1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer, a race detector. 11 // 12 // The tool is under development, for the details about previous versions see 13 // http://code.google.com/p/data-race-test 14 // 15 // The instrumentation phase is quite simple: 16 // - Insert calls to run-time library before every memory access. 17 // - Optimizations may apply to avoid instrumenting some of the accesses. 18 // - Insert calls at function entry/exit. 19 // The rest is handled by the run-time library. 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Instrumentation.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/ProfileData/InstrProf.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/ModuleUtils.h" 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "tsan" 50 51 static cl::opt<bool> ClInstrumentMemoryAccesses( 52 "tsan-instrument-memory-accesses", cl::init(true), 53 cl::desc("Instrument memory accesses"), cl::Hidden); 54 static cl::opt<bool> ClInstrumentFuncEntryExit( 55 "tsan-instrument-func-entry-exit", cl::init(true), 56 cl::desc("Instrument function entry and exit"), cl::Hidden); 57 static cl::opt<bool> ClInstrumentAtomics( 58 "tsan-instrument-atomics", cl::init(true), 59 cl::desc("Instrument atomics"), cl::Hidden); 60 static cl::opt<bool> ClInstrumentMemIntrinsics( 61 "tsan-instrument-memintrinsics", cl::init(true), 62 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 63 64 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 65 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 66 STATISTIC(NumOmittedReadsBeforeWrite, 67 "Number of reads ignored due to following writes"); 68 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 69 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 70 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 71 STATISTIC(NumOmittedReadsFromConstantGlobals, 72 "Number of reads from constant globals"); 73 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 74 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 75 76 static const char *const kTsanModuleCtorName = "tsan.module_ctor"; 77 static const char *const kTsanInitName = "__tsan_init"; 78 79 namespace { 80 81 /// ThreadSanitizer: instrument the code in module to find races. 82 struct ThreadSanitizer : public FunctionPass { 83 ThreadSanitizer() : FunctionPass(ID) {} 84 const char *getPassName() const override; 85 bool runOnFunction(Function &F) override; 86 bool doInitialization(Module &M) override; 87 static char ID; // Pass identification, replacement for typeid. 88 89 private: 90 void initializeCallbacks(Module &M); 91 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); 92 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 93 bool instrumentMemIntrinsic(Instruction *I); 94 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 95 SmallVectorImpl<Instruction *> &All, 96 const DataLayout &DL); 97 bool addrPointsToConstantData(Value *Addr); 98 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); 99 100 Type *IntptrTy; 101 IntegerType *OrdTy; 102 // Callbacks to run-time library are computed in doInitialization. 103 Function *TsanFuncEntry; 104 Function *TsanFuncExit; 105 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 106 static const size_t kNumberOfAccessSizes = 5; 107 Function *TsanRead[kNumberOfAccessSizes]; 108 Function *TsanWrite[kNumberOfAccessSizes]; 109 Function *TsanUnalignedRead[kNumberOfAccessSizes]; 110 Function *TsanUnalignedWrite[kNumberOfAccessSizes]; 111 Function *TsanAtomicLoad[kNumberOfAccessSizes]; 112 Function *TsanAtomicStore[kNumberOfAccessSizes]; 113 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes]; 114 Function *TsanAtomicCAS[kNumberOfAccessSizes]; 115 Function *TsanAtomicThreadFence; 116 Function *TsanAtomicSignalFence; 117 Function *TsanVptrUpdate; 118 Function *TsanVptrLoad; 119 Function *MemmoveFn, *MemcpyFn, *MemsetFn; 120 Function *TsanCtorFunction; 121 }; 122 } // namespace 123 124 char ThreadSanitizer::ID = 0; 125 INITIALIZE_PASS(ThreadSanitizer, "tsan", 126 "ThreadSanitizer: detects data races.", 127 false, false) 128 129 const char *ThreadSanitizer::getPassName() const { 130 return "ThreadSanitizer"; 131 } 132 133 FunctionPass *llvm::createThreadSanitizerPass() { 134 return new ThreadSanitizer(); 135 } 136 137 void ThreadSanitizer::initializeCallbacks(Module &M) { 138 IRBuilder<> IRB(M.getContext()); 139 // Initialize the callbacks. 140 TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 141 "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 142 TsanFuncExit = checkSanitizerInterfaceFunction( 143 M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr)); 144 OrdTy = IRB.getInt32Ty(); 145 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 146 const unsigned ByteSize = 1U << i; 147 const unsigned BitSize = ByteSize * 8; 148 std::string ByteSizeStr = utostr(ByteSize); 149 std::string BitSizeStr = utostr(BitSize); 150 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 151 TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 152 ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 153 154 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 155 TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 156 WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 157 158 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 159 TsanUnalignedRead[i] = 160 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 161 UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 162 163 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 164 TsanUnalignedWrite[i] = 165 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 166 UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 167 168 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 169 Type *PtrTy = Ty->getPointerTo(); 170 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 171 TsanAtomicLoad[i] = checkSanitizerInterfaceFunction( 172 M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr)); 173 174 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 175 TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 176 AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr)); 177 178 for (int op = AtomicRMWInst::FIRST_BINOP; 179 op <= AtomicRMWInst::LAST_BINOP; ++op) { 180 TsanAtomicRMW[op][i] = nullptr; 181 const char *NamePart = nullptr; 182 if (op == AtomicRMWInst::Xchg) 183 NamePart = "_exchange"; 184 else if (op == AtomicRMWInst::Add) 185 NamePart = "_fetch_add"; 186 else if (op == AtomicRMWInst::Sub) 187 NamePart = "_fetch_sub"; 188 else if (op == AtomicRMWInst::And) 189 NamePart = "_fetch_and"; 190 else if (op == AtomicRMWInst::Or) 191 NamePart = "_fetch_or"; 192 else if (op == AtomicRMWInst::Xor) 193 NamePart = "_fetch_xor"; 194 else if (op == AtomicRMWInst::Nand) 195 NamePart = "_fetch_nand"; 196 else 197 continue; 198 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 199 TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction( 200 M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr)); 201 } 202 203 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 204 "_compare_exchange_val"); 205 TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 206 AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr)); 207 } 208 TsanVptrUpdate = checkSanitizerInterfaceFunction( 209 M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(), 210 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr)); 211 TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 212 "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 213 TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 214 "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr)); 215 TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 216 "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr)); 217 218 MemmoveFn = checkSanitizerInterfaceFunction( 219 M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 220 IRB.getInt8PtrTy(), IntptrTy, nullptr)); 221 MemcpyFn = checkSanitizerInterfaceFunction( 222 M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 223 IRB.getInt8PtrTy(), IntptrTy, nullptr)); 224 MemsetFn = checkSanitizerInterfaceFunction( 225 M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 226 IRB.getInt32Ty(), IntptrTy, nullptr)); 227 } 228 229 bool ThreadSanitizer::doInitialization(Module &M) { 230 const DataLayout &DL = M.getDataLayout(); 231 IntptrTy = DL.getIntPtrType(M.getContext()); 232 std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 233 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 234 /*InitArgs=*/{}); 235 236 appendToGlobalCtors(M, TsanCtorFunction, 0); 237 238 return true; 239 } 240 241 static bool isVtableAccess(Instruction *I) { 242 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 243 return Tag->isTBAAVtableAccess(); 244 return false; 245 } 246 247 // Do not instrument known races/"benign races" that come from compiler 248 // instrumentatin. The user has no way of suppressing them. 249 static bool shouldInstrumentReadWriteFromAddress(Value *Addr) { 250 // Peel off GEPs and BitCasts. 251 Addr = Addr->stripInBoundsOffsets(); 252 253 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 254 if (GV->hasSection()) { 255 StringRef SectionName = GV->getSection(); 256 // Check if the global is in the PGO counters section. 257 if (SectionName.endswith(getInstrProfCountersSectionName( 258 /*AddSegment=*/false))) 259 return false; 260 } 261 } 262 return true; 263 } 264 265 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 266 // If this is a GEP, just analyze its pointer operand. 267 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 268 Addr = GEP->getPointerOperand(); 269 270 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 271 if (GV->isConstant()) { 272 // Reads from constant globals can not race with any writes. 273 NumOmittedReadsFromConstantGlobals++; 274 return true; 275 } 276 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 277 if (isVtableAccess(L)) { 278 // Reads from a vtable pointer can not race with any writes. 279 NumOmittedReadsFromVtable++; 280 return true; 281 } 282 } 283 return false; 284 } 285 286 // Instrumenting some of the accesses may be proven redundant. 287 // Currently handled: 288 // - read-before-write (within same BB, no calls between) 289 // - not captured variables 290 // 291 // We do not handle some of the patterns that should not survive 292 // after the classic compiler optimizations. 293 // E.g. two reads from the same temp should be eliminated by CSE, 294 // two writes should be eliminated by DSE, etc. 295 // 296 // 'Local' is a vector of insns within the same BB (no calls between). 297 // 'All' is a vector of insns that will be instrumented. 298 void ThreadSanitizer::chooseInstructionsToInstrument( 299 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All, 300 const DataLayout &DL) { 301 SmallSet<Value*, 8> WriteTargets; 302 // Iterate from the end. 303 for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(), 304 E = Local.rend(); It != E; ++It) { 305 Instruction *I = *It; 306 if (StoreInst *Store = dyn_cast<StoreInst>(I)) { 307 Value *Addr = Store->getPointerOperand(); 308 if (!shouldInstrumentReadWriteFromAddress(Addr)) 309 continue; 310 WriteTargets.insert(Addr); 311 } else { 312 LoadInst *Load = cast<LoadInst>(I); 313 Value *Addr = Load->getPointerOperand(); 314 if (!shouldInstrumentReadWriteFromAddress(Addr)) 315 continue; 316 if (WriteTargets.count(Addr)) { 317 // We will write to this temp, so no reason to analyze the read. 318 NumOmittedReadsBeforeWrite++; 319 continue; 320 } 321 if (addrPointsToConstantData(Addr)) { 322 // Addr points to some constant data -- it can not race with any writes. 323 continue; 324 } 325 } 326 Value *Addr = isa<StoreInst>(*I) 327 ? cast<StoreInst>(I)->getPointerOperand() 328 : cast<LoadInst>(I)->getPointerOperand(); 329 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 330 !PointerMayBeCaptured(Addr, true, true)) { 331 // The variable is addressable but not captured, so it cannot be 332 // referenced from a different thread and participate in a data race 333 // (see llvm/Analysis/CaptureTracking.h for details). 334 NumOmittedNonCaptured++; 335 continue; 336 } 337 All.push_back(I); 338 } 339 Local.clear(); 340 } 341 342 static bool isAtomic(Instruction *I) { 343 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 344 return LI->isAtomic() && LI->getSynchScope() == CrossThread; 345 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 346 return SI->isAtomic() && SI->getSynchScope() == CrossThread; 347 if (isa<AtomicRMWInst>(I)) 348 return true; 349 if (isa<AtomicCmpXchgInst>(I)) 350 return true; 351 if (isa<FenceInst>(I)) 352 return true; 353 return false; 354 } 355 356 bool ThreadSanitizer::runOnFunction(Function &F) { 357 // This is required to prevent instrumenting call to __tsan_init from within 358 // the module constructor. 359 if (&F == TsanCtorFunction) 360 return false; 361 initializeCallbacks(*F.getParent()); 362 SmallVector<Instruction*, 8> RetVec; 363 SmallVector<Instruction*, 8> AllLoadsAndStores; 364 SmallVector<Instruction*, 8> LocalLoadsAndStores; 365 SmallVector<Instruction*, 8> AtomicAccesses; 366 SmallVector<Instruction*, 8> MemIntrinCalls; 367 bool Res = false; 368 bool HasCalls = false; 369 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 370 const DataLayout &DL = F.getParent()->getDataLayout(); 371 372 // Traverse all instructions, collect loads/stores/returns, check for calls. 373 for (auto &BB : F) { 374 for (auto &Inst : BB) { 375 if (isAtomic(&Inst)) 376 AtomicAccesses.push_back(&Inst); 377 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 378 LocalLoadsAndStores.push_back(&Inst); 379 else if (isa<ReturnInst>(Inst)) 380 RetVec.push_back(&Inst); 381 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 382 if (isa<MemIntrinsic>(Inst)) 383 MemIntrinCalls.push_back(&Inst); 384 HasCalls = true; 385 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 386 DL); 387 } 388 } 389 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 390 } 391 392 // We have collected all loads and stores. 393 // FIXME: many of these accesses do not need to be checked for races 394 // (e.g. variables that do not escape, etc). 395 396 // Instrument memory accesses only if we want to report bugs in the function. 397 if (ClInstrumentMemoryAccesses && SanitizeFunction) 398 for (auto Inst : AllLoadsAndStores) { 399 Res |= instrumentLoadOrStore(Inst, DL); 400 } 401 402 // Instrument atomic memory accesses in any case (they can be used to 403 // implement synchronization). 404 if (ClInstrumentAtomics) 405 for (auto Inst : AtomicAccesses) { 406 Res |= instrumentAtomic(Inst, DL); 407 } 408 409 if (ClInstrumentMemIntrinsics && SanitizeFunction) 410 for (auto Inst : MemIntrinCalls) { 411 Res |= instrumentMemIntrinsic(Inst); 412 } 413 414 // Instrument function entry/exit points if there were instrumented accesses. 415 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 416 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 417 Value *ReturnAddress = IRB.CreateCall( 418 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 419 IRB.getInt32(0)); 420 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 421 for (auto RetInst : RetVec) { 422 IRBuilder<> IRBRet(RetInst); 423 IRBRet.CreateCall(TsanFuncExit, {}); 424 } 425 Res = true; 426 } 427 return Res; 428 } 429 430 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I, 431 const DataLayout &DL) { 432 IRBuilder<> IRB(I); 433 bool IsWrite = isa<StoreInst>(*I); 434 Value *Addr = IsWrite 435 ? cast<StoreInst>(I)->getPointerOperand() 436 : cast<LoadInst>(I)->getPointerOperand(); 437 int Idx = getMemoryAccessFuncIndex(Addr, DL); 438 if (Idx < 0) 439 return false; 440 if (IsWrite && isVtableAccess(I)) { 441 DEBUG(dbgs() << " VPTR : " << *I << "\n"); 442 Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); 443 // StoredValue may be a vector type if we are storing several vptrs at once. 444 // In this case, just take the first element of the vector since this is 445 // enough to find vptr races. 446 if (isa<VectorType>(StoredValue->getType())) 447 StoredValue = IRB.CreateExtractElement( 448 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 449 if (StoredValue->getType()->isIntegerTy()) 450 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 451 // Call TsanVptrUpdate. 452 IRB.CreateCall(TsanVptrUpdate, 453 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 454 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 455 NumInstrumentedVtableWrites++; 456 return true; 457 } 458 if (!IsWrite && isVtableAccess(I)) { 459 IRB.CreateCall(TsanVptrLoad, 460 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 461 NumInstrumentedVtableReads++; 462 return true; 463 } 464 const unsigned Alignment = IsWrite 465 ? cast<StoreInst>(I)->getAlignment() 466 : cast<LoadInst>(I)->getAlignment(); 467 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 468 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 469 Value *OnAccessFunc = nullptr; 470 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) 471 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 472 else 473 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 474 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 475 if (IsWrite) NumInstrumentedWrites++; 476 else NumInstrumentedReads++; 477 return true; 478 } 479 480 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 481 uint32_t v = 0; 482 switch (ord) { 483 case AtomicOrdering::NotAtomic: 484 llvm_unreachable("unexpected atomic ordering!"); 485 case AtomicOrdering::Unordered: // Fall-through. 486 case AtomicOrdering::Monotonic: v = 0; break; 487 // Not specified yet: 488 // case AtomicOrdering::Consume: v = 1; break; 489 case AtomicOrdering::Acquire: v = 2; break; 490 case AtomicOrdering::Release: v = 3; break; 491 case AtomicOrdering::AcquireRelease: v = 4; break; 492 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 493 } 494 return IRB->getInt32(v); 495 } 496 497 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 498 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 499 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 500 // instead we simply replace them with regular function calls, which are then 501 // intercepted by the run-time. 502 // Since tsan is running after everyone else, the calls should not be 503 // replaced back with intrinsics. If that becomes wrong at some point, 504 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 505 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 506 IRBuilder<> IRB(I); 507 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 508 IRB.CreateCall( 509 MemsetFn, 510 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 511 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 512 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 513 I->eraseFromParent(); 514 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 515 IRB.CreateCall( 516 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 517 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 518 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 519 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 520 I->eraseFromParent(); 521 } 522 return false; 523 } 524 525 static Value *createIntOrPtrToIntCast(Value *V, Type* Ty, IRBuilder<> &IRB) { 526 return isa<PointerType>(V->getType()) ? 527 IRB.CreatePtrToInt(V, Ty) : IRB.CreateIntCast(V, Ty, false); 528 } 529 530 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 531 // standards. For background see C++11 standard. A slightly older, publicly 532 // available draft of the standard (not entirely up-to-date, but close enough 533 // for casual browsing) is available here: 534 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 535 // The following page contains more background information: 536 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 537 538 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 539 IRBuilder<> IRB(I); 540 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 541 Value *Addr = LI->getPointerOperand(); 542 int Idx = getMemoryAccessFuncIndex(Addr, DL); 543 if (Idx < 0) 544 return false; 545 const unsigned ByteSize = 1U << Idx; 546 const unsigned BitSize = ByteSize * 8; 547 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 548 Type *PtrTy = Ty->getPointerTo(); 549 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 550 createOrdering(&IRB, LI->getOrdering())}; 551 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 552 if (Ty == OrigTy) { 553 Instruction *C = CallInst::Create(TsanAtomicLoad[Idx], Args); 554 ReplaceInstWithInst(I, C); 555 } else { 556 // We are loading a pointer, so we need to cast the return value. 557 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 558 Instruction *Cast = CastInst::Create(Instruction::IntToPtr, C, OrigTy); 559 ReplaceInstWithInst(I, Cast); 560 } 561 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 562 Value *Addr = SI->getPointerOperand(); 563 int Idx = getMemoryAccessFuncIndex(Addr, DL); 564 if (Idx < 0) 565 return false; 566 const unsigned ByteSize = 1U << Idx; 567 const unsigned BitSize = ByteSize * 8; 568 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 569 Type *PtrTy = Ty->getPointerTo(); 570 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 571 createIntOrPtrToIntCast(SI->getValueOperand(), Ty, IRB), 572 createOrdering(&IRB, SI->getOrdering())}; 573 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 574 ReplaceInstWithInst(I, C); 575 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 576 Value *Addr = RMWI->getPointerOperand(); 577 int Idx = getMemoryAccessFuncIndex(Addr, DL); 578 if (Idx < 0) 579 return false; 580 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 581 if (!F) 582 return false; 583 const unsigned ByteSize = 1U << Idx; 584 const unsigned BitSize = ByteSize * 8; 585 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 586 Type *PtrTy = Ty->getPointerTo(); 587 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 588 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 589 createOrdering(&IRB, RMWI->getOrdering())}; 590 CallInst *C = CallInst::Create(F, Args); 591 ReplaceInstWithInst(I, C); 592 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 593 Value *Addr = CASI->getPointerOperand(); 594 int Idx = getMemoryAccessFuncIndex(Addr, DL); 595 if (Idx < 0) 596 return false; 597 const unsigned ByteSize = 1U << Idx; 598 const unsigned BitSize = ByteSize * 8; 599 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 600 Type *PtrTy = Ty->getPointerTo(); 601 Value *CmpOperand = 602 createIntOrPtrToIntCast(CASI->getCompareOperand(), Ty, IRB); 603 Value *NewOperand = 604 createIntOrPtrToIntCast(CASI->getNewValOperand(), Ty, IRB); 605 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 606 CmpOperand, 607 NewOperand, 608 createOrdering(&IRB, CASI->getSuccessOrdering()), 609 createOrdering(&IRB, CASI->getFailureOrdering())}; 610 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 611 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 612 Value *OldVal = C; 613 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 614 if (Ty != OrigOldValTy) { 615 // The value is a pointer, so we need to cast the return value. 616 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 617 } 618 619 Value *Res = 620 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 621 Res = IRB.CreateInsertValue(Res, Success, 1); 622 623 I->replaceAllUsesWith(Res); 624 I->eraseFromParent(); 625 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 626 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 627 Function *F = FI->getSynchScope() == SingleThread ? 628 TsanAtomicSignalFence : TsanAtomicThreadFence; 629 CallInst *C = CallInst::Create(F, Args); 630 ReplaceInstWithInst(I, C); 631 } 632 return true; 633 } 634 635 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, 636 const DataLayout &DL) { 637 Type *OrigPtrTy = Addr->getType(); 638 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 639 assert(OrigTy->isSized()); 640 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 641 if (TypeSize != 8 && TypeSize != 16 && 642 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 643 NumAccessesWithBadSize++; 644 // Ignore all unusual sizes. 645 return -1; 646 } 647 size_t Idx = countTrailingZeros(TypeSize / 8); 648 assert(Idx < kNumberOfAccessSizes); 649 return Idx; 650 } 651