1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
10 //
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
13 //
14 // The instrumentation phase is quite simple:
15 //   - Insert calls to run-time library before every memory access.
16 //      - Optimizations may apply to avoid instrumenting some of the accesses.
17 //   - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/ProfileData/InstrProf.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/ModuleUtils.h"
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "tsan"
54 
55 static cl::opt<bool> ClInstrumentMemoryAccesses(
56     "tsan-instrument-memory-accesses", cl::init(true),
57     cl::desc("Instrument memory accesses"), cl::Hidden);
58 static cl::opt<bool>
59     ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
60                               cl::desc("Instrument function entry and exit"),
61                               cl::Hidden);
62 static cl::opt<bool> ClHandleCxxExceptions(
63     "tsan-handle-cxx-exceptions", cl::init(true),
64     cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
65     cl::Hidden);
66 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics",
67                                          cl::init(true),
68                                          cl::desc("Instrument atomics"),
69                                          cl::Hidden);
70 static cl::opt<bool> ClInstrumentMemIntrinsics(
71     "tsan-instrument-memintrinsics", cl::init(true),
72     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
73 static cl::opt<bool> ClDistinguishVolatile(
74     "tsan-distinguish-volatile", cl::init(false),
75     cl::desc("Emit special instrumentation for accesses to volatiles"),
76     cl::Hidden);
77 static cl::opt<bool> ClInstrumentReadBeforeWrite(
78     "tsan-instrument-read-before-write", cl::init(false),
79     cl::desc("Do not eliminate read instrumentation for read-before-writes"),
80     cl::Hidden);
81 static cl::opt<bool> ClCompoundReadBeforeWrite(
82     "tsan-compound-read-before-write", cl::init(false),
83     cl::desc("Emit special compound instrumentation for reads-before-writes"),
84     cl::Hidden);
85 
86 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
87 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
88 STATISTIC(NumOmittedReadsBeforeWrite,
89           "Number of reads ignored due to following writes");
90 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
91 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
92 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
93 STATISTIC(NumOmittedReadsFromConstantGlobals,
94           "Number of reads from constant globals");
95 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
96 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
97 
98 const char kTsanModuleCtorName[] = "tsan.module_ctor";
99 const char kTsanInitName[] = "__tsan_init";
100 
101 namespace {
102 
103 /// ThreadSanitizer: instrument the code in module to find races.
104 ///
105 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
106 /// declarations into the module if they don't exist already. Instantiating
107 /// ensures the __tsan_init function is in the list of global constructors for
108 /// the module.
109 struct ThreadSanitizer {
110   ThreadSanitizer() {
111     // Check options and warn user.
112     if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) {
113       errs()
114           << "warning: Option -tsan-compound-read-before-write has no effect "
115              "when -tsan-instrument-read-before-write is set.\n";
116     }
117   }
118 
119   bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
120 
121 private:
122   // Internal Instruction wrapper that contains more information about the
123   // Instruction from prior analysis.
124   struct InstructionInfo {
125     // Instrumentation emitted for this instruction is for a compounded set of
126     // read and write operations in the same basic block.
127     static constexpr unsigned kCompoundRW = (1U << 0);
128 
129     explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {}
130 
131     Instruction *Inst;
132     unsigned Flags = 0;
133   };
134 
135   void initialize(Module &M);
136   bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL,
137                              const Function &F);
138   bool instrumentAtomic(Instruction *I, const DataLayout &DL,
139                         const Function &F);
140   bool instrumentMemIntrinsic(Instruction *I);
141   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
142                                       SmallVectorImpl<InstructionInfo> &All,
143                                       const DataLayout &DL);
144   bool addrPointsToConstantData(Value *Addr);
145   int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL);
146   void InsertRuntimeIgnores(Function &F);
147 
148   Type *IntptrTy;
149   FunctionCallee TsanFuncEntry;
150   FunctionCallee TsanFuncExit;
151   FunctionCallee TsanIgnoreBegin;
152   FunctionCallee TsanIgnoreEnd;
153   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
154   static const size_t kNumberOfAccessSizes = 5;
155   FunctionCallee TsanRead[kNumberOfAccessSizes];
156   FunctionCallee TsanWrite[kNumberOfAccessSizes];
157   FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
158   FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
159   FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
160   FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
161   FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
162   FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
163   FunctionCallee TsanCompoundRW[kNumberOfAccessSizes];
164   FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes];
165   FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
166   FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
167   FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
168                               [kNumberOfAccessSizes];
169   FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
170   FunctionCallee TsanAtomicThreadFence;
171   FunctionCallee TsanAtomicSignalFence;
172   FunctionCallee TsanVptrUpdate;
173   FunctionCallee TsanVptrLoad;
174   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
175 };
176 
177 void insertModuleCtor(Module &M) {
178   getOrCreateSanitizerCtorAndInitFunctions(
179       M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
180       /*InitArgs=*/{},
181       // This callback is invoked when the functions are created the first
182       // time. Hook them into the global ctors list in that case:
183       [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
184 }
185 
186 // Use to ensure the inserted instrumentation has a DebugLocation; if none is
187 // attached to the source instruction, try to use a DILocation with offset 0
188 // scoped to surrounding function (if it has a DebugLocation).
189 //
190 // Some non-call instructions may be missing debug info, but when inserting
191 // instrumentation calls, some builds (e.g. LTO) want calls to have debug info
192 // if the enclosing function does.
193 struct InstrumentationIRBuilder : IRBuilder<> {
194   static void ensureDebugInfo(IRBuilder<> &IRB, const Function &F) {
195     if (IRB.getCurrentDebugLocation())
196       return;
197     if (DISubprogram *SP = F.getSubprogram())
198       IRB.SetCurrentDebugLocation(DILocation::get(SP->getContext(), 0, 0, SP));
199   }
200 
201   explicit InstrumentationIRBuilder(Instruction *I, const Function &F)
202       : IRBuilder<>(I) {
203     ensureDebugInfo(*this, F);
204   }
205 };
206 
207 }  // namespace
208 
209 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
210                                            FunctionAnalysisManager &FAM) {
211   ThreadSanitizer TSan;
212   if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
213     return PreservedAnalyses::none();
214   return PreservedAnalyses::all();
215 }
216 
217 PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M,
218                                                  ModuleAnalysisManager &MAM) {
219   insertModuleCtor(M);
220   return PreservedAnalyses::none();
221 }
222 void ThreadSanitizer::initialize(Module &M) {
223   const DataLayout &DL = M.getDataLayout();
224   IntptrTy = DL.getIntPtrType(M.getContext());
225 
226   IRBuilder<> IRB(M.getContext());
227   AttributeList Attr;
228   Attr = Attr.addFnAttribute(M.getContext(), Attribute::NoUnwind);
229   // Initialize the callbacks.
230   TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
231                                         IRB.getVoidTy(), IRB.getInt8PtrTy());
232   TsanFuncExit =
233       M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
234   TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
235                                           IRB.getVoidTy());
236   TsanIgnoreEnd =
237       M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
238   IntegerType *OrdTy = IRB.getInt32Ty();
239   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
240     const unsigned ByteSize = 1U << i;
241     const unsigned BitSize = ByteSize * 8;
242     std::string ByteSizeStr = utostr(ByteSize);
243     std::string BitSizeStr = utostr(BitSize);
244     SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
245     TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
246                                         IRB.getInt8PtrTy());
247 
248     SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
249     TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
250                                          IRB.getInt8PtrTy());
251 
252     SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
253     TsanUnalignedRead[i] = M.getOrInsertFunction(
254         UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
255 
256     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
257     TsanUnalignedWrite[i] = M.getOrInsertFunction(
258         UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
259 
260     SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
261     TsanVolatileRead[i] = M.getOrInsertFunction(
262         VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
263 
264     SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
265     TsanVolatileWrite[i] = M.getOrInsertFunction(
266         VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
267 
268     SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
269                                               ByteSizeStr);
270     TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
271         UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
272 
273     SmallString<64> UnalignedVolatileWriteName(
274         "__tsan_unaligned_volatile_write" + ByteSizeStr);
275     TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
276         UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
277 
278     SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr);
279     TsanCompoundRW[i] = M.getOrInsertFunction(
280         CompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
281 
282     SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
283                                             ByteSizeStr);
284     TsanUnalignedCompoundRW[i] = M.getOrInsertFunction(
285         UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
286 
287     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
288     Type *PtrTy = Ty->getPointerTo();
289     SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
290     {
291       AttributeList AL = Attr;
292       AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
293       TsanAtomicLoad[i] =
294           M.getOrInsertFunction(AtomicLoadName, AL, Ty, PtrTy, OrdTy);
295     }
296 
297     SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
298     {
299       AttributeList AL = Attr;
300       AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
301       AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt);
302       TsanAtomicStore[i] = M.getOrInsertFunction(
303           AtomicStoreName, AL, IRB.getVoidTy(), PtrTy, Ty, OrdTy);
304     }
305 
306     for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
307          Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
308       TsanAtomicRMW[Op][i] = nullptr;
309       const char *NamePart = nullptr;
310       if (Op == AtomicRMWInst::Xchg)
311         NamePart = "_exchange";
312       else if (Op == AtomicRMWInst::Add)
313         NamePart = "_fetch_add";
314       else if (Op == AtomicRMWInst::Sub)
315         NamePart = "_fetch_sub";
316       else if (Op == AtomicRMWInst::And)
317         NamePart = "_fetch_and";
318       else if (Op == AtomicRMWInst::Or)
319         NamePart = "_fetch_or";
320       else if (Op == AtomicRMWInst::Xor)
321         NamePart = "_fetch_xor";
322       else if (Op == AtomicRMWInst::Nand)
323         NamePart = "_fetch_nand";
324       else
325         continue;
326       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
327       {
328         AttributeList AL = Attr;
329         AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
330         AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt);
331         TsanAtomicRMW[Op][i] =
332             M.getOrInsertFunction(RMWName, AL, Ty, PtrTy, Ty, OrdTy);
333       }
334     }
335 
336     SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
337                                   "_compare_exchange_val");
338     {
339       AttributeList AL = Attr;
340       AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
341       AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt);
342       AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
343       AL = AL.addParamAttribute(M.getContext(), 4, Attribute::ZExt);
344       TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, AL, Ty, PtrTy, Ty,
345                                                Ty, OrdTy, OrdTy);
346     }
347   }
348   TsanVptrUpdate =
349       M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
350                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
351   TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
352                                        IRB.getVoidTy(), IRB.getInt8PtrTy());
353   {
354     AttributeList AL = Attr;
355     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
356     TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence",
357                                                   AL, IRB.getVoidTy(), OrdTy);
358   }
359   {
360     AttributeList AL = Attr;
361     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
362     TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence",
363                                                   AL, IRB.getVoidTy(), OrdTy);
364   }
365 
366   MemmoveFn =
367       M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(),
368                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
369   MemcpyFn =
370       M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(),
371                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
372   MemsetFn =
373       M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(),
374                             IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
375 }
376 
377 static bool isVtableAccess(Instruction *I) {
378   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
379     return Tag->isTBAAVtableAccess();
380   return false;
381 }
382 
383 // Do not instrument known races/"benign races" that come from compiler
384 // instrumentatin. The user has no way of suppressing them.
385 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
386   // Peel off GEPs and BitCasts.
387   Addr = Addr->stripInBoundsOffsets();
388 
389   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
390     if (GV->hasSection()) {
391       StringRef SectionName = GV->getSection();
392       // Check if the global is in the PGO counters section.
393       auto OF = Triple(M->getTargetTriple()).getObjectFormat();
394       if (SectionName.endswith(
395               getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
396         return false;
397     }
398 
399     // Check if the global is private gcov data.
400     if (GV->getName().startswith("__llvm_gcov") ||
401         GV->getName().startswith("__llvm_gcda"))
402       return false;
403   }
404 
405   // Do not instrument acesses from different address spaces; we cannot deal
406   // with them.
407   if (Addr) {
408     Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
409     if (PtrTy->getPointerAddressSpace() != 0)
410       return false;
411   }
412 
413   return true;
414 }
415 
416 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
417   // If this is a GEP, just analyze its pointer operand.
418   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
419     Addr = GEP->getPointerOperand();
420 
421   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
422     if (GV->isConstant()) {
423       // Reads from constant globals can not race with any writes.
424       NumOmittedReadsFromConstantGlobals++;
425       return true;
426     }
427   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
428     if (isVtableAccess(L)) {
429       // Reads from a vtable pointer can not race with any writes.
430       NumOmittedReadsFromVtable++;
431       return true;
432     }
433   }
434   return false;
435 }
436 
437 // Instrumenting some of the accesses may be proven redundant.
438 // Currently handled:
439 //  - read-before-write (within same BB, no calls between)
440 //  - not captured variables
441 //
442 // We do not handle some of the patterns that should not survive
443 // after the classic compiler optimizations.
444 // E.g. two reads from the same temp should be eliminated by CSE,
445 // two writes should be eliminated by DSE, etc.
446 //
447 // 'Local' is a vector of insns within the same BB (no calls between).
448 // 'All' is a vector of insns that will be instrumented.
449 void ThreadSanitizer::chooseInstructionsToInstrument(
450     SmallVectorImpl<Instruction *> &Local,
451     SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) {
452   DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All
453   // Iterate from the end.
454   for (Instruction *I : reverse(Local)) {
455     const bool IsWrite = isa<StoreInst>(*I);
456     Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand()
457                           : cast<LoadInst>(I)->getPointerOperand();
458 
459     if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
460       continue;
461 
462     if (!IsWrite) {
463       const auto WriteEntry = WriteTargets.find(Addr);
464       if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) {
465         auto &WI = All[WriteEntry->second];
466         // If we distinguish volatile accesses and if either the read or write
467         // is volatile, do not omit any instrumentation.
468         const bool AnyVolatile =
469             ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() ||
470                                       cast<StoreInst>(WI.Inst)->isVolatile());
471         if (!AnyVolatile) {
472           // We will write to this temp, so no reason to analyze the read.
473           // Mark the write instruction as compound.
474           WI.Flags |= InstructionInfo::kCompoundRW;
475           NumOmittedReadsBeforeWrite++;
476           continue;
477         }
478       }
479 
480       if (addrPointsToConstantData(Addr)) {
481         // Addr points to some constant data -- it can not race with any writes.
482         continue;
483       }
484     }
485 
486     if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
487         !PointerMayBeCaptured(Addr, true, true)) {
488       // The variable is addressable but not captured, so it cannot be
489       // referenced from a different thread and participate in a data race
490       // (see llvm/Analysis/CaptureTracking.h for details).
491       NumOmittedNonCaptured++;
492       continue;
493     }
494 
495     // Instrument this instruction.
496     All.emplace_back(I);
497     if (IsWrite) {
498       // For read-before-write and compound instrumentation we only need one
499       // write target, and we can override any previous entry if it exists.
500       WriteTargets[Addr] = All.size() - 1;
501     }
502   }
503   Local.clear();
504 }
505 
506 static bool isTsanAtomic(const Instruction *I) {
507   // TODO: Ask TTI whether synchronization scope is between threads.
508   auto SSID = getAtomicSyncScopeID(I);
509   if (!SSID.hasValue())
510     return false;
511   if (isa<LoadInst>(I) || isa<StoreInst>(I))
512     return SSID.getValue() != SyncScope::SingleThread;
513   return true;
514 }
515 
516 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
517   InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI(), F);
518   IRB.CreateCall(TsanIgnoreBegin);
519   EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
520   while (IRBuilder<> *AtExit = EE.Next()) {
521     InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
522     AtExit->CreateCall(TsanIgnoreEnd);
523   }
524 }
525 
526 bool ThreadSanitizer::sanitizeFunction(Function &F,
527                                        const TargetLibraryInfo &TLI) {
528   // This is required to prevent instrumenting call to __tsan_init from within
529   // the module constructor.
530   if (F.getName() == kTsanModuleCtorName)
531     return false;
532   // Naked functions can not have prologue/epilogue
533   // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
534   // all.
535   if (F.hasFnAttribute(Attribute::Naked))
536     return false;
537 
538   // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of
539   // instrumentation.
540   if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
541     return false;
542 
543   initialize(*F.getParent());
544   SmallVector<InstructionInfo, 8> AllLoadsAndStores;
545   SmallVector<Instruction*, 8> LocalLoadsAndStores;
546   SmallVector<Instruction*, 8> AtomicAccesses;
547   SmallVector<Instruction*, 8> MemIntrinCalls;
548   bool Res = false;
549   bool HasCalls = false;
550   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
551   const DataLayout &DL = F.getParent()->getDataLayout();
552 
553   // Traverse all instructions, collect loads/stores/returns, check for calls.
554   for (auto &BB : F) {
555     for (auto &Inst : BB) {
556       if (isTsanAtomic(&Inst))
557         AtomicAccesses.push_back(&Inst);
558       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
559         LocalLoadsAndStores.push_back(&Inst);
560       else if ((isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) ||
561                isa<InvokeInst>(Inst)) {
562         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
563           maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
564         if (isa<MemIntrinsic>(Inst))
565           MemIntrinCalls.push_back(&Inst);
566         HasCalls = true;
567         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
568                                        DL);
569       }
570     }
571     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
572   }
573 
574   // We have collected all loads and stores.
575   // FIXME: many of these accesses do not need to be checked for races
576   // (e.g. variables that do not escape, etc).
577 
578   // Instrument memory accesses only if we want to report bugs in the function.
579   if (ClInstrumentMemoryAccesses && SanitizeFunction)
580     for (const auto &II : AllLoadsAndStores) {
581       Res |= instrumentLoadOrStore(II, DL, F);
582     }
583 
584   // Instrument atomic memory accesses in any case (they can be used to
585   // implement synchronization).
586   if (ClInstrumentAtomics)
587     for (auto Inst : AtomicAccesses) {
588       Res |= instrumentAtomic(Inst, DL, F);
589     }
590 
591   if (ClInstrumentMemIntrinsics && SanitizeFunction)
592     for (auto Inst : MemIntrinCalls) {
593       Res |= instrumentMemIntrinsic(Inst);
594     }
595 
596   if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
597     assert(!F.hasFnAttribute(Attribute::SanitizeThread));
598     if (HasCalls)
599       InsertRuntimeIgnores(F);
600   }
601 
602   // Instrument function entry/exit points if there were instrumented accesses.
603   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
604     InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI(), F);
605     Value *ReturnAddress = IRB.CreateCall(
606         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
607         IRB.getInt32(0));
608     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
609 
610     EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
611     while (IRBuilder<> *AtExit = EE.Next()) {
612       InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
613       AtExit->CreateCall(TsanFuncExit, {});
614     }
615     Res = true;
616   }
617   return Res;
618 }
619 
620 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II,
621                                             const DataLayout &DL,
622                                             const Function &F) {
623   InstrumentationIRBuilder IRB(II.Inst, F);
624   const bool IsWrite = isa<StoreInst>(*II.Inst);
625   Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand()
626                         : cast<LoadInst>(II.Inst)->getPointerOperand();
627   Type *OrigTy = getLoadStoreType(II.Inst);
628 
629   // swifterror memory addresses are mem2reg promoted by instruction selection.
630   // As such they cannot have regular uses like an instrumentation function and
631   // it makes no sense to track them as memory.
632   if (Addr->isSwiftError())
633     return false;
634 
635   int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
636   if (Idx < 0)
637     return false;
638   if (IsWrite && isVtableAccess(II.Inst)) {
639     LLVM_DEBUG(dbgs() << "  VPTR : " << *II.Inst << "\n");
640     Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand();
641     // StoredValue may be a vector type if we are storing several vptrs at once.
642     // In this case, just take the first element of the vector since this is
643     // enough to find vptr races.
644     if (isa<VectorType>(StoredValue->getType()))
645       StoredValue = IRB.CreateExtractElement(
646           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
647     if (StoredValue->getType()->isIntegerTy())
648       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
649     // Call TsanVptrUpdate.
650     IRB.CreateCall(TsanVptrUpdate,
651                    {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
652                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
653     NumInstrumentedVtableWrites++;
654     return true;
655   }
656   if (!IsWrite && isVtableAccess(II.Inst)) {
657     IRB.CreateCall(TsanVptrLoad,
658                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
659     NumInstrumentedVtableReads++;
660     return true;
661   }
662 
663   const unsigned Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlignment()
664                                      : cast<LoadInst>(II.Inst)->getAlignment();
665   const bool IsCompoundRW =
666       ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW);
667   const bool IsVolatile = ClDistinguishVolatile &&
668                           (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile()
669                                    : cast<LoadInst>(II.Inst)->isVolatile());
670   assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!");
671 
672   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
673   FunctionCallee OnAccessFunc = nullptr;
674   if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) {
675     if (IsCompoundRW)
676       OnAccessFunc = TsanCompoundRW[Idx];
677     else if (IsVolatile)
678       OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
679     else
680       OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
681   } else {
682     if (IsCompoundRW)
683       OnAccessFunc = TsanUnalignedCompoundRW[Idx];
684     else if (IsVolatile)
685       OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
686                              : TsanUnalignedVolatileRead[Idx];
687     else
688       OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
689   }
690   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
691   if (IsCompoundRW || IsWrite)
692     NumInstrumentedWrites++;
693   if (IsCompoundRW || !IsWrite)
694     NumInstrumentedReads++;
695   return true;
696 }
697 
698 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
699   uint32_t v = 0;
700   switch (ord) {
701     case AtomicOrdering::NotAtomic:
702       llvm_unreachable("unexpected atomic ordering!");
703     case AtomicOrdering::Unordered:              LLVM_FALLTHROUGH;
704     case AtomicOrdering::Monotonic:              v = 0; break;
705     // Not specified yet:
706     // case AtomicOrdering::Consume:                v = 1; break;
707     case AtomicOrdering::Acquire:                v = 2; break;
708     case AtomicOrdering::Release:                v = 3; break;
709     case AtomicOrdering::AcquireRelease:         v = 4; break;
710     case AtomicOrdering::SequentiallyConsistent: v = 5; break;
711   }
712   return IRB->getInt32(v);
713 }
714 
715 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
716 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
717 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
718 // instead we simply replace them with regular function calls, which are then
719 // intercepted by the run-time.
720 // Since tsan is running after everyone else, the calls should not be
721 // replaced back with intrinsics. If that becomes wrong at some point,
722 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
723 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
724   IRBuilder<> IRB(I);
725   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
726     IRB.CreateCall(
727         MemsetFn,
728         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
729          IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
730          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
731     I->eraseFromParent();
732   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
733     IRB.CreateCall(
734         isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
735         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
736          IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
737          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
738     I->eraseFromParent();
739   }
740   return false;
741 }
742 
743 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
744 // standards.  For background see C++11 standard.  A slightly older, publicly
745 // available draft of the standard (not entirely up-to-date, but close enough
746 // for casual browsing) is available here:
747 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
748 // The following page contains more background information:
749 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
750 
751 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL,
752                                        const Function &F) {
753   InstrumentationIRBuilder IRB(I, F);
754   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
755     Value *Addr = LI->getPointerOperand();
756     Type *OrigTy = LI->getType();
757     int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
758     if (Idx < 0)
759       return false;
760     const unsigned ByteSize = 1U << Idx;
761     const unsigned BitSize = ByteSize * 8;
762     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
763     Type *PtrTy = Ty->getPointerTo();
764     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
765                      createOrdering(&IRB, LI->getOrdering())};
766     Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
767     Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
768     I->replaceAllUsesWith(Cast);
769   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
770     Value *Addr = SI->getPointerOperand();
771     int Idx =
772         getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL);
773     if (Idx < 0)
774       return false;
775     const unsigned ByteSize = 1U << Idx;
776     const unsigned BitSize = ByteSize * 8;
777     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
778     Type *PtrTy = Ty->getPointerTo();
779     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
780                      IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
781                      createOrdering(&IRB, SI->getOrdering())};
782     CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
783     ReplaceInstWithInst(I, C);
784   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
785     Value *Addr = RMWI->getPointerOperand();
786     int Idx =
787         getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL);
788     if (Idx < 0)
789       return false;
790     FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
791     if (!F)
792       return false;
793     const unsigned ByteSize = 1U << Idx;
794     const unsigned BitSize = ByteSize * 8;
795     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
796     Type *PtrTy = Ty->getPointerTo();
797     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
798                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
799                      createOrdering(&IRB, RMWI->getOrdering())};
800     CallInst *C = CallInst::Create(F, Args);
801     ReplaceInstWithInst(I, C);
802   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
803     Value *Addr = CASI->getPointerOperand();
804     Type *OrigOldValTy = CASI->getNewValOperand()->getType();
805     int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL);
806     if (Idx < 0)
807       return false;
808     const unsigned ByteSize = 1U << Idx;
809     const unsigned BitSize = ByteSize * 8;
810     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
811     Type *PtrTy = Ty->getPointerTo();
812     Value *CmpOperand =
813       IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
814     Value *NewOperand =
815       IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
816     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
817                      CmpOperand,
818                      NewOperand,
819                      createOrdering(&IRB, CASI->getSuccessOrdering()),
820                      createOrdering(&IRB, CASI->getFailureOrdering())};
821     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
822     Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
823     Value *OldVal = C;
824     if (Ty != OrigOldValTy) {
825       // The value is a pointer, so we need to cast the return value.
826       OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
827     }
828 
829     Value *Res =
830       IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
831     Res = IRB.CreateInsertValue(Res, Success, 1);
832 
833     I->replaceAllUsesWith(Res);
834     I->eraseFromParent();
835   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
836     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
837     FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
838                            ? TsanAtomicSignalFence
839                            : TsanAtomicThreadFence;
840     CallInst *C = CallInst::Create(F, Args);
841     ReplaceInstWithInst(I, C);
842   }
843   return true;
844 }
845 
846 int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr,
847                                               const DataLayout &DL) {
848   assert(OrigTy->isSized());
849   assert(
850       cast<PointerType>(Addr->getType())->isOpaqueOrPointeeTypeMatches(OrigTy));
851   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
852   if (TypeSize != 8  && TypeSize != 16 &&
853       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
854     NumAccessesWithBadSize++;
855     // Ignore all unusual sizes.
856     return -1;
857   }
858   size_t Idx = countTrailingZeros(TypeSize / 8);
859   assert(Idx < kNumberOfAccessSizes);
860   return Idx;
861 }
862