 ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW); 692 const bool IsVolatile = ClDistinguishVolatile && 693 (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile() 694 : cast<LoadInst>(II.Inst)->isVolatile()); 695 assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!"); 696 697 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 698 FunctionCallee OnAccessFunc = nullptr; 699 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) { 700 if (IsCompoundRW) 701 OnAccessFunc = TsanCompoundRW[Idx]; 702 else if (IsVolatile) 703 OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx]; 704 else 705 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 706 } else { 707 if (IsCompoundRW) 708 OnAccessFunc = TsanUnalignedCompoundRW[Idx]; 709 else if (IsVolatile) 710 OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx] 711 : TsanUnalignedVolatileRead[Idx]; 712 else 713 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 714 } 715 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 716 if (IsCompoundRW || IsWrite) 717 NumInstrumentedWrites++; 718 if (IsCompoundRW || !IsWrite) 719 NumInstrumentedReads++; 720 return true; 721 } 722 723 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 724 uint32_t v = 0; 725 switch (ord) { 726 case AtomicOrdering::NotAtomic: 727 llvm_unreachable("unexpected atomic ordering!"); 728 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; 729 case AtomicOrdering::Monotonic: v = 0; break; 730 // Not specified yet: 731 // case AtomicOrdering::Consume: v = 1; break; 732 case AtomicOrdering::Acquire: v = 2; break; 733 case AtomicOrdering::Release: v = 3; break; 734 case AtomicOrdering::AcquireRelease: v = 4; break; 735 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 736 } 737 return IRB->getInt32(v); 738 } 739 740 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 741 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 742 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 743 // instead we simply replace them with regular function calls, which are then 744 // intercepted by the run-time. 745 // Since tsan is running after everyone else, the calls should not be 746 // replaced back with intrinsics. If that becomes wrong at some point, 747 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 748 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 749 IRBuilder<> IRB(I); 750 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 751 IRB.CreateCall( 752 MemsetFn, 753 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 754 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 755 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 756 I->eraseFromParent(); 757 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 758 IRB.CreateCall( 759 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 760 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 761 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 762 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 763 I->eraseFromParent(); 764 } 765 return false; 766 } 767 768 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 769 // standards. For background see C++11 standard. A slightly older, publicly 770 // available draft of the standard (not entirely up-to-date, but close enough 771 // for casual browsing) is available here: 772 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 773 // The following page contains more background information: 774 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 775 776 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 777 IRBuilder<> IRB(I); 778 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 779 Value *Addr = LI->getPointerOperand(); 780 Type *OrigTy = LI->getType(); 781 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); 782 if (Idx < 0) 783 return false; 784 const unsigned ByteSize = 1U << Idx; 785 const unsigned BitSize = ByteSize * 8; 786 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 787 Type *PtrTy = Ty->getPointerTo(); 788 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 789 createOrdering(&IRB, LI->getOrdering())}; 790 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 791 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); 792 I->replaceAllUsesWith(Cast); 793 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 794 Value *Addr = SI->getPointerOperand(); 795 int Idx = 796 getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL); 797 if (Idx < 0) 798 return false; 799 const unsigned ByteSize = 1U << Idx; 800 const unsigned BitSize = ByteSize * 8; 801 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 802 Type *PtrTy = Ty->getPointerTo(); 803 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 804 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), 805 createOrdering(&IRB, SI->getOrdering())}; 806 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 807 ReplaceInstWithInst(I, C); 808 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 809 Value *Addr = RMWI->getPointerOperand(); 810 int Idx = 811 getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL); 812 if (Idx < 0) 813 return false; 814 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 815 if (!F) 816 return false; 817 const unsigned ByteSize = 1U << Idx; 818 const unsigned BitSize = ByteSize * 8; 819 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 820 Type *PtrTy = Ty->getPointerTo(); 821 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 822 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 823 createOrdering(&IRB, RMWI->getOrdering())}; 824 CallInst *C = CallInst::Create(F, Args); 825 ReplaceInstWithInst(I, C); 826 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 827 Value *Addr = CASI->getPointerOperand(); 828 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 829 int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL); 830 if (Idx < 0) 831 return false; 832 const unsigned ByteSize = 1U << Idx; 833 const unsigned BitSize = ByteSize * 8; 834 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 835 Type *PtrTy = Ty->getPointerTo(); 836 Value *CmpOperand = 837 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); 838 Value *NewOperand = 839 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); 840 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 841 CmpOperand, 842 NewOperand, 843 createOrdering(&IRB, CASI->getSuccessOrdering()), 844 createOrdering(&IRB, CASI->getFailureOrdering())}; 845 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 846 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 847 Value *OldVal = C; 848 if (Ty != OrigOldValTy) { 849 // The value is a pointer, so we need to cast the return value. 850 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 851 } 852 853 Value *Res = 854 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 855 Res = IRB.CreateInsertValue(Res, Success, 1); 856 857 I->replaceAllUsesWith(Res); 858 I->eraseFromParent(); 859 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 860 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 861 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread 862 ? TsanAtomicSignalFence 863 : TsanAtomicThreadFence; 864 CallInst *C = CallInst::Create(F, Args); 865 ReplaceInstWithInst(I, C); 866 } 867 return true; 868 } 869 870 int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, 871 const DataLayout &DL) { 872 assert(OrigTy->isSized()); 873 assert( 874 cast<PointerType>(Addr->getType())->isOpaqueOrPointeeTypeMatches(OrigTy)); 875 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 876 if (TypeSize != 8 && TypeSize != 16 && 877 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 878 NumAccessesWithBadSize++; 879 // Ignore all unusual sizes. 880 return -1; 881 } 882 size_t Idx = countTrailingZeros(TypeSize / 8); 883 assert(Idx < kNumberOfAccessSizes); 884 return Idx; 885 } 886