1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer, a race detector. 11 // 12 // The tool is under development, for the details about previous versions see 13 // http://code.google.com/p/data-race-test 14 // 15 // The instrumentation phase is quite simple: 16 // - Insert calls to run-time library before every memory access. 17 // - Optimizations may apply to avoid instrumenting some of the accesses. 18 // - Insert calls at function entry/exit. 19 // The rest is handled by the run-time library. 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Instrumentation.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/ProfileData/InstrProf.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ModuleUtils.h" 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "tsan" 52 53 static cl::opt<bool> ClInstrumentMemoryAccesses( 54 "tsan-instrument-memory-accesses", cl::init(true), 55 cl::desc("Instrument memory accesses"), cl::Hidden); 56 static cl::opt<bool> ClInstrumentFuncEntryExit( 57 "tsan-instrument-func-entry-exit", cl::init(true), 58 cl::desc("Instrument function entry and exit"), cl::Hidden); 59 static cl::opt<bool> ClInstrumentAtomics( 60 "tsan-instrument-atomics", cl::init(true), 61 cl::desc("Instrument atomics"), cl::Hidden); 62 static cl::opt<bool> ClInstrumentMemIntrinsics( 63 "tsan-instrument-memintrinsics", cl::init(true), 64 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 65 66 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 67 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 68 STATISTIC(NumOmittedReadsBeforeWrite, 69 "Number of reads ignored due to following writes"); 70 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 71 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 72 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 73 STATISTIC(NumOmittedReadsFromConstantGlobals, 74 "Number of reads from constant globals"); 75 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 76 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 77 78 static const char *const kTsanModuleCtorName = "tsan.module_ctor"; 79 static const char *const kTsanInitName = "__tsan_init"; 80 81 namespace { 82 83 /// ThreadSanitizer: instrument the code in module to find races. 84 struct ThreadSanitizer : public FunctionPass { 85 ThreadSanitizer() : FunctionPass(ID) {} 86 StringRef getPassName() const override; 87 void getAnalysisUsage(AnalysisUsage &AU) const override; 88 bool runOnFunction(Function &F) override; 89 bool doInitialization(Module &M) override; 90 static char ID; // Pass identification, replacement for typeid. 91 92 private: 93 void initializeCallbacks(Module &M); 94 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); 95 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 96 bool instrumentMemIntrinsic(Instruction *I); 97 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 98 SmallVectorImpl<Instruction *> &All, 99 const DataLayout &DL); 100 bool addrPointsToConstantData(Value *Addr); 101 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); 102 103 Type *IntptrTy; 104 IntegerType *OrdTy; 105 // Callbacks to run-time library are computed in doInitialization. 106 Function *TsanFuncEntry; 107 Function *TsanFuncExit; 108 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 109 static const size_t kNumberOfAccessSizes = 5; 110 Function *TsanRead[kNumberOfAccessSizes]; 111 Function *TsanWrite[kNumberOfAccessSizes]; 112 Function *TsanUnalignedRead[kNumberOfAccessSizes]; 113 Function *TsanUnalignedWrite[kNumberOfAccessSizes]; 114 Function *TsanAtomicLoad[kNumberOfAccessSizes]; 115 Function *TsanAtomicStore[kNumberOfAccessSizes]; 116 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes]; 117 Function *TsanAtomicCAS[kNumberOfAccessSizes]; 118 Function *TsanAtomicThreadFence; 119 Function *TsanAtomicSignalFence; 120 Function *TsanVptrUpdate; 121 Function *TsanVptrLoad; 122 Function *MemmoveFn, *MemcpyFn, *MemsetFn; 123 Function *TsanCtorFunction; 124 }; 125 } // namespace 126 127 char ThreadSanitizer::ID = 0; 128 INITIALIZE_PASS_BEGIN( 129 ThreadSanitizer, "tsan", 130 "ThreadSanitizer: detects data races.", 131 false, false) 132 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 133 INITIALIZE_PASS_END( 134 ThreadSanitizer, "tsan", 135 "ThreadSanitizer: detects data races.", 136 false, false) 137 138 StringRef ThreadSanitizer::getPassName() const { return "ThreadSanitizer"; } 139 140 void ThreadSanitizer::getAnalysisUsage(AnalysisUsage &AU) const { 141 AU.addRequired<TargetLibraryInfoWrapperPass>(); 142 } 143 144 FunctionPass *llvm::createThreadSanitizerPass() { 145 return new ThreadSanitizer(); 146 } 147 148 void ThreadSanitizer::initializeCallbacks(Module &M) { 149 IRBuilder<> IRB(M.getContext()); 150 // Initialize the callbacks. 151 TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 152 "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 153 TsanFuncExit = checkSanitizerInterfaceFunction( 154 M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr)); 155 OrdTy = IRB.getInt32Ty(); 156 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 157 const unsigned ByteSize = 1U << i; 158 const unsigned BitSize = ByteSize * 8; 159 std::string ByteSizeStr = utostr(ByteSize); 160 std::string BitSizeStr = utostr(BitSize); 161 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 162 TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 163 ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 164 165 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 166 TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 167 WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 168 169 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 170 TsanUnalignedRead[i] = 171 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 172 UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 173 174 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 175 TsanUnalignedWrite[i] = 176 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 177 UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 178 179 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 180 Type *PtrTy = Ty->getPointerTo(); 181 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 182 TsanAtomicLoad[i] = checkSanitizerInterfaceFunction( 183 M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr)); 184 185 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 186 TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 187 AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr)); 188 189 for (int op = AtomicRMWInst::FIRST_BINOP; 190 op <= AtomicRMWInst::LAST_BINOP; ++op) { 191 TsanAtomicRMW[op][i] = nullptr; 192 const char *NamePart = nullptr; 193 if (op == AtomicRMWInst::Xchg) 194 NamePart = "_exchange"; 195 else if (op == AtomicRMWInst::Add) 196 NamePart = "_fetch_add"; 197 else if (op == AtomicRMWInst::Sub) 198 NamePart = "_fetch_sub"; 199 else if (op == AtomicRMWInst::And) 200 NamePart = "_fetch_and"; 201 else if (op == AtomicRMWInst::Or) 202 NamePart = "_fetch_or"; 203 else if (op == AtomicRMWInst::Xor) 204 NamePart = "_fetch_xor"; 205 else if (op == AtomicRMWInst::Nand) 206 NamePart = "_fetch_nand"; 207 else 208 continue; 209 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 210 TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction( 211 M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr)); 212 } 213 214 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 215 "_compare_exchange_val"); 216 TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 217 AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr)); 218 } 219 TsanVptrUpdate = checkSanitizerInterfaceFunction( 220 M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(), 221 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr)); 222 TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 223 "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 224 TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 225 "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr)); 226 TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 227 "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr)); 228 229 MemmoveFn = checkSanitizerInterfaceFunction( 230 M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 231 IRB.getInt8PtrTy(), IntptrTy, nullptr)); 232 MemcpyFn = checkSanitizerInterfaceFunction( 233 M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 234 IRB.getInt8PtrTy(), IntptrTy, nullptr)); 235 MemsetFn = checkSanitizerInterfaceFunction( 236 M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 237 IRB.getInt32Ty(), IntptrTy, nullptr)); 238 } 239 240 bool ThreadSanitizer::doInitialization(Module &M) { 241 const DataLayout &DL = M.getDataLayout(); 242 IntptrTy = DL.getIntPtrType(M.getContext()); 243 std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 244 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 245 /*InitArgs=*/{}); 246 247 appendToGlobalCtors(M, TsanCtorFunction, 0); 248 249 return true; 250 } 251 252 static bool isVtableAccess(Instruction *I) { 253 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 254 return Tag->isTBAAVtableAccess(); 255 return false; 256 } 257 258 // Do not instrument known races/"benign races" that come from compiler 259 // instrumentatin. The user has no way of suppressing them. 260 static bool shouldInstrumentReadWriteFromAddress(Value *Addr) { 261 // Peel off GEPs and BitCasts. 262 Addr = Addr->stripInBoundsOffsets(); 263 264 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 265 if (GV->hasSection()) { 266 StringRef SectionName = GV->getSection(); 267 // Check if the global is in the PGO counters section. 268 if (SectionName.endswith(getInstrProfCountersSectionName( 269 /*AddSegment=*/false))) 270 return false; 271 } 272 273 // Check if the global is private gcov data. 274 if (GV->getName().startswith("__llvm_gcov") || 275 GV->getName().startswith("__llvm_gcda")) 276 return false; 277 } 278 279 // Do not instrument acesses from different address spaces; we cannot deal 280 // with them. 281 if (Addr) { 282 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 283 if (PtrTy->getPointerAddressSpace() != 0) 284 return false; 285 } 286 287 return true; 288 } 289 290 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 291 // If this is a GEP, just analyze its pointer operand. 292 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 293 Addr = GEP->getPointerOperand(); 294 295 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 296 if (GV->isConstant()) { 297 // Reads from constant globals can not race with any writes. 298 NumOmittedReadsFromConstantGlobals++; 299 return true; 300 } 301 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 302 if (isVtableAccess(L)) { 303 // Reads from a vtable pointer can not race with any writes. 304 NumOmittedReadsFromVtable++; 305 return true; 306 } 307 } 308 return false; 309 } 310 311 // Instrumenting some of the accesses may be proven redundant. 312 // Currently handled: 313 // - read-before-write (within same BB, no calls between) 314 // - not captured variables 315 // 316 // We do not handle some of the patterns that should not survive 317 // after the classic compiler optimizations. 318 // E.g. two reads from the same temp should be eliminated by CSE, 319 // two writes should be eliminated by DSE, etc. 320 // 321 // 'Local' is a vector of insns within the same BB (no calls between). 322 // 'All' is a vector of insns that will be instrumented. 323 void ThreadSanitizer::chooseInstructionsToInstrument( 324 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All, 325 const DataLayout &DL) { 326 SmallSet<Value*, 8> WriteTargets; 327 // Iterate from the end. 328 for (Instruction *I : reverse(Local)) { 329 if (StoreInst *Store = dyn_cast<StoreInst>(I)) { 330 Value *Addr = Store->getPointerOperand(); 331 if (!shouldInstrumentReadWriteFromAddress(Addr)) 332 continue; 333 WriteTargets.insert(Addr); 334 } else { 335 LoadInst *Load = cast<LoadInst>(I); 336 Value *Addr = Load->getPointerOperand(); 337 if (!shouldInstrumentReadWriteFromAddress(Addr)) 338 continue; 339 if (WriteTargets.count(Addr)) { 340 // We will write to this temp, so no reason to analyze the read. 341 NumOmittedReadsBeforeWrite++; 342 continue; 343 } 344 if (addrPointsToConstantData(Addr)) { 345 // Addr points to some constant data -- it can not race with any writes. 346 continue; 347 } 348 } 349 Value *Addr = isa<StoreInst>(*I) 350 ? cast<StoreInst>(I)->getPointerOperand() 351 : cast<LoadInst>(I)->getPointerOperand(); 352 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 353 !PointerMayBeCaptured(Addr, true, true)) { 354 // The variable is addressable but not captured, so it cannot be 355 // referenced from a different thread and participate in a data race 356 // (see llvm/Analysis/CaptureTracking.h for details). 357 NumOmittedNonCaptured++; 358 continue; 359 } 360 All.push_back(I); 361 } 362 Local.clear(); 363 } 364 365 static bool isAtomic(Instruction *I) { 366 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 367 return LI->isAtomic() && LI->getSynchScope() == CrossThread; 368 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 369 return SI->isAtomic() && SI->getSynchScope() == CrossThread; 370 if (isa<AtomicRMWInst>(I)) 371 return true; 372 if (isa<AtomicCmpXchgInst>(I)) 373 return true; 374 if (isa<FenceInst>(I)) 375 return true; 376 return false; 377 } 378 379 bool ThreadSanitizer::runOnFunction(Function &F) { 380 // This is required to prevent instrumenting call to __tsan_init from within 381 // the module constructor. 382 if (&F == TsanCtorFunction) 383 return false; 384 initializeCallbacks(*F.getParent()); 385 SmallVector<Instruction*, 8> RetVec; 386 SmallVector<Instruction*, 8> AllLoadsAndStores; 387 SmallVector<Instruction*, 8> LocalLoadsAndStores; 388 SmallVector<Instruction*, 8> AtomicAccesses; 389 SmallVector<Instruction*, 8> MemIntrinCalls; 390 bool Res = false; 391 bool HasCalls = false; 392 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 393 const DataLayout &DL = F.getParent()->getDataLayout(); 394 const TargetLibraryInfo *TLI = 395 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 396 397 // Traverse all instructions, collect loads/stores/returns, check for calls. 398 for (auto &BB : F) { 399 for (auto &Inst : BB) { 400 if (isAtomic(&Inst)) 401 AtomicAccesses.push_back(&Inst); 402 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 403 LocalLoadsAndStores.push_back(&Inst); 404 else if (isa<ReturnInst>(Inst)) 405 RetVec.push_back(&Inst); 406 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 407 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 408 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 409 if (isa<MemIntrinsic>(Inst)) 410 MemIntrinCalls.push_back(&Inst); 411 HasCalls = true; 412 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 413 DL); 414 } 415 } 416 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 417 } 418 419 // We have collected all loads and stores. 420 // FIXME: many of these accesses do not need to be checked for races 421 // (e.g. variables that do not escape, etc). 422 423 // Instrument memory accesses only if we want to report bugs in the function. 424 if (ClInstrumentMemoryAccesses && SanitizeFunction) 425 for (auto Inst : AllLoadsAndStores) { 426 Res |= instrumentLoadOrStore(Inst, DL); 427 } 428 429 // Instrument atomic memory accesses in any case (they can be used to 430 // implement synchronization). 431 if (ClInstrumentAtomics) 432 for (auto Inst : AtomicAccesses) { 433 Res |= instrumentAtomic(Inst, DL); 434 } 435 436 if (ClInstrumentMemIntrinsics && SanitizeFunction) 437 for (auto Inst : MemIntrinCalls) { 438 Res |= instrumentMemIntrinsic(Inst); 439 } 440 441 // Instrument function entry/exit points if there were instrumented accesses. 442 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 443 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 444 Value *ReturnAddress = IRB.CreateCall( 445 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 446 IRB.getInt32(0)); 447 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 448 for (auto RetInst : RetVec) { 449 IRBuilder<> IRBRet(RetInst); 450 IRBRet.CreateCall(TsanFuncExit, {}); 451 } 452 Res = true; 453 } 454 return Res; 455 } 456 457 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I, 458 const DataLayout &DL) { 459 IRBuilder<> IRB(I); 460 bool IsWrite = isa<StoreInst>(*I); 461 Value *Addr = IsWrite 462 ? cast<StoreInst>(I)->getPointerOperand() 463 : cast<LoadInst>(I)->getPointerOperand(); 464 int Idx = getMemoryAccessFuncIndex(Addr, DL); 465 if (Idx < 0) 466 return false; 467 if (IsWrite && isVtableAccess(I)) { 468 DEBUG(dbgs() << " VPTR : " << *I << "\n"); 469 Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); 470 // StoredValue may be a vector type if we are storing several vptrs at once. 471 // In this case, just take the first element of the vector since this is 472 // enough to find vptr races. 473 if (isa<VectorType>(StoredValue->getType())) 474 StoredValue = IRB.CreateExtractElement( 475 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 476 if (StoredValue->getType()->isIntegerTy()) 477 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 478 // Call TsanVptrUpdate. 479 IRB.CreateCall(TsanVptrUpdate, 480 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 481 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 482 NumInstrumentedVtableWrites++; 483 return true; 484 } 485 if (!IsWrite && isVtableAccess(I)) { 486 IRB.CreateCall(TsanVptrLoad, 487 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 488 NumInstrumentedVtableReads++; 489 return true; 490 } 491 const unsigned Alignment = IsWrite 492 ? cast<StoreInst>(I)->getAlignment() 493 : cast<LoadInst>(I)->getAlignment(); 494 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 495 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 496 Value *OnAccessFunc = nullptr; 497 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) 498 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 499 else 500 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 501 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 502 if (IsWrite) NumInstrumentedWrites++; 503 else NumInstrumentedReads++; 504 return true; 505 } 506 507 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 508 uint32_t v = 0; 509 switch (ord) { 510 case AtomicOrdering::NotAtomic: 511 llvm_unreachable("unexpected atomic ordering!"); 512 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; 513 case AtomicOrdering::Monotonic: v = 0; break; 514 // Not specified yet: 515 // case AtomicOrdering::Consume: v = 1; break; 516 case AtomicOrdering::Acquire: v = 2; break; 517 case AtomicOrdering::Release: v = 3; break; 518 case AtomicOrdering::AcquireRelease: v = 4; break; 519 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 520 } 521 return IRB->getInt32(v); 522 } 523 524 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 525 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 526 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 527 // instead we simply replace them with regular function calls, which are then 528 // intercepted by the run-time. 529 // Since tsan is running after everyone else, the calls should not be 530 // replaced back with intrinsics. If that becomes wrong at some point, 531 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 532 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 533 IRBuilder<> IRB(I); 534 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 535 IRB.CreateCall( 536 MemsetFn, 537 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 538 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 539 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 540 I->eraseFromParent(); 541 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 542 IRB.CreateCall( 543 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 544 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 545 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 546 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 547 I->eraseFromParent(); 548 } 549 return false; 550 } 551 552 static Value *createIntOrPtrToIntCast(Value *V, Type* Ty, IRBuilder<> &IRB) { 553 return isa<PointerType>(V->getType()) ? 554 IRB.CreatePtrToInt(V, Ty) : IRB.CreateIntCast(V, Ty, false); 555 } 556 557 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 558 // standards. For background see C++11 standard. A slightly older, publicly 559 // available draft of the standard (not entirely up-to-date, but close enough 560 // for casual browsing) is available here: 561 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 562 // The following page contains more background information: 563 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 564 565 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 566 IRBuilder<> IRB(I); 567 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 568 Value *Addr = LI->getPointerOperand(); 569 int Idx = getMemoryAccessFuncIndex(Addr, DL); 570 if (Idx < 0) 571 return false; 572 const unsigned ByteSize = 1U << Idx; 573 const unsigned BitSize = ByteSize * 8; 574 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 575 Type *PtrTy = Ty->getPointerTo(); 576 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 577 createOrdering(&IRB, LI->getOrdering())}; 578 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 579 if (Ty == OrigTy) { 580 Instruction *C = CallInst::Create(TsanAtomicLoad[Idx], Args); 581 ReplaceInstWithInst(I, C); 582 } else { 583 // We are loading a pointer, so we need to cast the return value. 584 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 585 Instruction *Cast = CastInst::Create(Instruction::IntToPtr, C, OrigTy); 586 ReplaceInstWithInst(I, Cast); 587 } 588 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 589 Value *Addr = SI->getPointerOperand(); 590 int Idx = getMemoryAccessFuncIndex(Addr, DL); 591 if (Idx < 0) 592 return false; 593 const unsigned ByteSize = 1U << Idx; 594 const unsigned BitSize = ByteSize * 8; 595 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 596 Type *PtrTy = Ty->getPointerTo(); 597 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 598 createIntOrPtrToIntCast(SI->getValueOperand(), Ty, IRB), 599 createOrdering(&IRB, SI->getOrdering())}; 600 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 601 ReplaceInstWithInst(I, C); 602 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 603 Value *Addr = RMWI->getPointerOperand(); 604 int Idx = getMemoryAccessFuncIndex(Addr, DL); 605 if (Idx < 0) 606 return false; 607 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 608 if (!F) 609 return false; 610 const unsigned ByteSize = 1U << Idx; 611 const unsigned BitSize = ByteSize * 8; 612 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 613 Type *PtrTy = Ty->getPointerTo(); 614 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 615 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 616 createOrdering(&IRB, RMWI->getOrdering())}; 617 CallInst *C = CallInst::Create(F, Args); 618 ReplaceInstWithInst(I, C); 619 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 620 Value *Addr = CASI->getPointerOperand(); 621 int Idx = getMemoryAccessFuncIndex(Addr, DL); 622 if (Idx < 0) 623 return false; 624 const unsigned ByteSize = 1U << Idx; 625 const unsigned BitSize = ByteSize * 8; 626 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 627 Type *PtrTy = Ty->getPointerTo(); 628 Value *CmpOperand = 629 createIntOrPtrToIntCast(CASI->getCompareOperand(), Ty, IRB); 630 Value *NewOperand = 631 createIntOrPtrToIntCast(CASI->getNewValOperand(), Ty, IRB); 632 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 633 CmpOperand, 634 NewOperand, 635 createOrdering(&IRB, CASI->getSuccessOrdering()), 636 createOrdering(&IRB, CASI->getFailureOrdering())}; 637 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 638 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 639 Value *OldVal = C; 640 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 641 if (Ty != OrigOldValTy) { 642 // The value is a pointer, so we need to cast the return value. 643 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 644 } 645 646 Value *Res = 647 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 648 Res = IRB.CreateInsertValue(Res, Success, 1); 649 650 I->replaceAllUsesWith(Res); 651 I->eraseFromParent(); 652 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 653 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 654 Function *F = FI->getSynchScope() == SingleThread ? 655 TsanAtomicSignalFence : TsanAtomicThreadFence; 656 CallInst *C = CallInst::Create(F, Args); 657 ReplaceInstWithInst(I, C); 658 } 659 return true; 660 } 661 662 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, 663 const DataLayout &DL) { 664 Type *OrigPtrTy = Addr->getType(); 665 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 666 assert(OrigTy->isSized()); 667 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 668 if (TypeSize != 8 && TypeSize != 16 && 669 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 670 NumAccessesWithBadSize++; 671 // Ignore all unusual sizes. 672 return -1; 673 } 674 size_t Idx = countTrailingZeros(TypeSize / 8); 675 assert(Idx < kNumberOfAccessSizes); 676 return Idx; 677 } 678