1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer, a race detector. 10 // 11 // The tool is under development, for the details about previous versions see 12 // http://code.google.com/p/data-race-test 13 // 14 // The instrumentation phase is quite simple: 15 // - Insert calls to run-time library before every memory access. 16 // - Optimizations may apply to avoid instrumenting some of the accesses. 17 // - Insert calls at function entry/exit. 18 // The rest is handled by the run-time library. 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/ProfileData/InstrProf.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Instrumentation.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/EscapeEnumerator.h" 50 #include "llvm/Transforms/Utils/Local.h" 51 #include "llvm/Transforms/Utils/ModuleUtils.h" 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "tsan" 56 57 static cl::opt<bool> ClInstrumentMemoryAccesses( 58 "tsan-instrument-memory-accesses", cl::init(true), 59 cl::desc("Instrument memory accesses"), cl::Hidden); 60 static cl::opt<bool> 61 ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true), 62 cl::desc("Instrument function entry and exit"), 63 cl::Hidden); 64 static cl::opt<bool> ClHandleCxxExceptions( 65 "tsan-handle-cxx-exceptions", cl::init(true), 66 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), 67 cl::Hidden); 68 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics", 69 cl::init(true), 70 cl::desc("Instrument atomics"), 71 cl::Hidden); 72 static cl::opt<bool> ClInstrumentMemIntrinsics( 73 "tsan-instrument-memintrinsics", cl::init(true), 74 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 75 static cl::opt<bool> ClDistinguishVolatile( 76 "tsan-distinguish-volatile", cl::init(false), 77 cl::desc("Emit special instrumentation for accesses to volatiles"), 78 cl::Hidden); 79 static cl::opt<bool> ClInstrumentReadBeforeWrite( 80 "tsan-instrument-read-before-write", cl::init(false), 81 cl::desc("Do not eliminate read instrumentation for read-before-writes"), 82 cl::Hidden); 83 static cl::opt<bool> ClCompoundReadBeforeWrite( 84 "tsan-compound-read-before-write", cl::init(false), 85 cl::desc("Emit special compound instrumentation for reads-before-writes"), 86 cl::Hidden); 87 88 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 89 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 90 STATISTIC(NumOmittedReadsBeforeWrite, 91 "Number of reads ignored due to following writes"); 92 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 93 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 94 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 95 STATISTIC(NumOmittedReadsFromConstantGlobals, 96 "Number of reads from constant globals"); 97 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 98 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 99 100 const char kTsanModuleCtorName[] = "tsan.module_ctor"; 101 const char kTsanInitName[] = "__tsan_init"; 102 103 namespace { 104 105 /// ThreadSanitizer: instrument the code in module to find races. 106 /// 107 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function 108 /// declarations into the module if they don't exist already. Instantiating 109 /// ensures the __tsan_init function is in the list of global constructors for 110 /// the module. 111 struct ThreadSanitizer { 112 ThreadSanitizer() { 113 // Sanity check options and warn user. 114 if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) { 115 errs() 116 << "warning: Option -tsan-compound-read-before-write has no effect " 117 "when -tsan-instrument-read-before-write is set.\n"; 118 } 119 } 120 121 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); 122 123 private: 124 // Internal Instruction wrapper that contains more information about the 125 // Instruction from prior analysis. 126 struct InstructionInfo { 127 // Instrumentation emitted for this instruction is for a compounded set of 128 // read and write operations in the same basic block. 129 static constexpr unsigned kCompoundRW = (1U << 0); 130 131 explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {} 132 133 Instruction *Inst; 134 unsigned Flags = 0; 135 }; 136 137 void initialize(Module &M); 138 bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL); 139 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 140 bool instrumentMemIntrinsic(Instruction *I); 141 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 142 SmallVectorImpl<InstructionInfo> &All, 143 const DataLayout &DL); 144 bool addrPointsToConstantData(Value *Addr); 145 int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL); 146 void InsertRuntimeIgnores(Function &F); 147 148 Type *IntptrTy; 149 FunctionCallee TsanFuncEntry; 150 FunctionCallee TsanFuncExit; 151 FunctionCallee TsanIgnoreBegin; 152 FunctionCallee TsanIgnoreEnd; 153 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 154 static const size_t kNumberOfAccessSizes = 5; 155 FunctionCallee TsanRead[kNumberOfAccessSizes]; 156 FunctionCallee TsanWrite[kNumberOfAccessSizes]; 157 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes]; 158 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes]; 159 FunctionCallee TsanVolatileRead[kNumberOfAccessSizes]; 160 FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes]; 161 FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes]; 162 FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes]; 163 FunctionCallee TsanCompoundRW[kNumberOfAccessSizes]; 164 FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes]; 165 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes]; 166 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes]; 167 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1] 168 [kNumberOfAccessSizes]; 169 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes]; 170 FunctionCallee TsanAtomicThreadFence; 171 FunctionCallee TsanAtomicSignalFence; 172 FunctionCallee TsanVptrUpdate; 173 FunctionCallee TsanVptrLoad; 174 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 175 }; 176 177 struct ThreadSanitizerLegacyPass : FunctionPass { 178 ThreadSanitizerLegacyPass() : FunctionPass(ID) { 179 initializeThreadSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 180 } 181 StringRef getPassName() const override; 182 void getAnalysisUsage(AnalysisUsage &AU) const override; 183 bool runOnFunction(Function &F) override; 184 bool doInitialization(Module &M) override; 185 static char ID; // Pass identification, replacement for typeid. 186 private: 187 Optional<ThreadSanitizer> TSan; 188 }; 189 190 void insertModuleCtor(Module &M) { 191 getOrCreateSanitizerCtorAndInitFunctions( 192 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 193 /*InitArgs=*/{}, 194 // This callback is invoked when the functions are created the first 195 // time. Hook them into the global ctors list in that case: 196 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); }); 197 } 198 199 } // namespace 200 201 PreservedAnalyses ThreadSanitizerPass::run(Function &F, 202 FunctionAnalysisManager &FAM) { 203 ThreadSanitizer TSan; 204 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 205 return PreservedAnalyses::none(); 206 return PreservedAnalyses::all(); 207 } 208 209 PreservedAnalyses ThreadSanitizerPass::run(Module &M, 210 ModuleAnalysisManager &MAM) { 211 insertModuleCtor(M); 212 return PreservedAnalyses::none(); 213 } 214 215 char ThreadSanitizerLegacyPass::ID = 0; 216 INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan", 217 "ThreadSanitizer: detects data races.", false, false) 218 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 219 INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan", 220 "ThreadSanitizer: detects data races.", false, false) 221 222 StringRef ThreadSanitizerLegacyPass::getPassName() const { 223 return "ThreadSanitizerLegacyPass"; 224 } 225 226 void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 227 AU.addRequired<TargetLibraryInfoWrapperPass>(); 228 } 229 230 bool ThreadSanitizerLegacyPass::doInitialization(Module &M) { 231 insertModuleCtor(M); 232 TSan.emplace(); 233 return true; 234 } 235 236 bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) { 237 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 238 TSan->sanitizeFunction(F, TLI); 239 return true; 240 } 241 242 FunctionPass *llvm::createThreadSanitizerLegacyPassPass() { 243 return new ThreadSanitizerLegacyPass(); 244 } 245 246 void ThreadSanitizer::initialize(Module &M) { 247 const DataLayout &DL = M.getDataLayout(); 248 IntptrTy = DL.getIntPtrType(M.getContext()); 249 250 IRBuilder<> IRB(M.getContext()); 251 AttributeList Attr; 252 Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex, 253 Attribute::NoUnwind); 254 // Initialize the callbacks. 255 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr, 256 IRB.getVoidTy(), IRB.getInt8PtrTy()); 257 TsanFuncExit = 258 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy()); 259 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr, 260 IRB.getVoidTy()); 261 TsanIgnoreEnd = 262 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy()); 263 IntegerType *OrdTy = IRB.getInt32Ty(); 264 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 265 const unsigned ByteSize = 1U << i; 266 const unsigned BitSize = ByteSize * 8; 267 std::string ByteSizeStr = utostr(ByteSize); 268 std::string BitSizeStr = utostr(BitSize); 269 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 270 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(), 271 IRB.getInt8PtrTy()); 272 273 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 274 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(), 275 IRB.getInt8PtrTy()); 276 277 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 278 TsanUnalignedRead[i] = M.getOrInsertFunction( 279 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 280 281 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 282 TsanUnalignedWrite[i] = M.getOrInsertFunction( 283 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 284 285 SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr); 286 TsanVolatileRead[i] = M.getOrInsertFunction( 287 VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 288 289 SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr); 290 TsanVolatileWrite[i] = M.getOrInsertFunction( 291 VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 292 293 SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" + 294 ByteSizeStr); 295 TsanUnalignedVolatileRead[i] = M.getOrInsertFunction( 296 UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 297 298 SmallString<64> UnalignedVolatileWriteName( 299 "__tsan_unaligned_volatile_write" + ByteSizeStr); 300 TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction( 301 UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 302 303 SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr); 304 TsanCompoundRW[i] = M.getOrInsertFunction( 305 CompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 306 307 SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" + 308 ByteSizeStr); 309 TsanUnalignedCompoundRW[i] = M.getOrInsertFunction( 310 UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 311 312 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 313 Type *PtrTy = Ty->getPointerTo(); 314 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 315 TsanAtomicLoad[i] = 316 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy); 317 318 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 319 TsanAtomicStore[i] = M.getOrInsertFunction( 320 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy); 321 322 for (unsigned Op = AtomicRMWInst::FIRST_BINOP; 323 Op <= AtomicRMWInst::LAST_BINOP; ++Op) { 324 TsanAtomicRMW[Op][i] = nullptr; 325 const char *NamePart = nullptr; 326 if (Op == AtomicRMWInst::Xchg) 327 NamePart = "_exchange"; 328 else if (Op == AtomicRMWInst::Add) 329 NamePart = "_fetch_add"; 330 else if (Op == AtomicRMWInst::Sub) 331 NamePart = "_fetch_sub"; 332 else if (Op == AtomicRMWInst::And) 333 NamePart = "_fetch_and"; 334 else if (Op == AtomicRMWInst::Or) 335 NamePart = "_fetch_or"; 336 else if (Op == AtomicRMWInst::Xor) 337 NamePart = "_fetch_xor"; 338 else if (Op == AtomicRMWInst::Nand) 339 NamePart = "_fetch_nand"; 340 else 341 continue; 342 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 343 TsanAtomicRMW[Op][i] = 344 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy); 345 } 346 347 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 348 "_compare_exchange_val"); 349 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty, 350 Ty, OrdTy, OrdTy); 351 } 352 TsanVptrUpdate = 353 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), 354 IRB.getInt8PtrTy(), IRB.getInt8PtrTy()); 355 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr, 356 IRB.getVoidTy(), IRB.getInt8PtrTy()); 357 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence", 358 Attr, IRB.getVoidTy(), OrdTy); 359 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence", 360 Attr, IRB.getVoidTy(), OrdTy); 361 362 MemmoveFn = 363 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), 364 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 365 MemcpyFn = 366 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), 367 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 368 MemsetFn = 369 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), 370 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); 371 } 372 373 static bool isVtableAccess(Instruction *I) { 374 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 375 return Tag->isTBAAVtableAccess(); 376 return false; 377 } 378 379 // Do not instrument known races/"benign races" that come from compiler 380 // instrumentatin. The user has no way of suppressing them. 381 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { 382 // Peel off GEPs and BitCasts. 383 Addr = Addr->stripInBoundsOffsets(); 384 385 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 386 if (GV->hasSection()) { 387 StringRef SectionName = GV->getSection(); 388 // Check if the global is in the PGO counters section. 389 auto OF = Triple(M->getTargetTriple()).getObjectFormat(); 390 if (SectionName.endswith( 391 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) 392 return false; 393 } 394 395 // Check if the global is private gcov data. 396 if (GV->getName().startswith("__llvm_gcov") || 397 GV->getName().startswith("__llvm_gcda")) 398 return false; 399 } 400 401 // Do not instrument acesses from different address spaces; we cannot deal 402 // with them. 403 if (Addr) { 404 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 405 if (PtrTy->getPointerAddressSpace() != 0) 406 return false; 407 } 408 409 return true; 410 } 411 412 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 413 // If this is a GEP, just analyze its pointer operand. 414 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 415 Addr = GEP->getPointerOperand(); 416 417 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 418 if (GV->isConstant()) { 419 // Reads from constant globals can not race with any writes. 420 NumOmittedReadsFromConstantGlobals++; 421 return true; 422 } 423 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 424 if (isVtableAccess(L)) { 425 // Reads from a vtable pointer can not race with any writes. 426 NumOmittedReadsFromVtable++; 427 return true; 428 } 429 } 430 return false; 431 } 432 433 // Instrumenting some of the accesses may be proven redundant. 434 // Currently handled: 435 // - read-before-write (within same BB, no calls between) 436 // - not captured variables 437 // 438 // We do not handle some of the patterns that should not survive 439 // after the classic compiler optimizations. 440 // E.g. two reads from the same temp should be eliminated by CSE, 441 // two writes should be eliminated by DSE, etc. 442 // 443 // 'Local' is a vector of insns within the same BB (no calls between). 444 // 'All' is a vector of insns that will be instrumented. 445 void ThreadSanitizer::chooseInstructionsToInstrument( 446 SmallVectorImpl<Instruction *> &Local, 447 SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) { 448 DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All 449 // Iterate from the end. 450 for (Instruction *I : reverse(Local)) { 451 const bool IsWrite = isa<StoreInst>(*I); 452 Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand() 453 : cast<LoadInst>(I)->getPointerOperand(); 454 455 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) 456 continue; 457 458 if (!IsWrite) { 459 const auto WriteEntry = WriteTargets.find(Addr); 460 if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) { 461 auto &WI = All[WriteEntry->second]; 462 // If we distinguish volatile accesses and if either the read or write 463 // is volatile, do not omit any instrumentation. 464 const bool AnyVolatile = 465 ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() || 466 cast<StoreInst>(WI.Inst)->isVolatile()); 467 if (!AnyVolatile) { 468 // We will write to this temp, so no reason to analyze the read. 469 // Mark the write instruction as compound. 470 WI.Flags |= InstructionInfo::kCompoundRW; 471 NumOmittedReadsBeforeWrite++; 472 continue; 473 } 474 } 475 476 if (addrPointsToConstantData(Addr)) { 477 // Addr points to some constant data -- it can not race with any writes. 478 continue; 479 } 480 } 481 482 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 483 !PointerMayBeCaptured(Addr, true, true)) { 484 // The variable is addressable but not captured, so it cannot be 485 // referenced from a different thread and participate in a data race 486 // (see llvm/Analysis/CaptureTracking.h for details). 487 NumOmittedNonCaptured++; 488 continue; 489 } 490 491 // Instrument this instruction. 492 All.emplace_back(I); 493 if (IsWrite) { 494 // For read-before-write and compound instrumentation we only need one 495 // write target, and we can override any previous entry if it exists. 496 WriteTargets[Addr] = All.size() - 1; 497 } 498 } 499 Local.clear(); 500 } 501 502 static bool isAtomic(Instruction *I) { 503 // TODO: Ask TTI whether synchronization scope is between threads. 504 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 505 return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread; 506 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 507 return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread; 508 if (isa<AtomicRMWInst>(I)) 509 return true; 510 if (isa<AtomicCmpXchgInst>(I)) 511 return true; 512 if (isa<FenceInst>(I)) 513 return true; 514 return false; 515 } 516 517 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { 518 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 519 IRB.CreateCall(TsanIgnoreBegin); 520 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); 521 while (IRBuilder<> *AtExit = EE.Next()) { 522 AtExit->CreateCall(TsanIgnoreEnd); 523 } 524 } 525 526 bool ThreadSanitizer::sanitizeFunction(Function &F, 527 const TargetLibraryInfo &TLI) { 528 // This is required to prevent instrumenting call to __tsan_init from within 529 // the module constructor. 530 if (F.getName() == kTsanModuleCtorName) 531 return false; 532 // Naked functions can not have prologue/epilogue 533 // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at 534 // all. 535 if (F.hasFnAttribute(Attribute::Naked)) 536 return false; 537 initialize(*F.getParent()); 538 SmallVector<InstructionInfo, 8> AllLoadsAndStores; 539 SmallVector<Instruction*, 8> LocalLoadsAndStores; 540 SmallVector<Instruction*, 8> AtomicAccesses; 541 SmallVector<Instruction*, 8> MemIntrinCalls; 542 bool Res = false; 543 bool HasCalls = false; 544 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 545 const DataLayout &DL = F.getParent()->getDataLayout(); 546 547 // Traverse all instructions, collect loads/stores/returns, check for calls. 548 for (auto &BB : F) { 549 for (auto &Inst : BB) { 550 if (isAtomic(&Inst)) 551 AtomicAccesses.push_back(&Inst); 552 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 553 LocalLoadsAndStores.push_back(&Inst); 554 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 555 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 556 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI); 557 if (isa<MemIntrinsic>(Inst)) 558 MemIntrinCalls.push_back(&Inst); 559 HasCalls = true; 560 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 561 DL); 562 } 563 } 564 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 565 } 566 567 // We have collected all loads and stores. 568 // FIXME: many of these accesses do not need to be checked for races 569 // (e.g. variables that do not escape, etc). 570 571 // Instrument memory accesses only if we want to report bugs in the function. 572 if (ClInstrumentMemoryAccesses && SanitizeFunction) 573 for (const auto &II : AllLoadsAndStores) { 574 Res |= instrumentLoadOrStore(II, DL); 575 } 576 577 // Instrument atomic memory accesses in any case (they can be used to 578 // implement synchronization). 579 if (ClInstrumentAtomics) 580 for (auto Inst : AtomicAccesses) { 581 Res |= instrumentAtomic(Inst, DL); 582 } 583 584 if (ClInstrumentMemIntrinsics && SanitizeFunction) 585 for (auto Inst : MemIntrinCalls) { 586 Res |= instrumentMemIntrinsic(Inst); 587 } 588 589 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { 590 assert(!F.hasFnAttribute(Attribute::SanitizeThread)); 591 if (HasCalls) 592 InsertRuntimeIgnores(F); 593 } 594 595 // Instrument function entry/exit points if there were instrumented accesses. 596 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 597 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 598 Value *ReturnAddress = IRB.CreateCall( 599 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 600 IRB.getInt32(0)); 601 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 602 603 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); 604 while (IRBuilder<> *AtExit = EE.Next()) { 605 AtExit->CreateCall(TsanFuncExit, {}); 606 } 607 Res = true; 608 } 609 return Res; 610 } 611 612 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II, 613 const DataLayout &DL) { 614 IRBuilder<> IRB(II.Inst); 615 const bool IsWrite = isa<StoreInst>(*II.Inst); 616 Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand() 617 : cast<LoadInst>(II.Inst)->getPointerOperand(); 618 Type *OrigTy = getLoadStoreType(II.Inst); 619 620 // swifterror memory addresses are mem2reg promoted by instruction selection. 621 // As such they cannot have regular uses like an instrumentation function and 622 // it makes no sense to track them as memory. 623 if (Addr->isSwiftError()) 624 return false; 625 626 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); 627 if (Idx < 0) 628 return false; 629 if (IsWrite && isVtableAccess(II.Inst)) { 630 LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n"); 631 Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand(); 632 // StoredValue may be a vector type if we are storing several vptrs at once. 633 // In this case, just take the first element of the vector since this is 634 // enough to find vptr races. 635 if (isa<VectorType>(StoredValue->getType())) 636 StoredValue = IRB.CreateExtractElement( 637 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 638 if (StoredValue->getType()->isIntegerTy()) 639 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 640 // Call TsanVptrUpdate. 641 IRB.CreateCall(TsanVptrUpdate, 642 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 643 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 644 NumInstrumentedVtableWrites++; 645 return true; 646 } 647 if (!IsWrite && isVtableAccess(II.Inst)) { 648 IRB.CreateCall(TsanVptrLoad, 649 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 650 NumInstrumentedVtableReads++; 651 return true; 652 } 653 654 const unsigned Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlignment() 655 : cast<LoadInst>(II.Inst)->getAlignment(); 656 const bool IsCompoundRW = 657 ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW); 658 const bool IsVolatile = ClDistinguishVolatile && 659 (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile() 660 : cast<LoadInst>(II.Inst)->isVolatile()); 661 assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!"); 662 663 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 664 FunctionCallee OnAccessFunc = nullptr; 665 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) { 666 if (IsCompoundRW) 667 OnAccessFunc = TsanCompoundRW[Idx]; 668 else if (IsVolatile) 669 OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx]; 670 else 671 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 672 } else { 673 if (IsCompoundRW) 674 OnAccessFunc = TsanUnalignedCompoundRW[Idx]; 675 else if (IsVolatile) 676 OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx] 677 : TsanUnalignedVolatileRead[Idx]; 678 else 679 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 680 } 681 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 682 if (IsCompoundRW || IsWrite) 683 NumInstrumentedWrites++; 684 if (IsCompoundRW || !IsWrite) 685 NumInstrumentedReads++; 686 return true; 687 } 688 689 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 690 uint32_t v = 0; 691 switch (ord) { 692 case AtomicOrdering::NotAtomic: 693 llvm_unreachable("unexpected atomic ordering!"); 694 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; 695 case AtomicOrdering::Monotonic: v = 0; break; 696 // Not specified yet: 697 // case AtomicOrdering::Consume: v = 1; break; 698 case AtomicOrdering::Acquire: v = 2; break; 699 case AtomicOrdering::Release: v = 3; break; 700 case AtomicOrdering::AcquireRelease: v = 4; break; 701 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 702 } 703 return IRB->getInt32(v); 704 } 705 706 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 707 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 708 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 709 // instead we simply replace them with regular function calls, which are then 710 // intercepted by the run-time. 711 // Since tsan is running after everyone else, the calls should not be 712 // replaced back with intrinsics. If that becomes wrong at some point, 713 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 714 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 715 IRBuilder<> IRB(I); 716 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 717 IRB.CreateCall( 718 MemsetFn, 719 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 720 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 721 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 722 I->eraseFromParent(); 723 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 724 IRB.CreateCall( 725 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 726 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 727 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 728 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 729 I->eraseFromParent(); 730 } 731 return false; 732 } 733 734 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 735 // standards. For background see C++11 standard. A slightly older, publicly 736 // available draft of the standard (not entirely up-to-date, but close enough 737 // for casual browsing) is available here: 738 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 739 // The following page contains more background information: 740 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 741 742 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 743 IRBuilder<> IRB(I); 744 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 745 Value *Addr = LI->getPointerOperand(); 746 Type *OrigTy = LI->getType(); 747 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); 748 if (Idx < 0) 749 return false; 750 const unsigned ByteSize = 1U << Idx; 751 const unsigned BitSize = ByteSize * 8; 752 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 753 Type *PtrTy = Ty->getPointerTo(); 754 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 755 createOrdering(&IRB, LI->getOrdering())}; 756 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 757 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); 758 I->replaceAllUsesWith(Cast); 759 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 760 Value *Addr = SI->getPointerOperand(); 761 int Idx = 762 getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL); 763 if (Idx < 0) 764 return false; 765 const unsigned ByteSize = 1U << Idx; 766 const unsigned BitSize = ByteSize * 8; 767 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 768 Type *PtrTy = Ty->getPointerTo(); 769 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 770 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), 771 createOrdering(&IRB, SI->getOrdering())}; 772 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 773 ReplaceInstWithInst(I, C); 774 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 775 Value *Addr = RMWI->getPointerOperand(); 776 int Idx = 777 getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL); 778 if (Idx < 0) 779 return false; 780 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 781 if (!F) 782 return false; 783 const unsigned ByteSize = 1U << Idx; 784 const unsigned BitSize = ByteSize * 8; 785 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 786 Type *PtrTy = Ty->getPointerTo(); 787 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 788 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 789 createOrdering(&IRB, RMWI->getOrdering())}; 790 CallInst *C = CallInst::Create(F, Args); 791 ReplaceInstWithInst(I, C); 792 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 793 Value *Addr = CASI->getPointerOperand(); 794 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 795 int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL); 796 if (Idx < 0) 797 return false; 798 const unsigned ByteSize = 1U << Idx; 799 const unsigned BitSize = ByteSize * 8; 800 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 801 Type *PtrTy = Ty->getPointerTo(); 802 Value *CmpOperand = 803 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); 804 Value *NewOperand = 805 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); 806 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 807 CmpOperand, 808 NewOperand, 809 createOrdering(&IRB, CASI->getSuccessOrdering()), 810 createOrdering(&IRB, CASI->getFailureOrdering())}; 811 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 812 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 813 Value *OldVal = C; 814 if (Ty != OrigOldValTy) { 815 // The value is a pointer, so we need to cast the return value. 816 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 817 } 818 819 Value *Res = 820 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 821 Res = IRB.CreateInsertValue(Res, Success, 1); 822 823 I->replaceAllUsesWith(Res); 824 I->eraseFromParent(); 825 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 826 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 827 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread 828 ? TsanAtomicSignalFence 829 : TsanAtomicThreadFence; 830 CallInst *C = CallInst::Create(F, Args); 831 ReplaceInstWithInst(I, C); 832 } 833 return true; 834 } 835 836 int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, 837 const DataLayout &DL) { 838 assert(OrigTy->isSized()); 839 assert( 840 cast<PointerType>(Addr->getType())->isOpaqueOrPointeeTypeMatches(OrigTy)); 841 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 842 if (TypeSize != 8 && TypeSize != 16 && 843 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 844 NumAccessesWithBadSize++; 845 // Ignore all unusual sizes. 846 return -1; 847 } 848 size_t Idx = countTrailingZeros(TypeSize / 8); 849 assert(Idx < kNumberOfAccessSizes); 850 return Idx; 851 } 852