1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer, a race detector. 11 // 12 // The tool is under development, for the details about previous versions see 13 // http://code.google.com/p/data-race-test 14 // 15 // The instrumentation phase is quite simple: 16 // - Insert calls to run-time library before every memory access. 17 // - Optimizations may apply to avoid instrumenting some of the accesses. 18 // - Insert calls at function entry/exit. 19 // The rest is handled by the run-time library. 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Instrumentation.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/ProfileData/InstrProf.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/EscapeEnumerator.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ModuleUtils.h" 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "tsan" 53 54 static cl::opt<bool> ClInstrumentMemoryAccesses( 55 "tsan-instrument-memory-accesses", cl::init(true), 56 cl::desc("Instrument memory accesses"), cl::Hidden); 57 static cl::opt<bool> ClInstrumentFuncEntryExit( 58 "tsan-instrument-func-entry-exit", cl::init(true), 59 cl::desc("Instrument function entry and exit"), cl::Hidden); 60 static cl::opt<bool> ClHandleCxxExceptions( 61 "tsan-handle-cxx-exceptions", cl::init(true), 62 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), 63 cl::Hidden); 64 static cl::opt<bool> ClInstrumentAtomics( 65 "tsan-instrument-atomics", cl::init(true), 66 cl::desc("Instrument atomics"), cl::Hidden); 67 static cl::opt<bool> ClInstrumentMemIntrinsics( 68 "tsan-instrument-memintrinsics", cl::init(true), 69 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 70 71 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 72 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 73 STATISTIC(NumOmittedReadsBeforeWrite, 74 "Number of reads ignored due to following writes"); 75 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 76 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 77 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 78 STATISTIC(NumOmittedReadsFromConstantGlobals, 79 "Number of reads from constant globals"); 80 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 81 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 82 83 static const char *const kTsanModuleCtorName = "tsan.module_ctor"; 84 static const char *const kTsanInitName = "__tsan_init"; 85 86 namespace { 87 88 /// ThreadSanitizer: instrument the code in module to find races. 89 struct ThreadSanitizer : public FunctionPass { 90 ThreadSanitizer() : FunctionPass(ID) {} 91 StringRef getPassName() const override; 92 void getAnalysisUsage(AnalysisUsage &AU) const override; 93 bool runOnFunction(Function &F) override; 94 bool doInitialization(Module &M) override; 95 static char ID; // Pass identification, replacement for typeid. 96 97 private: 98 void initializeCallbacks(Module &M); 99 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); 100 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 101 bool instrumentMemIntrinsic(Instruction *I); 102 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 103 SmallVectorImpl<Instruction *> &All, 104 const DataLayout &DL); 105 bool addrPointsToConstantData(Value *Addr); 106 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); 107 void InsertRuntimeIgnores(Function &F); 108 109 Type *IntptrTy; 110 IntegerType *OrdTy; 111 // Callbacks to run-time library are computed in doInitialization. 112 Function *TsanFuncEntry; 113 Function *TsanFuncExit; 114 Function *TsanIgnoreBegin; 115 Function *TsanIgnoreEnd; 116 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 117 static const size_t kNumberOfAccessSizes = 5; 118 Function *TsanRead[kNumberOfAccessSizes]; 119 Function *TsanWrite[kNumberOfAccessSizes]; 120 Function *TsanUnalignedRead[kNumberOfAccessSizes]; 121 Function *TsanUnalignedWrite[kNumberOfAccessSizes]; 122 Function *TsanAtomicLoad[kNumberOfAccessSizes]; 123 Function *TsanAtomicStore[kNumberOfAccessSizes]; 124 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes]; 125 Function *TsanAtomicCAS[kNumberOfAccessSizes]; 126 Function *TsanAtomicThreadFence; 127 Function *TsanAtomicSignalFence; 128 Function *TsanVptrUpdate; 129 Function *TsanVptrLoad; 130 Function *MemmoveFn, *MemcpyFn, *MemsetFn; 131 Function *TsanCtorFunction; 132 }; 133 } // namespace 134 135 char ThreadSanitizer::ID = 0; 136 INITIALIZE_PASS_BEGIN( 137 ThreadSanitizer, "tsan", 138 "ThreadSanitizer: detects data races.", 139 false, false) 140 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 141 INITIALIZE_PASS_END( 142 ThreadSanitizer, "tsan", 143 "ThreadSanitizer: detects data races.", 144 false, false) 145 146 StringRef ThreadSanitizer::getPassName() const { return "ThreadSanitizer"; } 147 148 void ThreadSanitizer::getAnalysisUsage(AnalysisUsage &AU) const { 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 } 151 152 FunctionPass *llvm::createThreadSanitizerPass() { 153 return new ThreadSanitizer(); 154 } 155 156 void ThreadSanitizer::initializeCallbacks(Module &M) { 157 IRBuilder<> IRB(M.getContext()); 158 AttributeList Attr; 159 Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex, 160 Attribute::NoUnwind); 161 // Initialize the callbacks. 162 TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 163 "__tsan_func_entry", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 164 TsanFuncExit = checkSanitizerInterfaceFunction( 165 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy())); 166 TsanIgnoreBegin = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 167 "__tsan_ignore_thread_begin", Attr, IRB.getVoidTy())); 168 TsanIgnoreEnd = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 169 "__tsan_ignore_thread_end", Attr, IRB.getVoidTy())); 170 OrdTy = IRB.getInt32Ty(); 171 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 172 const unsigned ByteSize = 1U << i; 173 const unsigned BitSize = ByteSize * 8; 174 std::string ByteSizeStr = utostr(ByteSize); 175 std::string BitSizeStr = utostr(BitSize); 176 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 177 TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 178 ReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 179 180 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 181 TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 182 WriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 183 184 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 185 TsanUnalignedRead[i] = 186 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 187 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 188 189 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 190 TsanUnalignedWrite[i] = 191 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 192 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 193 194 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 195 Type *PtrTy = Ty->getPointerTo(); 196 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 197 TsanAtomicLoad[i] = checkSanitizerInterfaceFunction( 198 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy)); 199 200 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 201 TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 202 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy)); 203 204 for (int op = AtomicRMWInst::FIRST_BINOP; 205 op <= AtomicRMWInst::LAST_BINOP; ++op) { 206 TsanAtomicRMW[op][i] = nullptr; 207 const char *NamePart = nullptr; 208 if (op == AtomicRMWInst::Xchg) 209 NamePart = "_exchange"; 210 else if (op == AtomicRMWInst::Add) 211 NamePart = "_fetch_add"; 212 else if (op == AtomicRMWInst::Sub) 213 NamePart = "_fetch_sub"; 214 else if (op == AtomicRMWInst::And) 215 NamePart = "_fetch_and"; 216 else if (op == AtomicRMWInst::Or) 217 NamePart = "_fetch_or"; 218 else if (op == AtomicRMWInst::Xor) 219 NamePart = "_fetch_xor"; 220 else if (op == AtomicRMWInst::Nand) 221 NamePart = "_fetch_nand"; 222 else 223 continue; 224 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 225 TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction( 226 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy)); 227 } 228 229 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 230 "_compare_exchange_val"); 231 TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 232 AtomicCASName, Attr, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy)); 233 } 234 TsanVptrUpdate = checkSanitizerInterfaceFunction( 235 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), 236 IRB.getInt8PtrTy(), IRB.getInt8PtrTy())); 237 TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 238 "__tsan_vptr_read", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); 239 TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 240 "__tsan_atomic_thread_fence", Attr, IRB.getVoidTy(), OrdTy)); 241 TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 242 "__tsan_atomic_signal_fence", Attr, IRB.getVoidTy(), OrdTy)); 243 244 MemmoveFn = checkSanitizerInterfaceFunction( 245 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 246 IRB.getInt8PtrTy(), IntptrTy)); 247 MemcpyFn = checkSanitizerInterfaceFunction( 248 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 249 IRB.getInt8PtrTy(), IntptrTy)); 250 MemsetFn = checkSanitizerInterfaceFunction( 251 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 252 IRB.getInt32Ty(), IntptrTy)); 253 } 254 255 bool ThreadSanitizer::doInitialization(Module &M) { 256 const DataLayout &DL = M.getDataLayout(); 257 IntptrTy = DL.getIntPtrType(M.getContext()); 258 std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 259 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 260 /*InitArgs=*/{}); 261 262 appendToGlobalCtors(M, TsanCtorFunction, 0); 263 264 return true; 265 } 266 267 static bool isVtableAccess(Instruction *I) { 268 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 269 return Tag->isTBAAVtableAccess(); 270 return false; 271 } 272 273 // Do not instrument known races/"benign races" that come from compiler 274 // instrumentatin. The user has no way of suppressing them. 275 static bool shouldInstrumentReadWriteFromAddress(Value *Addr) { 276 // Peel off GEPs and BitCasts. 277 Addr = Addr->stripInBoundsOffsets(); 278 279 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 280 if (GV->hasSection()) { 281 StringRef SectionName = GV->getSection(); 282 // Check if the global is in the PGO counters section. 283 if (SectionName.endswith(getInstrProfCountersSectionName( 284 /*AddSegment=*/false))) 285 return false; 286 } 287 288 // Check if the global is private gcov data. 289 if (GV->getName().startswith("__llvm_gcov") || 290 GV->getName().startswith("__llvm_gcda")) 291 return false; 292 } 293 294 // Do not instrument acesses from different address spaces; we cannot deal 295 // with them. 296 if (Addr) { 297 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 298 if (PtrTy->getPointerAddressSpace() != 0) 299 return false; 300 } 301 302 return true; 303 } 304 305 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 306 // If this is a GEP, just analyze its pointer operand. 307 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 308 Addr = GEP->getPointerOperand(); 309 310 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 311 if (GV->isConstant()) { 312 // Reads from constant globals can not race with any writes. 313 NumOmittedReadsFromConstantGlobals++; 314 return true; 315 } 316 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 317 if (isVtableAccess(L)) { 318 // Reads from a vtable pointer can not race with any writes. 319 NumOmittedReadsFromVtable++; 320 return true; 321 } 322 } 323 return false; 324 } 325 326 // Instrumenting some of the accesses may be proven redundant. 327 // Currently handled: 328 // - read-before-write (within same BB, no calls between) 329 // - not captured variables 330 // 331 // We do not handle some of the patterns that should not survive 332 // after the classic compiler optimizations. 333 // E.g. two reads from the same temp should be eliminated by CSE, 334 // two writes should be eliminated by DSE, etc. 335 // 336 // 'Local' is a vector of insns within the same BB (no calls between). 337 // 'All' is a vector of insns that will be instrumented. 338 void ThreadSanitizer::chooseInstructionsToInstrument( 339 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All, 340 const DataLayout &DL) { 341 SmallSet<Value*, 8> WriteTargets; 342 // Iterate from the end. 343 for (Instruction *I : reverse(Local)) { 344 if (StoreInst *Store = dyn_cast<StoreInst>(I)) { 345 Value *Addr = Store->getPointerOperand(); 346 if (!shouldInstrumentReadWriteFromAddress(Addr)) 347 continue; 348 WriteTargets.insert(Addr); 349 } else { 350 LoadInst *Load = cast<LoadInst>(I); 351 Value *Addr = Load->getPointerOperand(); 352 if (!shouldInstrumentReadWriteFromAddress(Addr)) 353 continue; 354 if (WriteTargets.count(Addr)) { 355 // We will write to this temp, so no reason to analyze the read. 356 NumOmittedReadsBeforeWrite++; 357 continue; 358 } 359 if (addrPointsToConstantData(Addr)) { 360 // Addr points to some constant data -- it can not race with any writes. 361 continue; 362 } 363 } 364 Value *Addr = isa<StoreInst>(*I) 365 ? cast<StoreInst>(I)->getPointerOperand() 366 : cast<LoadInst>(I)->getPointerOperand(); 367 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 368 !PointerMayBeCaptured(Addr, true, true)) { 369 // The variable is addressable but not captured, so it cannot be 370 // referenced from a different thread and participate in a data race 371 // (see llvm/Analysis/CaptureTracking.h for details). 372 NumOmittedNonCaptured++; 373 continue; 374 } 375 All.push_back(I); 376 } 377 Local.clear(); 378 } 379 380 static bool isAtomic(Instruction *I) { 381 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 382 return LI->isAtomic() && LI->getSynchScope() == CrossThread; 383 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 384 return SI->isAtomic() && SI->getSynchScope() == CrossThread; 385 if (isa<AtomicRMWInst>(I)) 386 return true; 387 if (isa<AtomicCmpXchgInst>(I)) 388 return true; 389 if (isa<FenceInst>(I)) 390 return true; 391 return false; 392 } 393 394 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { 395 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 396 IRB.CreateCall(TsanIgnoreBegin); 397 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); 398 while (IRBuilder<> *AtExit = EE.Next()) { 399 AtExit->CreateCall(TsanIgnoreEnd); 400 } 401 } 402 403 bool ThreadSanitizer::runOnFunction(Function &F) { 404 // This is required to prevent instrumenting call to __tsan_init from within 405 // the module constructor. 406 if (&F == TsanCtorFunction) 407 return false; 408 initializeCallbacks(*F.getParent()); 409 SmallVector<Instruction*, 8> AllLoadsAndStores; 410 SmallVector<Instruction*, 8> LocalLoadsAndStores; 411 SmallVector<Instruction*, 8> AtomicAccesses; 412 SmallVector<Instruction*, 8> MemIntrinCalls; 413 bool Res = false; 414 bool HasCalls = false; 415 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 416 const DataLayout &DL = F.getParent()->getDataLayout(); 417 const TargetLibraryInfo *TLI = 418 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 419 420 // Traverse all instructions, collect loads/stores/returns, check for calls. 421 for (auto &BB : F) { 422 for (auto &Inst : BB) { 423 if (isAtomic(&Inst)) 424 AtomicAccesses.push_back(&Inst); 425 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 426 LocalLoadsAndStores.push_back(&Inst); 427 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 428 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 429 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 430 if (isa<MemIntrinsic>(Inst)) 431 MemIntrinCalls.push_back(&Inst); 432 HasCalls = true; 433 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 434 DL); 435 } 436 } 437 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 438 } 439 440 // We have collected all loads and stores. 441 // FIXME: many of these accesses do not need to be checked for races 442 // (e.g. variables that do not escape, etc). 443 444 // Instrument memory accesses only if we want to report bugs in the function. 445 if (ClInstrumentMemoryAccesses && SanitizeFunction) 446 for (auto Inst : AllLoadsAndStores) { 447 Res |= instrumentLoadOrStore(Inst, DL); 448 } 449 450 // Instrument atomic memory accesses in any case (they can be used to 451 // implement synchronization). 452 if (ClInstrumentAtomics) 453 for (auto Inst : AtomicAccesses) { 454 Res |= instrumentAtomic(Inst, DL); 455 } 456 457 if (ClInstrumentMemIntrinsics && SanitizeFunction) 458 for (auto Inst : MemIntrinCalls) { 459 Res |= instrumentMemIntrinsic(Inst); 460 } 461 462 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { 463 assert(!F.hasFnAttribute(Attribute::SanitizeThread)); 464 if (HasCalls) 465 InsertRuntimeIgnores(F); 466 } 467 468 // Instrument function entry/exit points if there were instrumented accesses. 469 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 470 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 471 Value *ReturnAddress = IRB.CreateCall( 472 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 473 IRB.getInt32(0)); 474 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 475 476 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); 477 while (IRBuilder<> *AtExit = EE.Next()) { 478 AtExit->CreateCall(TsanFuncExit, {}); 479 } 480 Res = true; 481 } 482 return Res; 483 } 484 485 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I, 486 const DataLayout &DL) { 487 IRBuilder<> IRB(I); 488 bool IsWrite = isa<StoreInst>(*I); 489 Value *Addr = IsWrite 490 ? cast<StoreInst>(I)->getPointerOperand() 491 : cast<LoadInst>(I)->getPointerOperand(); 492 493 // swifterror memory addresses are mem2reg promoted by instruction selection. 494 // As such they cannot have regular uses like an instrumentation function and 495 // it makes no sense to track them as memory. 496 if (Addr->isSwiftError()) 497 return false; 498 499 int Idx = getMemoryAccessFuncIndex(Addr, DL); 500 if (Idx < 0) 501 return false; 502 if (IsWrite && isVtableAccess(I)) { 503 DEBUG(dbgs() << " VPTR : " << *I << "\n"); 504 Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); 505 // StoredValue may be a vector type if we are storing several vptrs at once. 506 // In this case, just take the first element of the vector since this is 507 // enough to find vptr races. 508 if (isa<VectorType>(StoredValue->getType())) 509 StoredValue = IRB.CreateExtractElement( 510 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 511 if (StoredValue->getType()->isIntegerTy()) 512 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 513 // Call TsanVptrUpdate. 514 IRB.CreateCall(TsanVptrUpdate, 515 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 516 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 517 NumInstrumentedVtableWrites++; 518 return true; 519 } 520 if (!IsWrite && isVtableAccess(I)) { 521 IRB.CreateCall(TsanVptrLoad, 522 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 523 NumInstrumentedVtableReads++; 524 return true; 525 } 526 const unsigned Alignment = IsWrite 527 ? cast<StoreInst>(I)->getAlignment() 528 : cast<LoadInst>(I)->getAlignment(); 529 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 530 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 531 Value *OnAccessFunc = nullptr; 532 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) 533 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 534 else 535 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 536 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 537 if (IsWrite) NumInstrumentedWrites++; 538 else NumInstrumentedReads++; 539 return true; 540 } 541 542 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 543 uint32_t v = 0; 544 switch (ord) { 545 case AtomicOrdering::NotAtomic: 546 llvm_unreachable("unexpected atomic ordering!"); 547 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; 548 case AtomicOrdering::Monotonic: v = 0; break; 549 // Not specified yet: 550 // case AtomicOrdering::Consume: v = 1; break; 551 case AtomicOrdering::Acquire: v = 2; break; 552 case AtomicOrdering::Release: v = 3; break; 553 case AtomicOrdering::AcquireRelease: v = 4; break; 554 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 555 } 556 return IRB->getInt32(v); 557 } 558 559 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 560 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 561 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 562 // instead we simply replace them with regular function calls, which are then 563 // intercepted by the run-time. 564 // Since tsan is running after everyone else, the calls should not be 565 // replaced back with intrinsics. If that becomes wrong at some point, 566 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 567 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 568 IRBuilder<> IRB(I); 569 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 570 IRB.CreateCall( 571 MemsetFn, 572 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 573 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 574 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 575 I->eraseFromParent(); 576 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 577 IRB.CreateCall( 578 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 579 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 580 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 581 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 582 I->eraseFromParent(); 583 } 584 return false; 585 } 586 587 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 588 // standards. For background see C++11 standard. A slightly older, publicly 589 // available draft of the standard (not entirely up-to-date, but close enough 590 // for casual browsing) is available here: 591 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 592 // The following page contains more background information: 593 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 594 595 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 596 IRBuilder<> IRB(I); 597 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 598 Value *Addr = LI->getPointerOperand(); 599 int Idx = getMemoryAccessFuncIndex(Addr, DL); 600 if (Idx < 0) 601 return false; 602 const unsigned ByteSize = 1U << Idx; 603 const unsigned BitSize = ByteSize * 8; 604 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 605 Type *PtrTy = Ty->getPointerTo(); 606 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 607 createOrdering(&IRB, LI->getOrdering())}; 608 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 609 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 610 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); 611 I->replaceAllUsesWith(Cast); 612 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 613 Value *Addr = SI->getPointerOperand(); 614 int Idx = getMemoryAccessFuncIndex(Addr, DL); 615 if (Idx < 0) 616 return false; 617 const unsigned ByteSize = 1U << Idx; 618 const unsigned BitSize = ByteSize * 8; 619 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 620 Type *PtrTy = Ty->getPointerTo(); 621 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 622 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), 623 createOrdering(&IRB, SI->getOrdering())}; 624 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 625 ReplaceInstWithInst(I, C); 626 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 627 Value *Addr = RMWI->getPointerOperand(); 628 int Idx = getMemoryAccessFuncIndex(Addr, DL); 629 if (Idx < 0) 630 return false; 631 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 632 if (!F) 633 return false; 634 const unsigned ByteSize = 1U << Idx; 635 const unsigned BitSize = ByteSize * 8; 636 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 637 Type *PtrTy = Ty->getPointerTo(); 638 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 639 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 640 createOrdering(&IRB, RMWI->getOrdering())}; 641 CallInst *C = CallInst::Create(F, Args); 642 ReplaceInstWithInst(I, C); 643 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 644 Value *Addr = CASI->getPointerOperand(); 645 int Idx = getMemoryAccessFuncIndex(Addr, DL); 646 if (Idx < 0) 647 return false; 648 const unsigned ByteSize = 1U << Idx; 649 const unsigned BitSize = ByteSize * 8; 650 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 651 Type *PtrTy = Ty->getPointerTo(); 652 Value *CmpOperand = 653 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); 654 Value *NewOperand = 655 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); 656 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 657 CmpOperand, 658 NewOperand, 659 createOrdering(&IRB, CASI->getSuccessOrdering()), 660 createOrdering(&IRB, CASI->getFailureOrdering())}; 661 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 662 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 663 Value *OldVal = C; 664 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 665 if (Ty != OrigOldValTy) { 666 // The value is a pointer, so we need to cast the return value. 667 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 668 } 669 670 Value *Res = 671 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 672 Res = IRB.CreateInsertValue(Res, Success, 1); 673 674 I->replaceAllUsesWith(Res); 675 I->eraseFromParent(); 676 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 677 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 678 Function *F = FI->getSynchScope() == SingleThread ? 679 TsanAtomicSignalFence : TsanAtomicThreadFence; 680 CallInst *C = CallInst::Create(F, Args); 681 ReplaceInstWithInst(I, C); 682 } 683 return true; 684 } 685 686 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, 687 const DataLayout &DL) { 688 Type *OrigPtrTy = Addr->getType(); 689 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 690 assert(OrigTy->isSized()); 691 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 692 if (TypeSize != 8 && TypeSize != 16 && 693 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 694 NumAccessesWithBadSize++; 695 // Ignore all unusual sizes. 696 return -1; 697 } 698 size_t Idx = countTrailingZeros(TypeSize / 8); 699 assert(Idx < kNumberOfAccessSizes); 700 return Idx; 701 } 702