1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions.  This pass does not modify the CFG.  This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 //    %Y = add i32 %X, 1
16 //    %Z = add i32 %Y, 1
17 // into:
18 //    %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 //    1. If a binary operator has a constant operand, it is moved to the RHS
25 //    2. Bitwise operators with constant operands are always grouped so that
26 //       shifts are performed first, then or's, then and's, then xor's.
27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 //    4. All cmp instructions on boolean values are replaced with logical ops
29 //    5. add X, X is represented as (X*2) => (X << 1)
30 //    6. Multiplies with a power-of-two constant argument are transformed into
31 //       shifts.
32 //   ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Transforms/InstCombine/InstCombine.h"
37 #include "InstCombineInternal.h"
38 #include "llvm-c/Initialization.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/CFG.h"
46 #include "llvm/Analysis/ConstantFolding.h"
47 #include "llvm/Analysis/EHPersonalities.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/MemoryBuiltins.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include <algorithm>
67 #include <climits>
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 #define DEBUG_TYPE "instcombine"
72 
73 STATISTIC(NumCombined , "Number of insts combined");
74 STATISTIC(NumConstProp, "Number of constant folds");
75 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
76 STATISTIC(NumSunkInst , "Number of instructions sunk");
77 STATISTIC(NumExpand,    "Number of expansions");
78 STATISTIC(NumFactor   , "Number of factorizations");
79 STATISTIC(NumReassoc  , "Number of reassociations");
80 
81 static cl::opt<bool>
82 EnableExpensiveCombines("expensive-combines",
83                         cl::desc("Enable expensive instruction combines"));
84 
85 static cl::opt<unsigned>
86 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
87              cl::desc("Maximum array size considered when doing a combine"));
88 
89 Value *InstCombiner::EmitGEPOffset(User *GEP) {
90   return llvm::EmitGEPOffset(Builder, DL, GEP);
91 }
92 
93 /// Return true if it is desirable to convert an integer computation from a
94 /// given bit width to a new bit width.
95 /// We don't want to convert from a legal to an illegal type or from a smaller
96 /// to a larger illegal type. A width of '1' is always treated as a legal type
97 /// because i1 is a fundamental type in IR, and there are many specialized
98 /// optimizations for i1 types.
99 bool InstCombiner::shouldChangeType(unsigned FromWidth,
100                                     unsigned ToWidth) const {
101   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
102   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
103 
104   // If this is a legal integer from type, and the result would be an illegal
105   // type, don't do the transformation.
106   if (FromLegal && !ToLegal)
107     return false;
108 
109   // Otherwise, if both are illegal, do not increase the size of the result. We
110   // do allow things like i160 -> i64, but not i64 -> i160.
111   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
112     return false;
113 
114   return true;
115 }
116 
117 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
118 /// We don't want to convert from a legal to an illegal type or from a smaller
119 /// to a larger illegal type. i1 is always treated as a legal type because it is
120 /// a fundamental type in IR, and there are many specialized optimizations for
121 /// i1 types.
122 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
123   assert(From->isIntegerTy() && To->isIntegerTy());
124 
125   unsigned FromWidth = From->getPrimitiveSizeInBits();
126   unsigned ToWidth = To->getPrimitiveSizeInBits();
127   return shouldChangeType(FromWidth, ToWidth);
128 }
129 
130 // Return true, if No Signed Wrap should be maintained for I.
131 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
132 // where both B and C should be ConstantInts, results in a constant that does
133 // not overflow. This function only handles the Add and Sub opcodes. For
134 // all other opcodes, the function conservatively returns false.
135 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
136   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
137   if (!OBO || !OBO->hasNoSignedWrap())
138     return false;
139 
140   // We reason about Add and Sub Only.
141   Instruction::BinaryOps Opcode = I.getOpcode();
142   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
143     return false;
144 
145   const APInt *BVal, *CVal;
146   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
147     return false;
148 
149   bool Overflow = false;
150   if (Opcode == Instruction::Add)
151     BVal->sadd_ov(*CVal, Overflow);
152   else
153     BVal->ssub_ov(*CVal, Overflow);
154 
155   return !Overflow;
156 }
157 
158 /// Conservatively clears subclassOptionalData after a reassociation or
159 /// commutation. We preserve fast-math flags when applicable as they can be
160 /// preserved.
161 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
162   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
163   if (!FPMO) {
164     I.clearSubclassOptionalData();
165     return;
166   }
167 
168   FastMathFlags FMF = I.getFastMathFlags();
169   I.clearSubclassOptionalData();
170   I.setFastMathFlags(FMF);
171 }
172 
173 /// Combine constant operands of associative operations either before or after a
174 /// cast to eliminate one of the associative operations:
175 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
176 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
177 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
178   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
179   if (!Cast || !Cast->hasOneUse())
180     return false;
181 
182   // TODO: Enhance logic for other casts and remove this check.
183   auto CastOpcode = Cast->getOpcode();
184   if (CastOpcode != Instruction::ZExt)
185     return false;
186 
187   // TODO: Enhance logic for other BinOps and remove this check.
188   if (!BinOp1->isBitwiseLogicOp())
189     return false;
190 
191   auto AssocOpcode = BinOp1->getOpcode();
192   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
193   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
194     return false;
195 
196   Constant *C1, *C2;
197   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
198       !match(BinOp2->getOperand(1), m_Constant(C2)))
199     return false;
200 
201   // TODO: This assumes a zext cast.
202   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
203   // to the destination type might lose bits.
204 
205   // Fold the constants together in the destination type:
206   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
207   Type *DestTy = C1->getType();
208   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
209   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
210   Cast->setOperand(0, BinOp2->getOperand(0));
211   BinOp1->setOperand(1, FoldedC);
212   return true;
213 }
214 
215 /// This performs a few simplifications for operators that are associative or
216 /// commutative:
217 ///
218 ///  Commutative operators:
219 ///
220 ///  1. Order operands such that they are listed from right (least complex) to
221 ///     left (most complex).  This puts constants before unary operators before
222 ///     binary operators.
223 ///
224 ///  Associative operators:
225 ///
226 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
227 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
228 ///
229 ///  Associative and commutative operators:
230 ///
231 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
232 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
233 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
234 ///     if C1 and C2 are constants.
235 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
236   Instruction::BinaryOps Opcode = I.getOpcode();
237   bool Changed = false;
238 
239   do {
240     // Order operands such that they are listed from right (least complex) to
241     // left (most complex).  This puts constants before unary operators before
242     // binary operators.
243     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
244         getComplexity(I.getOperand(1)))
245       Changed = !I.swapOperands();
246 
247     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
248     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
249 
250     if (I.isAssociative()) {
251       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
252       if (Op0 && Op0->getOpcode() == Opcode) {
253         Value *A = Op0->getOperand(0);
254         Value *B = Op0->getOperand(1);
255         Value *C = I.getOperand(1);
256 
257         // Does "B op C" simplify?
258         if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
259           // It simplifies to V.  Form "A op V".
260           I.setOperand(0, A);
261           I.setOperand(1, V);
262           // Conservatively clear the optional flags, since they may not be
263           // preserved by the reassociation.
264           if (MaintainNoSignedWrap(I, B, C) &&
265               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
266             // Note: this is only valid because SimplifyBinOp doesn't look at
267             // the operands to Op0.
268             I.clearSubclassOptionalData();
269             I.setHasNoSignedWrap(true);
270           } else {
271             ClearSubclassDataAfterReassociation(I);
272           }
273 
274           Changed = true;
275           ++NumReassoc;
276           continue;
277         }
278       }
279 
280       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
281       if (Op1 && Op1->getOpcode() == Opcode) {
282         Value *A = I.getOperand(0);
283         Value *B = Op1->getOperand(0);
284         Value *C = Op1->getOperand(1);
285 
286         // Does "A op B" simplify?
287         if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
288           // It simplifies to V.  Form "V op C".
289           I.setOperand(0, V);
290           I.setOperand(1, C);
291           // Conservatively clear the optional flags, since they may not be
292           // preserved by the reassociation.
293           ClearSubclassDataAfterReassociation(I);
294           Changed = true;
295           ++NumReassoc;
296           continue;
297         }
298       }
299     }
300 
301     if (I.isAssociative() && I.isCommutative()) {
302       if (simplifyAssocCastAssoc(&I)) {
303         Changed = true;
304         ++NumReassoc;
305         continue;
306       }
307 
308       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
309       if (Op0 && Op0->getOpcode() == Opcode) {
310         Value *A = Op0->getOperand(0);
311         Value *B = Op0->getOperand(1);
312         Value *C = I.getOperand(1);
313 
314         // Does "C op A" simplify?
315         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
316           // It simplifies to V.  Form "V op B".
317           I.setOperand(0, V);
318           I.setOperand(1, B);
319           // Conservatively clear the optional flags, since they may not be
320           // preserved by the reassociation.
321           ClearSubclassDataAfterReassociation(I);
322           Changed = true;
323           ++NumReassoc;
324           continue;
325         }
326       }
327 
328       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
329       if (Op1 && Op1->getOpcode() == Opcode) {
330         Value *A = I.getOperand(0);
331         Value *B = Op1->getOperand(0);
332         Value *C = Op1->getOperand(1);
333 
334         // Does "C op A" simplify?
335         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
336           // It simplifies to V.  Form "B op V".
337           I.setOperand(0, B);
338           I.setOperand(1, V);
339           // Conservatively clear the optional flags, since they may not be
340           // preserved by the reassociation.
341           ClearSubclassDataAfterReassociation(I);
342           Changed = true;
343           ++NumReassoc;
344           continue;
345         }
346       }
347 
348       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
349       // if C1 and C2 are constants.
350       if (Op0 && Op1 &&
351           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
352           isa<Constant>(Op0->getOperand(1)) &&
353           isa<Constant>(Op1->getOperand(1)) &&
354           Op0->hasOneUse() && Op1->hasOneUse()) {
355         Value *A = Op0->getOperand(0);
356         Constant *C1 = cast<Constant>(Op0->getOperand(1));
357         Value *B = Op1->getOperand(0);
358         Constant *C2 = cast<Constant>(Op1->getOperand(1));
359 
360         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
361         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
362         if (isa<FPMathOperator>(New)) {
363           FastMathFlags Flags = I.getFastMathFlags();
364           Flags &= Op0->getFastMathFlags();
365           Flags &= Op1->getFastMathFlags();
366           New->setFastMathFlags(Flags);
367         }
368         InsertNewInstWith(New, I);
369         New->takeName(Op1);
370         I.setOperand(0, New);
371         I.setOperand(1, Folded);
372         // Conservatively clear the optional flags, since they may not be
373         // preserved by the reassociation.
374         ClearSubclassDataAfterReassociation(I);
375 
376         Changed = true;
377         continue;
378       }
379     }
380 
381     // No further simplifications.
382     return Changed;
383   } while (1);
384 }
385 
386 /// Return whether "X LOp (Y ROp Z)" is always equal to
387 /// "(X LOp Y) ROp (X LOp Z)".
388 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
389                                      Instruction::BinaryOps ROp) {
390   switch (LOp) {
391   default:
392     return false;
393 
394   case Instruction::And:
395     // And distributes over Or and Xor.
396     switch (ROp) {
397     default:
398       return false;
399     case Instruction::Or:
400     case Instruction::Xor:
401       return true;
402     }
403 
404   case Instruction::Mul:
405     // Multiplication distributes over addition and subtraction.
406     switch (ROp) {
407     default:
408       return false;
409     case Instruction::Add:
410     case Instruction::Sub:
411       return true;
412     }
413 
414   case Instruction::Or:
415     // Or distributes over And.
416     switch (ROp) {
417     default:
418       return false;
419     case Instruction::And:
420       return true;
421     }
422   }
423 }
424 
425 /// Return whether "(X LOp Y) ROp Z" is always equal to
426 /// "(X ROp Z) LOp (Y ROp Z)".
427 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
428                                      Instruction::BinaryOps ROp) {
429   if (Instruction::isCommutative(ROp))
430     return LeftDistributesOverRight(ROp, LOp);
431 
432   switch (LOp) {
433   default:
434     return false;
435   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
436   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
437   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
438   case Instruction::And:
439   case Instruction::Or:
440   case Instruction::Xor:
441     switch (ROp) {
442     default:
443       return false;
444     case Instruction::Shl:
445     case Instruction::LShr:
446     case Instruction::AShr:
447       return true;
448     }
449   }
450   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
451   // but this requires knowing that the addition does not overflow and other
452   // such subtleties.
453   return false;
454 }
455 
456 /// This function returns identity value for given opcode, which can be used to
457 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
458 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
459   if (isa<Constant>(V))
460     return nullptr;
461 
462   if (OpCode == Instruction::Mul)
463     return ConstantInt::get(V->getType(), 1);
464 
465   // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
466 
467   return nullptr;
468 }
469 
470 /// This function factors binary ops which can be combined using distributive
471 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
472 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
473 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
474 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
475 /// RHS to 4.
476 static Instruction::BinaryOps
477 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
478                           BinaryOperator *Op, Value *&LHS, Value *&RHS) {
479   if (!Op)
480     return Instruction::BinaryOpsEnd;
481 
482   LHS = Op->getOperand(0);
483   RHS = Op->getOperand(1);
484 
485   switch (TopLevelOpcode) {
486   default:
487     return Op->getOpcode();
488 
489   case Instruction::Add:
490   case Instruction::Sub:
491     if (Op->getOpcode() == Instruction::Shl) {
492       if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
493         // The multiplier is really 1 << CST.
494         RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
495         return Instruction::Mul;
496       }
497     }
498     return Op->getOpcode();
499   }
500 
501   // TODO: We can add other conversions e.g. shr => div etc.
502 }
503 
504 /// This tries to simplify binary operations by factorizing out common terms
505 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
506 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
507                                const DataLayout &DL, BinaryOperator &I,
508                                Instruction::BinaryOps InnerOpcode, Value *A,
509                                Value *B, Value *C, Value *D) {
510 
511   // If any of A, B, C, D are null, we can not factor I, return early.
512   // Checking A and C should be enough.
513   if (!A || !C || !B || !D)
514     return nullptr;
515 
516   Value *V = nullptr;
517   Value *SimplifiedInst = nullptr;
518   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
519   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
520 
521   // Does "X op' Y" always equal "Y op' X"?
522   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
523 
524   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
525   if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
526     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
527     // commutative case, "(A op' B) op (C op' A)"?
528     if (A == C || (InnerCommutative && A == D)) {
529       if (A != C)
530         std::swap(C, D);
531       // Consider forming "A op' (B op D)".
532       // If "B op D" simplifies then it can be formed with no cost.
533       V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
534       // If "B op D" doesn't simplify then only go on if both of the existing
535       // operations "A op' B" and "C op' D" will be zapped as no longer used.
536       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
537         V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
538       if (V) {
539         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
540       }
541     }
542 
543   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
544   if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
545     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
546     // commutative case, "(A op' B) op (B op' D)"?
547     if (B == D || (InnerCommutative && B == C)) {
548       if (B != D)
549         std::swap(C, D);
550       // Consider forming "(A op C) op' B".
551       // If "A op C" simplifies then it can be formed with no cost.
552       V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
553 
554       // If "A op C" doesn't simplify then only go on if both of the existing
555       // operations "A op' B" and "C op' D" will be zapped as no longer used.
556       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
557         V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
558       if (V) {
559         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
560       }
561     }
562 
563   if (SimplifiedInst) {
564     ++NumFactor;
565     SimplifiedInst->takeName(&I);
566 
567     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
568     // TODO: Check for NUW.
569     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
570       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
571         bool HasNSW = false;
572         if (isa<OverflowingBinaryOperator>(&I))
573           HasNSW = I.hasNoSignedWrap();
574 
575         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
576           HasNSW &= LOBO->hasNoSignedWrap();
577 
578         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
579           HasNSW &= ROBO->hasNoSignedWrap();
580 
581         // We can propagate 'nsw' if we know that
582         //  %Y = mul nsw i16 %X, C
583         //  %Z = add nsw i16 %Y, %X
584         // =>
585         //  %Z = mul nsw i16 %X, C+1
586         //
587         // iff C+1 isn't INT_MIN
588         const APInt *CInt;
589         if (TopLevelOpcode == Instruction::Add &&
590             InnerOpcode == Instruction::Mul)
591           if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
592             BO->setHasNoSignedWrap(HasNSW);
593       }
594     }
595   }
596   return SimplifiedInst;
597 }
598 
599 /// This tries to simplify binary operations which some other binary operation
600 /// distributes over either by factorizing out common terms
601 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
602 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
603 /// Returns the simplified value, or null if it didn't simplify.
604 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
605   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
606   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
607   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
608 
609   // Factorization.
610   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
611   auto TopLevelOpcode = I.getOpcode();
612   auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
613   auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
614 
615   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
616   // a common term.
617   if (LHSOpcode == RHSOpcode) {
618     if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
619       return V;
620   }
621 
622   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
623   // term.
624   if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
625                                   getIdentityValue(LHSOpcode, RHS)))
626     return V;
627 
628   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
629   // term.
630   if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
631                                   getIdentityValue(RHSOpcode, LHS), C, D))
632     return V;
633 
634   // Expansion.
635   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
636     // The instruction has the form "(A op' B) op C".  See if expanding it out
637     // to "(A op C) op' (B op C)" results in simplifications.
638     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
639     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
640 
641     // Do "A op C" and "B op C" both simplify?
642     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
643       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
644         // They do! Return "L op' R".
645         ++NumExpand;
646         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
647         if ((L == A && R == B) ||
648             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
649           return Op0;
650         // Otherwise return "L op' R" if it simplifies.
651         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
652           return V;
653         // Otherwise, create a new instruction.
654         C = Builder->CreateBinOp(InnerOpcode, L, R);
655         C->takeName(&I);
656         return C;
657       }
658   }
659 
660   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
661     // The instruction has the form "A op (B op' C)".  See if expanding it out
662     // to "(A op B) op' (A op C)" results in simplifications.
663     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
664     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
665 
666     // Do "A op B" and "A op C" both simplify?
667     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
668       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
669         // They do! Return "L op' R".
670         ++NumExpand;
671         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
672         if ((L == B && R == C) ||
673             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
674           return Op1;
675         // Otherwise return "L op' R" if it simplifies.
676         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
677           return V;
678         // Otherwise, create a new instruction.
679         A = Builder->CreateBinOp(InnerOpcode, L, R);
680         A->takeName(&I);
681         return A;
682       }
683   }
684 
685   // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
686   // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
687   if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
688     if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
689       if (SI0->getCondition() == SI1->getCondition()) {
690         Value *SI = nullptr;
691         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
692                                      SI1->getFalseValue(), DL, &TLI, &DT, &AC))
693           SI = Builder->CreateSelect(SI0->getCondition(),
694                                      Builder->CreateBinOp(TopLevelOpcode,
695                                                           SI0->getTrueValue(),
696                                                           SI1->getTrueValue()),
697                                      V);
698         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
699                                      SI1->getTrueValue(), DL, &TLI, &DT, &AC))
700           SI = Builder->CreateSelect(
701               SI0->getCondition(), V,
702               Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
703                                    SI1->getFalseValue()));
704         if (SI) {
705           SI->takeName(&I);
706           return SI;
707         }
708       }
709     }
710   }
711 
712   return nullptr;
713 }
714 
715 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
716 /// constant zero (which is the 'negate' form).
717 Value *InstCombiner::dyn_castNegVal(Value *V) const {
718   if (BinaryOperator::isNeg(V))
719     return BinaryOperator::getNegArgument(V);
720 
721   // Constants can be considered to be negated values if they can be folded.
722   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
723     return ConstantExpr::getNeg(C);
724 
725   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
726     if (C->getType()->getElementType()->isIntegerTy())
727       return ConstantExpr::getNeg(C);
728 
729   return nullptr;
730 }
731 
732 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
733 /// a constant negative zero (which is the 'negate' form).
734 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
735   if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
736     return BinaryOperator::getFNegArgument(V);
737 
738   // Constants can be considered to be negated values if they can be folded.
739   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
740     return ConstantExpr::getFNeg(C);
741 
742   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
743     if (C->getType()->getElementType()->isFloatingPointTy())
744       return ConstantExpr::getFNeg(C);
745 
746   return nullptr;
747 }
748 
749 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
750                                              InstCombiner *IC) {
751   if (auto *Cast = dyn_cast<CastInst>(&I))
752     return IC->Builder->CreateCast(Cast->getOpcode(), SO, I.getType());
753 
754   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
755 
756   // Figure out if the constant is the left or the right argument.
757   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
758   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
759 
760   if (auto *SOC = dyn_cast<Constant>(SO)) {
761     if (ConstIsRHS)
762       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
763     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
764   }
765 
766   Value *Op0 = SO, *Op1 = ConstOperand;
767   if (!ConstIsRHS)
768     std::swap(Op0, Op1);
769 
770   auto *BO = cast<BinaryOperator>(&I);
771   Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
772                                        SO->getName() + ".op");
773   auto *FPInst = dyn_cast<Instruction>(RI);
774   if (FPInst && isa<FPMathOperator>(FPInst))
775     FPInst->copyFastMathFlags(BO);
776   return RI;
777 }
778 
779 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
780   // Don't modify shared select instructions.
781   if (!SI->hasOneUse())
782     return nullptr;
783 
784   Value *TV = SI->getTrueValue();
785   Value *FV = SI->getFalseValue();
786   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
787     return nullptr;
788 
789   // Bool selects with constant operands can be folded to logical ops.
790   if (SI->getType()->getScalarType()->isIntegerTy(1))
791     return nullptr;
792 
793   // If it's a bitcast involving vectors, make sure it has the same number of
794   // elements on both sides.
795   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
796     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
797     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
798 
799     // Verify that either both or neither are vectors.
800     if ((SrcTy == nullptr) != (DestTy == nullptr))
801       return nullptr;
802 
803     // If vectors, verify that they have the same number of elements.
804     if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
805       return nullptr;
806   }
807 
808   // Test if a CmpInst instruction is used exclusively by a select as
809   // part of a minimum or maximum operation. If so, refrain from doing
810   // any other folding. This helps out other analyses which understand
811   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
812   // and CodeGen. And in this case, at least one of the comparison
813   // operands has at least one user besides the compare (the select),
814   // which would often largely negate the benefit of folding anyway.
815   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
816     if (CI->hasOneUse()) {
817       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
818       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
819           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
820         return nullptr;
821     }
822   }
823 
824   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, this);
825   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, this);
826   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
827 }
828 
829 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
830   PHINode *PN = cast<PHINode>(I.getOperand(0));
831   unsigned NumPHIValues = PN->getNumIncomingValues();
832   if (NumPHIValues == 0)
833     return nullptr;
834 
835   // We normally only transform phis with a single use.  However, if a PHI has
836   // multiple uses and they are all the same operation, we can fold *all* of the
837   // uses into the PHI.
838   if (!PN->hasOneUse()) {
839     // Walk the use list for the instruction, comparing them to I.
840     for (User *U : PN->users()) {
841       Instruction *UI = cast<Instruction>(U);
842       if (UI != &I && !I.isIdenticalTo(UI))
843         return nullptr;
844     }
845     // Otherwise, we can replace *all* users with the new PHI we form.
846   }
847 
848   // Check to see if all of the operands of the PHI are simple constants
849   // (constantint/constantfp/undef).  If there is one non-constant value,
850   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
851   // bail out.  We don't do arbitrary constant expressions here because moving
852   // their computation can be expensive without a cost model.
853   BasicBlock *NonConstBB = nullptr;
854   for (unsigned i = 0; i != NumPHIValues; ++i) {
855     Value *InVal = PN->getIncomingValue(i);
856     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
857       continue;
858 
859     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
860     if (NonConstBB) return nullptr;  // More than one non-const value.
861 
862     NonConstBB = PN->getIncomingBlock(i);
863 
864     // If the InVal is an invoke at the end of the pred block, then we can't
865     // insert a computation after it without breaking the edge.
866     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
867       if (II->getParent() == NonConstBB)
868         return nullptr;
869 
870     // If the incoming non-constant value is in I's block, we will remove one
871     // instruction, but insert another equivalent one, leading to infinite
872     // instcombine.
873     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
874       return nullptr;
875   }
876 
877   // If there is exactly one non-constant value, we can insert a copy of the
878   // operation in that block.  However, if this is a critical edge, we would be
879   // inserting the computation on some other paths (e.g. inside a loop).  Only
880   // do this if the pred block is unconditionally branching into the phi block.
881   if (NonConstBB != nullptr) {
882     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
883     if (!BI || !BI->isUnconditional()) return nullptr;
884   }
885 
886   // Okay, we can do the transformation: create the new PHI node.
887   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
888   InsertNewInstBefore(NewPN, *PN);
889   NewPN->takeName(PN);
890 
891   // If we are going to have to insert a new computation, do so right before the
892   // predecessor's terminator.
893   if (NonConstBB)
894     Builder->SetInsertPoint(NonConstBB->getTerminator());
895 
896   // Next, add all of the operands to the PHI.
897   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
898     // We only currently try to fold the condition of a select when it is a phi,
899     // not the true/false values.
900     Value *TrueV = SI->getTrueValue();
901     Value *FalseV = SI->getFalseValue();
902     BasicBlock *PhiTransBB = PN->getParent();
903     for (unsigned i = 0; i != NumPHIValues; ++i) {
904       BasicBlock *ThisBB = PN->getIncomingBlock(i);
905       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
906       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
907       Value *InV = nullptr;
908       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
909       // even if currently isNullValue gives false.
910       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
911       if (InC && !isa<ConstantExpr>(InC))
912         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
913       else
914         InV = Builder->CreateSelect(PN->getIncomingValue(i),
915                                     TrueVInPred, FalseVInPred, "phitmp");
916       NewPN->addIncoming(InV, ThisBB);
917     }
918   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
919     Constant *C = cast<Constant>(I.getOperand(1));
920     for (unsigned i = 0; i != NumPHIValues; ++i) {
921       Value *InV = nullptr;
922       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
923         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
924       else if (isa<ICmpInst>(CI))
925         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
926                                   C, "phitmp");
927       else
928         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
929                                   C, "phitmp");
930       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
931     }
932   } else if (I.getNumOperands() == 2) {
933     Constant *C = cast<Constant>(I.getOperand(1));
934     for (unsigned i = 0; i != NumPHIValues; ++i) {
935       Value *InV = nullptr;
936       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
937         InV = ConstantExpr::get(I.getOpcode(), InC, C);
938       else
939         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
940                                    PN->getIncomingValue(i), C, "phitmp");
941       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
942     }
943   } else {
944     CastInst *CI = cast<CastInst>(&I);
945     Type *RetTy = CI->getType();
946     for (unsigned i = 0; i != NumPHIValues; ++i) {
947       Value *InV;
948       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
949         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
950       else
951         InV = Builder->CreateCast(CI->getOpcode(),
952                                 PN->getIncomingValue(i), I.getType(), "phitmp");
953       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
954     }
955   }
956 
957   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
958     Instruction *User = cast<Instruction>(*UI++);
959     if (User == &I) continue;
960     replaceInstUsesWith(*User, NewPN);
961     eraseInstFromFunction(*User);
962   }
963   return replaceInstUsesWith(I, NewPN);
964 }
965 
966 Instruction *InstCombiner::foldOpWithConstantIntoOperand(Instruction &I) {
967   assert(isa<Constant>(I.getOperand(1)) && "Unexpected operand type");
968 
969   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
970     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
971       return NewSel;
972   } else if (isa<PHINode>(I.getOperand(0))) {
973     if (Instruction *NewPhi = FoldOpIntoPhi(I))
974       return NewPhi;
975   }
976   return nullptr;
977 }
978 
979 /// Given a pointer type and a constant offset, determine whether or not there
980 /// is a sequence of GEP indices into the pointed type that will land us at the
981 /// specified offset. If so, fill them into NewIndices and return the resultant
982 /// element type, otherwise return null.
983 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
984                                         SmallVectorImpl<Value *> &NewIndices) {
985   Type *Ty = PtrTy->getElementType();
986   if (!Ty->isSized())
987     return nullptr;
988 
989   // Start with the index over the outer type.  Note that the type size
990   // might be zero (even if the offset isn't zero) if the indexed type
991   // is something like [0 x {int, int}]
992   Type *IntPtrTy = DL.getIntPtrType(PtrTy);
993   int64_t FirstIdx = 0;
994   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
995     FirstIdx = Offset/TySize;
996     Offset -= FirstIdx*TySize;
997 
998     // Handle hosts where % returns negative instead of values [0..TySize).
999     if (Offset < 0) {
1000       --FirstIdx;
1001       Offset += TySize;
1002       assert(Offset >= 0);
1003     }
1004     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1005   }
1006 
1007   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
1008 
1009   // Index into the types.  If we fail, set OrigBase to null.
1010   while (Offset) {
1011     // Indexing into tail padding between struct/array elements.
1012     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1013       return nullptr;
1014 
1015     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1016       const StructLayout *SL = DL.getStructLayout(STy);
1017       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1018              "Offset must stay within the indexed type");
1019 
1020       unsigned Elt = SL->getElementContainingOffset(Offset);
1021       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1022                                             Elt));
1023 
1024       Offset -= SL->getElementOffset(Elt);
1025       Ty = STy->getElementType(Elt);
1026     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1027       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1028       assert(EltSize && "Cannot index into a zero-sized array");
1029       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
1030       Offset %= EltSize;
1031       Ty = AT->getElementType();
1032     } else {
1033       // Otherwise, we can't index into the middle of this atomic type, bail.
1034       return nullptr;
1035     }
1036   }
1037 
1038   return Ty;
1039 }
1040 
1041 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1042   // If this GEP has only 0 indices, it is the same pointer as
1043   // Src. If Src is not a trivial GEP too, don't combine
1044   // the indices.
1045   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1046       !Src.hasOneUse())
1047     return false;
1048   return true;
1049 }
1050 
1051 /// Return a value X such that Val = X * Scale, or null if none.
1052 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1053 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1054   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1055   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1056          Scale.getBitWidth() && "Scale not compatible with value!");
1057 
1058   // If Val is zero or Scale is one then Val = Val * Scale.
1059   if (match(Val, m_Zero()) || Scale == 1) {
1060     NoSignedWrap = true;
1061     return Val;
1062   }
1063 
1064   // If Scale is zero then it does not divide Val.
1065   if (Scale.isMinValue())
1066     return nullptr;
1067 
1068   // Look through chains of multiplications, searching for a constant that is
1069   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1070   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1071   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1072   // down from Val:
1073   //
1074   //     Val = M1 * X          ||   Analysis starts here and works down
1075   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1076   //      M2 =  Z * 4          \/   than one use
1077   //
1078   // Then to modify a term at the bottom:
1079   //
1080   //     Val = M1 * X
1081   //      M1 =  Z * Y          ||   Replaced M2 with Z
1082   //
1083   // Then to work back up correcting nsw flags.
1084 
1085   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1086   // Replaced with its descaled value before exiting from the drill down loop.
1087   Value *Op = Val;
1088 
1089   // Parent - initially null, but after drilling down notes where Op came from.
1090   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1091   // 0'th operand of Val.
1092   std::pair<Instruction*, unsigned> Parent;
1093 
1094   // Set if the transform requires a descaling at deeper levels that doesn't
1095   // overflow.
1096   bool RequireNoSignedWrap = false;
1097 
1098   // Log base 2 of the scale. Negative if not a power of 2.
1099   int32_t logScale = Scale.exactLogBase2();
1100 
1101   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1102 
1103     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1104       // If Op is a constant divisible by Scale then descale to the quotient.
1105       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1106       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1107       if (!Remainder.isMinValue())
1108         // Not divisible by Scale.
1109         return nullptr;
1110       // Replace with the quotient in the parent.
1111       Op = ConstantInt::get(CI->getType(), Quotient);
1112       NoSignedWrap = true;
1113       break;
1114     }
1115 
1116     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1117 
1118       if (BO->getOpcode() == Instruction::Mul) {
1119         // Multiplication.
1120         NoSignedWrap = BO->hasNoSignedWrap();
1121         if (RequireNoSignedWrap && !NoSignedWrap)
1122           return nullptr;
1123 
1124         // There are three cases for multiplication: multiplication by exactly
1125         // the scale, multiplication by a constant different to the scale, and
1126         // multiplication by something else.
1127         Value *LHS = BO->getOperand(0);
1128         Value *RHS = BO->getOperand(1);
1129 
1130         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1131           // Multiplication by a constant.
1132           if (CI->getValue() == Scale) {
1133             // Multiplication by exactly the scale, replace the multiplication
1134             // by its left-hand side in the parent.
1135             Op = LHS;
1136             break;
1137           }
1138 
1139           // Otherwise drill down into the constant.
1140           if (!Op->hasOneUse())
1141             return nullptr;
1142 
1143           Parent = std::make_pair(BO, 1);
1144           continue;
1145         }
1146 
1147         // Multiplication by something else. Drill down into the left-hand side
1148         // since that's where the reassociate pass puts the good stuff.
1149         if (!Op->hasOneUse())
1150           return nullptr;
1151 
1152         Parent = std::make_pair(BO, 0);
1153         continue;
1154       }
1155 
1156       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1157           isa<ConstantInt>(BO->getOperand(1))) {
1158         // Multiplication by a power of 2.
1159         NoSignedWrap = BO->hasNoSignedWrap();
1160         if (RequireNoSignedWrap && !NoSignedWrap)
1161           return nullptr;
1162 
1163         Value *LHS = BO->getOperand(0);
1164         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1165           getLimitedValue(Scale.getBitWidth());
1166         // Op = LHS << Amt.
1167 
1168         if (Amt == logScale) {
1169           // Multiplication by exactly the scale, replace the multiplication
1170           // by its left-hand side in the parent.
1171           Op = LHS;
1172           break;
1173         }
1174         if (Amt < logScale || !Op->hasOneUse())
1175           return nullptr;
1176 
1177         // Multiplication by more than the scale.  Reduce the multiplying amount
1178         // by the scale in the parent.
1179         Parent = std::make_pair(BO, 1);
1180         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1181         break;
1182       }
1183     }
1184 
1185     if (!Op->hasOneUse())
1186       return nullptr;
1187 
1188     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1189       if (Cast->getOpcode() == Instruction::SExt) {
1190         // Op is sign-extended from a smaller type, descale in the smaller type.
1191         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1192         APInt SmallScale = Scale.trunc(SmallSize);
1193         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1194         // descale Op as (sext Y) * Scale.  In order to have
1195         //   sext (Y * SmallScale) = (sext Y) * Scale
1196         // some conditions need to hold however: SmallScale must sign-extend to
1197         // Scale and the multiplication Y * SmallScale should not overflow.
1198         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1199           // SmallScale does not sign-extend to Scale.
1200           return nullptr;
1201         assert(SmallScale.exactLogBase2() == logScale);
1202         // Require that Y * SmallScale must not overflow.
1203         RequireNoSignedWrap = true;
1204 
1205         // Drill down through the cast.
1206         Parent = std::make_pair(Cast, 0);
1207         Scale = SmallScale;
1208         continue;
1209       }
1210 
1211       if (Cast->getOpcode() == Instruction::Trunc) {
1212         // Op is truncated from a larger type, descale in the larger type.
1213         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1214         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1215         // always holds.  However (trunc Y) * Scale may overflow even if
1216         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1217         // from this point up in the expression (see later).
1218         if (RequireNoSignedWrap)
1219           return nullptr;
1220 
1221         // Drill down through the cast.
1222         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1223         Parent = std::make_pair(Cast, 0);
1224         Scale = Scale.sext(LargeSize);
1225         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1226           logScale = -1;
1227         assert(Scale.exactLogBase2() == logScale);
1228         continue;
1229       }
1230     }
1231 
1232     // Unsupported expression, bail out.
1233     return nullptr;
1234   }
1235 
1236   // If Op is zero then Val = Op * Scale.
1237   if (match(Op, m_Zero())) {
1238     NoSignedWrap = true;
1239     return Op;
1240   }
1241 
1242   // We know that we can successfully descale, so from here on we can safely
1243   // modify the IR.  Op holds the descaled version of the deepest term in the
1244   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1245   // not to overflow.
1246 
1247   if (!Parent.first)
1248     // The expression only had one term.
1249     return Op;
1250 
1251   // Rewrite the parent using the descaled version of its operand.
1252   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1253   assert(Op != Parent.first->getOperand(Parent.second) &&
1254          "Descaling was a no-op?");
1255   Parent.first->setOperand(Parent.second, Op);
1256   Worklist.Add(Parent.first);
1257 
1258   // Now work back up the expression correcting nsw flags.  The logic is based
1259   // on the following observation: if X * Y is known not to overflow as a signed
1260   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1261   // then X * Z will not overflow as a signed multiplication either.  As we work
1262   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1263   // current level has strictly smaller absolute value than the original.
1264   Instruction *Ancestor = Parent.first;
1265   do {
1266     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1267       // If the multiplication wasn't nsw then we can't say anything about the
1268       // value of the descaled multiplication, and we have to clear nsw flags
1269       // from this point on up.
1270       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1271       NoSignedWrap &= OpNoSignedWrap;
1272       if (NoSignedWrap != OpNoSignedWrap) {
1273         BO->setHasNoSignedWrap(NoSignedWrap);
1274         Worklist.Add(Ancestor);
1275       }
1276     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1277       // The fact that the descaled input to the trunc has smaller absolute
1278       // value than the original input doesn't tell us anything useful about
1279       // the absolute values of the truncations.
1280       NoSignedWrap = false;
1281     }
1282     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1283            "Failed to keep proper track of nsw flags while drilling down?");
1284 
1285     if (Ancestor == Val)
1286       // Got to the top, all done!
1287       return Val;
1288 
1289     // Move up one level in the expression.
1290     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1291     Ancestor = Ancestor->user_back();
1292   } while (1);
1293 }
1294 
1295 /// \brief Creates node of binary operation with the same attributes as the
1296 /// specified one but with other operands.
1297 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1298                                  InstCombiner::BuilderTy *B) {
1299   Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1300   // If LHS and RHS are constant, BO won't be a binary operator.
1301   if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
1302     NewBO->copyIRFlags(&Inst);
1303   return BO;
1304 }
1305 
1306 /// \brief Makes transformation of binary operation specific for vector types.
1307 /// \param Inst Binary operator to transform.
1308 /// \return Pointer to node that must replace the original binary operator, or
1309 ///         null pointer if no transformation was made.
1310 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1311   if (!Inst.getType()->isVectorTy()) return nullptr;
1312 
1313   // It may not be safe to reorder shuffles and things like div, urem, etc.
1314   // because we may trap when executing those ops on unknown vector elements.
1315   // See PR20059.
1316   if (!isSafeToSpeculativelyExecute(&Inst))
1317     return nullptr;
1318 
1319   unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1320   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1321   assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1322   assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1323 
1324   // If both arguments of the binary operation are shuffles that use the same
1325   // mask and shuffle within a single vector, move the shuffle after the binop:
1326   //   Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1327   auto *LShuf = dyn_cast<ShuffleVectorInst>(LHS);
1328   auto *RShuf = dyn_cast<ShuffleVectorInst>(RHS);
1329   if (LShuf && RShuf && LShuf->getMask() == RShuf->getMask() &&
1330       isa<UndefValue>(LShuf->getOperand(1)) &&
1331       isa<UndefValue>(RShuf->getOperand(1)) &&
1332       LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType()) {
1333     Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1334                                       RShuf->getOperand(0), Builder);
1335     return Builder->CreateShuffleVector(
1336         NewBO, UndefValue::get(NewBO->getType()), LShuf->getMask());
1337   }
1338 
1339   // If one argument is a shuffle within one vector, the other is a constant,
1340   // try moving the shuffle after the binary operation.
1341   ShuffleVectorInst *Shuffle = nullptr;
1342   Constant *C1 = nullptr;
1343   if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1344   if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1345   if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1346   if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1347   if (Shuffle && C1 &&
1348       (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1349       isa<UndefValue>(Shuffle->getOperand(1)) &&
1350       Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1351     SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1352     // Find constant C2 that has property:
1353     //   shuffle(C2, ShMask) = C1
1354     // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1355     // reorder is not possible.
1356     SmallVector<Constant*, 16> C2M(VWidth,
1357                                UndefValue::get(C1->getType()->getScalarType()));
1358     bool MayChange = true;
1359     for (unsigned I = 0; I < VWidth; ++I) {
1360       if (ShMask[I] >= 0) {
1361         assert(ShMask[I] < (int)VWidth);
1362         if (!isa<UndefValue>(C2M[ShMask[I]])) {
1363           MayChange = false;
1364           break;
1365         }
1366         C2M[ShMask[I]] = C1->getAggregateElement(I);
1367       }
1368     }
1369     if (MayChange) {
1370       Constant *C2 = ConstantVector::get(C2M);
1371       Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
1372       Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
1373       Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1374       return Builder->CreateShuffleVector(NewBO,
1375           UndefValue::get(Inst.getType()), Shuffle->getMask());
1376     }
1377   }
1378 
1379   return nullptr;
1380 }
1381 
1382 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1383   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1384 
1385   if (Value *V =
1386           SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, &TLI, &DT, &AC))
1387     return replaceInstUsesWith(GEP, V);
1388 
1389   Value *PtrOp = GEP.getOperand(0);
1390 
1391   // Eliminate unneeded casts for indices, and replace indices which displace
1392   // by multiples of a zero size type with zero.
1393   bool MadeChange = false;
1394   Type *IntPtrTy =
1395     DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
1396 
1397   gep_type_iterator GTI = gep_type_begin(GEP);
1398   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1399        ++I, ++GTI) {
1400     // Skip indices into struct types.
1401     if (GTI.isStruct())
1402       continue;
1403 
1404     // Index type should have the same width as IntPtr
1405     Type *IndexTy = (*I)->getType();
1406     Type *NewIndexType = IndexTy->isVectorTy() ?
1407       VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
1408 
1409     // If the element type has zero size then any index over it is equivalent
1410     // to an index of zero, so replace it with zero if it is not zero already.
1411     Type *EltTy = GTI.getIndexedType();
1412     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1413       if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1414         *I = Constant::getNullValue(NewIndexType);
1415         MadeChange = true;
1416       }
1417 
1418     if (IndexTy != NewIndexType) {
1419       // If we are using a wider index than needed for this platform, shrink
1420       // it to what we need.  If narrower, sign-extend it to what we need.
1421       // This explicit cast can make subsequent optimizations more obvious.
1422       *I = Builder->CreateIntCast(*I, NewIndexType, true);
1423       MadeChange = true;
1424     }
1425   }
1426   if (MadeChange)
1427     return &GEP;
1428 
1429   // Check to see if the inputs to the PHI node are getelementptr instructions.
1430   if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1431     GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1432     if (!Op1)
1433       return nullptr;
1434 
1435     // Don't fold a GEP into itself through a PHI node. This can only happen
1436     // through the back-edge of a loop. Folding a GEP into itself means that
1437     // the value of the previous iteration needs to be stored in the meantime,
1438     // thus requiring an additional register variable to be live, but not
1439     // actually achieving anything (the GEP still needs to be executed once per
1440     // loop iteration).
1441     if (Op1 == &GEP)
1442       return nullptr;
1443 
1444     int DI = -1;
1445 
1446     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1447       GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1448       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1449         return nullptr;
1450 
1451       // As for Op1 above, don't try to fold a GEP into itself.
1452       if (Op2 == &GEP)
1453         return nullptr;
1454 
1455       // Keep track of the type as we walk the GEP.
1456       Type *CurTy = nullptr;
1457 
1458       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1459         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1460           return nullptr;
1461 
1462         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1463           if (DI == -1) {
1464             // We have not seen any differences yet in the GEPs feeding the
1465             // PHI yet, so we record this one if it is allowed to be a
1466             // variable.
1467 
1468             // The first two arguments can vary for any GEP, the rest have to be
1469             // static for struct slots
1470             if (J > 1 && CurTy->isStructTy())
1471               return nullptr;
1472 
1473             DI = J;
1474           } else {
1475             // The GEP is different by more than one input. While this could be
1476             // extended to support GEPs that vary by more than one variable it
1477             // doesn't make sense since it greatly increases the complexity and
1478             // would result in an R+R+R addressing mode which no backend
1479             // directly supports and would need to be broken into several
1480             // simpler instructions anyway.
1481             return nullptr;
1482           }
1483         }
1484 
1485         // Sink down a layer of the type for the next iteration.
1486         if (J > 0) {
1487           if (J == 1) {
1488             CurTy = Op1->getSourceElementType();
1489           } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1490             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1491           } else {
1492             CurTy = nullptr;
1493           }
1494         }
1495       }
1496     }
1497 
1498     // If not all GEPs are identical we'll have to create a new PHI node.
1499     // Check that the old PHI node has only one use so that it will get
1500     // removed.
1501     if (DI != -1 && !PN->hasOneUse())
1502       return nullptr;
1503 
1504     GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1505     if (DI == -1) {
1506       // All the GEPs feeding the PHI are identical. Clone one down into our
1507       // BB so that it can be merged with the current GEP.
1508       GEP.getParent()->getInstList().insert(
1509           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1510     } else {
1511       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1512       // into the current block so it can be merged, and create a new PHI to
1513       // set that index.
1514       PHINode *NewPN;
1515       {
1516         IRBuilderBase::InsertPointGuard Guard(*Builder);
1517         Builder->SetInsertPoint(PN);
1518         NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1519                                    PN->getNumOperands());
1520       }
1521 
1522       for (auto &I : PN->operands())
1523         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1524                            PN->getIncomingBlock(I));
1525 
1526       NewGEP->setOperand(DI, NewPN);
1527       GEP.getParent()->getInstList().insert(
1528           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1529       NewGEP->setOperand(DI, NewPN);
1530     }
1531 
1532     GEP.setOperand(0, NewGEP);
1533     PtrOp = NewGEP;
1534   }
1535 
1536   // Combine Indices - If the source pointer to this getelementptr instruction
1537   // is a getelementptr instruction, combine the indices of the two
1538   // getelementptr instructions into a single instruction.
1539   //
1540   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1541     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1542       return nullptr;
1543 
1544     // Note that if our source is a gep chain itself then we wait for that
1545     // chain to be resolved before we perform this transformation.  This
1546     // avoids us creating a TON of code in some cases.
1547     if (GEPOperator *SrcGEP =
1548           dyn_cast<GEPOperator>(Src->getOperand(0)))
1549       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1550         return nullptr;   // Wait until our source is folded to completion.
1551 
1552     SmallVector<Value*, 8> Indices;
1553 
1554     // Find out whether the last index in the source GEP is a sequential idx.
1555     bool EndsWithSequential = false;
1556     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1557          I != E; ++I)
1558       EndsWithSequential = I.isSequential();
1559 
1560     // Can we combine the two pointer arithmetics offsets?
1561     if (EndsWithSequential) {
1562       // Replace: gep (gep %P, long B), long A, ...
1563       // With:    T = long A+B; gep %P, T, ...
1564       //
1565       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1566       Value *GO1 = GEP.getOperand(1);
1567 
1568       // If they aren't the same type, then the input hasn't been processed
1569       // by the loop above yet (which canonicalizes sequential index types to
1570       // intptr_t).  Just avoid transforming this until the input has been
1571       // normalized.
1572       if (SO1->getType() != GO1->getType())
1573         return nullptr;
1574 
1575       Value* Sum = SimplifyAddInst(GO1, SO1, false, false, DL, &TLI, &DT, &AC);
1576       // Only do the combine when we are sure the cost after the
1577       // merge is never more than that before the merge.
1578       if (Sum == nullptr)
1579         return nullptr;
1580 
1581       // Update the GEP in place if possible.
1582       if (Src->getNumOperands() == 2) {
1583         GEP.setOperand(0, Src->getOperand(0));
1584         GEP.setOperand(1, Sum);
1585         return &GEP;
1586       }
1587       Indices.append(Src->op_begin()+1, Src->op_end()-1);
1588       Indices.push_back(Sum);
1589       Indices.append(GEP.op_begin()+2, GEP.op_end());
1590     } else if (isa<Constant>(*GEP.idx_begin()) &&
1591                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1592                Src->getNumOperands() != 1) {
1593       // Otherwise we can do the fold if the first index of the GEP is a zero
1594       Indices.append(Src->op_begin()+1, Src->op_end());
1595       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1596     }
1597 
1598     if (!Indices.empty())
1599       return GEP.isInBounds() && Src->isInBounds()
1600                  ? GetElementPtrInst::CreateInBounds(
1601                        Src->getSourceElementType(), Src->getOperand(0), Indices,
1602                        GEP.getName())
1603                  : GetElementPtrInst::Create(Src->getSourceElementType(),
1604                                              Src->getOperand(0), Indices,
1605                                              GEP.getName());
1606   }
1607 
1608   if (GEP.getNumIndices() == 1) {
1609     unsigned AS = GEP.getPointerAddressSpace();
1610     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1611         DL.getPointerSizeInBits(AS)) {
1612       Type *Ty = GEP.getSourceElementType();
1613       uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
1614 
1615       bool Matched = false;
1616       uint64_t C;
1617       Value *V = nullptr;
1618       if (TyAllocSize == 1) {
1619         V = GEP.getOperand(1);
1620         Matched = true;
1621       } else if (match(GEP.getOperand(1),
1622                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
1623         if (TyAllocSize == 1ULL << C)
1624           Matched = true;
1625       } else if (match(GEP.getOperand(1),
1626                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1627         if (TyAllocSize == C)
1628           Matched = true;
1629       }
1630 
1631       if (Matched) {
1632         // Canonicalize (gep i8* X, -(ptrtoint Y))
1633         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1634         // The GEP pattern is emitted by the SCEV expander for certain kinds of
1635         // pointer arithmetic.
1636         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1637           Operator *Index = cast<Operator>(V);
1638           Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1639           Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1640           return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1641         }
1642         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1643         // to (bitcast Y)
1644         Value *Y;
1645         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1646                            m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1647           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1648                                                                GEP.getType());
1649         }
1650       }
1651     }
1652   }
1653 
1654   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1655   Value *StrippedPtr = PtrOp->stripPointerCasts();
1656   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1657 
1658   // We do not handle pointer-vector geps here.
1659   if (!StrippedPtrTy)
1660     return nullptr;
1661 
1662   if (StrippedPtr != PtrOp) {
1663     bool HasZeroPointerIndex = false;
1664     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1665       HasZeroPointerIndex = C->isZero();
1666 
1667     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1668     // into     : GEP [10 x i8]* X, i32 0, ...
1669     //
1670     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1671     //           into     : GEP i8* X, ...
1672     //
1673     // This occurs when the program declares an array extern like "int X[];"
1674     if (HasZeroPointerIndex) {
1675       if (ArrayType *CATy =
1676           dyn_cast<ArrayType>(GEP.getSourceElementType())) {
1677         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1678         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1679           // -> GEP i8* X, ...
1680           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1681           GetElementPtrInst *Res = GetElementPtrInst::Create(
1682               StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
1683           Res->setIsInBounds(GEP.isInBounds());
1684           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1685             return Res;
1686           // Insert Res, and create an addrspacecast.
1687           // e.g.,
1688           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1689           // ->
1690           // %0 = GEP i8 addrspace(1)* X, ...
1691           // addrspacecast i8 addrspace(1)* %0 to i8*
1692           return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
1693         }
1694 
1695         if (ArrayType *XATy =
1696               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1697           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1698           if (CATy->getElementType() == XATy->getElementType()) {
1699             // -> GEP [10 x i8]* X, i32 0, ...
1700             // At this point, we know that the cast source type is a pointer
1701             // to an array of the same type as the destination pointer
1702             // array.  Because the array type is never stepped over (there
1703             // is a leading zero) we can fold the cast into this GEP.
1704             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1705               GEP.setOperand(0, StrippedPtr);
1706               GEP.setSourceElementType(XATy);
1707               return &GEP;
1708             }
1709             // Cannot replace the base pointer directly because StrippedPtr's
1710             // address space is different. Instead, create a new GEP followed by
1711             // an addrspacecast.
1712             // e.g.,
1713             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1714             //   i32 0, ...
1715             // ->
1716             // %0 = GEP [10 x i8] addrspace(1)* X, ...
1717             // addrspacecast i8 addrspace(1)* %0 to i8*
1718             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1719             Value *NewGEP = GEP.isInBounds()
1720                                 ? Builder->CreateInBoundsGEP(
1721                                       nullptr, StrippedPtr, Idx, GEP.getName())
1722                                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
1723                                                      GEP.getName());
1724             return new AddrSpaceCastInst(NewGEP, GEP.getType());
1725           }
1726         }
1727       }
1728     } else if (GEP.getNumOperands() == 2) {
1729       // Transform things like:
1730       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1731       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1732       Type *SrcElTy = StrippedPtrTy->getElementType();
1733       Type *ResElTy = GEP.getSourceElementType();
1734       if (SrcElTy->isArrayTy() &&
1735           DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1736               DL.getTypeAllocSize(ResElTy)) {
1737         Type *IdxType = DL.getIntPtrType(GEP.getType());
1738         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1739         Value *NewGEP =
1740             GEP.isInBounds()
1741                 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
1742                                              GEP.getName())
1743                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
1744 
1745         // V and GEP are both pointer types --> BitCast
1746         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1747                                                              GEP.getType());
1748       }
1749 
1750       // Transform things like:
1751       // %V = mul i64 %N, 4
1752       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1753       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1754       if (ResElTy->isSized() && SrcElTy->isSized()) {
1755         // Check that changing the type amounts to dividing the index by a scale
1756         // factor.
1757         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1758         uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
1759         if (ResSize && SrcSize % ResSize == 0) {
1760           Value *Idx = GEP.getOperand(1);
1761           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1762           uint64_t Scale = SrcSize / ResSize;
1763 
1764           // Earlier transforms ensure that the index has type IntPtrType, which
1765           // considerably simplifies the logic by eliminating implicit casts.
1766           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1767                  "Index not cast to pointer width?");
1768 
1769           bool NSW;
1770           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1771             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1772             // If the multiplication NewIdx * Scale may overflow then the new
1773             // GEP may not be "inbounds".
1774             Value *NewGEP =
1775                 GEP.isInBounds() && NSW
1776                     ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
1777                                                  GEP.getName())
1778                     : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
1779                                          GEP.getName());
1780 
1781             // The NewGEP must be pointer typed, so must the old one -> BitCast
1782             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1783                                                                  GEP.getType());
1784           }
1785         }
1786       }
1787 
1788       // Similarly, transform things like:
1789       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1790       //   (where tmp = 8*tmp2) into:
1791       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1792       if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
1793         // Check that changing to the array element type amounts to dividing the
1794         // index by a scale factor.
1795         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1796         uint64_t ArrayEltSize =
1797             DL.getTypeAllocSize(SrcElTy->getArrayElementType());
1798         if (ResSize && ArrayEltSize % ResSize == 0) {
1799           Value *Idx = GEP.getOperand(1);
1800           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1801           uint64_t Scale = ArrayEltSize / ResSize;
1802 
1803           // Earlier transforms ensure that the index has type IntPtrType, which
1804           // considerably simplifies the logic by eliminating implicit casts.
1805           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1806                  "Index not cast to pointer width?");
1807 
1808           bool NSW;
1809           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1810             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1811             // If the multiplication NewIdx * Scale may overflow then the new
1812             // GEP may not be "inbounds".
1813             Value *Off[2] = {
1814                 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
1815                 NewIdx};
1816 
1817             Value *NewGEP = GEP.isInBounds() && NSW
1818                                 ? Builder->CreateInBoundsGEP(
1819                                       SrcElTy, StrippedPtr, Off, GEP.getName())
1820                                 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
1821                                                      GEP.getName());
1822             // The NewGEP must be pointer typed, so must the old one -> BitCast
1823             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1824                                                                  GEP.getType());
1825           }
1826         }
1827       }
1828     }
1829   }
1830 
1831   // addrspacecast between types is canonicalized as a bitcast, then an
1832   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1833   // through the addrspacecast.
1834   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1835     //   X = bitcast A addrspace(1)* to B addrspace(1)*
1836     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1837     //   Z = gep Y, <...constant indices...>
1838     // Into an addrspacecasted GEP of the struct.
1839     if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1840       PtrOp = BC;
1841   }
1842 
1843   /// See if we can simplify:
1844   ///   X = bitcast A* to B*
1845   ///   Y = gep X, <...constant indices...>
1846   /// into a gep of the original struct.  This is important for SROA and alias
1847   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1848   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1849     Value *Operand = BCI->getOperand(0);
1850     PointerType *OpType = cast<PointerType>(Operand->getType());
1851     unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
1852     APInt Offset(OffsetBits, 0);
1853     if (!isa<BitCastInst>(Operand) &&
1854         GEP.accumulateConstantOffset(DL, Offset)) {
1855 
1856       // If this GEP instruction doesn't move the pointer, just replace the GEP
1857       // with a bitcast of the real input to the dest type.
1858       if (!Offset) {
1859         // If the bitcast is of an allocation, and the allocation will be
1860         // converted to match the type of the cast, don't touch this.
1861         if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) {
1862           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1863           if (Instruction *I = visitBitCast(*BCI)) {
1864             if (I != BCI) {
1865               I->takeName(BCI);
1866               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
1867               replaceInstUsesWith(*BCI, I);
1868             }
1869             return &GEP;
1870           }
1871         }
1872 
1873         if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1874           return new AddrSpaceCastInst(Operand, GEP.getType());
1875         return new BitCastInst(Operand, GEP.getType());
1876       }
1877 
1878       // Otherwise, if the offset is non-zero, we need to find out if there is a
1879       // field at Offset in 'A's type.  If so, we can pull the cast through the
1880       // GEP.
1881       SmallVector<Value*, 8> NewIndices;
1882       if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1883         Value *NGEP =
1884             GEP.isInBounds()
1885                 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
1886                 : Builder->CreateGEP(nullptr, Operand, NewIndices);
1887 
1888         if (NGEP->getType() == GEP.getType())
1889           return replaceInstUsesWith(GEP, NGEP);
1890         NGEP->takeName(&GEP);
1891 
1892         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1893           return new AddrSpaceCastInst(NGEP, GEP.getType());
1894         return new BitCastInst(NGEP, GEP.getType());
1895       }
1896     }
1897   }
1898 
1899   if (!GEP.isInBounds()) {
1900     unsigned PtrWidth =
1901         DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace());
1902     APInt BasePtrOffset(PtrWidth, 0);
1903     Value *UnderlyingPtrOp =
1904             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
1905                                                              BasePtrOffset);
1906     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
1907       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
1908           BasePtrOffset.isNonNegative()) {
1909         APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
1910         if (BasePtrOffset.ule(AllocSize)) {
1911           return GetElementPtrInst::CreateInBounds(
1912               PtrOp, makeArrayRef(Ops).slice(1), GEP.getName());
1913         }
1914       }
1915     }
1916   }
1917 
1918   return nullptr;
1919 }
1920 
1921 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
1922                                          Instruction *AI) {
1923   if (isa<ConstantPointerNull>(V))
1924     return true;
1925   if (auto *LI = dyn_cast<LoadInst>(V))
1926     return isa<GlobalVariable>(LI->getPointerOperand());
1927   // Two distinct allocations will never be equal.
1928   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
1929   // through bitcasts of V can cause
1930   // the result statement below to be true, even when AI and V (ex:
1931   // i8* ->i32* ->i8* of AI) are the same allocations.
1932   return isAllocLikeFn(V, TLI) && V != AI;
1933 }
1934 
1935 static bool
1936 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1937                      const TargetLibraryInfo *TLI) {
1938   SmallVector<Instruction*, 4> Worklist;
1939   Worklist.push_back(AI);
1940 
1941   do {
1942     Instruction *PI = Worklist.pop_back_val();
1943     for (User *U : PI->users()) {
1944       Instruction *I = cast<Instruction>(U);
1945       switch (I->getOpcode()) {
1946       default:
1947         // Give up the moment we see something we can't handle.
1948         return false;
1949 
1950       case Instruction::BitCast:
1951       case Instruction::GetElementPtr:
1952         Users.emplace_back(I);
1953         Worklist.push_back(I);
1954         continue;
1955 
1956       case Instruction::ICmp: {
1957         ICmpInst *ICI = cast<ICmpInst>(I);
1958         // We can fold eq/ne comparisons with null to false/true, respectively.
1959         // We also fold comparisons in some conditions provided the alloc has
1960         // not escaped (see isNeverEqualToUnescapedAlloc).
1961         if (!ICI->isEquality())
1962           return false;
1963         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
1964         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
1965           return false;
1966         Users.emplace_back(I);
1967         continue;
1968       }
1969 
1970       case Instruction::Call:
1971         // Ignore no-op and store intrinsics.
1972         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1973           switch (II->getIntrinsicID()) {
1974           default:
1975             return false;
1976 
1977           case Intrinsic::memmove:
1978           case Intrinsic::memcpy:
1979           case Intrinsic::memset: {
1980             MemIntrinsic *MI = cast<MemIntrinsic>(II);
1981             if (MI->isVolatile() || MI->getRawDest() != PI)
1982               return false;
1983             LLVM_FALLTHROUGH;
1984           }
1985           case Intrinsic::dbg_declare:
1986           case Intrinsic::dbg_value:
1987           case Intrinsic::invariant_start:
1988           case Intrinsic::invariant_end:
1989           case Intrinsic::lifetime_start:
1990           case Intrinsic::lifetime_end:
1991           case Intrinsic::objectsize:
1992             Users.emplace_back(I);
1993             continue;
1994           }
1995         }
1996 
1997         if (isFreeCall(I, TLI)) {
1998           Users.emplace_back(I);
1999           continue;
2000         }
2001         return false;
2002 
2003       case Instruction::Store: {
2004         StoreInst *SI = cast<StoreInst>(I);
2005         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2006           return false;
2007         Users.emplace_back(I);
2008         continue;
2009       }
2010       }
2011       llvm_unreachable("missing a return?");
2012     }
2013   } while (!Worklist.empty());
2014   return true;
2015 }
2016 
2017 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2018   // If we have a malloc call which is only used in any amount of comparisons
2019   // to null and free calls, delete the calls and replace the comparisons with
2020   // true or false as appropriate.
2021   SmallVector<WeakVH, 64> Users;
2022   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2023     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2024       // Lowering all @llvm.objectsize calls first because they may
2025       // use a bitcast/GEP of the alloca we are removing.
2026       if (!Users[i])
2027        continue;
2028 
2029       Instruction *I = cast<Instruction>(&*Users[i]);
2030 
2031       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2032         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2033           ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI,
2034                                                     /*MustSucceed=*/true);
2035           replaceInstUsesWith(*I, Result);
2036           eraseInstFromFunction(*I);
2037           Users[i] = nullptr; // Skip examining in the next loop.
2038         }
2039       }
2040     }
2041     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2042       if (!Users[i])
2043         continue;
2044 
2045       Instruction *I = cast<Instruction>(&*Users[i]);
2046 
2047       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2048         replaceInstUsesWith(*C,
2049                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2050                                              C->isFalseWhenEqual()));
2051       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
2052         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2053       }
2054       eraseInstFromFunction(*I);
2055     }
2056 
2057     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2058       // Replace invoke with a NOP intrinsic to maintain the original CFG
2059       Module *M = II->getModule();
2060       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2061       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2062                          None, "", II->getParent());
2063     }
2064     return eraseInstFromFunction(MI);
2065   }
2066   return nullptr;
2067 }
2068 
2069 /// \brief Move the call to free before a NULL test.
2070 ///
2071 /// Check if this free is accessed after its argument has been test
2072 /// against NULL (property 0).
2073 /// If yes, it is legal to move this call in its predecessor block.
2074 ///
2075 /// The move is performed only if the block containing the call to free
2076 /// will be removed, i.e.:
2077 /// 1. it has only one predecessor P, and P has two successors
2078 /// 2. it contains the call and an unconditional branch
2079 /// 3. its successor is the same as its predecessor's successor
2080 ///
2081 /// The profitability is out-of concern here and this function should
2082 /// be called only if the caller knows this transformation would be
2083 /// profitable (e.g., for code size).
2084 static Instruction *
2085 tryToMoveFreeBeforeNullTest(CallInst &FI) {
2086   Value *Op = FI.getArgOperand(0);
2087   BasicBlock *FreeInstrBB = FI.getParent();
2088   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2089 
2090   // Validate part of constraint #1: Only one predecessor
2091   // FIXME: We can extend the number of predecessor, but in that case, we
2092   //        would duplicate the call to free in each predecessor and it may
2093   //        not be profitable even for code size.
2094   if (!PredBB)
2095     return nullptr;
2096 
2097   // Validate constraint #2: Does this block contains only the call to
2098   //                         free and an unconditional branch?
2099   // FIXME: We could check if we can speculate everything in the
2100   //        predecessor block
2101   if (FreeInstrBB->size() != 2)
2102     return nullptr;
2103   BasicBlock *SuccBB;
2104   if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
2105     return nullptr;
2106 
2107   // Validate the rest of constraint #1 by matching on the pred branch.
2108   TerminatorInst *TI = PredBB->getTerminator();
2109   BasicBlock *TrueBB, *FalseBB;
2110   ICmpInst::Predicate Pred;
2111   if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
2112     return nullptr;
2113   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2114     return nullptr;
2115 
2116   // Validate constraint #3: Ensure the null case just falls through.
2117   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2118     return nullptr;
2119   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2120          "Broken CFG: missing edge from predecessor to successor");
2121 
2122   FI.moveBefore(TI);
2123   return &FI;
2124 }
2125 
2126 
2127 Instruction *InstCombiner::visitFree(CallInst &FI) {
2128   Value *Op = FI.getArgOperand(0);
2129 
2130   // free undef -> unreachable.
2131   if (isa<UndefValue>(Op)) {
2132     // Insert a new store to null because we cannot modify the CFG here.
2133     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
2134                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
2135     return eraseInstFromFunction(FI);
2136   }
2137 
2138   // If we have 'free null' delete the instruction.  This can happen in stl code
2139   // when lots of inlining happens.
2140   if (isa<ConstantPointerNull>(Op))
2141     return eraseInstFromFunction(FI);
2142 
2143   // If we optimize for code size, try to move the call to free before the null
2144   // test so that simplify cfg can remove the empty block and dead code
2145   // elimination the branch. I.e., helps to turn something like:
2146   // if (foo) free(foo);
2147   // into
2148   // free(foo);
2149   if (MinimizeSize)
2150     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
2151       return I;
2152 
2153   return nullptr;
2154 }
2155 
2156 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2157   if (RI.getNumOperands() == 0) // ret void
2158     return nullptr;
2159 
2160   Value *ResultOp = RI.getOperand(0);
2161   Type *VTy = ResultOp->getType();
2162   if (!VTy->isIntegerTy())
2163     return nullptr;
2164 
2165   // There might be assume intrinsics dominating this return that completely
2166   // determine the value. If so, constant fold it.
2167   unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2168   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2169   computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2170   if ((KnownZero|KnownOne).isAllOnesValue())
2171     RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2172 
2173   return nullptr;
2174 }
2175 
2176 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2177   // Change br (not X), label True, label False to: br X, label False, True
2178   Value *X = nullptr;
2179   BasicBlock *TrueDest;
2180   BasicBlock *FalseDest;
2181   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2182       !isa<Constant>(X)) {
2183     // Swap Destinations and condition...
2184     BI.setCondition(X);
2185     BI.swapSuccessors();
2186     return &BI;
2187   }
2188 
2189   // If the condition is irrelevant, remove the use so that other
2190   // transforms on the condition become more effective.
2191   if (BI.isConditional() &&
2192       BI.getSuccessor(0) == BI.getSuccessor(1) &&
2193       !isa<UndefValue>(BI.getCondition())) {
2194     BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
2195     return &BI;
2196   }
2197 
2198   // Canonicalize fcmp_one -> fcmp_oeq
2199   FCmpInst::Predicate FPred; Value *Y;
2200   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
2201                              TrueDest, FalseDest)) &&
2202       BI.getCondition()->hasOneUse())
2203     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2204         FPred == FCmpInst::FCMP_OGE) {
2205       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2206       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
2207 
2208       // Swap Destinations and condition.
2209       BI.swapSuccessors();
2210       Worklist.Add(Cond);
2211       return &BI;
2212     }
2213 
2214   // Canonicalize icmp_ne -> icmp_eq
2215   ICmpInst::Predicate IPred;
2216   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
2217                       TrueDest, FalseDest)) &&
2218       BI.getCondition()->hasOneUse())
2219     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
2220         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2221         IPred == ICmpInst::ICMP_SGE) {
2222       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2223       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2224       // Swap Destinations and condition.
2225       BI.swapSuccessors();
2226       Worklist.Add(Cond);
2227       return &BI;
2228     }
2229 
2230   return nullptr;
2231 }
2232 
2233 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2234   Value *Cond = SI.getCondition();
2235   Value *Op0;
2236   ConstantInt *AddRHS;
2237   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2238     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2239     for (SwitchInst::CaseIt CaseIter : SI.cases()) {
2240       Constant *NewCase = ConstantExpr::getSub(CaseIter.getCaseValue(), AddRHS);
2241       assert(isa<ConstantInt>(NewCase) &&
2242              "Result of expression should be constant");
2243       CaseIter.setValue(cast<ConstantInt>(NewCase));
2244     }
2245     SI.setCondition(Op0);
2246     return &SI;
2247   }
2248 
2249   unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2250   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2251   computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
2252   unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2253   unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2254 
2255   // Compute the number of leading bits we can ignore.
2256   // TODO: A better way to determine this would use ComputeNumSignBits().
2257   for (auto &C : SI.cases()) {
2258     LeadingKnownZeros = std::min(
2259         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2260     LeadingKnownOnes = std::min(
2261         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2262   }
2263 
2264   unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2265 
2266   // Shrink the condition operand if the new type is smaller than the old type.
2267   // This may produce a non-standard type for the switch, but that's ok because
2268   // the backend should extend back to a legal type for the target.
2269   if (NewWidth > 0 && NewWidth < BitWidth) {
2270     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2271     Builder->SetInsertPoint(&SI);
2272     Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc");
2273     SI.setCondition(NewCond);
2274 
2275     for (SwitchInst::CaseIt CaseIter : SI.cases()) {
2276       APInt TruncatedCase = CaseIter.getCaseValue()->getValue().trunc(NewWidth);
2277       CaseIter.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2278     }
2279     return &SI;
2280   }
2281 
2282   return nullptr;
2283 }
2284 
2285 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2286   Value *Agg = EV.getAggregateOperand();
2287 
2288   if (!EV.hasIndices())
2289     return replaceInstUsesWith(EV, Agg);
2290 
2291   if (Value *V =
2292           SimplifyExtractValueInst(Agg, EV.getIndices(), DL, &TLI, &DT, &AC))
2293     return replaceInstUsesWith(EV, V);
2294 
2295   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2296     // We're extracting from an insertvalue instruction, compare the indices
2297     const unsigned *exti, *exte, *insi, *inse;
2298     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2299          exte = EV.idx_end(), inse = IV->idx_end();
2300          exti != exte && insi != inse;
2301          ++exti, ++insi) {
2302       if (*insi != *exti)
2303         // The insert and extract both reference distinctly different elements.
2304         // This means the extract is not influenced by the insert, and we can
2305         // replace the aggregate operand of the extract with the aggregate
2306         // operand of the insert. i.e., replace
2307         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2308         // %E = extractvalue { i32, { i32 } } %I, 0
2309         // with
2310         // %E = extractvalue { i32, { i32 } } %A, 0
2311         return ExtractValueInst::Create(IV->getAggregateOperand(),
2312                                         EV.getIndices());
2313     }
2314     if (exti == exte && insi == inse)
2315       // Both iterators are at the end: Index lists are identical. Replace
2316       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2317       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2318       // with "i32 42"
2319       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2320     if (exti == exte) {
2321       // The extract list is a prefix of the insert list. i.e. replace
2322       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2323       // %E = extractvalue { i32, { i32 } } %I, 1
2324       // with
2325       // %X = extractvalue { i32, { i32 } } %A, 1
2326       // %E = insertvalue { i32 } %X, i32 42, 0
2327       // by switching the order of the insert and extract (though the
2328       // insertvalue should be left in, since it may have other uses).
2329       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
2330                                                  EV.getIndices());
2331       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2332                                      makeArrayRef(insi, inse));
2333     }
2334     if (insi == inse)
2335       // The insert list is a prefix of the extract list
2336       // We can simply remove the common indices from the extract and make it
2337       // operate on the inserted value instead of the insertvalue result.
2338       // i.e., replace
2339       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2340       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2341       // with
2342       // %E extractvalue { i32 } { i32 42 }, 0
2343       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2344                                       makeArrayRef(exti, exte));
2345   }
2346   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2347     // We're extracting from an intrinsic, see if we're the only user, which
2348     // allows us to simplify multiple result intrinsics to simpler things that
2349     // just get one value.
2350     if (II->hasOneUse()) {
2351       // Check if we're grabbing the overflow bit or the result of a 'with
2352       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
2353       // and replace it with a traditional binary instruction.
2354       switch (II->getIntrinsicID()) {
2355       case Intrinsic::uadd_with_overflow:
2356       case Intrinsic::sadd_with_overflow:
2357         if (*EV.idx_begin() == 0) {  // Normal result.
2358           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2359           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2360           eraseInstFromFunction(*II);
2361           return BinaryOperator::CreateAdd(LHS, RHS);
2362         }
2363 
2364         // If the normal result of the add is dead, and the RHS is a constant,
2365         // we can transform this into a range comparison.
2366         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2367         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2368           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2369             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2370                                 ConstantExpr::getNot(CI));
2371         break;
2372       case Intrinsic::usub_with_overflow:
2373       case Intrinsic::ssub_with_overflow:
2374         if (*EV.idx_begin() == 0) {  // Normal result.
2375           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2376           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2377           eraseInstFromFunction(*II);
2378           return BinaryOperator::CreateSub(LHS, RHS);
2379         }
2380         break;
2381       case Intrinsic::umul_with_overflow:
2382       case Intrinsic::smul_with_overflow:
2383         if (*EV.idx_begin() == 0) {  // Normal result.
2384           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2385           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2386           eraseInstFromFunction(*II);
2387           return BinaryOperator::CreateMul(LHS, RHS);
2388         }
2389         break;
2390       default:
2391         break;
2392       }
2393     }
2394   }
2395   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2396     // If the (non-volatile) load only has one use, we can rewrite this to a
2397     // load from a GEP. This reduces the size of the load. If a load is used
2398     // only by extractvalue instructions then this either must have been
2399     // optimized before, or it is a struct with padding, in which case we
2400     // don't want to do the transformation as it loses padding knowledge.
2401     if (L->isSimple() && L->hasOneUse()) {
2402       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2403       SmallVector<Value*, 4> Indices;
2404       // Prefix an i32 0 since we need the first element.
2405       Indices.push_back(Builder->getInt32(0));
2406       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2407             I != E; ++I)
2408         Indices.push_back(Builder->getInt32(*I));
2409 
2410       // We need to insert these at the location of the old load, not at that of
2411       // the extractvalue.
2412       Builder->SetInsertPoint(L);
2413       Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
2414                                               L->getPointerOperand(), Indices);
2415       // Returning the load directly will cause the main loop to insert it in
2416       // the wrong spot, so use replaceInstUsesWith().
2417       return replaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2418     }
2419   // We could simplify extracts from other values. Note that nested extracts may
2420   // already be simplified implicitly by the above: extract (extract (insert) )
2421   // will be translated into extract ( insert ( extract ) ) first and then just
2422   // the value inserted, if appropriate. Similarly for extracts from single-use
2423   // loads: extract (extract (load)) will be translated to extract (load (gep))
2424   // and if again single-use then via load (gep (gep)) to load (gep).
2425   // However, double extracts from e.g. function arguments or return values
2426   // aren't handled yet.
2427   return nullptr;
2428 }
2429 
2430 /// Return 'true' if the given typeinfo will match anything.
2431 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2432   switch (Personality) {
2433   case EHPersonality::GNU_C:
2434   case EHPersonality::GNU_C_SjLj:
2435   case EHPersonality::Rust:
2436     // The GCC C EH and Rust personality only exists to support cleanups, so
2437     // it's not clear what the semantics of catch clauses are.
2438     return false;
2439   case EHPersonality::Unknown:
2440     return false;
2441   case EHPersonality::GNU_Ada:
2442     // While __gnat_all_others_value will match any Ada exception, it doesn't
2443     // match foreign exceptions (or didn't, before gcc-4.7).
2444     return false;
2445   case EHPersonality::GNU_CXX:
2446   case EHPersonality::GNU_CXX_SjLj:
2447   case EHPersonality::GNU_ObjC:
2448   case EHPersonality::MSVC_X86SEH:
2449   case EHPersonality::MSVC_Win64SEH:
2450   case EHPersonality::MSVC_CXX:
2451   case EHPersonality::CoreCLR:
2452     return TypeInfo->isNullValue();
2453   }
2454   llvm_unreachable("invalid enum");
2455 }
2456 
2457 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2458   return
2459     cast<ArrayType>(LHS->getType())->getNumElements()
2460   <
2461     cast<ArrayType>(RHS->getType())->getNumElements();
2462 }
2463 
2464 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2465   // The logic here should be correct for any real-world personality function.
2466   // However if that turns out not to be true, the offending logic can always
2467   // be conditioned on the personality function, like the catch-all logic is.
2468   EHPersonality Personality =
2469       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2470 
2471   // Simplify the list of clauses, eg by removing repeated catch clauses
2472   // (these are often created by inlining).
2473   bool MakeNewInstruction = false; // If true, recreate using the following:
2474   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2475   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
2476 
2477   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2478   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2479     bool isLastClause = i + 1 == e;
2480     if (LI.isCatch(i)) {
2481       // A catch clause.
2482       Constant *CatchClause = LI.getClause(i);
2483       Constant *TypeInfo = CatchClause->stripPointerCasts();
2484 
2485       // If we already saw this clause, there is no point in having a second
2486       // copy of it.
2487       if (AlreadyCaught.insert(TypeInfo).second) {
2488         // This catch clause was not already seen.
2489         NewClauses.push_back(CatchClause);
2490       } else {
2491         // Repeated catch clause - drop the redundant copy.
2492         MakeNewInstruction = true;
2493       }
2494 
2495       // If this is a catch-all then there is no point in keeping any following
2496       // clauses or marking the landingpad as having a cleanup.
2497       if (isCatchAll(Personality, TypeInfo)) {
2498         if (!isLastClause)
2499           MakeNewInstruction = true;
2500         CleanupFlag = false;
2501         break;
2502       }
2503     } else {
2504       // A filter clause.  If any of the filter elements were already caught
2505       // then they can be dropped from the filter.  It is tempting to try to
2506       // exploit the filter further by saying that any typeinfo that does not
2507       // occur in the filter can't be caught later (and thus can be dropped).
2508       // However this would be wrong, since typeinfos can match without being
2509       // equal (for example if one represents a C++ class, and the other some
2510       // class derived from it).
2511       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2512       Constant *FilterClause = LI.getClause(i);
2513       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2514       unsigned NumTypeInfos = FilterType->getNumElements();
2515 
2516       // An empty filter catches everything, so there is no point in keeping any
2517       // following clauses or marking the landingpad as having a cleanup.  By
2518       // dealing with this case here the following code is made a bit simpler.
2519       if (!NumTypeInfos) {
2520         NewClauses.push_back(FilterClause);
2521         if (!isLastClause)
2522           MakeNewInstruction = true;
2523         CleanupFlag = false;
2524         break;
2525       }
2526 
2527       bool MakeNewFilter = false; // If true, make a new filter.
2528       SmallVector<Constant *, 16> NewFilterElts; // New elements.
2529       if (isa<ConstantAggregateZero>(FilterClause)) {
2530         // Not an empty filter - it contains at least one null typeinfo.
2531         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2532         Constant *TypeInfo =
2533           Constant::getNullValue(FilterType->getElementType());
2534         // If this typeinfo is a catch-all then the filter can never match.
2535         if (isCatchAll(Personality, TypeInfo)) {
2536           // Throw the filter away.
2537           MakeNewInstruction = true;
2538           continue;
2539         }
2540 
2541         // There is no point in having multiple copies of this typeinfo, so
2542         // discard all but the first copy if there is more than one.
2543         NewFilterElts.push_back(TypeInfo);
2544         if (NumTypeInfos > 1)
2545           MakeNewFilter = true;
2546       } else {
2547         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2548         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2549         NewFilterElts.reserve(NumTypeInfos);
2550 
2551         // Remove any filter elements that were already caught or that already
2552         // occurred in the filter.  While there, see if any of the elements are
2553         // catch-alls.  If so, the filter can be discarded.
2554         bool SawCatchAll = false;
2555         for (unsigned j = 0; j != NumTypeInfos; ++j) {
2556           Constant *Elt = Filter->getOperand(j);
2557           Constant *TypeInfo = Elt->stripPointerCasts();
2558           if (isCatchAll(Personality, TypeInfo)) {
2559             // This element is a catch-all.  Bail out, noting this fact.
2560             SawCatchAll = true;
2561             break;
2562           }
2563 
2564           // Even if we've seen a type in a catch clause, we don't want to
2565           // remove it from the filter.  An unexpected type handler may be
2566           // set up for a call site which throws an exception of the same
2567           // type caught.  In order for the exception thrown by the unexpected
2568           // handler to propagate correctly, the filter must be correctly
2569           // described for the call site.
2570           //
2571           // Example:
2572           //
2573           // void unexpected() { throw 1;}
2574           // void foo() throw (int) {
2575           //   std::set_unexpected(unexpected);
2576           //   try {
2577           //     throw 2.0;
2578           //   } catch (int i) {}
2579           // }
2580 
2581           // There is no point in having multiple copies of the same typeinfo in
2582           // a filter, so only add it if we didn't already.
2583           if (SeenInFilter.insert(TypeInfo).second)
2584             NewFilterElts.push_back(cast<Constant>(Elt));
2585         }
2586         // A filter containing a catch-all cannot match anything by definition.
2587         if (SawCatchAll) {
2588           // Throw the filter away.
2589           MakeNewInstruction = true;
2590           continue;
2591         }
2592 
2593         // If we dropped something from the filter, make a new one.
2594         if (NewFilterElts.size() < NumTypeInfos)
2595           MakeNewFilter = true;
2596       }
2597       if (MakeNewFilter) {
2598         FilterType = ArrayType::get(FilterType->getElementType(),
2599                                     NewFilterElts.size());
2600         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2601         MakeNewInstruction = true;
2602       }
2603 
2604       NewClauses.push_back(FilterClause);
2605 
2606       // If the new filter is empty then it will catch everything so there is
2607       // no point in keeping any following clauses or marking the landingpad
2608       // as having a cleanup.  The case of the original filter being empty was
2609       // already handled above.
2610       if (MakeNewFilter && !NewFilterElts.size()) {
2611         assert(MakeNewInstruction && "New filter but not a new instruction!");
2612         CleanupFlag = false;
2613         break;
2614       }
2615     }
2616   }
2617 
2618   // If several filters occur in a row then reorder them so that the shortest
2619   // filters come first (those with the smallest number of elements).  This is
2620   // advantageous because shorter filters are more likely to match, speeding up
2621   // unwinding, but mostly because it increases the effectiveness of the other
2622   // filter optimizations below.
2623   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2624     unsigned j;
2625     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2626     for (j = i; j != e; ++j)
2627       if (!isa<ArrayType>(NewClauses[j]->getType()))
2628         break;
2629 
2630     // Check whether the filters are already sorted by length.  We need to know
2631     // if sorting them is actually going to do anything so that we only make a
2632     // new landingpad instruction if it does.
2633     for (unsigned k = i; k + 1 < j; ++k)
2634       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2635         // Not sorted, so sort the filters now.  Doing an unstable sort would be
2636         // correct too but reordering filters pointlessly might confuse users.
2637         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2638                          shorter_filter);
2639         MakeNewInstruction = true;
2640         break;
2641       }
2642 
2643     // Look for the next batch of filters.
2644     i = j + 1;
2645   }
2646 
2647   // If typeinfos matched if and only if equal, then the elements of a filter L
2648   // that occurs later than a filter F could be replaced by the intersection of
2649   // the elements of F and L.  In reality two typeinfos can match without being
2650   // equal (for example if one represents a C++ class, and the other some class
2651   // derived from it) so it would be wrong to perform this transform in general.
2652   // However the transform is correct and useful if F is a subset of L.  In that
2653   // case L can be replaced by F, and thus removed altogether since repeating a
2654   // filter is pointless.  So here we look at all pairs of filters F and L where
2655   // L follows F in the list of clauses, and remove L if every element of F is
2656   // an element of L.  This can occur when inlining C++ functions with exception
2657   // specifications.
2658   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2659     // Examine each filter in turn.
2660     Value *Filter = NewClauses[i];
2661     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2662     if (!FTy)
2663       // Not a filter - skip it.
2664       continue;
2665     unsigned FElts = FTy->getNumElements();
2666     // Examine each filter following this one.  Doing this backwards means that
2667     // we don't have to worry about filters disappearing under us when removed.
2668     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2669       Value *LFilter = NewClauses[j];
2670       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2671       if (!LTy)
2672         // Not a filter - skip it.
2673         continue;
2674       // If Filter is a subset of LFilter, i.e. every element of Filter is also
2675       // an element of LFilter, then discard LFilter.
2676       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2677       // If Filter is empty then it is a subset of LFilter.
2678       if (!FElts) {
2679         // Discard LFilter.
2680         NewClauses.erase(J);
2681         MakeNewInstruction = true;
2682         // Move on to the next filter.
2683         continue;
2684       }
2685       unsigned LElts = LTy->getNumElements();
2686       // If Filter is longer than LFilter then it cannot be a subset of it.
2687       if (FElts > LElts)
2688         // Move on to the next filter.
2689         continue;
2690       // At this point we know that LFilter has at least one element.
2691       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2692         // Filter is a subset of LFilter iff Filter contains only zeros (as we
2693         // already know that Filter is not longer than LFilter).
2694         if (isa<ConstantAggregateZero>(Filter)) {
2695           assert(FElts <= LElts && "Should have handled this case earlier!");
2696           // Discard LFilter.
2697           NewClauses.erase(J);
2698           MakeNewInstruction = true;
2699         }
2700         // Move on to the next filter.
2701         continue;
2702       }
2703       ConstantArray *LArray = cast<ConstantArray>(LFilter);
2704       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2705         // Since Filter is non-empty and contains only zeros, it is a subset of
2706         // LFilter iff LFilter contains a zero.
2707         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2708         for (unsigned l = 0; l != LElts; ++l)
2709           if (LArray->getOperand(l)->isNullValue()) {
2710             // LFilter contains a zero - discard it.
2711             NewClauses.erase(J);
2712             MakeNewInstruction = true;
2713             break;
2714           }
2715         // Move on to the next filter.
2716         continue;
2717       }
2718       // At this point we know that both filters are ConstantArrays.  Loop over
2719       // operands to see whether every element of Filter is also an element of
2720       // LFilter.  Since filters tend to be short this is probably faster than
2721       // using a method that scales nicely.
2722       ConstantArray *FArray = cast<ConstantArray>(Filter);
2723       bool AllFound = true;
2724       for (unsigned f = 0; f != FElts; ++f) {
2725         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2726         AllFound = false;
2727         for (unsigned l = 0; l != LElts; ++l) {
2728           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2729           if (LTypeInfo == FTypeInfo) {
2730             AllFound = true;
2731             break;
2732           }
2733         }
2734         if (!AllFound)
2735           break;
2736       }
2737       if (AllFound) {
2738         // Discard LFilter.
2739         NewClauses.erase(J);
2740         MakeNewInstruction = true;
2741       }
2742       // Move on to the next filter.
2743     }
2744   }
2745 
2746   // If we changed any of the clauses, replace the old landingpad instruction
2747   // with a new one.
2748   if (MakeNewInstruction) {
2749     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2750                                                  NewClauses.size());
2751     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2752       NLI->addClause(NewClauses[i]);
2753     // A landing pad with no clauses must have the cleanup flag set.  It is
2754     // theoretically possible, though highly unlikely, that we eliminated all
2755     // clauses.  If so, force the cleanup flag to true.
2756     if (NewClauses.empty())
2757       CleanupFlag = true;
2758     NLI->setCleanup(CleanupFlag);
2759     return NLI;
2760   }
2761 
2762   // Even if none of the clauses changed, we may nonetheless have understood
2763   // that the cleanup flag is pointless.  Clear it if so.
2764   if (LI.isCleanup() != CleanupFlag) {
2765     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2766     LI.setCleanup(CleanupFlag);
2767     return &LI;
2768   }
2769 
2770   return nullptr;
2771 }
2772 
2773 /// Try to move the specified instruction from its current block into the
2774 /// beginning of DestBlock, which can only happen if it's safe to move the
2775 /// instruction past all of the instructions between it and the end of its
2776 /// block.
2777 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2778   assert(I->hasOneUse() && "Invariants didn't hold!");
2779 
2780   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2781   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
2782       isa<TerminatorInst>(I))
2783     return false;
2784 
2785   // Do not sink alloca instructions out of the entry block.
2786   if (isa<AllocaInst>(I) && I->getParent() ==
2787         &DestBlock->getParent()->getEntryBlock())
2788     return false;
2789 
2790   // Do not sink into catchswitch blocks.
2791   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
2792     return false;
2793 
2794   // Do not sink convergent call instructions.
2795   if (auto *CI = dyn_cast<CallInst>(I)) {
2796     if (CI->isConvergent())
2797       return false;
2798   }
2799   // We can only sink load instructions if there is nothing between the load and
2800   // the end of block that could change the value.
2801   if (I->mayReadFromMemory()) {
2802     for (BasicBlock::iterator Scan = I->getIterator(),
2803                               E = I->getParent()->end();
2804          Scan != E; ++Scan)
2805       if (Scan->mayWriteToMemory())
2806         return false;
2807   }
2808 
2809   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2810   I->moveBefore(&*InsertPos);
2811   ++NumSunkInst;
2812   return true;
2813 }
2814 
2815 bool InstCombiner::run() {
2816   while (!Worklist.isEmpty()) {
2817     Instruction *I = Worklist.RemoveOne();
2818     if (I == nullptr) continue;  // skip null values.
2819 
2820     // Check to see if we can DCE the instruction.
2821     if (isInstructionTriviallyDead(I, &TLI)) {
2822       DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2823       eraseInstFromFunction(*I);
2824       ++NumDeadInst;
2825       MadeIRChange = true;
2826       continue;
2827     }
2828 
2829     // Instruction isn't dead, see if we can constant propagate it.
2830     if (!I->use_empty() &&
2831         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
2832       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
2833         DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2834 
2835         // Add operands to the worklist.
2836         replaceInstUsesWith(*I, C);
2837         ++NumConstProp;
2838         if (isInstructionTriviallyDead(I, &TLI))
2839           eraseInstFromFunction(*I);
2840         MadeIRChange = true;
2841         continue;
2842       }
2843     }
2844 
2845     // In general, it is possible for computeKnownBits to determine all bits in
2846     // a value even when the operands are not all constants.
2847     Type *Ty = I->getType();
2848     if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
2849       unsigned BitWidth = Ty->getScalarSizeInBits();
2850       APInt KnownZero(BitWidth, 0);
2851       APInt KnownOne(BitWidth, 0);
2852       computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
2853       if ((KnownZero | KnownOne).isAllOnesValue()) {
2854         Constant *C = ConstantInt::get(Ty, KnownOne);
2855         DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
2856                         " from: " << *I << '\n');
2857 
2858         // Add operands to the worklist.
2859         replaceInstUsesWith(*I, C);
2860         ++NumConstProp;
2861         if (isInstructionTriviallyDead(I, &TLI))
2862           eraseInstFromFunction(*I);
2863         MadeIRChange = true;
2864         continue;
2865       }
2866     }
2867 
2868     // See if we can trivially sink this instruction to a successor basic block.
2869     if (I->hasOneUse()) {
2870       BasicBlock *BB = I->getParent();
2871       Instruction *UserInst = cast<Instruction>(*I->user_begin());
2872       BasicBlock *UserParent;
2873 
2874       // Get the block the use occurs in.
2875       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2876         UserParent = PN->getIncomingBlock(*I->use_begin());
2877       else
2878         UserParent = UserInst->getParent();
2879 
2880       if (UserParent != BB) {
2881         bool UserIsSuccessor = false;
2882         // See if the user is one of our successors.
2883         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2884           if (*SI == UserParent) {
2885             UserIsSuccessor = true;
2886             break;
2887           }
2888 
2889         // If the user is one of our immediate successors, and if that successor
2890         // only has us as a predecessors (we'd have to split the critical edge
2891         // otherwise), we can keep going.
2892         if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
2893           // Okay, the CFG is simple enough, try to sink this instruction.
2894           if (TryToSinkInstruction(I, UserParent)) {
2895             DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
2896             MadeIRChange = true;
2897             // We'll add uses of the sunk instruction below, but since sinking
2898             // can expose opportunities for it's *operands* add them to the
2899             // worklist
2900             for (Use &U : I->operands())
2901               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2902                 Worklist.Add(OpI);
2903           }
2904         }
2905       }
2906     }
2907 
2908     // Now that we have an instruction, try combining it to simplify it.
2909     Builder->SetInsertPoint(I);
2910     Builder->SetCurrentDebugLocation(I->getDebugLoc());
2911 
2912 #ifndef NDEBUG
2913     std::string OrigI;
2914 #endif
2915     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2916     DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2917 
2918     if (Instruction *Result = visit(*I)) {
2919       ++NumCombined;
2920       // Should we replace the old instruction with a new one?
2921       if (Result != I) {
2922         DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2923                      << "    New = " << *Result << '\n');
2924 
2925         if (I->getDebugLoc())
2926           Result->setDebugLoc(I->getDebugLoc());
2927         // Everything uses the new instruction now.
2928         I->replaceAllUsesWith(Result);
2929 
2930         // Move the name to the new instruction first.
2931         Result->takeName(I);
2932 
2933         // Push the new instruction and any users onto the worklist.
2934         Worklist.Add(Result);
2935         Worklist.AddUsersToWorkList(*Result);
2936 
2937         // Insert the new instruction into the basic block...
2938         BasicBlock *InstParent = I->getParent();
2939         BasicBlock::iterator InsertPos = I->getIterator();
2940 
2941         // If we replace a PHI with something that isn't a PHI, fix up the
2942         // insertion point.
2943         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2944           InsertPos = InstParent->getFirstInsertionPt();
2945 
2946         InstParent->getInstList().insert(InsertPos, Result);
2947 
2948         eraseInstFromFunction(*I);
2949       } else {
2950         DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2951                      << "    New = " << *I << '\n');
2952 
2953         // If the instruction was modified, it's possible that it is now dead.
2954         // if so, remove it.
2955         if (isInstructionTriviallyDead(I, &TLI)) {
2956           eraseInstFromFunction(*I);
2957         } else {
2958           Worklist.Add(I);
2959           Worklist.AddUsersToWorkList(*I);
2960         }
2961       }
2962       MadeIRChange = true;
2963     }
2964   }
2965 
2966   Worklist.Zap();
2967   return MadeIRChange;
2968 }
2969 
2970 /// Walk the function in depth-first order, adding all reachable code to the
2971 /// worklist.
2972 ///
2973 /// This has a couple of tricks to make the code faster and more powerful.  In
2974 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2975 /// them to the worklist (this significantly speeds up instcombine on code where
2976 /// many instructions are dead or constant).  Additionally, if we find a branch
2977 /// whose condition is a known constant, we only visit the reachable successors.
2978 ///
2979 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
2980                                        SmallPtrSetImpl<BasicBlock *> &Visited,
2981                                        InstCombineWorklist &ICWorklist,
2982                                        const TargetLibraryInfo *TLI) {
2983   bool MadeIRChange = false;
2984   SmallVector<BasicBlock*, 256> Worklist;
2985   Worklist.push_back(BB);
2986 
2987   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2988   DenseMap<Constant *, Constant *> FoldedConstants;
2989 
2990   do {
2991     BB = Worklist.pop_back_val();
2992 
2993     // We have now visited this block!  If we've already been here, ignore it.
2994     if (!Visited.insert(BB).second)
2995       continue;
2996 
2997     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2998       Instruction *Inst = &*BBI++;
2999 
3000       // DCE instruction if trivially dead.
3001       if (isInstructionTriviallyDead(Inst, TLI)) {
3002         ++NumDeadInst;
3003         DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3004         Inst->eraseFromParent();
3005         continue;
3006       }
3007 
3008       // ConstantProp instruction if trivially constant.
3009       if (!Inst->use_empty() &&
3010           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3011         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3012           DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
3013                        << *Inst << '\n');
3014           Inst->replaceAllUsesWith(C);
3015           ++NumConstProp;
3016           if (isInstructionTriviallyDead(Inst, TLI))
3017             Inst->eraseFromParent();
3018           continue;
3019         }
3020 
3021       // See if we can constant fold its operands.
3022       for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
3023            ++i) {
3024         if (!isa<ConstantVector>(i) && !isa<ConstantExpr>(i))
3025           continue;
3026 
3027         auto *C = cast<Constant>(i);
3028         Constant *&FoldRes = FoldedConstants[C];
3029         if (!FoldRes)
3030           FoldRes = ConstantFoldConstant(C, DL, TLI);
3031         if (!FoldRes)
3032           FoldRes = C;
3033 
3034         if (FoldRes != C) {
3035           *i = FoldRes;
3036           MadeIRChange = true;
3037         }
3038       }
3039 
3040       InstrsForInstCombineWorklist.push_back(Inst);
3041     }
3042 
3043     // Recursively visit successors.  If this is a branch or switch on a
3044     // constant, only visit the reachable successor.
3045     TerminatorInst *TI = BB->getTerminator();
3046     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3047       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3048         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3049         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3050         Worklist.push_back(ReachableBB);
3051         continue;
3052       }
3053     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3054       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3055         // See if this is an explicit destination.
3056         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3057              i != e; ++i)
3058           if (i.getCaseValue() == Cond) {
3059             BasicBlock *ReachableBB = i.getCaseSuccessor();
3060             Worklist.push_back(ReachableBB);
3061             continue;
3062           }
3063 
3064         // Otherwise it is the default destination.
3065         Worklist.push_back(SI->getDefaultDest());
3066         continue;
3067       }
3068     }
3069 
3070     for (BasicBlock *SuccBB : TI->successors())
3071       Worklist.push_back(SuccBB);
3072   } while (!Worklist.empty());
3073 
3074   // Once we've found all of the instructions to add to instcombine's worklist,
3075   // add them in reverse order.  This way instcombine will visit from the top
3076   // of the function down.  This jives well with the way that it adds all uses
3077   // of instructions to the worklist after doing a transformation, thus avoiding
3078   // some N^2 behavior in pathological cases.
3079   ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3080 
3081   return MadeIRChange;
3082 }
3083 
3084 /// \brief Populate the IC worklist from a function, and prune any dead basic
3085 /// blocks discovered in the process.
3086 ///
3087 /// This also does basic constant propagation and other forward fixing to make
3088 /// the combiner itself run much faster.
3089 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3090                                           TargetLibraryInfo *TLI,
3091                                           InstCombineWorklist &ICWorklist) {
3092   bool MadeIRChange = false;
3093 
3094   // Do a depth-first traversal of the function, populate the worklist with
3095   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
3096   // track of which blocks we visit.
3097   SmallPtrSet<BasicBlock *, 32> Visited;
3098   MadeIRChange |=
3099       AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3100 
3101   // Do a quick scan over the function.  If we find any blocks that are
3102   // unreachable, remove any instructions inside of them.  This prevents
3103   // the instcombine code from having to deal with some bad special cases.
3104   for (BasicBlock &BB : F) {
3105     if (Visited.count(&BB))
3106       continue;
3107 
3108     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3109     MadeIRChange |= NumDeadInstInBB > 0;
3110     NumDeadInst += NumDeadInstInBB;
3111   }
3112 
3113   return MadeIRChange;
3114 }
3115 
3116 static bool
3117 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
3118                                 AliasAnalysis *AA, AssumptionCache &AC,
3119                                 TargetLibraryInfo &TLI, DominatorTree &DT,
3120                                 bool ExpensiveCombines = true,
3121                                 LoopInfo *LI = nullptr) {
3122   auto &DL = F.getParent()->getDataLayout();
3123   ExpensiveCombines |= EnableExpensiveCombines;
3124 
3125   /// Builder - This is an IRBuilder that automatically inserts new
3126   /// instructions into the worklist when they are created.
3127   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3128       F.getContext(), TargetFolder(DL),
3129       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3130         Worklist.Add(I);
3131 
3132         using namespace llvm::PatternMatch;
3133         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3134           AC.registerAssumption(cast<CallInst>(I));
3135       }));
3136 
3137   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3138   // by instcombiner.
3139   bool DbgDeclaresChanged = LowerDbgDeclare(F);
3140 
3141   // Iterate while there is work to do.
3142   int Iteration = 0;
3143   for (;;) {
3144     ++Iteration;
3145     DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3146                  << F.getName() << "\n");
3147 
3148     bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3149 
3150     InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines,
3151                     AA, AC, TLI, DT, DL, LI);
3152     IC.MaxArraySizeForCombine = MaxArraySize;
3153     Changed |= IC.run();
3154 
3155     if (!Changed)
3156       break;
3157   }
3158 
3159   return DbgDeclaresChanged || Iteration > 1;
3160 }
3161 
3162 PreservedAnalyses InstCombinePass::run(Function &F,
3163                                        FunctionAnalysisManager &AM) {
3164   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3165   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3166   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3167 
3168   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3169 
3170   // FIXME: The AliasAnalysis is not yet supported in the new pass manager
3171   if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT,
3172                                        ExpensiveCombines, LI))
3173     // No changes, all analyses are preserved.
3174     return PreservedAnalyses::all();
3175 
3176   // Mark all the analyses that instcombine updates as preserved.
3177   PreservedAnalyses PA;
3178   PA.preserveSet<CFGAnalyses>();
3179   PA.preserve<AAManager>();
3180   PA.preserve<GlobalsAA>();
3181   return PA;
3182 }
3183 
3184 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3185   AU.setPreservesCFG();
3186   AU.addRequired<AAResultsWrapperPass>();
3187   AU.addRequired<AssumptionCacheTracker>();
3188   AU.addRequired<TargetLibraryInfoWrapperPass>();
3189   AU.addRequired<DominatorTreeWrapperPass>();
3190   AU.addPreserved<DominatorTreeWrapperPass>();
3191   AU.addPreserved<AAResultsWrapperPass>();
3192   AU.addPreserved<BasicAAWrapperPass>();
3193   AU.addPreserved<GlobalsAAWrapperPass>();
3194 }
3195 
3196 bool InstructionCombiningPass::runOnFunction(Function &F) {
3197   if (skipFunction(F))
3198     return false;
3199 
3200   // Required analyses.
3201   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3202   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3203   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3204   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3205 
3206   // Optional analyses.
3207   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3208   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3209 
3210   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT,
3211                                          ExpensiveCombines, LI);
3212 }
3213 
3214 char InstructionCombiningPass::ID = 0;
3215 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3216                       "Combine redundant instructions", false, false)
3217 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3218 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3219 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3220 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3221 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3222 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3223                     "Combine redundant instructions", false, false)
3224 
3225 // Initialization Routines
3226 void llvm::initializeInstCombine(PassRegistry &Registry) {
3227   initializeInstructionCombiningPassPass(Registry);
3228 }
3229 
3230 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3231   initializeInstructionCombiningPassPass(*unwrap(R));
3232 }
3233 
3234 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3235   return new InstructionCombiningPass(ExpensiveCombines);
3236 }
3237