1 //===- PoisonChecking.cpp - -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements a transform pass which instruments IR such that poison semantics
10 // are made explicit. That is, it provides a (possibly partial) executable
11 // semantics for every instruction w.r.t. poison as specified in the LLVM
12 // LangRef. There are obvious parallels to the sanitizer tools, but this pass
13 // is focused purely on the semantics of LLVM IR, not any particular source
14 // language. If you're looking for something to see if your C/C++ contains
15 // UB, this is not it.
16 //
17 // The rewritten semantics of each instruction will include the following
18 // components:
19 //
20 // 1) The original instruction, unmodified.
21 // 2) A propagation rule which translates dynamic information about the poison
22 // state of each input to whether the dynamic output of the instruction
23 // produces poison.
24 // 3) A creation rule which validates any poison producing flags on the
25 // instruction itself (e.g. checks for overflow on nsw).
26 // 4) A check rule which traps (to a handler function) if this instruction must
27 // execute undefined behavior given the poison state of it's inputs.
28 //
29 // This is a must analysis based transform; that is, the resulting code may
30 // produce a false negative result (not report UB when actually exists
31 // according to the LangRef spec), but should never produce a false positive
32 // (report UB where it doesn't exist).
33 //
34 // Use cases for this pass include:
35 // - Understanding (and testing!) the implications of the definition of poison
36 // from the LangRef.
37 // - Validating the output of a IR fuzzer to ensure that all programs produced
38 // are well defined on the specific input used.
39 // - Finding/confirming poison specific miscompiles by checking the poison
40 // status of an input/IR pair is the same before and after an optimization
41 // transform.
42 // - Checking that a bugpoint reduction does not introduce UB which didn't
43 // exist in the original program being reduced.
44 //
45 // The major sources of inaccuracy are currently:
46 // - Most validation rules not yet implemented for instructions with poison
47 // relavant flags. At the moment, only nsw/nuw on add/sub are supported.
48 // - UB which is control dependent on a branch on poison is not yet
49 // reported. Currently, only data flow dependence is modeled.
50 // - Poison which is propagated through memory is not modeled. As such,
51 // storing poison to memory and then reloading it will cause a false negative
52 // as we consider the reloaded value to not be poisoned.
53 // - Poison propagation across function boundaries is not modeled. At the
54 // moment, all arguments and return values are assumed not to be poison.
55 // - Undef is not modeled. In particular, the optimizer's freedom to pick
56 // concrete values for undef bits so as to maximize potential for producing
57 // poison is not modeled.
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/Transforms/Instrumentation/PoisonChecking.h"
62 #include "llvm/ADT/DenseMap.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/IRBuilder.h"
65 #include "llvm/Support/CommandLine.h"
66
67 using namespace llvm;
68
69 #define DEBUG_TYPE "poison-checking"
70
71 static cl::opt<bool>
72 LocalCheck("poison-checking-function-local",
73 cl::init(false),
74 cl::desc("Check that returns are non-poison (for testing)"));
75
76
isConstantFalse(Value * V)77 static bool isConstantFalse(Value* V) {
78 assert(V->getType()->isIntegerTy(1));
79 if (auto *CI = dyn_cast<ConstantInt>(V))
80 return CI->isZero();
81 return false;
82 }
83
buildOrChain(IRBuilder<> & B,ArrayRef<Value * > Ops)84 static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) {
85 if (Ops.size() == 0)
86 return B.getFalse();
87 unsigned i = 0;
88 for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {}
89 if (i == Ops.size())
90 return B.getFalse();
91 Value *Accum = Ops[i++];
92 for (; i < Ops.size(); i++)
93 if (!isConstantFalse(Ops[i]))
94 Accum = B.CreateOr(Accum, Ops[i]);
95 return Accum;
96 }
97
generateCreationChecksForBinOp(Instruction & I,SmallVectorImpl<Value * > & Checks)98 static void generateCreationChecksForBinOp(Instruction &I,
99 SmallVectorImpl<Value*> &Checks) {
100 assert(isa<BinaryOperator>(I));
101
102 IRBuilder<> B(&I);
103 Value *LHS = I.getOperand(0);
104 Value *RHS = I.getOperand(1);
105 switch (I.getOpcode()) {
106 default:
107 return;
108 case Instruction::Add: {
109 if (I.hasNoSignedWrap()) {
110 auto *OverflowOp =
111 B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS);
112 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
113 }
114 if (I.hasNoUnsignedWrap()) {
115 auto *OverflowOp =
116 B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS);
117 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
118 }
119 break;
120 }
121 case Instruction::Sub: {
122 if (I.hasNoSignedWrap()) {
123 auto *OverflowOp =
124 B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS);
125 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
126 }
127 if (I.hasNoUnsignedWrap()) {
128 auto *OverflowOp =
129 B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS);
130 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
131 }
132 break;
133 }
134 case Instruction::Mul: {
135 if (I.hasNoSignedWrap()) {
136 auto *OverflowOp =
137 B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS);
138 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
139 }
140 if (I.hasNoUnsignedWrap()) {
141 auto *OverflowOp =
142 B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS);
143 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
144 }
145 break;
146 }
147 case Instruction::UDiv: {
148 if (I.isExact()) {
149 auto *Check =
150 B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS),
151 ConstantInt::get(LHS->getType(), 0));
152 Checks.push_back(Check);
153 }
154 break;
155 }
156 case Instruction::SDiv: {
157 if (I.isExact()) {
158 auto *Check =
159 B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS),
160 ConstantInt::get(LHS->getType(), 0));
161 Checks.push_back(Check);
162 }
163 break;
164 }
165 case Instruction::AShr:
166 case Instruction::LShr:
167 case Instruction::Shl: {
168 Value *ShiftCheck =
169 B.CreateICmp(ICmpInst::ICMP_UGE, RHS,
170 ConstantInt::get(RHS->getType(),
171 LHS->getType()->getScalarSizeInBits()));
172 Checks.push_back(ShiftCheck);
173 break;
174 }
175 };
176 }
177
178 /// Given an instruction which can produce poison on non-poison inputs
179 /// (i.e. canCreatePoison returns true), generate runtime checks to produce
180 /// boolean indicators of when poison would result.
generateCreationChecks(Instruction & I,SmallVectorImpl<Value * > & Checks)181 static void generateCreationChecks(Instruction &I,
182 SmallVectorImpl<Value*> &Checks) {
183 IRBuilder<> B(&I);
184 if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy())
185 generateCreationChecksForBinOp(I, Checks);
186
187 // Handle non-binops separately
188 switch (I.getOpcode()) {
189 default:
190 // Note there are a couple of missing cases here, once implemented, this
191 // should become an llvm_unreachable.
192 break;
193 case Instruction::ExtractElement: {
194 Value *Vec = I.getOperand(0);
195 auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
196 if (!VecVTy)
197 break;
198 Value *Idx = I.getOperand(1);
199 unsigned NumElts = VecVTy->getNumElements();
200 Value *Check =
201 B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
202 ConstantInt::get(Idx->getType(), NumElts));
203 Checks.push_back(Check);
204 break;
205 }
206 case Instruction::InsertElement: {
207 Value *Vec = I.getOperand(0);
208 auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
209 if (!VecVTy)
210 break;
211 Value *Idx = I.getOperand(2);
212 unsigned NumElts = VecVTy->getNumElements();
213 Value *Check =
214 B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
215 ConstantInt::get(Idx->getType(), NumElts));
216 Checks.push_back(Check);
217 break;
218 }
219 };
220 }
221
getPoisonFor(DenseMap<Value *,Value * > & ValToPoison,Value * V)222 static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) {
223 auto Itr = ValToPoison.find(V);
224 if (Itr != ValToPoison.end())
225 return Itr->second;
226 if (isa<Constant>(V)) {
227 return ConstantInt::getFalse(V->getContext());
228 }
229 // Return false for unknwon values - this implements a non-strict mode where
230 // unhandled IR constructs are simply considered to never produce poison. At
231 // some point in the future, we probably want a "strict mode" for testing if
232 // nothing else.
233 return ConstantInt::getFalse(V->getContext());
234 }
235
CreateAssert(IRBuilder<> & B,Value * Cond)236 static void CreateAssert(IRBuilder<> &B, Value *Cond) {
237 assert(Cond->getType()->isIntegerTy(1));
238 if (auto *CI = dyn_cast<ConstantInt>(Cond))
239 if (CI->isAllOnesValue())
240 return;
241
242 Module *M = B.GetInsertBlock()->getModule();
243 M->getOrInsertFunction("__poison_checker_assert",
244 Type::getVoidTy(M->getContext()),
245 Type::getInt1Ty(M->getContext()));
246 Function *TrapFunc = M->getFunction("__poison_checker_assert");
247 B.CreateCall(TrapFunc, Cond);
248 }
249
CreateAssertNot(IRBuilder<> & B,Value * Cond)250 static void CreateAssertNot(IRBuilder<> &B, Value *Cond) {
251 assert(Cond->getType()->isIntegerTy(1));
252 CreateAssert(B, B.CreateNot(Cond));
253 }
254
rewrite(Function & F)255 static bool rewrite(Function &F) {
256 auto * const Int1Ty = Type::getInt1Ty(F.getContext());
257
258 DenseMap<Value *, Value *> ValToPoison;
259
260 for (BasicBlock &BB : F)
261 for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
262 auto *OldPHI = cast<PHINode>(&*I);
263 auto *NewPHI = PHINode::Create(Int1Ty, OldPHI->getNumIncomingValues());
264 for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++)
265 NewPHI->addIncoming(UndefValue::get(Int1Ty),
266 OldPHI->getIncomingBlock(i));
267 NewPHI->insertBefore(OldPHI);
268 ValToPoison[OldPHI] = NewPHI;
269 }
270
271 for (BasicBlock &BB : F)
272 for (Instruction &I : BB) {
273 if (isa<PHINode>(I)) continue;
274
275 IRBuilder<> B(cast<Instruction>(&I));
276
277 // Note: There are many more sources of documented UB, but this pass only
278 // attempts to find UB triggered by propagation of poison.
279 SmallPtrSet<const Value *, 4> NonPoisonOps;
280 getGuaranteedNonPoisonOps(&I, NonPoisonOps);
281 for (const Value *Op : NonPoisonOps)
282 CreateAssertNot(B, getPoisonFor(ValToPoison, const_cast<Value *>(Op)));
283
284 if (LocalCheck)
285 if (auto *RI = dyn_cast<ReturnInst>(&I))
286 if (RI->getNumOperands() != 0) {
287 Value *Op = RI->getOperand(0);
288 CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
289 }
290
291 SmallVector<Value*, 4> Checks;
292 if (propagatesPoison(cast<Operator>(&I)))
293 for (Value *V : I.operands())
294 Checks.push_back(getPoisonFor(ValToPoison, V));
295
296 if (canCreatePoison(cast<Operator>(&I)))
297 generateCreationChecks(I, Checks);
298 ValToPoison[&I] = buildOrChain(B, Checks);
299 }
300
301 for (BasicBlock &BB : F)
302 for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
303 auto *OldPHI = cast<PHINode>(&*I);
304 if (!ValToPoison.count(OldPHI))
305 continue; // skip the newly inserted phis
306 auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]);
307 for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) {
308 auto *OldVal = OldPHI->getIncomingValue(i);
309 NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal));
310 }
311 }
312 return true;
313 }
314
315
run(Module & M,ModuleAnalysisManager & AM)316 PreservedAnalyses PoisonCheckingPass::run(Module &M,
317 ModuleAnalysisManager &AM) {
318 bool Changed = false;
319 for (auto &F : M)
320 Changed |= rewrite(F);
321
322 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
323 }
324
run(Function & F,FunctionAnalysisManager & AM)325 PreservedAnalyses PoisonCheckingPass::run(Function &F,
326 FunctionAnalysisManager &AM) {
327 return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all();
328 }
329
330 /* Major TODO Items:
331 - Control dependent poison UB
332 - Strict mode - (i.e. must analyze every operand)
333 - Poison through memory
334 - Function ABIs
335 - Full coverage of intrinsics, etc.. (ouch)
336
337 Instructions w/Unclear Semantics:
338 - shufflevector - It would seem reasonable for an out of bounds mask element
339 to produce poison, but the LangRef does not state.
340 - all binary ops w/vector operands - The likely interpretation would be that
341 any element overflowing should produce poison for the entire result, but
342 the LangRef does not state.
343 - Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems
344 strange that only certian flags should be documented as producing poison.
345
346 Cases of clear poison semantics not yet implemented:
347 - Exact flags on ashr/lshr produce poison
348 - NSW/NUW flags on shl produce poison
349 - Inbounds flag on getelementptr produce poison
350 - fptosi/fptoui (out of bounds input) produce poison
351 - Scalable vector types for insertelement/extractelement
352 - Floating point binary ops w/fmf nnan/noinfs flags produce poison
353 */
354