1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 // %Y = add i32 %X, 1
15 // %Z = add i32 %Y, 1
16 // into:
17 // %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
30 // shifts.
31 // ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/Analysis/AssumptionCache.h"
47 #include "llvm/Analysis/BasicAliasAnalysis.h"
48 #include "llvm/Analysis/BlockFrequencyInfo.h"
49 #include "llvm/Analysis/CFG.h"
50 #include "llvm/Analysis/ConstantFolding.h"
51 #include "llvm/Analysis/EHPersonalities.h"
52 #include "llvm/Analysis/GlobalsModRef.h"
53 #include "llvm/Analysis/InstructionSimplify.h"
54 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemoryBuiltins.h"
57 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
58 #include "llvm/Analysis/ProfileSummaryInfo.h"
59 #include "llvm/Analysis/TargetFolder.h"
60 #include "llvm/Analysis/TargetLibraryInfo.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/Utils/Local.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DebugInfo.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/Dominators.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/GetElementPtrTypeIterator.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/LegacyPassManager.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PassManager.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/Use.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/InitializePasses.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/DebugCounter.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Transforms/InstCombine/InstCombine.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <algorithm>
104 #include <cassert>
105 #include <cstdint>
106 #include <memory>
107 #include <string>
108 #include <utility>
109
110 #define DEBUG_TYPE "instcombine"
111 #include "llvm/Transforms/Utils/InstructionWorklist.h"
112
113 using namespace llvm;
114 using namespace llvm::PatternMatch;
115
116 STATISTIC(NumWorklistIterations,
117 "Number of instruction combining iterations performed");
118
119 STATISTIC(NumCombined , "Number of insts combined");
120 STATISTIC(NumConstProp, "Number of constant folds");
121 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
122 STATISTIC(NumSunkInst , "Number of instructions sunk");
123 STATISTIC(NumExpand, "Number of expansions");
124 STATISTIC(NumFactor , "Number of factorizations");
125 STATISTIC(NumReassoc , "Number of reassociations");
126 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
127 "Controls which instructions are visited");
128
129 // FIXME: these limits eventually should be as low as 2.
130 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
131 #ifndef NDEBUG
132 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
133 #else
134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
135 #endif
136
137 static cl::opt<bool>
138 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
139 cl::init(true));
140
141 static cl::opt<unsigned> MaxSinkNumUsers(
142 "instcombine-max-sink-users", cl::init(32),
143 cl::desc("Maximum number of undroppable users for instruction sinking"));
144
145 static cl::opt<unsigned> LimitMaxIterations(
146 "instcombine-max-iterations",
147 cl::desc("Limit the maximum number of instruction combining iterations"),
148 cl::init(InstCombineDefaultMaxIterations));
149
150 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
151 "instcombine-infinite-loop-threshold",
152 cl::desc("Number of instruction combining iterations considered an "
153 "infinite loop"),
154 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
155
156 static cl::opt<unsigned>
157 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
158 cl::desc("Maximum array size considered when doing a combine"));
159
160 // FIXME: Remove this flag when it is no longer necessary to convert
161 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
162 // increases variable availability at the cost of accuracy. Variables that
163 // cannot be promoted by mem2reg or SROA will be described as living in memory
164 // for their entire lifetime. However, passes like DSE and instcombine can
165 // delete stores to the alloca, leading to misleading and inaccurate debug
166 // information. This flag can be removed when those passes are fixed.
167 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
168 cl::Hidden, cl::init(true));
169
170 Optional<Instruction *>
targetInstCombineIntrinsic(IntrinsicInst & II)171 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
172 // Handle target specific intrinsics
173 if (II.getCalledFunction()->isTargetIntrinsic()) {
174 return TTI.instCombineIntrinsic(*this, II);
175 }
176 return None;
177 }
178
targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed)179 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
180 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
181 bool &KnownBitsComputed) {
182 // Handle target specific intrinsics
183 if (II.getCalledFunction()->isTargetIntrinsic()) {
184 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
185 KnownBitsComputed);
186 }
187 return None;
188 }
189
targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp)190 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
191 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
192 APInt &UndefElts3,
193 std::function<void(Instruction *, unsigned, APInt, APInt &)>
194 SimplifyAndSetOp) {
195 // Handle target specific intrinsics
196 if (II.getCalledFunction()->isTargetIntrinsic()) {
197 return TTI.simplifyDemandedVectorEltsIntrinsic(
198 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
199 SimplifyAndSetOp);
200 }
201 return None;
202 }
203
EmitGEPOffset(User * GEP)204 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
205 return llvm::EmitGEPOffset(&Builder, DL, GEP);
206 }
207
208 /// Legal integers and common types are considered desirable. This is used to
209 /// avoid creating instructions with types that may not be supported well by the
210 /// the backend.
211 /// NOTE: This treats i8, i16 and i32 specially because they are common
212 /// types in frontend languages.
isDesirableIntType(unsigned BitWidth) const213 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
214 switch (BitWidth) {
215 case 8:
216 case 16:
217 case 32:
218 return true;
219 default:
220 return DL.isLegalInteger(BitWidth);
221 }
222 }
223
224 /// Return true if it is desirable to convert an integer computation from a
225 /// given bit width to a new bit width.
226 /// We don't want to convert from a legal to an illegal type or from a smaller
227 /// to a larger illegal type. A width of '1' is always treated as a desirable
228 /// type because i1 is a fundamental type in IR, and there are many specialized
229 /// optimizations for i1 types. Common/desirable widths are equally treated as
230 /// legal to convert to, in order to open up more combining opportunities.
shouldChangeType(unsigned FromWidth,unsigned ToWidth) const231 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
232 unsigned ToWidth) const {
233 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
234 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
235
236 // Convert to desirable widths even if they are not legal types.
237 // Only shrink types, to prevent infinite loops.
238 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
239 return true;
240
241 // If this is a legal integer from type, and the result would be an illegal
242 // type, don't do the transformation.
243 if (FromLegal && !ToLegal)
244 return false;
245
246 // Otherwise, if both are illegal, do not increase the size of the result. We
247 // do allow things like i160 -> i64, but not i64 -> i160.
248 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
249 return false;
250
251 return true;
252 }
253
254 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
255 /// We don't want to convert from a legal to an illegal type or from a smaller
256 /// to a larger illegal type. i1 is always treated as a legal type because it is
257 /// a fundamental type in IR, and there are many specialized optimizations for
258 /// i1 types.
shouldChangeType(Type * From,Type * To) const259 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
260 // TODO: This could be extended to allow vectors. Datalayout changes might be
261 // needed to properly support that.
262 if (!From->isIntegerTy() || !To->isIntegerTy())
263 return false;
264
265 unsigned FromWidth = From->getPrimitiveSizeInBits();
266 unsigned ToWidth = To->getPrimitiveSizeInBits();
267 return shouldChangeType(FromWidth, ToWidth);
268 }
269
270 // Return true, if No Signed Wrap should be maintained for I.
271 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
272 // where both B and C should be ConstantInts, results in a constant that does
273 // not overflow. This function only handles the Add and Sub opcodes. For
274 // all other opcodes, the function conservatively returns false.
maintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)275 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
276 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
277 if (!OBO || !OBO->hasNoSignedWrap())
278 return false;
279
280 // We reason about Add and Sub Only.
281 Instruction::BinaryOps Opcode = I.getOpcode();
282 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
283 return false;
284
285 const APInt *BVal, *CVal;
286 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
287 return false;
288
289 bool Overflow = false;
290 if (Opcode == Instruction::Add)
291 (void)BVal->sadd_ov(*CVal, Overflow);
292 else
293 (void)BVal->ssub_ov(*CVal, Overflow);
294
295 return !Overflow;
296 }
297
hasNoUnsignedWrap(BinaryOperator & I)298 static bool hasNoUnsignedWrap(BinaryOperator &I) {
299 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
300 return OBO && OBO->hasNoUnsignedWrap();
301 }
302
hasNoSignedWrap(BinaryOperator & I)303 static bool hasNoSignedWrap(BinaryOperator &I) {
304 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
305 return OBO && OBO->hasNoSignedWrap();
306 }
307
308 /// Conservatively clears subclassOptionalData after a reassociation or
309 /// commutation. We preserve fast-math flags when applicable as they can be
310 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)311 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
312 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
313 if (!FPMO) {
314 I.clearSubclassOptionalData();
315 return;
316 }
317
318 FastMathFlags FMF = I.getFastMathFlags();
319 I.clearSubclassOptionalData();
320 I.setFastMathFlags(FMF);
321 }
322
323 /// Combine constant operands of associative operations either before or after a
324 /// cast to eliminate one of the associative operations:
325 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
326 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
simplifyAssocCastAssoc(BinaryOperator * BinOp1,InstCombinerImpl & IC)327 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
328 InstCombinerImpl &IC) {
329 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
330 if (!Cast || !Cast->hasOneUse())
331 return false;
332
333 // TODO: Enhance logic for other casts and remove this check.
334 auto CastOpcode = Cast->getOpcode();
335 if (CastOpcode != Instruction::ZExt)
336 return false;
337
338 // TODO: Enhance logic for other BinOps and remove this check.
339 if (!BinOp1->isBitwiseLogicOp())
340 return false;
341
342 auto AssocOpcode = BinOp1->getOpcode();
343 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
344 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
345 return false;
346
347 Constant *C1, *C2;
348 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
349 !match(BinOp2->getOperand(1), m_Constant(C2)))
350 return false;
351
352 // TODO: This assumes a zext cast.
353 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
354 // to the destination type might lose bits.
355
356 // Fold the constants together in the destination type:
357 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
358 Type *DestTy = C1->getType();
359 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
360 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
361 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
362 IC.replaceOperand(*BinOp1, 1, FoldedC);
363 return true;
364 }
365
366 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
367 // inttoptr ( ptrtoint (x) ) --> x
simplifyIntToPtrRoundTripCast(Value * Val)368 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
369 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
370 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
371 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
372 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
373 Type *CastTy = IntToPtr->getDestTy();
374 if (PtrToInt &&
375 CastTy->getPointerAddressSpace() ==
376 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
377 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
378 DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
379 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
380 "", PtrToInt);
381 }
382 }
383 return nullptr;
384 }
385
386 /// This performs a few simplifications for operators that are associative or
387 /// commutative:
388 ///
389 /// Commutative operators:
390 ///
391 /// 1. Order operands such that they are listed from right (least complex) to
392 /// left (most complex). This puts constants before unary operators before
393 /// binary operators.
394 ///
395 /// Associative operators:
396 ///
397 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
398 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
399 ///
400 /// Associative and commutative operators:
401 ///
402 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
403 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
404 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
405 /// if C1 and C2 are constants.
SimplifyAssociativeOrCommutative(BinaryOperator & I)406 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
407 Instruction::BinaryOps Opcode = I.getOpcode();
408 bool Changed = false;
409
410 do {
411 // Order operands such that they are listed from right (least complex) to
412 // left (most complex). This puts constants before unary operators before
413 // binary operators.
414 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
415 getComplexity(I.getOperand(1)))
416 Changed = !I.swapOperands();
417
418 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
419 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
420
421 if (I.isAssociative()) {
422 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
423 if (Op0 && Op0->getOpcode() == Opcode) {
424 Value *A = Op0->getOperand(0);
425 Value *B = Op0->getOperand(1);
426 Value *C = I.getOperand(1);
427
428 // Does "B op C" simplify?
429 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
430 // It simplifies to V. Form "A op V".
431 replaceOperand(I, 0, A);
432 replaceOperand(I, 1, V);
433 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
434 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
435
436 // Conservatively clear all optional flags since they may not be
437 // preserved by the reassociation. Reset nsw/nuw based on the above
438 // analysis.
439 ClearSubclassDataAfterReassociation(I);
440
441 // Note: this is only valid because SimplifyBinOp doesn't look at
442 // the operands to Op0.
443 if (IsNUW)
444 I.setHasNoUnsignedWrap(true);
445
446 if (IsNSW)
447 I.setHasNoSignedWrap(true);
448
449 Changed = true;
450 ++NumReassoc;
451 continue;
452 }
453 }
454
455 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
456 if (Op1 && Op1->getOpcode() == Opcode) {
457 Value *A = I.getOperand(0);
458 Value *B = Op1->getOperand(0);
459 Value *C = Op1->getOperand(1);
460
461 // Does "A op B" simplify?
462 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
463 // It simplifies to V. Form "V op C".
464 replaceOperand(I, 0, V);
465 replaceOperand(I, 1, C);
466 // Conservatively clear the optional flags, since they may not be
467 // preserved by the reassociation.
468 ClearSubclassDataAfterReassociation(I);
469 Changed = true;
470 ++NumReassoc;
471 continue;
472 }
473 }
474 }
475
476 if (I.isAssociative() && I.isCommutative()) {
477 if (simplifyAssocCastAssoc(&I, *this)) {
478 Changed = true;
479 ++NumReassoc;
480 continue;
481 }
482
483 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
484 if (Op0 && Op0->getOpcode() == Opcode) {
485 Value *A = Op0->getOperand(0);
486 Value *B = Op0->getOperand(1);
487 Value *C = I.getOperand(1);
488
489 // Does "C op A" simplify?
490 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
491 // It simplifies to V. Form "V op B".
492 replaceOperand(I, 0, V);
493 replaceOperand(I, 1, B);
494 // Conservatively clear the optional flags, since they may not be
495 // preserved by the reassociation.
496 ClearSubclassDataAfterReassociation(I);
497 Changed = true;
498 ++NumReassoc;
499 continue;
500 }
501 }
502
503 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
504 if (Op1 && Op1->getOpcode() == Opcode) {
505 Value *A = I.getOperand(0);
506 Value *B = Op1->getOperand(0);
507 Value *C = Op1->getOperand(1);
508
509 // Does "C op A" simplify?
510 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
511 // It simplifies to V. Form "B op V".
512 replaceOperand(I, 0, B);
513 replaceOperand(I, 1, V);
514 // Conservatively clear the optional flags, since they may not be
515 // preserved by the reassociation.
516 ClearSubclassDataAfterReassociation(I);
517 Changed = true;
518 ++NumReassoc;
519 continue;
520 }
521 }
522
523 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
524 // if C1 and C2 are constants.
525 Value *A, *B;
526 Constant *C1, *C2, *CRes;
527 if (Op0 && Op1 &&
528 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
529 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
530 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
531 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
532 bool IsNUW = hasNoUnsignedWrap(I) &&
533 hasNoUnsignedWrap(*Op0) &&
534 hasNoUnsignedWrap(*Op1);
535 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
536 BinaryOperator::CreateNUW(Opcode, A, B) :
537 BinaryOperator::Create(Opcode, A, B);
538
539 if (isa<FPMathOperator>(NewBO)) {
540 FastMathFlags Flags = I.getFastMathFlags();
541 Flags &= Op0->getFastMathFlags();
542 Flags &= Op1->getFastMathFlags();
543 NewBO->setFastMathFlags(Flags);
544 }
545 InsertNewInstWith(NewBO, I);
546 NewBO->takeName(Op1);
547 replaceOperand(I, 0, NewBO);
548 replaceOperand(I, 1, CRes);
549 // Conservatively clear the optional flags, since they may not be
550 // preserved by the reassociation.
551 ClearSubclassDataAfterReassociation(I);
552 if (IsNUW)
553 I.setHasNoUnsignedWrap(true);
554
555 Changed = true;
556 continue;
557 }
558 }
559
560 // No further simplifications.
561 return Changed;
562 } while (true);
563 }
564
565 /// Return whether "X LOp (Y ROp Z)" is always equal to
566 /// "(X LOp Y) ROp (X LOp Z)".
leftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)567 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
568 Instruction::BinaryOps ROp) {
569 // X & (Y | Z) <--> (X & Y) | (X & Z)
570 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
571 if (LOp == Instruction::And)
572 return ROp == Instruction::Or || ROp == Instruction::Xor;
573
574 // X | (Y & Z) <--> (X | Y) & (X | Z)
575 if (LOp == Instruction::Or)
576 return ROp == Instruction::And;
577
578 // X * (Y + Z) <--> (X * Y) + (X * Z)
579 // X * (Y - Z) <--> (X * Y) - (X * Z)
580 if (LOp == Instruction::Mul)
581 return ROp == Instruction::Add || ROp == Instruction::Sub;
582
583 return false;
584 }
585
586 /// Return whether "(X LOp Y) ROp Z" is always equal to
587 /// "(X ROp Z) LOp (Y ROp Z)".
rightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)588 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
589 Instruction::BinaryOps ROp) {
590 if (Instruction::isCommutative(ROp))
591 return leftDistributesOverRight(ROp, LOp);
592
593 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
594 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
595
596 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
597 // but this requires knowing that the addition does not overflow and other
598 // such subtleties.
599 }
600
601 /// This function returns identity value for given opcode, which can be used to
602 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps Opcode,Value * V)603 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
604 if (isa<Constant>(V))
605 return nullptr;
606
607 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
608 }
609
610 /// This function predicates factorization using distributive laws. By default,
611 /// it just returns the 'Op' inputs. But for special-cases like
612 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
613 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
614 /// allow more factorization opportunities.
615 static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode,BinaryOperator * Op,Value * & LHS,Value * & RHS)616 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
617 Value *&LHS, Value *&RHS) {
618 assert(Op && "Expected a binary operator");
619 LHS = Op->getOperand(0);
620 RHS = Op->getOperand(1);
621 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
622 Constant *C;
623 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
624 // X << C --> X * (1 << C)
625 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
626 return Instruction::Mul;
627 }
628 // TODO: We can add other conversions e.g. shr => div etc.
629 }
630 return Op->getOpcode();
631 }
632
633 /// This tries to simplify binary operations by factorizing out common terms
634 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(BinaryOperator & I,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)635 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
636 Instruction::BinaryOps InnerOpcode,
637 Value *A, Value *B, Value *C,
638 Value *D) {
639 assert(A && B && C && D && "All values must be provided");
640
641 Value *V = nullptr;
642 Value *SimplifiedInst = nullptr;
643 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
644 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
645
646 // Does "X op' Y" always equal "Y op' X"?
647 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
648
649 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
650 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
651 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
652 // commutative case, "(A op' B) op (C op' A)"?
653 if (A == C || (InnerCommutative && A == D)) {
654 if (A != C)
655 std::swap(C, D);
656 // Consider forming "A op' (B op D)".
657 // If "B op D" simplifies then it can be formed with no cost.
658 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
659 // If "B op D" doesn't simplify then only go on if both of the existing
660 // operations "A op' B" and "C op' D" will be zapped as no longer used.
661 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
662 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
663 if (V) {
664 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
665 }
666 }
667
668 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
669 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
670 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
671 // commutative case, "(A op' B) op (B op' D)"?
672 if (B == D || (InnerCommutative && B == C)) {
673 if (B != D)
674 std::swap(C, D);
675 // Consider forming "(A op C) op' B".
676 // If "A op C" simplifies then it can be formed with no cost.
677 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
678
679 // If "A op C" doesn't simplify then only go on if both of the existing
680 // operations "A op' B" and "C op' D" will be zapped as no longer used.
681 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
682 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
683 if (V) {
684 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
685 }
686 }
687
688 if (SimplifiedInst) {
689 ++NumFactor;
690 SimplifiedInst->takeName(&I);
691
692 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
693 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
694 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
695 bool HasNSW = false;
696 bool HasNUW = false;
697 if (isa<OverflowingBinaryOperator>(&I)) {
698 HasNSW = I.hasNoSignedWrap();
699 HasNUW = I.hasNoUnsignedWrap();
700 }
701
702 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
703 HasNSW &= LOBO->hasNoSignedWrap();
704 HasNUW &= LOBO->hasNoUnsignedWrap();
705 }
706
707 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
708 HasNSW &= ROBO->hasNoSignedWrap();
709 HasNUW &= ROBO->hasNoUnsignedWrap();
710 }
711
712 if (TopLevelOpcode == Instruction::Add &&
713 InnerOpcode == Instruction::Mul) {
714 // We can propagate 'nsw' if we know that
715 // %Y = mul nsw i16 %X, C
716 // %Z = add nsw i16 %Y, %X
717 // =>
718 // %Z = mul nsw i16 %X, C+1
719 //
720 // iff C+1 isn't INT_MIN
721 const APInt *CInt;
722 if (match(V, m_APInt(CInt))) {
723 if (!CInt->isMinSignedValue())
724 BO->setHasNoSignedWrap(HasNSW);
725 }
726
727 // nuw can be propagated with any constant or nuw value.
728 BO->setHasNoUnsignedWrap(HasNUW);
729 }
730 }
731 }
732 }
733 return SimplifiedInst;
734 }
735
736 /// This tries to simplify binary operations which some other binary operation
737 /// distributes over either by factorizing out common terms
738 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
739 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
740 /// Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)741 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
742 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
743 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
744 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
745 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
746
747 {
748 // Factorization.
749 Value *A, *B, *C, *D;
750 Instruction::BinaryOps LHSOpcode, RHSOpcode;
751 if (Op0)
752 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
753 if (Op1)
754 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
755
756 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
757 // a common term.
758 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
759 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
760 return V;
761
762 // The instruction has the form "(A op' B) op (C)". Try to factorize common
763 // term.
764 if (Op0)
765 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
766 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
767 return V;
768
769 // The instruction has the form "(B) op (C op' D)". Try to factorize common
770 // term.
771 if (Op1)
772 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
773 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
774 return V;
775 }
776
777 // Expansion.
778 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
779 // The instruction has the form "(A op' B) op C". See if expanding it out
780 // to "(A op C) op' (B op C)" results in simplifications.
781 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
782 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
783
784 // Disable the use of undef because it's not safe to distribute undef.
785 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
786 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
787 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
788
789 // Do "A op C" and "B op C" both simplify?
790 if (L && R) {
791 // They do! Return "L op' R".
792 ++NumExpand;
793 C = Builder.CreateBinOp(InnerOpcode, L, R);
794 C->takeName(&I);
795 return C;
796 }
797
798 // Does "A op C" simplify to the identity value for the inner opcode?
799 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
800 // They do! Return "B op C".
801 ++NumExpand;
802 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
803 C->takeName(&I);
804 return C;
805 }
806
807 // Does "B op C" simplify to the identity value for the inner opcode?
808 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
809 // They do! Return "A op C".
810 ++NumExpand;
811 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
812 C->takeName(&I);
813 return C;
814 }
815 }
816
817 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
818 // The instruction has the form "A op (B op' C)". See if expanding it out
819 // to "(A op B) op' (A op C)" results in simplifications.
820 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
821 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
822
823 // Disable the use of undef because it's not safe to distribute undef.
824 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
825 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
826 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
827
828 // Do "A op B" and "A op C" both simplify?
829 if (L && R) {
830 // They do! Return "L op' R".
831 ++NumExpand;
832 A = Builder.CreateBinOp(InnerOpcode, L, R);
833 A->takeName(&I);
834 return A;
835 }
836
837 // Does "A op B" simplify to the identity value for the inner opcode?
838 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
839 // They do! Return "A op C".
840 ++NumExpand;
841 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
842 A->takeName(&I);
843 return A;
844 }
845
846 // Does "A op C" simplify to the identity value for the inner opcode?
847 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
848 // They do! Return "A op B".
849 ++NumExpand;
850 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
851 A->takeName(&I);
852 return A;
853 }
854 }
855
856 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
857 }
858
SimplifySelectsFeedingBinaryOp(BinaryOperator & I,Value * LHS,Value * RHS)859 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
860 Value *LHS,
861 Value *RHS) {
862 Value *A, *B, *C, *D, *E, *F;
863 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
864 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
865 if (!LHSIsSelect && !RHSIsSelect)
866 return nullptr;
867
868 FastMathFlags FMF;
869 BuilderTy::FastMathFlagGuard Guard(Builder);
870 if (isa<FPMathOperator>(&I)) {
871 FMF = I.getFastMathFlags();
872 Builder.setFastMathFlags(FMF);
873 }
874
875 Instruction::BinaryOps Opcode = I.getOpcode();
876 SimplifyQuery Q = SQ.getWithInstruction(&I);
877
878 Value *Cond, *True = nullptr, *False = nullptr;
879 if (LHSIsSelect && RHSIsSelect && A == D) {
880 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
881 Cond = A;
882 True = simplifyBinOp(Opcode, B, E, FMF, Q);
883 False = simplifyBinOp(Opcode, C, F, FMF, Q);
884
885 if (LHS->hasOneUse() && RHS->hasOneUse()) {
886 if (False && !True)
887 True = Builder.CreateBinOp(Opcode, B, E);
888 else if (True && !False)
889 False = Builder.CreateBinOp(Opcode, C, F);
890 }
891 } else if (LHSIsSelect && LHS->hasOneUse()) {
892 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
893 Cond = A;
894 True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
895 False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
896 } else if (RHSIsSelect && RHS->hasOneUse()) {
897 // X op (D ? E : F) -> D ? (X op E) : (X op F)
898 Cond = D;
899 True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
900 False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
901 }
902
903 if (!True || !False)
904 return nullptr;
905
906 Value *SI = Builder.CreateSelect(Cond, True, False);
907 SI->takeName(&I);
908 return SI;
909 }
910
911 /// Freely adapt every user of V as-if V was changed to !V.
912 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
freelyInvertAllUsersOf(Value * I)913 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
914 for (User *U : I->users()) {
915 switch (cast<Instruction>(U)->getOpcode()) {
916 case Instruction::Select: {
917 auto *SI = cast<SelectInst>(U);
918 SI->swapValues();
919 SI->swapProfMetadata();
920 break;
921 }
922 case Instruction::Br:
923 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
924 break;
925 case Instruction::Xor:
926 replaceInstUsesWith(cast<Instruction>(*U), I);
927 break;
928 default:
929 llvm_unreachable("Got unexpected user - out of sync with "
930 "canFreelyInvertAllUsersOf() ?");
931 }
932 }
933 }
934
935 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
936 /// constant zero (which is the 'negate' form).
dyn_castNegVal(Value * V) const937 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
938 Value *NegV;
939 if (match(V, m_Neg(m_Value(NegV))))
940 return NegV;
941
942 // Constants can be considered to be negated values if they can be folded.
943 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
944 return ConstantExpr::getNeg(C);
945
946 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
947 if (C->getType()->getElementType()->isIntegerTy())
948 return ConstantExpr::getNeg(C);
949
950 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
951 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
952 Constant *Elt = CV->getAggregateElement(i);
953 if (!Elt)
954 return nullptr;
955
956 if (isa<UndefValue>(Elt))
957 continue;
958
959 if (!isa<ConstantInt>(Elt))
960 return nullptr;
961 }
962 return ConstantExpr::getNeg(CV);
963 }
964
965 // Negate integer vector splats.
966 if (auto *CV = dyn_cast<Constant>(V))
967 if (CV->getType()->isVectorTy() &&
968 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
969 return ConstantExpr::getNeg(CV);
970
971 return nullptr;
972 }
973
974 /// A binop with a constant operand and a sign-extended boolean operand may be
975 /// converted into a select of constants by applying the binary operation to
976 /// the constant with the two possible values of the extended boolean (0 or -1).
foldBinopOfSextBoolToSelect(BinaryOperator & BO)977 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
978 // TODO: Handle non-commutative binop (constant is operand 0).
979 // TODO: Handle zext.
980 // TODO: Peek through 'not' of cast.
981 Value *BO0 = BO.getOperand(0);
982 Value *BO1 = BO.getOperand(1);
983 Value *X;
984 Constant *C;
985 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
986 !X->getType()->isIntOrIntVectorTy(1))
987 return nullptr;
988
989 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
990 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
991 Constant *Zero = ConstantInt::getNullValue(BO.getType());
992 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
993 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
994 return SelectInst::Create(X, TVal, FVal);
995 }
996
constantFoldOperationIntoSelectOperand(Instruction & I,SelectInst * SI,Value * SO)997 static Constant *constantFoldOperationIntoSelectOperand(
998 Instruction &I, SelectInst *SI, Value *SO) {
999 auto *ConstSO = dyn_cast<Constant>(SO);
1000 if (!ConstSO)
1001 return nullptr;
1002
1003 SmallVector<Constant *> ConstOps;
1004 for (Value *Op : I.operands()) {
1005 if (Op == SI)
1006 ConstOps.push_back(ConstSO);
1007 else if (auto *C = dyn_cast<Constant>(Op))
1008 ConstOps.push_back(C);
1009 else
1010 llvm_unreachable("Operands should be select or constant");
1011 }
1012 return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout());
1013 }
1014
foldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner::BuilderTy & Builder)1015 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
1016 InstCombiner::BuilderTy &Builder) {
1017 if (auto *Cast = dyn_cast<CastInst>(&I))
1018 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
1019
1020 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1021 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
1022 "Expected constant-foldable intrinsic");
1023 Intrinsic::ID IID = II->getIntrinsicID();
1024 if (II->arg_size() == 1)
1025 return Builder.CreateUnaryIntrinsic(IID, SO);
1026
1027 // This works for real binary ops like min/max (where we always expect the
1028 // constant operand to be canonicalized as op1) and unary ops with a bonus
1029 // constant argument like ctlz/cttz.
1030 // TODO: Handle non-commutative binary intrinsics as below for binops.
1031 assert(II->arg_size() == 2 && "Expected binary intrinsic");
1032 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
1033 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
1034 }
1035
1036 assert(I.isBinaryOp() && "Unexpected opcode for select folding");
1037
1038 // Figure out if the constant is the left or the right argument.
1039 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1040 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1041
1042 Value *Op0 = SO, *Op1 = ConstOperand;
1043 if (!ConstIsRHS)
1044 std::swap(Op0, Op1);
1045
1046 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0,
1047 Op1, SO->getName() + ".op");
1048 if (auto *NewBOI = dyn_cast<Instruction>(NewBO))
1049 NewBOI->copyIRFlags(&I);
1050 return NewBO;
1051 }
1052
FoldOpIntoSelect(Instruction & Op,SelectInst * SI,bool FoldWithMultiUse)1053 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1054 bool FoldWithMultiUse) {
1055 // Don't modify shared select instructions unless set FoldWithMultiUse
1056 if (!SI->hasOneUse() && !FoldWithMultiUse)
1057 return nullptr;
1058
1059 Value *TV = SI->getTrueValue();
1060 Value *FV = SI->getFalseValue();
1061 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1062 return nullptr;
1063
1064 // Bool selects with constant operands can be folded to logical ops.
1065 if (SI->getType()->isIntOrIntVectorTy(1))
1066 return nullptr;
1067
1068 // If it's a bitcast involving vectors, make sure it has the same number of
1069 // elements on both sides.
1070 if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1071 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1072 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1073
1074 // Verify that either both or neither are vectors.
1075 if ((SrcTy == nullptr) != (DestTy == nullptr))
1076 return nullptr;
1077
1078 // If vectors, verify that they have the same number of elements.
1079 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1080 return nullptr;
1081 }
1082
1083 // Test if a CmpInst instruction is used exclusively by a select as
1084 // part of a minimum or maximum operation. If so, refrain from doing
1085 // any other folding. This helps out other analyses which understand
1086 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1087 // and CodeGen. And in this case, at least one of the comparison
1088 // operands has at least one user besides the compare (the select),
1089 // which would often largely negate the benefit of folding anyway.
1090 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1091 if (CI->hasOneUse()) {
1092 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1093
1094 // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1095 // We have to ensure that vector constants that only differ with
1096 // undef elements are treated as equivalent.
1097 auto areLooselyEqual = [](Value *A, Value *B) {
1098 if (A == B)
1099 return true;
1100
1101 // Test for vector constants.
1102 Constant *ConstA, *ConstB;
1103 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1104 return false;
1105
1106 // TODO: Deal with FP constants?
1107 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1108 return false;
1109
1110 // Compare for equality including undefs as equal.
1111 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1112 const APInt *C;
1113 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne();
1114 };
1115
1116 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1117 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1118 return nullptr;
1119 }
1120 }
1121
1122 // Make sure that one of the select arms constant folds successfully.
1123 Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, TV);
1124 Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, FV);
1125 if (!NewTV && !NewFV)
1126 return nullptr;
1127
1128 // Create an instruction for the arm that did not fold.
1129 if (!NewTV)
1130 NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1131 if (!NewFV)
1132 NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1133 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1134 }
1135
foldOperationIntoPhiValue(BinaryOperator * I,Value * InV,InstCombiner::BuilderTy & Builder)1136 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1137 InstCombiner::BuilderTy &Builder) {
1138 bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1139 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1140
1141 Value *Op0 = InV, *Op1 = C;
1142 if (!ConstIsRHS)
1143 std::swap(Op0, Op1);
1144
1145 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1146 auto *FPInst = dyn_cast<Instruction>(RI);
1147 if (FPInst && isa<FPMathOperator>(FPInst))
1148 FPInst->copyFastMathFlags(I);
1149 return RI;
1150 }
1151
foldOpIntoPhi(Instruction & I,PHINode * PN)1152 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1153 unsigned NumPHIValues = PN->getNumIncomingValues();
1154 if (NumPHIValues == 0)
1155 return nullptr;
1156
1157 // We normally only transform phis with a single use. However, if a PHI has
1158 // multiple uses and they are all the same operation, we can fold *all* of the
1159 // uses into the PHI.
1160 if (!PN->hasOneUse()) {
1161 // Walk the use list for the instruction, comparing them to I.
1162 for (User *U : PN->users()) {
1163 Instruction *UI = cast<Instruction>(U);
1164 if (UI != &I && !I.isIdenticalTo(UI))
1165 return nullptr;
1166 }
1167 // Otherwise, we can replace *all* users with the new PHI we form.
1168 }
1169
1170 // Check to see if all of the operands of the PHI are simple constants
1171 // (constantint/constantfp/undef). If there is one non-constant value,
1172 // remember the BB it is in. If there is more than one or if *it* is a PHI,
1173 // bail out. We don't do arbitrary constant expressions here because moving
1174 // their computation can be expensive without a cost model.
1175 BasicBlock *NonConstBB = nullptr;
1176 for (unsigned i = 0; i != NumPHIValues; ++i) {
1177 Value *InVal = PN->getIncomingValue(i);
1178 // For non-freeze, require constant operand
1179 // For freeze, require non-undef, non-poison operand
1180 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant()))
1181 continue;
1182 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal))
1183 continue;
1184
1185 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
1186 if (NonConstBB) return nullptr; // More than one non-const value.
1187
1188 NonConstBB = PN->getIncomingBlock(i);
1189
1190 // If the InVal is an invoke at the end of the pred block, then we can't
1191 // insert a computation after it without breaking the edge.
1192 if (isa<InvokeInst>(InVal))
1193 if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1194 return nullptr;
1195
1196 // If the incoming non-constant value is reachable from the phis block,
1197 // we'll push the operation across a loop backedge. This could result in
1198 // an infinite combine loop, and is generally non-profitable (especially
1199 // if the operation was originally outside the loop).
1200 if (isPotentiallyReachable(PN->getParent(), NonConstBB, nullptr, &DT, LI))
1201 return nullptr;
1202 }
1203
1204 // If there is exactly one non-constant value, we can insert a copy of the
1205 // operation in that block. However, if this is a critical edge, we would be
1206 // inserting the computation on some other paths (e.g. inside a loop). Only
1207 // do this if the pred block is unconditionally branching into the phi block.
1208 // Also, make sure that the pred block is not dead code.
1209 if (NonConstBB != nullptr) {
1210 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1211 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1212 return nullptr;
1213 }
1214
1215 // Okay, we can do the transformation: create the new PHI node.
1216 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1217 InsertNewInstBefore(NewPN, *PN);
1218 NewPN->takeName(PN);
1219
1220 // If we are going to have to insert a new computation, do so right before the
1221 // predecessor's terminator.
1222 if (NonConstBB)
1223 Builder.SetInsertPoint(NonConstBB->getTerminator());
1224
1225 // Next, add all of the operands to the PHI.
1226 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1227 // We only currently try to fold the condition of a select when it is a phi,
1228 // not the true/false values.
1229 Value *TrueV = SI->getTrueValue();
1230 Value *FalseV = SI->getFalseValue();
1231 BasicBlock *PhiTransBB = PN->getParent();
1232 for (unsigned i = 0; i != NumPHIValues; ++i) {
1233 BasicBlock *ThisBB = PN->getIncomingBlock(i);
1234 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1235 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1236 Value *InV = nullptr;
1237 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
1238 // even if currently isNullValue gives false.
1239 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1240 // For vector constants, we cannot use isNullValue to fold into
1241 // FalseVInPred versus TrueVInPred. When we have individual nonzero
1242 // elements in the vector, we will incorrectly fold InC to
1243 // `TrueVInPred`.
1244 if (InC && isa<ConstantInt>(InC))
1245 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1246 else {
1247 // Generate the select in the same block as PN's current incoming block.
1248 // Note: ThisBB need not be the NonConstBB because vector constants
1249 // which are constants by definition are handled here.
1250 // FIXME: This can lead to an increase in IR generation because we might
1251 // generate selects for vector constant phi operand, that could not be
1252 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1253 // non-vector phis, this transformation was always profitable because
1254 // the select would be generated exactly once in the NonConstBB.
1255 Builder.SetInsertPoint(ThisBB->getTerminator());
1256 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1257 FalseVInPred, "phi.sel");
1258 }
1259 NewPN->addIncoming(InV, ThisBB);
1260 }
1261 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1262 Constant *C = cast<Constant>(I.getOperand(1));
1263 for (unsigned i = 0; i != NumPHIValues; ++i) {
1264 Value *InV = nullptr;
1265 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1266 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1267 else
1268 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1269 C, "phi.cmp");
1270 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1271 }
1272 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1273 for (unsigned i = 0; i != NumPHIValues; ++i) {
1274 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1275 Builder);
1276 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1277 }
1278 } else if (isa<FreezeInst>(&I)) {
1279 for (unsigned i = 0; i != NumPHIValues; ++i) {
1280 Value *InV;
1281 if (NonConstBB == PN->getIncomingBlock(i))
1282 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1283 else
1284 InV = PN->getIncomingValue(i);
1285 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1286 }
1287 } else {
1288 CastInst *CI = cast<CastInst>(&I);
1289 Type *RetTy = CI->getType();
1290 for (unsigned i = 0; i != NumPHIValues; ++i) {
1291 Value *InV;
1292 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1293 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1294 else
1295 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1296 I.getType(), "phi.cast");
1297 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1298 }
1299 }
1300
1301 for (User *U : make_early_inc_range(PN->users())) {
1302 Instruction *User = cast<Instruction>(U);
1303 if (User == &I) continue;
1304 replaceInstUsesWith(*User, NewPN);
1305 eraseInstFromFunction(*User);
1306 }
1307 return replaceInstUsesWith(I, NewPN);
1308 }
1309
foldBinopWithPhiOperands(BinaryOperator & BO)1310 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
1311 // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1312 // we are guarding against replicating the binop in >1 predecessor.
1313 // This could miss matching a phi with 2 constant incoming values.
1314 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1315 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1316 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1317 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1318 return nullptr;
1319
1320 // TODO: Remove the restriction for binop being in the same block as the phis.
1321 if (BO.getParent() != Phi0->getParent() ||
1322 BO.getParent() != Phi1->getParent())
1323 return nullptr;
1324
1325 // Match a pair of incoming constants for one of the predecessor blocks.
1326 BasicBlock *ConstBB, *OtherBB;
1327 Constant *C0, *C1;
1328 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1329 ConstBB = Phi0->getIncomingBlock(0);
1330 OtherBB = Phi0->getIncomingBlock(1);
1331 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1332 ConstBB = Phi0->getIncomingBlock(1);
1333 OtherBB = Phi0->getIncomingBlock(0);
1334 } else {
1335 return nullptr;
1336 }
1337 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1338 return nullptr;
1339
1340 // The block that we are hoisting to must reach here unconditionally.
1341 // Otherwise, we could be speculatively executing an expensive or
1342 // non-speculative op.
1343 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1344 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1345 !DT.isReachableFromEntry(OtherBB))
1346 return nullptr;
1347
1348 // TODO: This check could be tightened to only apply to binops (div/rem) that
1349 // are not safe to speculatively execute. But that could allow hoisting
1350 // potentially expensive instructions (fdiv for example).
1351 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1352 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
1353 return nullptr;
1354
1355 // Fold constants for the predecessor block with constant incoming values.
1356 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
1357 if (!NewC)
1358 return nullptr;
1359
1360 // Make a new binop in the predecessor block with the non-constant incoming
1361 // values.
1362 Builder.SetInsertPoint(PredBlockBranch);
1363 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1364 Phi0->getIncomingValueForBlock(OtherBB),
1365 Phi1->getIncomingValueForBlock(OtherBB));
1366 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1367 NotFoldedNewBO->copyIRFlags(&BO);
1368
1369 // Replace the binop with a phi of the new values. The old phis are dead.
1370 PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1371 NewPhi->addIncoming(NewBO, OtherBB);
1372 NewPhi->addIncoming(NewC, ConstBB);
1373 return NewPhi;
1374 }
1375
foldBinOpIntoSelectOrPhi(BinaryOperator & I)1376 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1377 if (!isa<Constant>(I.getOperand(1)))
1378 return nullptr;
1379
1380 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1381 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1382 return NewSel;
1383 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1384 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1385 return NewPhi;
1386 }
1387 return nullptr;
1388 }
1389
1390 /// Given a pointer type and a constant offset, determine whether or not there
1391 /// is a sequence of GEP indices into the pointed type that will land us at the
1392 /// specified offset. If so, fill them into NewIndices and return the resultant
1393 /// element type, otherwise return null.
findElementAtOffset(PointerType * PtrTy,int64_t IntOffset,SmallVectorImpl<Value * > & NewIndices,const DataLayout & DL)1394 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset,
1395 SmallVectorImpl<Value *> &NewIndices,
1396 const DataLayout &DL) {
1397 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers.
1398 Type *Ty = PtrTy->getNonOpaquePointerElementType();
1399 if (!Ty->isSized())
1400 return nullptr;
1401
1402 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset);
1403 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset);
1404 if (!Offset.isZero())
1405 return nullptr;
1406
1407 for (const APInt &Index : Indices)
1408 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index));
1409 return Ty;
1410 }
1411
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)1412 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1413 // If this GEP has only 0 indices, it is the same pointer as
1414 // Src. If Src is not a trivial GEP too, don't combine
1415 // the indices.
1416 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1417 !Src.hasOneUse())
1418 return false;
1419 return true;
1420 }
1421
1422 /// Return a value X such that Val = X * Scale, or null if none.
1423 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)1424 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1425 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1426 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1427 Scale.getBitWidth() && "Scale not compatible with value!");
1428
1429 // If Val is zero or Scale is one then Val = Val * Scale.
1430 if (match(Val, m_Zero()) || Scale == 1) {
1431 NoSignedWrap = true;
1432 return Val;
1433 }
1434
1435 // If Scale is zero then it does not divide Val.
1436 if (Scale.isMinValue())
1437 return nullptr;
1438
1439 // Look through chains of multiplications, searching for a constant that is
1440 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1441 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1442 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1443 // down from Val:
1444 //
1445 // Val = M1 * X || Analysis starts here and works down
1446 // M1 = M2 * Y || Doesn't descend into terms with more
1447 // M2 = Z * 4 \/ than one use
1448 //
1449 // Then to modify a term at the bottom:
1450 //
1451 // Val = M1 * X
1452 // M1 = Z * Y || Replaced M2 with Z
1453 //
1454 // Then to work back up correcting nsw flags.
1455
1456 // Op - the term we are currently analyzing. Starts at Val then drills down.
1457 // Replaced with its descaled value before exiting from the drill down loop.
1458 Value *Op = Val;
1459
1460 // Parent - initially null, but after drilling down notes where Op came from.
1461 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1462 // 0'th operand of Val.
1463 std::pair<Instruction *, unsigned> Parent;
1464
1465 // Set if the transform requires a descaling at deeper levels that doesn't
1466 // overflow.
1467 bool RequireNoSignedWrap = false;
1468
1469 // Log base 2 of the scale. Negative if not a power of 2.
1470 int32_t logScale = Scale.exactLogBase2();
1471
1472 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1473 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1474 // If Op is a constant divisible by Scale then descale to the quotient.
1475 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1476 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1477 if (!Remainder.isMinValue())
1478 // Not divisible by Scale.
1479 return nullptr;
1480 // Replace with the quotient in the parent.
1481 Op = ConstantInt::get(CI->getType(), Quotient);
1482 NoSignedWrap = true;
1483 break;
1484 }
1485
1486 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1487 if (BO->getOpcode() == Instruction::Mul) {
1488 // Multiplication.
1489 NoSignedWrap = BO->hasNoSignedWrap();
1490 if (RequireNoSignedWrap && !NoSignedWrap)
1491 return nullptr;
1492
1493 // There are three cases for multiplication: multiplication by exactly
1494 // the scale, multiplication by a constant different to the scale, and
1495 // multiplication by something else.
1496 Value *LHS = BO->getOperand(0);
1497 Value *RHS = BO->getOperand(1);
1498
1499 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1500 // Multiplication by a constant.
1501 if (CI->getValue() == Scale) {
1502 // Multiplication by exactly the scale, replace the multiplication
1503 // by its left-hand side in the parent.
1504 Op = LHS;
1505 break;
1506 }
1507
1508 // Otherwise drill down into the constant.
1509 if (!Op->hasOneUse())
1510 return nullptr;
1511
1512 Parent = std::make_pair(BO, 1);
1513 continue;
1514 }
1515
1516 // Multiplication by something else. Drill down into the left-hand side
1517 // since that's where the reassociate pass puts the good stuff.
1518 if (!Op->hasOneUse())
1519 return nullptr;
1520
1521 Parent = std::make_pair(BO, 0);
1522 continue;
1523 }
1524
1525 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1526 isa<ConstantInt>(BO->getOperand(1))) {
1527 // Multiplication by a power of 2.
1528 NoSignedWrap = BO->hasNoSignedWrap();
1529 if (RequireNoSignedWrap && !NoSignedWrap)
1530 return nullptr;
1531
1532 Value *LHS = BO->getOperand(0);
1533 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1534 getLimitedValue(Scale.getBitWidth());
1535 // Op = LHS << Amt.
1536
1537 if (Amt == logScale) {
1538 // Multiplication by exactly the scale, replace the multiplication
1539 // by its left-hand side in the parent.
1540 Op = LHS;
1541 break;
1542 }
1543 if (Amt < logScale || !Op->hasOneUse())
1544 return nullptr;
1545
1546 // Multiplication by more than the scale. Reduce the multiplying amount
1547 // by the scale in the parent.
1548 Parent = std::make_pair(BO, 1);
1549 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1550 break;
1551 }
1552 }
1553
1554 if (!Op->hasOneUse())
1555 return nullptr;
1556
1557 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1558 if (Cast->getOpcode() == Instruction::SExt) {
1559 // Op is sign-extended from a smaller type, descale in the smaller type.
1560 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1561 APInt SmallScale = Scale.trunc(SmallSize);
1562 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1563 // descale Op as (sext Y) * Scale. In order to have
1564 // sext (Y * SmallScale) = (sext Y) * Scale
1565 // some conditions need to hold however: SmallScale must sign-extend to
1566 // Scale and the multiplication Y * SmallScale should not overflow.
1567 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1568 // SmallScale does not sign-extend to Scale.
1569 return nullptr;
1570 assert(SmallScale.exactLogBase2() == logScale);
1571 // Require that Y * SmallScale must not overflow.
1572 RequireNoSignedWrap = true;
1573
1574 // Drill down through the cast.
1575 Parent = std::make_pair(Cast, 0);
1576 Scale = SmallScale;
1577 continue;
1578 }
1579
1580 if (Cast->getOpcode() == Instruction::Trunc) {
1581 // Op is truncated from a larger type, descale in the larger type.
1582 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1583 // trunc (Y * sext Scale) = (trunc Y) * Scale
1584 // always holds. However (trunc Y) * Scale may overflow even if
1585 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1586 // from this point up in the expression (see later).
1587 if (RequireNoSignedWrap)
1588 return nullptr;
1589
1590 // Drill down through the cast.
1591 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1592 Parent = std::make_pair(Cast, 0);
1593 Scale = Scale.sext(LargeSize);
1594 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1595 logScale = -1;
1596 assert(Scale.exactLogBase2() == logScale);
1597 continue;
1598 }
1599 }
1600
1601 // Unsupported expression, bail out.
1602 return nullptr;
1603 }
1604
1605 // If Op is zero then Val = Op * Scale.
1606 if (match(Op, m_Zero())) {
1607 NoSignedWrap = true;
1608 return Op;
1609 }
1610
1611 // We know that we can successfully descale, so from here on we can safely
1612 // modify the IR. Op holds the descaled version of the deepest term in the
1613 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1614 // not to overflow.
1615
1616 if (!Parent.first)
1617 // The expression only had one term.
1618 return Op;
1619
1620 // Rewrite the parent using the descaled version of its operand.
1621 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1622 assert(Op != Parent.first->getOperand(Parent.second) &&
1623 "Descaling was a no-op?");
1624 replaceOperand(*Parent.first, Parent.second, Op);
1625 Worklist.push(Parent.first);
1626
1627 // Now work back up the expression correcting nsw flags. The logic is based
1628 // on the following observation: if X * Y is known not to overflow as a signed
1629 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1630 // then X * Z will not overflow as a signed multiplication either. As we work
1631 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1632 // current level has strictly smaller absolute value than the original.
1633 Instruction *Ancestor = Parent.first;
1634 do {
1635 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1636 // If the multiplication wasn't nsw then we can't say anything about the
1637 // value of the descaled multiplication, and we have to clear nsw flags
1638 // from this point on up.
1639 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1640 NoSignedWrap &= OpNoSignedWrap;
1641 if (NoSignedWrap != OpNoSignedWrap) {
1642 BO->setHasNoSignedWrap(NoSignedWrap);
1643 Worklist.push(Ancestor);
1644 }
1645 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1646 // The fact that the descaled input to the trunc has smaller absolute
1647 // value than the original input doesn't tell us anything useful about
1648 // the absolute values of the truncations.
1649 NoSignedWrap = false;
1650 }
1651 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1652 "Failed to keep proper track of nsw flags while drilling down?");
1653
1654 if (Ancestor == Val)
1655 // Got to the top, all done!
1656 return Val;
1657
1658 // Move up one level in the expression.
1659 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1660 Ancestor = Ancestor->user_back();
1661 } while (true);
1662 }
1663
foldVectorBinop(BinaryOperator & Inst)1664 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1665 if (!isa<VectorType>(Inst.getType()))
1666 return nullptr;
1667
1668 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1669 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1670 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1671 cast<VectorType>(Inst.getType())->getElementCount());
1672 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1673 cast<VectorType>(Inst.getType())->getElementCount());
1674
1675 // If both operands of the binop are vector concatenations, then perform the
1676 // narrow binop on each pair of the source operands followed by concatenation
1677 // of the results.
1678 Value *L0, *L1, *R0, *R1;
1679 ArrayRef<int> Mask;
1680 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1681 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1682 LHS->hasOneUse() && RHS->hasOneUse() &&
1683 cast<ShuffleVectorInst>(LHS)->isConcat() &&
1684 cast<ShuffleVectorInst>(RHS)->isConcat()) {
1685 // This transform does not have the speculative execution constraint as
1686 // below because the shuffle is a concatenation. The new binops are
1687 // operating on exactly the same elements as the existing binop.
1688 // TODO: We could ease the mask requirement to allow different undef lanes,
1689 // but that requires an analysis of the binop-with-undef output value.
1690 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1691 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1692 BO->copyIRFlags(&Inst);
1693 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1694 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1695 BO->copyIRFlags(&Inst);
1696 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1697 }
1698
1699 // It may not be safe to reorder shuffles and things like div, urem, etc.
1700 // because we may trap when executing those ops on unknown vector elements.
1701 // See PR20059.
1702 if (!isSafeToSpeculativelyExecute(&Inst))
1703 return nullptr;
1704
1705 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1706 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1707 if (auto *BO = dyn_cast<BinaryOperator>(XY))
1708 BO->copyIRFlags(&Inst);
1709 return new ShuffleVectorInst(XY, M);
1710 };
1711
1712 // If both arguments of the binary operation are shuffles that use the same
1713 // mask and shuffle within a single vector, move the shuffle after the binop.
1714 Value *V1, *V2;
1715 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1716 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1717 V1->getType() == V2->getType() &&
1718 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1719 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1720 return createBinOpShuffle(V1, V2, Mask);
1721 }
1722
1723 // If both arguments of a commutative binop are select-shuffles that use the
1724 // same mask with commuted operands, the shuffles are unnecessary.
1725 if (Inst.isCommutative() &&
1726 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1727 match(RHS,
1728 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1729 auto *LShuf = cast<ShuffleVectorInst>(LHS);
1730 auto *RShuf = cast<ShuffleVectorInst>(RHS);
1731 // TODO: Allow shuffles that contain undefs in the mask?
1732 // That is legal, but it reduces undef knowledge.
1733 // TODO: Allow arbitrary shuffles by shuffling after binop?
1734 // That might be legal, but we have to deal with poison.
1735 if (LShuf->isSelect() &&
1736 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1737 RShuf->isSelect() &&
1738 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1739 // Example:
1740 // LHS = shuffle V1, V2, <0, 5, 6, 3>
1741 // RHS = shuffle V2, V1, <0, 5, 6, 3>
1742 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1743 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1744 NewBO->copyIRFlags(&Inst);
1745 return NewBO;
1746 }
1747 }
1748
1749 // If one argument is a shuffle within one vector and the other is a constant,
1750 // try moving the shuffle after the binary operation. This canonicalization
1751 // intends to move shuffles closer to other shuffles and binops closer to
1752 // other binops, so they can be folded. It may also enable demanded elements
1753 // transforms.
1754 Constant *C;
1755 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1756 if (InstVTy &&
1757 match(&Inst,
1758 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1759 m_ImmConstant(C))) &&
1760 cast<FixedVectorType>(V1->getType())->getNumElements() <=
1761 InstVTy->getNumElements()) {
1762 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1763 "Shuffle should not change scalar type");
1764
1765 // Find constant NewC that has property:
1766 // shuffle(NewC, ShMask) = C
1767 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1768 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1769 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1770 bool ConstOp1 = isa<Constant>(RHS);
1771 ArrayRef<int> ShMask = Mask;
1772 unsigned SrcVecNumElts =
1773 cast<FixedVectorType>(V1->getType())->getNumElements();
1774 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1775 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1776 bool MayChange = true;
1777 unsigned NumElts = InstVTy->getNumElements();
1778 for (unsigned I = 0; I < NumElts; ++I) {
1779 Constant *CElt = C->getAggregateElement(I);
1780 if (ShMask[I] >= 0) {
1781 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1782 Constant *NewCElt = NewVecC[ShMask[I]];
1783 // Bail out if:
1784 // 1. The constant vector contains a constant expression.
1785 // 2. The shuffle needs an element of the constant vector that can't
1786 // be mapped to a new constant vector.
1787 // 3. This is a widening shuffle that copies elements of V1 into the
1788 // extended elements (extending with undef is allowed).
1789 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1790 I >= SrcVecNumElts) {
1791 MayChange = false;
1792 break;
1793 }
1794 NewVecC[ShMask[I]] = CElt;
1795 }
1796 // If this is a widening shuffle, we must be able to extend with undef
1797 // elements. If the original binop does not produce an undef in the high
1798 // lanes, then this transform is not safe.
1799 // Similarly for undef lanes due to the shuffle mask, we can only
1800 // transform binops that preserve undef.
1801 // TODO: We could shuffle those non-undef constant values into the
1802 // result by using a constant vector (rather than an undef vector)
1803 // as operand 1 of the new binop, but that might be too aggressive
1804 // for target-independent shuffle creation.
1805 if (I >= SrcVecNumElts || ShMask[I] < 0) {
1806 Constant *MaybeUndef =
1807 ConstOp1
1808 ? ConstantFoldBinaryOpOperands(Opcode, UndefScalar, CElt, DL)
1809 : ConstantFoldBinaryOpOperands(Opcode, CElt, UndefScalar, DL);
1810 if (!MaybeUndef || !match(MaybeUndef, m_Undef())) {
1811 MayChange = false;
1812 break;
1813 }
1814 }
1815 }
1816 if (MayChange) {
1817 Constant *NewC = ConstantVector::get(NewVecC);
1818 // It may not be safe to execute a binop on a vector with undef elements
1819 // because the entire instruction can be folded to undef or create poison
1820 // that did not exist in the original code.
1821 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1822 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1823
1824 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1825 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1826 Value *NewLHS = ConstOp1 ? V1 : NewC;
1827 Value *NewRHS = ConstOp1 ? NewC : V1;
1828 return createBinOpShuffle(NewLHS, NewRHS, Mask);
1829 }
1830 }
1831
1832 // Try to reassociate to sink a splat shuffle after a binary operation.
1833 if (Inst.isAssociative() && Inst.isCommutative()) {
1834 // Canonicalize shuffle operand as LHS.
1835 if (isa<ShuffleVectorInst>(RHS))
1836 std::swap(LHS, RHS);
1837
1838 Value *X;
1839 ArrayRef<int> MaskC;
1840 int SplatIndex;
1841 Value *Y, *OtherOp;
1842 if (!match(LHS,
1843 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1844 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1845 X->getType() != Inst.getType() ||
1846 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
1847 return nullptr;
1848
1849 // FIXME: This may not be safe if the analysis allows undef elements. By
1850 // moving 'Y' before the splat shuffle, we are implicitly assuming
1851 // that it is not undef/poison at the splat index.
1852 if (isSplatValue(OtherOp, SplatIndex)) {
1853 std::swap(Y, OtherOp);
1854 } else if (!isSplatValue(Y, SplatIndex)) {
1855 return nullptr;
1856 }
1857
1858 // X and Y are splatted values, so perform the binary operation on those
1859 // values followed by a splat followed by the 2nd binary operation:
1860 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1861 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1862 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1863 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1864 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1865
1866 // Intersect FMF on both new binops. Other (poison-generating) flags are
1867 // dropped to be safe.
1868 if (isa<FPMathOperator>(R)) {
1869 R->copyFastMathFlags(&Inst);
1870 R->andIRFlags(RHS);
1871 }
1872 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1873 NewInstBO->copyIRFlags(R);
1874 return R;
1875 }
1876
1877 return nullptr;
1878 }
1879
1880 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1881 /// of a value. This requires a potentially expensive known bits check to make
1882 /// sure the narrow op does not overflow.
narrowMathIfNoOverflow(BinaryOperator & BO)1883 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1884 // We need at least one extended operand.
1885 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1886
1887 // If this is a sub, we swap the operands since we always want an extension
1888 // on the RHS. The LHS can be an extension or a constant.
1889 if (BO.getOpcode() == Instruction::Sub)
1890 std::swap(Op0, Op1);
1891
1892 Value *X;
1893 bool IsSext = match(Op0, m_SExt(m_Value(X)));
1894 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1895 return nullptr;
1896
1897 // If both operands are the same extension from the same source type and we
1898 // can eliminate at least one (hasOneUse), this might work.
1899 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1900 Value *Y;
1901 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1902 cast<Operator>(Op1)->getOpcode() == CastOpc &&
1903 (Op0->hasOneUse() || Op1->hasOneUse()))) {
1904 // If that did not match, see if we have a suitable constant operand.
1905 // Truncating and extending must produce the same constant.
1906 Constant *WideC;
1907 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1908 return nullptr;
1909 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1910 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1911 return nullptr;
1912 Y = NarrowC;
1913 }
1914
1915 // Swap back now that we found our operands.
1916 if (BO.getOpcode() == Instruction::Sub)
1917 std::swap(X, Y);
1918
1919 // Both operands have narrow versions. Last step: the math must not overflow
1920 // in the narrow width.
1921 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1922 return nullptr;
1923
1924 // bo (ext X), (ext Y) --> ext (bo X, Y)
1925 // bo (ext X), C --> ext (bo X, C')
1926 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1927 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1928 if (IsSext)
1929 NewBinOp->setHasNoSignedWrap();
1930 else
1931 NewBinOp->setHasNoUnsignedWrap();
1932 }
1933 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1934 }
1935
isMergedGEPInBounds(GEPOperator & GEP1,GEPOperator & GEP2)1936 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1937 // At least one GEP must be inbounds.
1938 if (!GEP1.isInBounds() && !GEP2.isInBounds())
1939 return false;
1940
1941 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1942 (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1943 }
1944
1945 /// Thread a GEP operation with constant indices through the constant true/false
1946 /// arms of a select.
foldSelectGEP(GetElementPtrInst & GEP,InstCombiner::BuilderTy & Builder)1947 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1948 InstCombiner::BuilderTy &Builder) {
1949 if (!GEP.hasAllConstantIndices())
1950 return nullptr;
1951
1952 Instruction *Sel;
1953 Value *Cond;
1954 Constant *TrueC, *FalseC;
1955 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1956 !match(Sel,
1957 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1958 return nullptr;
1959
1960 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1961 // Propagate 'inbounds' and metadata from existing instructions.
1962 // Note: using IRBuilder to create the constants for efficiency.
1963 SmallVector<Value *, 4> IndexC(GEP.indices());
1964 bool IsInBounds = GEP.isInBounds();
1965 Type *Ty = GEP.getSourceElementType();
1966 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds);
1967 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds);
1968 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1969 }
1970
visitGEPOfGEP(GetElementPtrInst & GEP,GEPOperator * Src)1971 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
1972 GEPOperator *Src) {
1973 // Combine Indices - If the source pointer to this getelementptr instruction
1974 // is a getelementptr instruction with matching element type, combine the
1975 // indices of the two getelementptr instructions into a single instruction.
1976 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1977 return nullptr;
1978
1979 if (Src->getResultElementType() == GEP.getSourceElementType() &&
1980 Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1981 Src->hasOneUse()) {
1982 Value *GO1 = GEP.getOperand(1);
1983 Value *SO1 = Src->getOperand(1);
1984
1985 if (LI) {
1986 // Try to reassociate loop invariant GEP chains to enable LICM.
1987 if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1988 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1989 // invariant: this breaks the dependence between GEPs and allows LICM
1990 // to hoist the invariant part out of the loop.
1991 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1992 // The swapped GEPs are inbounds if both original GEPs are inbounds
1993 // and the sign of the offsets is the same. For simplicity, only
1994 // handle both offsets being non-negative.
1995 bool IsInBounds = Src->isInBounds() && GEP.isInBounds() &&
1996 isKnownNonNegative(SO1, DL, 0, &AC, &GEP, &DT) &&
1997 isKnownNonNegative(GO1, DL, 0, &AC, &GEP, &DT);
1998 // Put NewSrc at same location as %src.
1999 Builder.SetInsertPoint(cast<Instruction>(Src));
2000 Value *NewSrc = Builder.CreateGEP(GEP.getSourceElementType(),
2001 Src->getPointerOperand(), GO1,
2002 Src->getName(), IsInBounds);
2003 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
2004 GEP.getSourceElementType(), NewSrc, {SO1});
2005 NewGEP->setIsInBounds(IsInBounds);
2006 return NewGEP;
2007 }
2008 }
2009 }
2010 }
2011
2012 // Note that if our source is a gep chain itself then we wait for that
2013 // chain to be resolved before we perform this transformation. This
2014 // avoids us creating a TON of code in some cases.
2015 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2016 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2017 return nullptr; // Wait until our source is folded to completion.
2018
2019 // For constant GEPs, use a more general offset-based folding approach.
2020 // Only do this for opaque pointers, as the result element type may change.
2021 Type *PtrTy = Src->getType()->getScalarType();
2022 if (PtrTy->isOpaquePointerTy() && GEP.hasAllConstantIndices() &&
2023 (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2024 // Split Src into a variable part and a constant suffix.
2025 gep_type_iterator GTI = gep_type_begin(*Src);
2026 Type *BaseType = GTI.getIndexedType();
2027 bool IsFirstType = true;
2028 unsigned NumVarIndices = 0;
2029 for (auto Pair : enumerate(Src->indices())) {
2030 if (!isa<ConstantInt>(Pair.value())) {
2031 BaseType = GTI.getIndexedType();
2032 IsFirstType = false;
2033 NumVarIndices = Pair.index() + 1;
2034 }
2035 ++GTI;
2036 }
2037
2038 // Determine the offset for the constant suffix of Src.
2039 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
2040 if (NumVarIndices != Src->getNumIndices()) {
2041 // FIXME: getIndexedOffsetInType() does not handled scalable vectors.
2042 if (isa<ScalableVectorType>(BaseType))
2043 return nullptr;
2044
2045 SmallVector<Value *> ConstantIndices;
2046 if (!IsFirstType)
2047 ConstantIndices.push_back(
2048 Constant::getNullValue(Type::getInt32Ty(GEP.getContext())));
2049 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
2050 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
2051 }
2052
2053 // Add the offset for GEP (which is fully constant).
2054 if (!GEP.accumulateConstantOffset(DL, Offset))
2055 return nullptr;
2056
2057 APInt OffsetOld = Offset;
2058 // Convert the total offset back into indices.
2059 SmallVector<APInt> ConstIndices =
2060 DL.getGEPIndicesForOffset(BaseType, Offset);
2061 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) {
2062 // If both GEP are constant-indexed, and cannot be merged in either way,
2063 // convert them to a GEP of i8.
2064 if (Src->hasAllConstantIndices())
2065 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2066 ? GetElementPtrInst::CreateInBounds(
2067 Builder.getInt8Ty(), Src->getOperand(0),
2068 Builder.getInt(OffsetOld), GEP.getName())
2069 : GetElementPtrInst::Create(
2070 Builder.getInt8Ty(), Src->getOperand(0),
2071 Builder.getInt(OffsetOld), GEP.getName());
2072 return nullptr;
2073 }
2074
2075 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP));
2076 SmallVector<Value *> Indices;
2077 append_range(Indices, drop_end(Src->indices(),
2078 Src->getNumIndices() - NumVarIndices));
2079 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
2080 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
2081 // Even if the total offset is inbounds, we may end up representing it
2082 // by first performing a larger negative offset, and then a smaller
2083 // positive one. The large negative offset might go out of bounds. Only
2084 // preserve inbounds if all signs are the same.
2085 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative();
2086 }
2087
2088 return IsInBounds
2089 ? GetElementPtrInst::CreateInBounds(Src->getSourceElementType(),
2090 Src->getOperand(0), Indices,
2091 GEP.getName())
2092 : GetElementPtrInst::Create(Src->getSourceElementType(),
2093 Src->getOperand(0), Indices,
2094 GEP.getName());
2095 }
2096
2097 if (Src->getResultElementType() != GEP.getSourceElementType())
2098 return nullptr;
2099
2100 SmallVector<Value*, 8> Indices;
2101
2102 // Find out whether the last index in the source GEP is a sequential idx.
2103 bool EndsWithSequential = false;
2104 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2105 I != E; ++I)
2106 EndsWithSequential = I.isSequential();
2107
2108 // Can we combine the two pointer arithmetics offsets?
2109 if (EndsWithSequential) {
2110 // Replace: gep (gep %P, long B), long A, ...
2111 // With: T = long A+B; gep %P, T, ...
2112 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2113 Value *GO1 = GEP.getOperand(1);
2114
2115 // If they aren't the same type, then the input hasn't been processed
2116 // by the loop above yet (which canonicalizes sequential index types to
2117 // intptr_t). Just avoid transforming this until the input has been
2118 // normalized.
2119 if (SO1->getType() != GO1->getType())
2120 return nullptr;
2121
2122 Value *Sum =
2123 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2124 // Only do the combine when we are sure the cost after the
2125 // merge is never more than that before the merge.
2126 if (Sum == nullptr)
2127 return nullptr;
2128
2129 // Update the GEP in place if possible.
2130 if (Src->getNumOperands() == 2) {
2131 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2132 replaceOperand(GEP, 0, Src->getOperand(0));
2133 replaceOperand(GEP, 1, Sum);
2134 return &GEP;
2135 }
2136 Indices.append(Src->op_begin()+1, Src->op_end()-1);
2137 Indices.push_back(Sum);
2138 Indices.append(GEP.op_begin()+2, GEP.op_end());
2139 } else if (isa<Constant>(*GEP.idx_begin()) &&
2140 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2141 Src->getNumOperands() != 1) {
2142 // Otherwise we can do the fold if the first index of the GEP is a zero
2143 Indices.append(Src->op_begin()+1, Src->op_end());
2144 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2145 }
2146
2147 if (!Indices.empty())
2148 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2149 ? GetElementPtrInst::CreateInBounds(
2150 Src->getSourceElementType(), Src->getOperand(0), Indices,
2151 GEP.getName())
2152 : GetElementPtrInst::Create(Src->getSourceElementType(),
2153 Src->getOperand(0), Indices,
2154 GEP.getName());
2155
2156 return nullptr;
2157 }
2158
2159 // Note that we may have also stripped an address space cast in between.
visitGEPOfBitcast(BitCastInst * BCI,GetElementPtrInst & GEP)2160 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI,
2161 GetElementPtrInst &GEP) {
2162 // With opaque pointers, there is no pointer element type we can use to
2163 // adjust the GEP type.
2164 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2165 if (SrcType->isOpaque())
2166 return nullptr;
2167
2168 Type *GEPEltType = GEP.getSourceElementType();
2169 Type *SrcEltType = SrcType->getNonOpaquePointerElementType();
2170 Value *SrcOp = BCI->getOperand(0);
2171
2172 // GEP directly using the source operand if this GEP is accessing an element
2173 // of a bitcasted pointer to vector or array of the same dimensions:
2174 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2175 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2176 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2177 const DataLayout &DL) {
2178 auto *VecVTy = cast<FixedVectorType>(VecTy);
2179 return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2180 ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2181 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2182 };
2183 if (GEP.getNumOperands() == 3 &&
2184 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2185 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2186 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2187 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2188
2189 // Create a new GEP here, as using `setOperand()` followed by
2190 // `setSourceElementType()` won't actually update the type of the
2191 // existing GEP Value. Causing issues if this Value is accessed when
2192 // constructing an AddrSpaceCastInst
2193 SmallVector<Value *, 8> Indices(GEP.indices());
2194 Value *NGEP =
2195 Builder.CreateGEP(SrcEltType, SrcOp, Indices, "", GEP.isInBounds());
2196 NGEP->takeName(&GEP);
2197
2198 // Preserve GEP address space to satisfy users
2199 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2200 return new AddrSpaceCastInst(NGEP, GEP.getType());
2201
2202 return replaceInstUsesWith(GEP, NGEP);
2203 }
2204
2205 // See if we can simplify:
2206 // X = bitcast A* to B*
2207 // Y = gep X, <...constant indices...>
2208 // into a gep of the original struct. This is important for SROA and alias
2209 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2210 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType());
2211 APInt Offset(OffsetBits, 0);
2212
2213 // If the bitcast argument is an allocation, The bitcast is for convertion
2214 // to actual type of allocation. Removing such bitcasts, results in having
2215 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2216 // struct or array hierarchy.
2217 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2218 // a better chance to succeed.
2219 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2220 !isAllocationFn(SrcOp, &TLI)) {
2221 // If this GEP instruction doesn't move the pointer, just replace the GEP
2222 // with a bitcast of the real input to the dest type.
2223 if (!Offset) {
2224 // If the bitcast is of an allocation, and the allocation will be
2225 // converted to match the type of the cast, don't touch this.
2226 if (isa<AllocaInst>(SrcOp)) {
2227 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2228 if (Instruction *I = visitBitCast(*BCI)) {
2229 if (I != BCI) {
2230 I->takeName(BCI);
2231 BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2232 replaceInstUsesWith(*BCI, I);
2233 }
2234 return &GEP;
2235 }
2236 }
2237
2238 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2239 return new AddrSpaceCastInst(SrcOp, GEP.getType());
2240 return new BitCastInst(SrcOp, GEP.getType());
2241 }
2242
2243 // Otherwise, if the offset is non-zero, we need to find out if there is a
2244 // field at Offset in 'A's type. If so, we can pull the cast through the
2245 // GEP.
2246 SmallVector<Value *, 8> NewIndices;
2247 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) {
2248 Value *NGEP = Builder.CreateGEP(SrcEltType, SrcOp, NewIndices, "",
2249 GEP.isInBounds());
2250
2251 if (NGEP->getType() == GEP.getType())
2252 return replaceInstUsesWith(GEP, NGEP);
2253 NGEP->takeName(&GEP);
2254
2255 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2256 return new AddrSpaceCastInst(NGEP, GEP.getType());
2257 return new BitCastInst(NGEP, GEP.getType());
2258 }
2259 }
2260
2261 return nullptr;
2262 }
2263
visitGetElementPtrInst(GetElementPtrInst & GEP)2264 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2265 Value *PtrOp = GEP.getOperand(0);
2266 SmallVector<Value *, 8> Indices(GEP.indices());
2267 Type *GEPType = GEP.getType();
2268 Type *GEPEltType = GEP.getSourceElementType();
2269 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
2270 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
2271 SQ.getWithInstruction(&GEP)))
2272 return replaceInstUsesWith(GEP, V);
2273
2274 // For vector geps, use the generic demanded vector support.
2275 // Skip if GEP return type is scalable. The number of elements is unknown at
2276 // compile-time.
2277 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2278 auto VWidth = GEPFVTy->getNumElements();
2279 APInt UndefElts(VWidth, 0);
2280 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2281 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2282 UndefElts)) {
2283 if (V != &GEP)
2284 return replaceInstUsesWith(GEP, V);
2285 return &GEP;
2286 }
2287
2288 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2289 // possible (decide on canonical form for pointer broadcast), 3) exploit
2290 // undef elements to decrease demanded bits
2291 }
2292
2293 // Eliminate unneeded casts for indices, and replace indices which displace
2294 // by multiples of a zero size type with zero.
2295 bool MadeChange = false;
2296
2297 // Index width may not be the same width as pointer width.
2298 // Data layout chooses the right type based on supported integer types.
2299 Type *NewScalarIndexTy =
2300 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2301
2302 gep_type_iterator GTI = gep_type_begin(GEP);
2303 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2304 ++I, ++GTI) {
2305 // Skip indices into struct types.
2306 if (GTI.isStruct())
2307 continue;
2308
2309 Type *IndexTy = (*I)->getType();
2310 Type *NewIndexType =
2311 IndexTy->isVectorTy()
2312 ? VectorType::get(NewScalarIndexTy,
2313 cast<VectorType>(IndexTy)->getElementCount())
2314 : NewScalarIndexTy;
2315
2316 // If the element type has zero size then any index over it is equivalent
2317 // to an index of zero, so replace it with zero if it is not zero already.
2318 Type *EltTy = GTI.getIndexedType();
2319 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2320 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2321 *I = Constant::getNullValue(NewIndexType);
2322 MadeChange = true;
2323 }
2324
2325 if (IndexTy != NewIndexType) {
2326 // If we are using a wider index than needed for this platform, shrink
2327 // it to what we need. If narrower, sign-extend it to what we need.
2328 // This explicit cast can make subsequent optimizations more obvious.
2329 *I = Builder.CreateIntCast(*I, NewIndexType, true);
2330 MadeChange = true;
2331 }
2332 }
2333 if (MadeChange)
2334 return &GEP;
2335
2336 // Check to see if the inputs to the PHI node are getelementptr instructions.
2337 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2338 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2339 if (!Op1)
2340 return nullptr;
2341
2342 // Don't fold a GEP into itself through a PHI node. This can only happen
2343 // through the back-edge of a loop. Folding a GEP into itself means that
2344 // the value of the previous iteration needs to be stored in the meantime,
2345 // thus requiring an additional register variable to be live, but not
2346 // actually achieving anything (the GEP still needs to be executed once per
2347 // loop iteration).
2348 if (Op1 == &GEP)
2349 return nullptr;
2350
2351 int DI = -1;
2352
2353 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2354 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2355 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2356 Op1->getSourceElementType() != Op2->getSourceElementType())
2357 return nullptr;
2358
2359 // As for Op1 above, don't try to fold a GEP into itself.
2360 if (Op2 == &GEP)
2361 return nullptr;
2362
2363 // Keep track of the type as we walk the GEP.
2364 Type *CurTy = nullptr;
2365
2366 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2367 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2368 return nullptr;
2369
2370 if (Op1->getOperand(J) != Op2->getOperand(J)) {
2371 if (DI == -1) {
2372 // We have not seen any differences yet in the GEPs feeding the
2373 // PHI yet, so we record this one if it is allowed to be a
2374 // variable.
2375
2376 // The first two arguments can vary for any GEP, the rest have to be
2377 // static for struct slots
2378 if (J > 1) {
2379 assert(CurTy && "No current type?");
2380 if (CurTy->isStructTy())
2381 return nullptr;
2382 }
2383
2384 DI = J;
2385 } else {
2386 // The GEP is different by more than one input. While this could be
2387 // extended to support GEPs that vary by more than one variable it
2388 // doesn't make sense since it greatly increases the complexity and
2389 // would result in an R+R+R addressing mode which no backend
2390 // directly supports and would need to be broken into several
2391 // simpler instructions anyway.
2392 return nullptr;
2393 }
2394 }
2395
2396 // Sink down a layer of the type for the next iteration.
2397 if (J > 0) {
2398 if (J == 1) {
2399 CurTy = Op1->getSourceElementType();
2400 } else {
2401 CurTy =
2402 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2403 }
2404 }
2405 }
2406 }
2407
2408 // If not all GEPs are identical we'll have to create a new PHI node.
2409 // Check that the old PHI node has only one use so that it will get
2410 // removed.
2411 if (DI != -1 && !PN->hasOneUse())
2412 return nullptr;
2413
2414 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2415 if (DI == -1) {
2416 // All the GEPs feeding the PHI are identical. Clone one down into our
2417 // BB so that it can be merged with the current GEP.
2418 } else {
2419 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2420 // into the current block so it can be merged, and create a new PHI to
2421 // set that index.
2422 PHINode *NewPN;
2423 {
2424 IRBuilderBase::InsertPointGuard Guard(Builder);
2425 Builder.SetInsertPoint(PN);
2426 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2427 PN->getNumOperands());
2428 }
2429
2430 for (auto &I : PN->operands())
2431 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2432 PN->getIncomingBlock(I));
2433
2434 NewGEP->setOperand(DI, NewPN);
2435 }
2436
2437 GEP.getParent()->getInstList().insert(
2438 GEP.getParent()->getFirstInsertionPt(), NewGEP);
2439 replaceOperand(GEP, 0, NewGEP);
2440 PtrOp = NewGEP;
2441 }
2442
2443 if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2444 if (Instruction *I = visitGEPOfGEP(GEP, Src))
2445 return I;
2446
2447 // Skip if GEP source element type is scalable. The type alloc size is unknown
2448 // at compile-time.
2449 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2450 unsigned AS = GEP.getPointerAddressSpace();
2451 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2452 DL.getIndexSizeInBits(AS)) {
2453 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2454
2455 bool Matched = false;
2456 uint64_t C;
2457 Value *V = nullptr;
2458 if (TyAllocSize == 1) {
2459 V = GEP.getOperand(1);
2460 Matched = true;
2461 } else if (match(GEP.getOperand(1),
2462 m_AShr(m_Value(V), m_ConstantInt(C)))) {
2463 if (TyAllocSize == 1ULL << C)
2464 Matched = true;
2465 } else if (match(GEP.getOperand(1),
2466 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2467 if (TyAllocSize == C)
2468 Matched = true;
2469 }
2470
2471 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2472 // only if both point to the same underlying object (otherwise provenance
2473 // is not necessarily retained).
2474 Value *Y;
2475 Value *X = GEP.getOperand(0);
2476 if (Matched &&
2477 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2478 getUnderlyingObject(X) == getUnderlyingObject(Y))
2479 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2480 }
2481 }
2482
2483 // We do not handle pointer-vector geps here.
2484 if (GEPType->isVectorTy())
2485 return nullptr;
2486
2487 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2488 Value *StrippedPtr = PtrOp->stripPointerCasts();
2489 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2490
2491 // TODO: The basic approach of these folds is not compatible with opaque
2492 // pointers, because we can't use bitcasts as a hint for a desirable GEP
2493 // type. Instead, we should perform canonicalization directly on the GEP
2494 // type. For now, skip these.
2495 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) {
2496 bool HasZeroPointerIndex = false;
2497 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType();
2498
2499 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2500 HasZeroPointerIndex = C->isZero();
2501
2502 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2503 // into : GEP [10 x i8]* X, i32 0, ...
2504 //
2505 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2506 // into : GEP i8* X, ...
2507 //
2508 // This occurs when the program declares an array extern like "int X[];"
2509 if (HasZeroPointerIndex) {
2510 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2511 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2512 if (CATy->getElementType() == StrippedPtrEltTy) {
2513 // -> GEP i8* X, ...
2514 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2515 GetElementPtrInst *Res = GetElementPtrInst::Create(
2516 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2517 Res->setIsInBounds(GEP.isInBounds());
2518 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2519 return Res;
2520 // Insert Res, and create an addrspacecast.
2521 // e.g.,
2522 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2523 // ->
2524 // %0 = GEP i8 addrspace(1)* X, ...
2525 // addrspacecast i8 addrspace(1)* %0 to i8*
2526 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2527 }
2528
2529 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2530 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2531 if (CATy->getElementType() == XATy->getElementType()) {
2532 // -> GEP [10 x i8]* X, i32 0, ...
2533 // At this point, we know that the cast source type is a pointer
2534 // to an array of the same type as the destination pointer
2535 // array. Because the array type is never stepped over (there
2536 // is a leading zero) we can fold the cast into this GEP.
2537 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2538 GEP.setSourceElementType(XATy);
2539 return replaceOperand(GEP, 0, StrippedPtr);
2540 }
2541 // Cannot replace the base pointer directly because StrippedPtr's
2542 // address space is different. Instead, create a new GEP followed by
2543 // an addrspacecast.
2544 // e.g.,
2545 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2546 // i32 0, ...
2547 // ->
2548 // %0 = GEP [10 x i8] addrspace(1)* X, ...
2549 // addrspacecast i8 addrspace(1)* %0 to i8*
2550 SmallVector<Value *, 8> Idx(GEP.indices());
2551 Value *NewGEP =
2552 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2553 GEP.getName(), GEP.isInBounds());
2554 return new AddrSpaceCastInst(NewGEP, GEPType);
2555 }
2556 }
2557 }
2558 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2559 // Skip if GEP source element type is scalable. The type alloc size is
2560 // unknown at compile-time.
2561 // Transform things like: %t = getelementptr i32*
2562 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2
2563 // x i32]* %str, i32 0, i32 %V; bitcast
2564 if (StrippedPtrEltTy->isArrayTy() &&
2565 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2566 DL.getTypeAllocSize(GEPEltType)) {
2567 Type *IdxType = DL.getIndexType(GEPType);
2568 Value *Idx[2] = {Constant::getNullValue(IdxType), GEP.getOperand(1)};
2569 Value *NewGEP = Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2570 GEP.getName(), GEP.isInBounds());
2571
2572 // V and GEP are both pointer types --> BitCast
2573 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2574 }
2575
2576 // Transform things like:
2577 // %V = mul i64 %N, 4
2578 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2579 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
2580 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2581 // Check that changing the type amounts to dividing the index by a scale
2582 // factor.
2583 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2584 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2585 if (ResSize && SrcSize % ResSize == 0) {
2586 Value *Idx = GEP.getOperand(1);
2587 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2588 uint64_t Scale = SrcSize / ResSize;
2589
2590 // Earlier transforms ensure that the index has the right type
2591 // according to Data Layout, which considerably simplifies the
2592 // logic by eliminating implicit casts.
2593 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2594 "Index type does not match the Data Layout preferences");
2595
2596 bool NSW;
2597 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2598 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2599 // If the multiplication NewIdx * Scale may overflow then the new
2600 // GEP may not be "inbounds".
2601 Value *NewGEP =
2602 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2603 GEP.getName(), GEP.isInBounds() && NSW);
2604
2605 // The NewGEP must be pointer typed, so must the old one -> BitCast
2606 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2607 GEPType);
2608 }
2609 }
2610 }
2611
2612 // Similarly, transform things like:
2613 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2614 // (where tmp = 8*tmp2) into:
2615 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2616 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2617 StrippedPtrEltTy->isArrayTy()) {
2618 // Check that changing to the array element type amounts to dividing the
2619 // index by a scale factor.
2620 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2621 uint64_t ArrayEltSize =
2622 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2623 .getFixedSize();
2624 if (ResSize && ArrayEltSize % ResSize == 0) {
2625 Value *Idx = GEP.getOperand(1);
2626 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2627 uint64_t Scale = ArrayEltSize / ResSize;
2628
2629 // Earlier transforms ensure that the index has the right type
2630 // according to the Data Layout, which considerably simplifies
2631 // the logic by eliminating implicit casts.
2632 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2633 "Index type does not match the Data Layout preferences");
2634
2635 bool NSW;
2636 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2637 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2638 // If the multiplication NewIdx * Scale may overflow then the new
2639 // GEP may not be "inbounds".
2640 Type *IndTy = DL.getIndexType(GEPType);
2641 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2642
2643 Value *NewGEP =
2644 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2645 GEP.getName(), GEP.isInBounds() && NSW);
2646 // The NewGEP must be pointer typed, so must the old one -> BitCast
2647 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2648 GEPType);
2649 }
2650 }
2651 }
2652 }
2653 }
2654
2655 // addrspacecast between types is canonicalized as a bitcast, then an
2656 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2657 // through the addrspacecast.
2658 Value *ASCStrippedPtrOp = PtrOp;
2659 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2660 // X = bitcast A addrspace(1)* to B addrspace(1)*
2661 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2662 // Z = gep Y, <...constant indices...>
2663 // Into an addrspacecasted GEP of the struct.
2664 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2665 ASCStrippedPtrOp = BC;
2666 }
2667
2668 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp))
2669 if (Instruction *I = visitGEPOfBitcast(BCI, GEP))
2670 return I;
2671
2672 if (!GEP.isInBounds()) {
2673 unsigned IdxWidth =
2674 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2675 APInt BasePtrOffset(IdxWidth, 0);
2676 Value *UnderlyingPtrOp =
2677 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2678 BasePtrOffset);
2679 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2680 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2681 BasePtrOffset.isNonNegative()) {
2682 APInt AllocSize(
2683 IdxWidth,
2684 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2685 if (BasePtrOffset.ule(AllocSize)) {
2686 return GetElementPtrInst::CreateInBounds(
2687 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
2688 }
2689 }
2690 }
2691 }
2692
2693 if (Instruction *R = foldSelectGEP(GEP, Builder))
2694 return R;
2695
2696 return nullptr;
2697 }
2698
isNeverEqualToUnescapedAlloc(Value * V,const TargetLibraryInfo & TLI,Instruction * AI)2699 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
2700 Instruction *AI) {
2701 if (isa<ConstantPointerNull>(V))
2702 return true;
2703 if (auto *LI = dyn_cast<LoadInst>(V))
2704 return isa<GlobalVariable>(LI->getPointerOperand());
2705 // Two distinct allocations will never be equal.
2706 return isAllocLikeFn(V, &TLI) && V != AI;
2707 }
2708
2709 /// Given a call CB which uses an address UsedV, return true if we can prove the
2710 /// call's only possible effect is storing to V.
isRemovableWrite(CallBase & CB,Value * UsedV,const TargetLibraryInfo & TLI)2711 static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2712 const TargetLibraryInfo &TLI) {
2713 if (!CB.use_empty())
2714 // TODO: add recursion if returned attribute is present
2715 return false;
2716
2717 if (CB.isTerminator())
2718 // TODO: remove implementation restriction
2719 return false;
2720
2721 if (!CB.willReturn() || !CB.doesNotThrow())
2722 return false;
2723
2724 // If the only possible side effect of the call is writing to the alloca,
2725 // and the result isn't used, we can safely remove any reads implied by the
2726 // call including those which might read the alloca itself.
2727 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2728 return Dest && Dest->Ptr == UsedV;
2729 }
2730
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakTrackingVH> & Users,const TargetLibraryInfo & TLI)2731 static bool isAllocSiteRemovable(Instruction *AI,
2732 SmallVectorImpl<WeakTrackingVH> &Users,
2733 const TargetLibraryInfo &TLI) {
2734 SmallVector<Instruction*, 4> Worklist;
2735 const Optional<StringRef> Family = getAllocationFamily(AI, &TLI);
2736 Worklist.push_back(AI);
2737
2738 do {
2739 Instruction *PI = Worklist.pop_back_val();
2740 for (User *U : PI->users()) {
2741 Instruction *I = cast<Instruction>(U);
2742 switch (I->getOpcode()) {
2743 default:
2744 // Give up the moment we see something we can't handle.
2745 return false;
2746
2747 case Instruction::AddrSpaceCast:
2748 case Instruction::BitCast:
2749 case Instruction::GetElementPtr:
2750 Users.emplace_back(I);
2751 Worklist.push_back(I);
2752 continue;
2753
2754 case Instruction::ICmp: {
2755 ICmpInst *ICI = cast<ICmpInst>(I);
2756 // We can fold eq/ne comparisons with null to false/true, respectively.
2757 // We also fold comparisons in some conditions provided the alloc has
2758 // not escaped (see isNeverEqualToUnescapedAlloc).
2759 if (!ICI->isEquality())
2760 return false;
2761 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2762 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2763 return false;
2764 Users.emplace_back(I);
2765 continue;
2766 }
2767
2768 case Instruction::Call:
2769 // Ignore no-op and store intrinsics.
2770 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2771 switch (II->getIntrinsicID()) {
2772 default:
2773 return false;
2774
2775 case Intrinsic::memmove:
2776 case Intrinsic::memcpy:
2777 case Intrinsic::memset: {
2778 MemIntrinsic *MI = cast<MemIntrinsic>(II);
2779 if (MI->isVolatile() || MI->getRawDest() != PI)
2780 return false;
2781 LLVM_FALLTHROUGH;
2782 }
2783 case Intrinsic::assume:
2784 case Intrinsic::invariant_start:
2785 case Intrinsic::invariant_end:
2786 case Intrinsic::lifetime_start:
2787 case Intrinsic::lifetime_end:
2788 case Intrinsic::objectsize:
2789 Users.emplace_back(I);
2790 continue;
2791 case Intrinsic::launder_invariant_group:
2792 case Intrinsic::strip_invariant_group:
2793 Users.emplace_back(I);
2794 Worklist.push_back(I);
2795 continue;
2796 }
2797 }
2798
2799 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
2800 Users.emplace_back(I);
2801 continue;
2802 }
2803
2804 if (getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
2805 getAllocationFamily(I, &TLI) == Family) {
2806 assert(Family);
2807 Users.emplace_back(I);
2808 continue;
2809 }
2810
2811 if (getReallocatedOperand(cast<CallBase>(I), &TLI) == PI &&
2812 getAllocationFamily(I, &TLI) == Family) {
2813 assert(Family);
2814 Users.emplace_back(I);
2815 Worklist.push_back(I);
2816 continue;
2817 }
2818
2819 return false;
2820
2821 case Instruction::Store: {
2822 StoreInst *SI = cast<StoreInst>(I);
2823 if (SI->isVolatile() || SI->getPointerOperand() != PI)
2824 return false;
2825 Users.emplace_back(I);
2826 continue;
2827 }
2828 }
2829 llvm_unreachable("missing a return?");
2830 }
2831 } while (!Worklist.empty());
2832 return true;
2833 }
2834
visitAllocSite(Instruction & MI)2835 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2836 assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
2837
2838 // If we have a malloc call which is only used in any amount of comparisons to
2839 // null and free calls, delete the calls and replace the comparisons with true
2840 // or false as appropriate.
2841
2842 // This is based on the principle that we can substitute our own allocation
2843 // function (which will never return null) rather than knowledge of the
2844 // specific function being called. In some sense this can change the permitted
2845 // outputs of a program (when we convert a malloc to an alloca, the fact that
2846 // the allocation is now on the stack is potentially visible, for example),
2847 // but we believe in a permissible manner.
2848 SmallVector<WeakTrackingVH, 64> Users;
2849
2850 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2851 // before each store.
2852 SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2853 std::unique_ptr<DIBuilder> DIB;
2854 if (isa<AllocaInst>(MI)) {
2855 findDbgUsers(DVIs, &MI);
2856 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2857 }
2858
2859 if (isAllocSiteRemovable(&MI, Users, TLI)) {
2860 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2861 // Lowering all @llvm.objectsize calls first because they may
2862 // use a bitcast/GEP of the alloca we are removing.
2863 if (!Users[i])
2864 continue;
2865
2866 Instruction *I = cast<Instruction>(&*Users[i]);
2867
2868 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2869 if (II->getIntrinsicID() == Intrinsic::objectsize) {
2870 Value *Result =
2871 lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/true);
2872 replaceInstUsesWith(*I, Result);
2873 eraseInstFromFunction(*I);
2874 Users[i] = nullptr; // Skip examining in the next loop.
2875 }
2876 }
2877 }
2878 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2879 if (!Users[i])
2880 continue;
2881
2882 Instruction *I = cast<Instruction>(&*Users[i]);
2883
2884 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2885 replaceInstUsesWith(*C,
2886 ConstantInt::get(Type::getInt1Ty(C->getContext()),
2887 C->isFalseWhenEqual()));
2888 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2889 for (auto *DVI : DVIs)
2890 if (DVI->isAddressOfVariable())
2891 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2892 } else {
2893 // Casts, GEP, or anything else: we're about to delete this instruction,
2894 // so it can not have any valid uses.
2895 replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2896 }
2897 eraseInstFromFunction(*I);
2898 }
2899
2900 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2901 // Replace invoke with a NOP intrinsic to maintain the original CFG
2902 Module *M = II->getModule();
2903 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2904 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2905 None, "", II->getParent());
2906 }
2907
2908 // Remove debug intrinsics which describe the value contained within the
2909 // alloca. In addition to removing dbg.{declare,addr} which simply point to
2910 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2911 //
2912 // ```
2913 // define void @foo(i32 %0) {
2914 // %a = alloca i32 ; Deleted.
2915 // store i32 %0, i32* %a
2916 // dbg.value(i32 %0, "arg0") ; Not deleted.
2917 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
2918 // call void @trivially_inlinable_no_op(i32* %a)
2919 // ret void
2920 // }
2921 // ```
2922 //
2923 // This may not be required if we stop describing the contents of allocas
2924 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2925 // the LowerDbgDeclare utility.
2926 //
2927 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2928 // "arg0" dbg.value may be stale after the call. However, failing to remove
2929 // the DW_OP_deref dbg.value causes large gaps in location coverage.
2930 for (auto *DVI : DVIs)
2931 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2932 DVI->eraseFromParent();
2933
2934 return eraseInstFromFunction(MI);
2935 }
2936 return nullptr;
2937 }
2938
2939 /// Move the call to free before a NULL test.
2940 ///
2941 /// Check if this free is accessed after its argument has been test
2942 /// against NULL (property 0).
2943 /// If yes, it is legal to move this call in its predecessor block.
2944 ///
2945 /// The move is performed only if the block containing the call to free
2946 /// will be removed, i.e.:
2947 /// 1. it has only one predecessor P, and P has two successors
2948 /// 2. it contains the call, noops, and an unconditional branch
2949 /// 3. its successor is the same as its predecessor's successor
2950 ///
2951 /// The profitability is out-of concern here and this function should
2952 /// be called only if the caller knows this transformation would be
2953 /// profitable (e.g., for code size).
tryToMoveFreeBeforeNullTest(CallInst & FI,const DataLayout & DL)2954 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2955 const DataLayout &DL) {
2956 Value *Op = FI.getArgOperand(0);
2957 BasicBlock *FreeInstrBB = FI.getParent();
2958 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2959
2960 // Validate part of constraint #1: Only one predecessor
2961 // FIXME: We can extend the number of predecessor, but in that case, we
2962 // would duplicate the call to free in each predecessor and it may
2963 // not be profitable even for code size.
2964 if (!PredBB)
2965 return nullptr;
2966
2967 // Validate constraint #2: Does this block contains only the call to
2968 // free, noops, and an unconditional branch?
2969 BasicBlock *SuccBB;
2970 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2971 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2972 return nullptr;
2973
2974 // If there are only 2 instructions in the block, at this point,
2975 // this is the call to free and unconditional.
2976 // If there are more than 2 instructions, check that they are noops
2977 // i.e., they won't hurt the performance of the generated code.
2978 if (FreeInstrBB->size() != 2) {
2979 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2980 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2981 continue;
2982 auto *Cast = dyn_cast<CastInst>(&Inst);
2983 if (!Cast || !Cast->isNoopCast(DL))
2984 return nullptr;
2985 }
2986 }
2987 // Validate the rest of constraint #1 by matching on the pred branch.
2988 Instruction *TI = PredBB->getTerminator();
2989 BasicBlock *TrueBB, *FalseBB;
2990 ICmpInst::Predicate Pred;
2991 if (!match(TI, m_Br(m_ICmp(Pred,
2992 m_CombineOr(m_Specific(Op),
2993 m_Specific(Op->stripPointerCasts())),
2994 m_Zero()),
2995 TrueBB, FalseBB)))
2996 return nullptr;
2997 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2998 return nullptr;
2999
3000 // Validate constraint #3: Ensure the null case just falls through.
3001 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3002 return nullptr;
3003 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3004 "Broken CFG: missing edge from predecessor to successor");
3005
3006 // At this point, we know that everything in FreeInstrBB can be moved
3007 // before TI.
3008 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3009 if (&Instr == FreeInstrBBTerminator)
3010 break;
3011 Instr.moveBefore(TI);
3012 }
3013 assert(FreeInstrBB->size() == 1 &&
3014 "Only the branch instruction should remain");
3015
3016 // Now that we've moved the call to free before the NULL check, we have to
3017 // remove any attributes on its parameter that imply it's non-null, because
3018 // those attributes might have only been valid because of the NULL check, and
3019 // we can get miscompiles if we keep them. This is conservative if non-null is
3020 // also implied by something other than the NULL check, but it's guaranteed to
3021 // be correct, and the conservativeness won't matter in practice, since the
3022 // attributes are irrelevant for the call to free itself and the pointer
3023 // shouldn't be used after the call.
3024 AttributeList Attrs = FI.getAttributes();
3025 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3026 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3027 if (Dereferenceable.isValid()) {
3028 uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3029 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3030 Attribute::Dereferenceable);
3031 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
3032 }
3033 FI.setAttributes(Attrs);
3034
3035 return &FI;
3036 }
3037
visitFree(CallInst & FI,Value * Op)3038 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) {
3039 // free undef -> unreachable.
3040 if (isa<UndefValue>(Op)) {
3041 // Leave a marker since we can't modify the CFG here.
3042 CreateNonTerminatorUnreachable(&FI);
3043 return eraseInstFromFunction(FI);
3044 }
3045
3046 // If we have 'free null' delete the instruction. This can happen in stl code
3047 // when lots of inlining happens.
3048 if (isa<ConstantPointerNull>(Op))
3049 return eraseInstFromFunction(FI);
3050
3051 // If we had free(realloc(...)) with no intervening uses, then eliminate the
3052 // realloc() entirely.
3053 CallInst *CI = dyn_cast<CallInst>(Op);
3054 if (CI && CI->hasOneUse())
3055 if (Value *ReallocatedOp = getReallocatedOperand(CI, &TLI))
3056 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
3057
3058 // If we optimize for code size, try to move the call to free before the null
3059 // test so that simplify cfg can remove the empty block and dead code
3060 // elimination the branch. I.e., helps to turn something like:
3061 // if (foo) free(foo);
3062 // into
3063 // free(foo);
3064 //
3065 // Note that we can only do this for 'free' and not for any flavor of
3066 // 'operator delete'; there is no 'operator delete' symbol for which we are
3067 // permitted to invent a call, even if we're passing in a null pointer.
3068 if (MinimizeSize) {
3069 LibFunc Func;
3070 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3071 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
3072 return I;
3073 }
3074
3075 return nullptr;
3076 }
3077
isMustTailCall(Value * V)3078 static bool isMustTailCall(Value *V) {
3079 if (auto *CI = dyn_cast<CallInst>(V))
3080 return CI->isMustTailCall();
3081 return false;
3082 }
3083
visitReturnInst(ReturnInst & RI)3084 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
3085 if (RI.getNumOperands() == 0) // ret void
3086 return nullptr;
3087
3088 Value *ResultOp = RI.getOperand(0);
3089 Type *VTy = ResultOp->getType();
3090 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
3091 return nullptr;
3092
3093 // Don't replace result of musttail calls.
3094 if (isMustTailCall(ResultOp))
3095 return nullptr;
3096
3097 // There might be assume intrinsics dominating this return that completely
3098 // determine the value. If so, constant fold it.
3099 KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
3100 if (Known.isConstant())
3101 return replaceOperand(RI, 0,
3102 Constant::getIntegerValue(VTy, Known.getConstant()));
3103
3104 return nullptr;
3105 }
3106
3107 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
visitUnreachableInst(UnreachableInst & I)3108 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
3109 // Try to remove the previous instruction if it must lead to unreachable.
3110 // This includes instructions like stores and "llvm.assume" that may not get
3111 // removed by simple dead code elimination.
3112 while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3113 // While we theoretically can erase EH, that would result in a block that
3114 // used to start with an EH no longer starting with EH, which is invalid.
3115 // To make it valid, we'd need to fixup predecessors to no longer refer to
3116 // this block, but that changes CFG, which is not allowed in InstCombine.
3117 if (Prev->isEHPad())
3118 return nullptr; // Can not drop any more instructions. We're done here.
3119
3120 if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
3121 return nullptr; // Can not drop any more instructions. We're done here.
3122 // Otherwise, this instruction can be freely erased,
3123 // even if it is not side-effect free.
3124
3125 // A value may still have uses before we process it here (for example, in
3126 // another unreachable block), so convert those to poison.
3127 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3128 eraseInstFromFunction(*Prev);
3129 }
3130 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
3131 // FIXME: recurse into unconditional predecessors?
3132 return nullptr;
3133 }
3134
visitUnconditionalBranchInst(BranchInst & BI)3135 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
3136 assert(BI.isUnconditional() && "Only for unconditional branches.");
3137
3138 // If this store is the second-to-last instruction in the basic block
3139 // (excluding debug info and bitcasts of pointers) and if the block ends with
3140 // an unconditional branch, try to move the store to the successor block.
3141
3142 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3143 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3144 return BBI->isDebugOrPseudoInst() ||
3145 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3146 };
3147
3148 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3149 do {
3150 if (BBI != FirstInstr)
3151 --BBI;
3152 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3153
3154 return dyn_cast<StoreInst>(BBI);
3155 };
3156
3157 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3158 if (mergeStoreIntoSuccessor(*SI))
3159 return &BI;
3160
3161 return nullptr;
3162 }
3163
visitBranchInst(BranchInst & BI)3164 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3165 if (BI.isUnconditional())
3166 return visitUnconditionalBranchInst(BI);
3167
3168 // Change br (not X), label True, label False to: br X, label False, True
3169 Value *X = nullptr;
3170 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
3171 !isa<Constant>(X)) {
3172 // Swap Destinations and condition...
3173 BI.swapSuccessors();
3174 return replaceOperand(BI, 0, X);
3175 }
3176
3177 // If the condition is irrelevant, remove the use so that other
3178 // transforms on the condition become more effective.
3179 if (!isa<ConstantInt>(BI.getCondition()) &&
3180 BI.getSuccessor(0) == BI.getSuccessor(1))
3181 return replaceOperand(
3182 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
3183
3184 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3185 CmpInst::Predicate Pred;
3186 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
3187 m_BasicBlock(), m_BasicBlock())) &&
3188 !isCanonicalPredicate(Pred)) {
3189 // Swap destinations and condition.
3190 CmpInst *Cond = cast<CmpInst>(BI.getCondition());
3191 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
3192 BI.swapSuccessors();
3193 Worklist.push(Cond);
3194 return &BI;
3195 }
3196
3197 return nullptr;
3198 }
3199
visitSwitchInst(SwitchInst & SI)3200 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3201 Value *Cond = SI.getCondition();
3202 Value *Op0;
3203 ConstantInt *AddRHS;
3204 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3205 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3206 for (auto Case : SI.cases()) {
3207 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3208 assert(isa<ConstantInt>(NewCase) &&
3209 "Result of expression should be constant");
3210 Case.setValue(cast<ConstantInt>(NewCase));
3211 }
3212 return replaceOperand(SI, 0, Op0);
3213 }
3214
3215 KnownBits Known = computeKnownBits(Cond, 0, &SI);
3216 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3217 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3218
3219 // Compute the number of leading bits we can ignore.
3220 // TODO: A better way to determine this would use ComputeNumSignBits().
3221 for (auto &C : SI.cases()) {
3222 LeadingKnownZeros = std::min(
3223 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3224 LeadingKnownOnes = std::min(
3225 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3226 }
3227
3228 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3229
3230 // Shrink the condition operand if the new type is smaller than the old type.
3231 // But do not shrink to a non-standard type, because backend can't generate
3232 // good code for that yet.
3233 // TODO: We can make it aggressive again after fixing PR39569.
3234 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3235 shouldChangeType(Known.getBitWidth(), NewWidth)) {
3236 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3237 Builder.SetInsertPoint(&SI);
3238 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3239
3240 for (auto Case : SI.cases()) {
3241 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3242 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3243 }
3244 return replaceOperand(SI, 0, NewCond);
3245 }
3246
3247 return nullptr;
3248 }
3249
visitExtractValueInst(ExtractValueInst & EV)3250 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3251 Value *Agg = EV.getAggregateOperand();
3252
3253 if (!EV.hasIndices())
3254 return replaceInstUsesWith(EV, Agg);
3255
3256 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
3257 SQ.getWithInstruction(&EV)))
3258 return replaceInstUsesWith(EV, V);
3259
3260 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3261 // We're extracting from an insertvalue instruction, compare the indices
3262 const unsigned *exti, *exte, *insi, *inse;
3263 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3264 exte = EV.idx_end(), inse = IV->idx_end();
3265 exti != exte && insi != inse;
3266 ++exti, ++insi) {
3267 if (*insi != *exti)
3268 // The insert and extract both reference distinctly different elements.
3269 // This means the extract is not influenced by the insert, and we can
3270 // replace the aggregate operand of the extract with the aggregate
3271 // operand of the insert. i.e., replace
3272 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3273 // %E = extractvalue { i32, { i32 } } %I, 0
3274 // with
3275 // %E = extractvalue { i32, { i32 } } %A, 0
3276 return ExtractValueInst::Create(IV->getAggregateOperand(),
3277 EV.getIndices());
3278 }
3279 if (exti == exte && insi == inse)
3280 // Both iterators are at the end: Index lists are identical. Replace
3281 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3282 // %C = extractvalue { i32, { i32 } } %B, 1, 0
3283 // with "i32 42"
3284 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3285 if (exti == exte) {
3286 // The extract list is a prefix of the insert list. i.e. replace
3287 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3288 // %E = extractvalue { i32, { i32 } } %I, 1
3289 // with
3290 // %X = extractvalue { i32, { i32 } } %A, 1
3291 // %E = insertvalue { i32 } %X, i32 42, 0
3292 // by switching the order of the insert and extract (though the
3293 // insertvalue should be left in, since it may have other uses).
3294 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3295 EV.getIndices());
3296 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3297 makeArrayRef(insi, inse));
3298 }
3299 if (insi == inse)
3300 // The insert list is a prefix of the extract list
3301 // We can simply remove the common indices from the extract and make it
3302 // operate on the inserted value instead of the insertvalue result.
3303 // i.e., replace
3304 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3305 // %E = extractvalue { i32, { i32 } } %I, 1, 0
3306 // with
3307 // %E extractvalue { i32 } { i32 42 }, 0
3308 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3309 makeArrayRef(exti, exte));
3310 }
3311 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3312 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3313 Intrinsic::ID OvID = WO->getIntrinsicID();
3314 if (*EV.idx_begin() == 0 &&
3315 (OvID == Intrinsic::smul_with_overflow ||
3316 OvID == Intrinsic::umul_with_overflow) &&
3317 match(WO->getArgOperand(1), m_AllOnes())) {
3318 return BinaryOperator::CreateNeg(WO->getArgOperand(0));
3319 }
3320
3321 // We're extracting from an overflow intrinsic, see if we're the only user,
3322 // which allows us to simplify multiple result intrinsics to simpler
3323 // things that just get one value.
3324 if (WO->hasOneUse()) {
3325 // Check if we're grabbing only the result of a 'with overflow' intrinsic
3326 // and replace it with a traditional binary instruction.
3327 if (*EV.idx_begin() == 0) {
3328 Instruction::BinaryOps BinOp = WO->getBinaryOp();
3329 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3330 // Replace the old instruction's uses with poison.
3331 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3332 eraseInstFromFunction(*WO);
3333 return BinaryOperator::Create(BinOp, LHS, RHS);
3334 }
3335
3336 assert(*EV.idx_begin() == 1 &&
3337 "unexpected extract index for overflow inst");
3338
3339 // If only the overflow result is used, and the right hand side is a
3340 // constant (or constant splat), we can remove the intrinsic by directly
3341 // checking for overflow.
3342 const APInt *C;
3343 if (match(WO->getRHS(), m_APInt(C))) {
3344 // Compute the no-wrap range for LHS given RHS=C, then construct an
3345 // equivalent icmp, potentially using an offset.
3346 ConstantRange NWR =
3347 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3348 WO->getNoWrapKind());
3349
3350 CmpInst::Predicate Pred;
3351 APInt NewRHSC, Offset;
3352 NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3353 auto *OpTy = WO->getRHS()->getType();
3354 auto *NewLHS = WO->getLHS();
3355 if (Offset != 0)
3356 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3357 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3358 ConstantInt::get(OpTy, NewRHSC));
3359 }
3360 }
3361 }
3362 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3363 // If the (non-volatile) load only has one use, we can rewrite this to a
3364 // load from a GEP. This reduces the size of the load. If a load is used
3365 // only by extractvalue instructions then this either must have been
3366 // optimized before, or it is a struct with padding, in which case we
3367 // don't want to do the transformation as it loses padding knowledge.
3368 if (L->isSimple() && L->hasOneUse()) {
3369 // extractvalue has integer indices, getelementptr has Value*s. Convert.
3370 SmallVector<Value*, 4> Indices;
3371 // Prefix an i32 0 since we need the first element.
3372 Indices.push_back(Builder.getInt32(0));
3373 for (unsigned Idx : EV.indices())
3374 Indices.push_back(Builder.getInt32(Idx));
3375
3376 // We need to insert these at the location of the old load, not at that of
3377 // the extractvalue.
3378 Builder.SetInsertPoint(L);
3379 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3380 L->getPointerOperand(), Indices);
3381 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3382 // Whatever aliasing information we had for the orignal load must also
3383 // hold for the smaller load, so propagate the annotations.
3384 NL->setAAMetadata(L->getAAMetadata());
3385 // Returning the load directly will cause the main loop to insert it in
3386 // the wrong spot, so use replaceInstUsesWith().
3387 return replaceInstUsesWith(EV, NL);
3388 }
3389 // We could simplify extracts from other values. Note that nested extracts may
3390 // already be simplified implicitly by the above: extract (extract (insert) )
3391 // will be translated into extract ( insert ( extract ) ) first and then just
3392 // the value inserted, if appropriate. Similarly for extracts from single-use
3393 // loads: extract (extract (load)) will be translated to extract (load (gep))
3394 // and if again single-use then via load (gep (gep)) to load (gep).
3395 // However, double extracts from e.g. function arguments or return values
3396 // aren't handled yet.
3397 return nullptr;
3398 }
3399
3400 /// Return 'true' if the given typeinfo will match anything.
isCatchAll(EHPersonality Personality,Constant * TypeInfo)3401 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3402 switch (Personality) {
3403 case EHPersonality::GNU_C:
3404 case EHPersonality::GNU_C_SjLj:
3405 case EHPersonality::Rust:
3406 // The GCC C EH and Rust personality only exists to support cleanups, so
3407 // it's not clear what the semantics of catch clauses are.
3408 return false;
3409 case EHPersonality::Unknown:
3410 return false;
3411 case EHPersonality::GNU_Ada:
3412 // While __gnat_all_others_value will match any Ada exception, it doesn't
3413 // match foreign exceptions (or didn't, before gcc-4.7).
3414 return false;
3415 case EHPersonality::GNU_CXX:
3416 case EHPersonality::GNU_CXX_SjLj:
3417 case EHPersonality::GNU_ObjC:
3418 case EHPersonality::MSVC_X86SEH:
3419 case EHPersonality::MSVC_TableSEH:
3420 case EHPersonality::MSVC_CXX:
3421 case EHPersonality::CoreCLR:
3422 case EHPersonality::Wasm_CXX:
3423 case EHPersonality::XL_CXX:
3424 return TypeInfo->isNullValue();
3425 }
3426 llvm_unreachable("invalid enum");
3427 }
3428
shorter_filter(const Value * LHS,const Value * RHS)3429 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3430 return
3431 cast<ArrayType>(LHS->getType())->getNumElements()
3432 <
3433 cast<ArrayType>(RHS->getType())->getNumElements();
3434 }
3435
visitLandingPadInst(LandingPadInst & LI)3436 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3437 // The logic here should be correct for any real-world personality function.
3438 // However if that turns out not to be true, the offending logic can always
3439 // be conditioned on the personality function, like the catch-all logic is.
3440 EHPersonality Personality =
3441 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3442
3443 // Simplify the list of clauses, eg by removing repeated catch clauses
3444 // (these are often created by inlining).
3445 bool MakeNewInstruction = false; // If true, recreate using the following:
3446 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3447 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
3448
3449 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3450 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3451 bool isLastClause = i + 1 == e;
3452 if (LI.isCatch(i)) {
3453 // A catch clause.
3454 Constant *CatchClause = LI.getClause(i);
3455 Constant *TypeInfo = CatchClause->stripPointerCasts();
3456
3457 // If we already saw this clause, there is no point in having a second
3458 // copy of it.
3459 if (AlreadyCaught.insert(TypeInfo).second) {
3460 // This catch clause was not already seen.
3461 NewClauses.push_back(CatchClause);
3462 } else {
3463 // Repeated catch clause - drop the redundant copy.
3464 MakeNewInstruction = true;
3465 }
3466
3467 // If this is a catch-all then there is no point in keeping any following
3468 // clauses or marking the landingpad as having a cleanup.
3469 if (isCatchAll(Personality, TypeInfo)) {
3470 if (!isLastClause)
3471 MakeNewInstruction = true;
3472 CleanupFlag = false;
3473 break;
3474 }
3475 } else {
3476 // A filter clause. If any of the filter elements were already caught
3477 // then they can be dropped from the filter. It is tempting to try to
3478 // exploit the filter further by saying that any typeinfo that does not
3479 // occur in the filter can't be caught later (and thus can be dropped).
3480 // However this would be wrong, since typeinfos can match without being
3481 // equal (for example if one represents a C++ class, and the other some
3482 // class derived from it).
3483 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3484 Constant *FilterClause = LI.getClause(i);
3485 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3486 unsigned NumTypeInfos = FilterType->getNumElements();
3487
3488 // An empty filter catches everything, so there is no point in keeping any
3489 // following clauses or marking the landingpad as having a cleanup. By
3490 // dealing with this case here the following code is made a bit simpler.
3491 if (!NumTypeInfos) {
3492 NewClauses.push_back(FilterClause);
3493 if (!isLastClause)
3494 MakeNewInstruction = true;
3495 CleanupFlag = false;
3496 break;
3497 }
3498
3499 bool MakeNewFilter = false; // If true, make a new filter.
3500 SmallVector<Constant *, 16> NewFilterElts; // New elements.
3501 if (isa<ConstantAggregateZero>(FilterClause)) {
3502 // Not an empty filter - it contains at least one null typeinfo.
3503 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3504 Constant *TypeInfo =
3505 Constant::getNullValue(FilterType->getElementType());
3506 // If this typeinfo is a catch-all then the filter can never match.
3507 if (isCatchAll(Personality, TypeInfo)) {
3508 // Throw the filter away.
3509 MakeNewInstruction = true;
3510 continue;
3511 }
3512
3513 // There is no point in having multiple copies of this typeinfo, so
3514 // discard all but the first copy if there is more than one.
3515 NewFilterElts.push_back(TypeInfo);
3516 if (NumTypeInfos > 1)
3517 MakeNewFilter = true;
3518 } else {
3519 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3520 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3521 NewFilterElts.reserve(NumTypeInfos);
3522
3523 // Remove any filter elements that were already caught or that already
3524 // occurred in the filter. While there, see if any of the elements are
3525 // catch-alls. If so, the filter can be discarded.
3526 bool SawCatchAll = false;
3527 for (unsigned j = 0; j != NumTypeInfos; ++j) {
3528 Constant *Elt = Filter->getOperand(j);
3529 Constant *TypeInfo = Elt->stripPointerCasts();
3530 if (isCatchAll(Personality, TypeInfo)) {
3531 // This element is a catch-all. Bail out, noting this fact.
3532 SawCatchAll = true;
3533 break;
3534 }
3535
3536 // Even if we've seen a type in a catch clause, we don't want to
3537 // remove it from the filter. An unexpected type handler may be
3538 // set up for a call site which throws an exception of the same
3539 // type caught. In order for the exception thrown by the unexpected
3540 // handler to propagate correctly, the filter must be correctly
3541 // described for the call site.
3542 //
3543 // Example:
3544 //
3545 // void unexpected() { throw 1;}
3546 // void foo() throw (int) {
3547 // std::set_unexpected(unexpected);
3548 // try {
3549 // throw 2.0;
3550 // } catch (int i) {}
3551 // }
3552
3553 // There is no point in having multiple copies of the same typeinfo in
3554 // a filter, so only add it if we didn't already.
3555 if (SeenInFilter.insert(TypeInfo).second)
3556 NewFilterElts.push_back(cast<Constant>(Elt));
3557 }
3558 // A filter containing a catch-all cannot match anything by definition.
3559 if (SawCatchAll) {
3560 // Throw the filter away.
3561 MakeNewInstruction = true;
3562 continue;
3563 }
3564
3565 // If we dropped something from the filter, make a new one.
3566 if (NewFilterElts.size() < NumTypeInfos)
3567 MakeNewFilter = true;
3568 }
3569 if (MakeNewFilter) {
3570 FilterType = ArrayType::get(FilterType->getElementType(),
3571 NewFilterElts.size());
3572 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3573 MakeNewInstruction = true;
3574 }
3575
3576 NewClauses.push_back(FilterClause);
3577
3578 // If the new filter is empty then it will catch everything so there is
3579 // no point in keeping any following clauses or marking the landingpad
3580 // as having a cleanup. The case of the original filter being empty was
3581 // already handled above.
3582 if (MakeNewFilter && !NewFilterElts.size()) {
3583 assert(MakeNewInstruction && "New filter but not a new instruction!");
3584 CleanupFlag = false;
3585 break;
3586 }
3587 }
3588 }
3589
3590 // If several filters occur in a row then reorder them so that the shortest
3591 // filters come first (those with the smallest number of elements). This is
3592 // advantageous because shorter filters are more likely to match, speeding up
3593 // unwinding, but mostly because it increases the effectiveness of the other
3594 // filter optimizations below.
3595 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3596 unsigned j;
3597 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3598 for (j = i; j != e; ++j)
3599 if (!isa<ArrayType>(NewClauses[j]->getType()))
3600 break;
3601
3602 // Check whether the filters are already sorted by length. We need to know
3603 // if sorting them is actually going to do anything so that we only make a
3604 // new landingpad instruction if it does.
3605 for (unsigned k = i; k + 1 < j; ++k)
3606 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3607 // Not sorted, so sort the filters now. Doing an unstable sort would be
3608 // correct too but reordering filters pointlessly might confuse users.
3609 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3610 shorter_filter);
3611 MakeNewInstruction = true;
3612 break;
3613 }
3614
3615 // Look for the next batch of filters.
3616 i = j + 1;
3617 }
3618
3619 // If typeinfos matched if and only if equal, then the elements of a filter L
3620 // that occurs later than a filter F could be replaced by the intersection of
3621 // the elements of F and L. In reality two typeinfos can match without being
3622 // equal (for example if one represents a C++ class, and the other some class
3623 // derived from it) so it would be wrong to perform this transform in general.
3624 // However the transform is correct and useful if F is a subset of L. In that
3625 // case L can be replaced by F, and thus removed altogether since repeating a
3626 // filter is pointless. So here we look at all pairs of filters F and L where
3627 // L follows F in the list of clauses, and remove L if every element of F is
3628 // an element of L. This can occur when inlining C++ functions with exception
3629 // specifications.
3630 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3631 // Examine each filter in turn.
3632 Value *Filter = NewClauses[i];
3633 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3634 if (!FTy)
3635 // Not a filter - skip it.
3636 continue;
3637 unsigned FElts = FTy->getNumElements();
3638 // Examine each filter following this one. Doing this backwards means that
3639 // we don't have to worry about filters disappearing under us when removed.
3640 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3641 Value *LFilter = NewClauses[j];
3642 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3643 if (!LTy)
3644 // Not a filter - skip it.
3645 continue;
3646 // If Filter is a subset of LFilter, i.e. every element of Filter is also
3647 // an element of LFilter, then discard LFilter.
3648 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3649 // If Filter is empty then it is a subset of LFilter.
3650 if (!FElts) {
3651 // Discard LFilter.
3652 NewClauses.erase(J);
3653 MakeNewInstruction = true;
3654 // Move on to the next filter.
3655 continue;
3656 }
3657 unsigned LElts = LTy->getNumElements();
3658 // If Filter is longer than LFilter then it cannot be a subset of it.
3659 if (FElts > LElts)
3660 // Move on to the next filter.
3661 continue;
3662 // At this point we know that LFilter has at least one element.
3663 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3664 // Filter is a subset of LFilter iff Filter contains only zeros (as we
3665 // already know that Filter is not longer than LFilter).
3666 if (isa<ConstantAggregateZero>(Filter)) {
3667 assert(FElts <= LElts && "Should have handled this case earlier!");
3668 // Discard LFilter.
3669 NewClauses.erase(J);
3670 MakeNewInstruction = true;
3671 }
3672 // Move on to the next filter.
3673 continue;
3674 }
3675 ConstantArray *LArray = cast<ConstantArray>(LFilter);
3676 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3677 // Since Filter is non-empty and contains only zeros, it is a subset of
3678 // LFilter iff LFilter contains a zero.
3679 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3680 for (unsigned l = 0; l != LElts; ++l)
3681 if (LArray->getOperand(l)->isNullValue()) {
3682 // LFilter contains a zero - discard it.
3683 NewClauses.erase(J);
3684 MakeNewInstruction = true;
3685 break;
3686 }
3687 // Move on to the next filter.
3688 continue;
3689 }
3690 // At this point we know that both filters are ConstantArrays. Loop over
3691 // operands to see whether every element of Filter is also an element of
3692 // LFilter. Since filters tend to be short this is probably faster than
3693 // using a method that scales nicely.
3694 ConstantArray *FArray = cast<ConstantArray>(Filter);
3695 bool AllFound = true;
3696 for (unsigned f = 0; f != FElts; ++f) {
3697 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3698 AllFound = false;
3699 for (unsigned l = 0; l != LElts; ++l) {
3700 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3701 if (LTypeInfo == FTypeInfo) {
3702 AllFound = true;
3703 break;
3704 }
3705 }
3706 if (!AllFound)
3707 break;
3708 }
3709 if (AllFound) {
3710 // Discard LFilter.
3711 NewClauses.erase(J);
3712 MakeNewInstruction = true;
3713 }
3714 // Move on to the next filter.
3715 }
3716 }
3717
3718 // If we changed any of the clauses, replace the old landingpad instruction
3719 // with a new one.
3720 if (MakeNewInstruction) {
3721 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3722 NewClauses.size());
3723 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3724 NLI->addClause(NewClauses[i]);
3725 // A landing pad with no clauses must have the cleanup flag set. It is
3726 // theoretically possible, though highly unlikely, that we eliminated all
3727 // clauses. If so, force the cleanup flag to true.
3728 if (NewClauses.empty())
3729 CleanupFlag = true;
3730 NLI->setCleanup(CleanupFlag);
3731 return NLI;
3732 }
3733
3734 // Even if none of the clauses changed, we may nonetheless have understood
3735 // that the cleanup flag is pointless. Clear it if so.
3736 if (LI.isCleanup() != CleanupFlag) {
3737 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3738 LI.setCleanup(CleanupFlag);
3739 return &LI;
3740 }
3741
3742 return nullptr;
3743 }
3744
3745 Value *
pushFreezeToPreventPoisonFromPropagating(FreezeInst & OrigFI)3746 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3747 // Try to push freeze through instructions that propagate but don't produce
3748 // poison as far as possible. If an operand of freeze follows three
3749 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3750 // guaranteed-non-poison operands then push the freeze through to the one
3751 // operand that is not guaranteed non-poison. The actual transform is as
3752 // follows.
3753 // Op1 = ... ; Op1 can be posion
3754 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3755 // ; single guaranteed-non-poison operands
3756 // ... = Freeze(Op0)
3757 // =>
3758 // Op1 = ...
3759 // Op1.fr = Freeze(Op1)
3760 // ... = Inst(Op1.fr, NonPoisonOps...)
3761 auto *OrigOp = OrigFI.getOperand(0);
3762 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3763
3764 // While we could change the other users of OrigOp to use freeze(OrigOp), that
3765 // potentially reduces their optimization potential, so let's only do this iff
3766 // the OrigOp is only used by the freeze.
3767 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3768 return nullptr;
3769
3770 // We can't push the freeze through an instruction which can itself create
3771 // poison. If the only source of new poison is flags, we can simply
3772 // strip them (since we know the only use is the freeze and nothing can
3773 // benefit from them.)
3774 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false))
3775 return nullptr;
3776
3777 // If operand is guaranteed not to be poison, there is no need to add freeze
3778 // to the operand. So we first find the operand that is not guaranteed to be
3779 // poison.
3780 Use *MaybePoisonOperand = nullptr;
3781 for (Use &U : OrigOpInst->operands()) {
3782 if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3783 continue;
3784 if (!MaybePoisonOperand)
3785 MaybePoisonOperand = &U;
3786 else
3787 return nullptr;
3788 }
3789
3790 OrigOpInst->dropPoisonGeneratingFlags();
3791
3792 // If all operands are guaranteed to be non-poison, we can drop freeze.
3793 if (!MaybePoisonOperand)
3794 return OrigOp;
3795
3796 Builder.SetInsertPoint(OrigOpInst);
3797 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
3798 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3799
3800 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3801 return OrigOp;
3802 }
3803
foldFreezeIntoRecurrence(FreezeInst & FI,PHINode * PN)3804 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI,
3805 PHINode *PN) {
3806 // Detect whether this is a recurrence with a start value and some number of
3807 // backedge values. We'll check whether we can push the freeze through the
3808 // backedge values (possibly dropping poison flags along the way) until we
3809 // reach the phi again. In that case, we can move the freeze to the start
3810 // value.
3811 Use *StartU = nullptr;
3812 SmallVector<Value *> Worklist;
3813 for (Use &U : PN->incoming_values()) {
3814 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
3815 // Add backedge value to worklist.
3816 Worklist.push_back(U.get());
3817 continue;
3818 }
3819
3820 // Don't bother handling multiple start values.
3821 if (StartU)
3822 return nullptr;
3823 StartU = &U;
3824 }
3825
3826 if (!StartU || Worklist.empty())
3827 return nullptr; // Not a recurrence.
3828
3829 Value *StartV = StartU->get();
3830 BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
3831 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
3832 // We can't insert freeze if the the start value is the result of the
3833 // terminator (e.g. an invoke).
3834 if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
3835 return nullptr;
3836
3837 SmallPtrSet<Value *, 32> Visited;
3838 SmallVector<Instruction *> DropFlags;
3839 while (!Worklist.empty()) {
3840 Value *V = Worklist.pop_back_val();
3841 if (!Visited.insert(V).second)
3842 continue;
3843
3844 if (Visited.size() > 32)
3845 return nullptr; // Limit the total number of values we inspect.
3846
3847 // Assume that PN is non-poison, because it will be after the transform.
3848 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
3849 continue;
3850
3851 Instruction *I = dyn_cast<Instruction>(V);
3852 if (!I || canCreateUndefOrPoison(cast<Operator>(I),
3853 /*ConsiderFlags*/ false))
3854 return nullptr;
3855
3856 DropFlags.push_back(I);
3857 append_range(Worklist, I->operands());
3858 }
3859
3860 for (Instruction *I : DropFlags)
3861 I->dropPoisonGeneratingFlags();
3862
3863 if (StartNeedsFreeze) {
3864 Builder.SetInsertPoint(StartBB->getTerminator());
3865 Value *FrozenStartV = Builder.CreateFreeze(StartV,
3866 StartV->getName() + ".fr");
3867 replaceUse(*StartU, FrozenStartV);
3868 }
3869 return replaceInstUsesWith(FI, PN);
3870 }
3871
freezeOtherUses(FreezeInst & FI)3872 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) {
3873 Value *Op = FI.getOperand(0);
3874
3875 if (isa<Constant>(Op) || Op->hasOneUse())
3876 return false;
3877
3878 // Move the freeze directly after the definition of its operand, so that
3879 // it dominates the maximum number of uses. Note that it may not dominate
3880 // *all* uses if the operand is an invoke/callbr and the use is in a phi on
3881 // the normal/default destination. This is why the domination check in the
3882 // replacement below is still necessary.
3883 Instruction *MoveBefore = nullptr;
3884 if (isa<Argument>(Op)) {
3885 MoveBefore = &FI.getFunction()->getEntryBlock().front();
3886 while (isa<AllocaInst>(MoveBefore))
3887 MoveBefore = MoveBefore->getNextNode();
3888 } else if (auto *PN = dyn_cast<PHINode>(Op)) {
3889 MoveBefore = PN->getParent()->getFirstNonPHI();
3890 } else if (auto *II = dyn_cast<InvokeInst>(Op)) {
3891 MoveBefore = II->getNormalDest()->getFirstNonPHI();
3892 } else if (auto *CB = dyn_cast<CallBrInst>(Op)) {
3893 MoveBefore = CB->getDefaultDest()->getFirstNonPHI();
3894 } else {
3895 auto *I = cast<Instruction>(Op);
3896 assert(!I->isTerminator() && "Cannot be a terminator");
3897 MoveBefore = I->getNextNode();
3898 }
3899
3900 bool Changed = false;
3901 if (&FI != MoveBefore) {
3902 FI.moveBefore(MoveBefore);
3903 Changed = true;
3904 }
3905
3906 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3907 bool Dominates = DT.dominates(&FI, U);
3908 Changed |= Dominates;
3909 return Dominates;
3910 });
3911
3912 return Changed;
3913 }
3914
visitFreeze(FreezeInst & I)3915 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3916 Value *Op0 = I.getOperand(0);
3917
3918 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3919 return replaceInstUsesWith(I, V);
3920
3921 // freeze (phi const, x) --> phi const, (freeze x)
3922 if (auto *PN = dyn_cast<PHINode>(Op0)) {
3923 if (Instruction *NV = foldOpIntoPhi(I, PN))
3924 return NV;
3925 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
3926 return NV;
3927 }
3928
3929 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3930 return replaceInstUsesWith(I, NI);
3931
3932 // If I is freeze(undef), check its uses and fold it to a fixed constant.
3933 // - or: pick -1
3934 // - select's condition: if the true value is constant, choose it by making
3935 // the condition true.
3936 // - default: pick 0
3937 //
3938 // Note that this transform is intentionally done here rather than
3939 // via an analysis in InstSimplify or at individual user sites. That is
3940 // because we must produce the same value for all uses of the freeze -
3941 // it's the reason "freeze" exists!
3942 //
3943 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
3944 // duplicating logic for binops at least.
3945 auto getUndefReplacement = [&I](Type *Ty) {
3946 Constant *BestValue = nullptr;
3947 Constant *NullValue = Constant::getNullValue(Ty);
3948 for (const auto *U : I.users()) {
3949 Constant *C = NullValue;
3950 if (match(U, m_Or(m_Value(), m_Value())))
3951 C = ConstantInt::getAllOnesValue(Ty);
3952 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
3953 C = ConstantInt::getTrue(Ty);
3954
3955 if (!BestValue)
3956 BestValue = C;
3957 else if (BestValue != C)
3958 BestValue = NullValue;
3959 }
3960 assert(BestValue && "Must have at least one use");
3961 return BestValue;
3962 };
3963
3964 if (match(Op0, m_Undef()))
3965 return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
3966
3967 Constant *C;
3968 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) {
3969 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType());
3970 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC));
3971 }
3972
3973 // Replace uses of Op with freeze(Op).
3974 if (freezeOtherUses(I))
3975 return &I;
3976
3977 return nullptr;
3978 }
3979
3980 /// Check for case where the call writes to an otherwise dead alloca. This
3981 /// shows up for unused out-params in idiomatic C/C++ code. Note that this
3982 /// helper *only* analyzes the write; doesn't check any other legality aspect.
SoleWriteToDeadLocal(Instruction * I,TargetLibraryInfo & TLI)3983 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
3984 auto *CB = dyn_cast<CallBase>(I);
3985 if (!CB)
3986 // TODO: handle e.g. store to alloca here - only worth doing if we extend
3987 // to allow reload along used path as described below. Otherwise, this
3988 // is simply a store to a dead allocation which will be removed.
3989 return false;
3990 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
3991 if (!Dest)
3992 return false;
3993 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
3994 if (!AI)
3995 // TODO: allow malloc?
3996 return false;
3997 // TODO: allow memory access dominated by move point? Note that since AI
3998 // could have a reference to itself captured by the call, we would need to
3999 // account for cycles in doing so.
4000 SmallVector<const User *> AllocaUsers;
4001 SmallPtrSet<const User *, 4> Visited;
4002 auto pushUsers = [&](const Instruction &I) {
4003 for (const User *U : I.users()) {
4004 if (Visited.insert(U).second)
4005 AllocaUsers.push_back(U);
4006 }
4007 };
4008 pushUsers(*AI);
4009 while (!AllocaUsers.empty()) {
4010 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
4011 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
4012 isa<AddrSpaceCastInst>(UserI)) {
4013 pushUsers(*UserI);
4014 continue;
4015 }
4016 if (UserI == CB)
4017 continue;
4018 // TODO: support lifetime.start/end here
4019 return false;
4020 }
4021 return true;
4022 }
4023
4024 /// Try to move the specified instruction from its current block into the
4025 /// beginning of DestBlock, which can only happen if it's safe to move the
4026 /// instruction past all of the instructions between it and the end of its
4027 /// block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock,TargetLibraryInfo & TLI)4028 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock,
4029 TargetLibraryInfo &TLI) {
4030 BasicBlock *SrcBlock = I->getParent();
4031
4032 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
4033 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
4034 I->isTerminator())
4035 return false;
4036
4037 // Do not sink static or dynamic alloca instructions. Static allocas must
4038 // remain in the entry block, and dynamic allocas must not be sunk in between
4039 // a stacksave / stackrestore pair, which would incorrectly shorten its
4040 // lifetime.
4041 if (isa<AllocaInst>(I))
4042 return false;
4043
4044 // Do not sink into catchswitch blocks.
4045 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
4046 return false;
4047
4048 // Do not sink convergent call instructions.
4049 if (auto *CI = dyn_cast<CallInst>(I)) {
4050 if (CI->isConvergent())
4051 return false;
4052 }
4053
4054 // Unless we can prove that the memory write isn't visibile except on the
4055 // path we're sinking to, we must bail.
4056 if (I->mayWriteToMemory()) {
4057 if (!SoleWriteToDeadLocal(I, TLI))
4058 return false;
4059 }
4060
4061 // We can only sink load instructions if there is nothing between the load and
4062 // the end of block that could change the value.
4063 if (I->mayReadFromMemory()) {
4064 // We don't want to do any sophisticated alias analysis, so we only check
4065 // the instructions after I in I's parent block if we try to sink to its
4066 // successor block.
4067 if (DestBlock->getUniquePredecessor() != I->getParent())
4068 return false;
4069 for (BasicBlock::iterator Scan = std::next(I->getIterator()),
4070 E = I->getParent()->end();
4071 Scan != E; ++Scan)
4072 if (Scan->mayWriteToMemory())
4073 return false;
4074 }
4075
4076 I->dropDroppableUses([DestBlock](const Use *U) {
4077 if (auto *I = dyn_cast<Instruction>(U->getUser()))
4078 return I->getParent() != DestBlock;
4079 return true;
4080 });
4081 /// FIXME: We could remove droppable uses that are not dominated by
4082 /// the new position.
4083
4084 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
4085 I->moveBefore(&*InsertPos);
4086 ++NumSunkInst;
4087
4088 // Also sink all related debug uses from the source basic block. Otherwise we
4089 // get debug use before the def. Attempt to salvage debug uses first, to
4090 // maximise the range variables have location for. If we cannot salvage, then
4091 // mark the location undef: we know it was supposed to receive a new location
4092 // here, but that computation has been sunk.
4093 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
4094 findDbgUsers(DbgUsers, I);
4095 // Process the sinking DbgUsers in reverse order, as we only want to clone the
4096 // last appearing debug intrinsic for each given variable.
4097 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
4098 for (DbgVariableIntrinsic *DVI : DbgUsers)
4099 if (DVI->getParent() == SrcBlock)
4100 DbgUsersToSink.push_back(DVI);
4101 llvm::sort(DbgUsersToSink,
4102 [](auto *A, auto *B) { return B->comesBefore(A); });
4103
4104 SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
4105 SmallSet<DebugVariable, 4> SunkVariables;
4106 for (auto User : DbgUsersToSink) {
4107 // A dbg.declare instruction should not be cloned, since there can only be
4108 // one per variable fragment. It should be left in the original place
4109 // because the sunk instruction is not an alloca (otherwise we could not be
4110 // here).
4111 if (isa<DbgDeclareInst>(User))
4112 continue;
4113
4114 DebugVariable DbgUserVariable =
4115 DebugVariable(User->getVariable(), User->getExpression(),
4116 User->getDebugLoc()->getInlinedAt());
4117
4118 if (!SunkVariables.insert(DbgUserVariable).second)
4119 continue;
4120
4121 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
4122 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
4123 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
4124 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
4125 }
4126
4127 // Perform salvaging without the clones, then sink the clones.
4128 if (!DIIClones.empty()) {
4129 salvageDebugInfoForDbgValues(*I, DbgUsers);
4130 // The clones are in reverse order of original appearance, reverse again to
4131 // maintain the original order.
4132 for (auto &DIIClone : llvm::reverse(DIIClones)) {
4133 DIIClone->insertBefore(&*InsertPos);
4134 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
4135 }
4136 }
4137
4138 return true;
4139 }
4140
run()4141 bool InstCombinerImpl::run() {
4142 while (!Worklist.isEmpty()) {
4143 // Walk deferred instructions in reverse order, and push them to the
4144 // worklist, which means they'll end up popped from the worklist in-order.
4145 while (Instruction *I = Worklist.popDeferred()) {
4146 // Check to see if we can DCE the instruction. We do this already here to
4147 // reduce the number of uses and thus allow other folds to trigger.
4148 // Note that eraseInstFromFunction() may push additional instructions on
4149 // the deferred worklist, so this will DCE whole instruction chains.
4150 if (isInstructionTriviallyDead(I, &TLI)) {
4151 eraseInstFromFunction(*I);
4152 ++NumDeadInst;
4153 continue;
4154 }
4155
4156 Worklist.push(I);
4157 }
4158
4159 Instruction *I = Worklist.removeOne();
4160 if (I == nullptr) continue; // skip null values.
4161
4162 // Check to see if we can DCE the instruction.
4163 if (isInstructionTriviallyDead(I, &TLI)) {
4164 eraseInstFromFunction(*I);
4165 ++NumDeadInst;
4166 continue;
4167 }
4168
4169 if (!DebugCounter::shouldExecute(VisitCounter))
4170 continue;
4171
4172 // Instruction isn't dead, see if we can constant propagate it.
4173 if (!I->use_empty() &&
4174 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
4175 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
4176 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
4177 << '\n');
4178
4179 // Add operands to the worklist.
4180 replaceInstUsesWith(*I, C);
4181 ++NumConstProp;
4182 if (isInstructionTriviallyDead(I, &TLI))
4183 eraseInstFromFunction(*I);
4184 MadeIRChange = true;
4185 continue;
4186 }
4187 }
4188
4189 // See if we can trivially sink this instruction to its user if we can
4190 // prove that the successor is not executed more frequently than our block.
4191 // Return the UserBlock if successful.
4192 auto getOptionalSinkBlockForInst =
4193 [this](Instruction *I) -> Optional<BasicBlock *> {
4194 if (!EnableCodeSinking)
4195 return None;
4196
4197 BasicBlock *BB = I->getParent();
4198 BasicBlock *UserParent = nullptr;
4199 unsigned NumUsers = 0;
4200
4201 for (auto *U : I->users()) {
4202 if (U->isDroppable())
4203 continue;
4204 if (NumUsers > MaxSinkNumUsers)
4205 return None;
4206
4207 Instruction *UserInst = cast<Instruction>(U);
4208 // Special handling for Phi nodes - get the block the use occurs in.
4209 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
4210 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
4211 if (PN->getIncomingValue(i) == I) {
4212 // Bail out if we have uses in different blocks. We don't do any
4213 // sophisticated analysis (i.e finding NearestCommonDominator of
4214 // these use blocks).
4215 if (UserParent && UserParent != PN->getIncomingBlock(i))
4216 return None;
4217 UserParent = PN->getIncomingBlock(i);
4218 }
4219 }
4220 assert(UserParent && "expected to find user block!");
4221 } else {
4222 if (UserParent && UserParent != UserInst->getParent())
4223 return None;
4224 UserParent = UserInst->getParent();
4225 }
4226
4227 // Make sure these checks are done only once, naturally we do the checks
4228 // the first time we get the userparent, this will save compile time.
4229 if (NumUsers == 0) {
4230 // Try sinking to another block. If that block is unreachable, then do
4231 // not bother. SimplifyCFG should handle it.
4232 if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
4233 return None;
4234
4235 auto *Term = UserParent->getTerminator();
4236 // See if the user is one of our successors that has only one
4237 // predecessor, so that we don't have to split the critical edge.
4238 // Another option where we can sink is a block that ends with a
4239 // terminator that does not pass control to other block (such as
4240 // return or unreachable or resume). In this case:
4241 // - I dominates the User (by SSA form);
4242 // - the User will be executed at most once.
4243 // So sinking I down to User is always profitable or neutral.
4244 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
4245 return None;
4246
4247 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
4248 }
4249
4250 NumUsers++;
4251 }
4252
4253 // No user or only has droppable users.
4254 if (!UserParent)
4255 return None;
4256
4257 return UserParent;
4258 };
4259
4260 auto OptBB = getOptionalSinkBlockForInst(I);
4261 if (OptBB) {
4262 auto *UserParent = *OptBB;
4263 // Okay, the CFG is simple enough, try to sink this instruction.
4264 if (TryToSinkInstruction(I, UserParent, TLI)) {
4265 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
4266 MadeIRChange = true;
4267 // We'll add uses of the sunk instruction below, but since
4268 // sinking can expose opportunities for it's *operands* add
4269 // them to the worklist
4270 for (Use &U : I->operands())
4271 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
4272 Worklist.push(OpI);
4273 }
4274 }
4275
4276 // Now that we have an instruction, try combining it to simplify it.
4277 Builder.SetInsertPoint(I);
4278 Builder.CollectMetadataToCopy(
4279 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4280
4281 #ifndef NDEBUG
4282 std::string OrigI;
4283 #endif
4284 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
4285 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
4286
4287 if (Instruction *Result = visit(*I)) {
4288 ++NumCombined;
4289 // Should we replace the old instruction with a new one?
4290 if (Result != I) {
4291 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
4292 << " New = " << *Result << '\n');
4293
4294 Result->copyMetadata(*I,
4295 {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4296 // Everything uses the new instruction now.
4297 I->replaceAllUsesWith(Result);
4298
4299 // Move the name to the new instruction first.
4300 Result->takeName(I);
4301
4302 // Insert the new instruction into the basic block...
4303 BasicBlock *InstParent = I->getParent();
4304 BasicBlock::iterator InsertPos = I->getIterator();
4305
4306 // Are we replace a PHI with something that isn't a PHI, or vice versa?
4307 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
4308 // We need to fix up the insertion point.
4309 if (isa<PHINode>(I)) // PHI -> Non-PHI
4310 InsertPos = InstParent->getFirstInsertionPt();
4311 else // Non-PHI -> PHI
4312 InsertPos = InstParent->getFirstNonPHI()->getIterator();
4313 }
4314
4315 InstParent->getInstList().insert(InsertPos, Result);
4316
4317 // Push the new instruction and any users onto the worklist.
4318 Worklist.pushUsersToWorkList(*Result);
4319 Worklist.push(Result);
4320
4321 eraseInstFromFunction(*I);
4322 } else {
4323 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
4324 << " New = " << *I << '\n');
4325
4326 // If the instruction was modified, it's possible that it is now dead.
4327 // if so, remove it.
4328 if (isInstructionTriviallyDead(I, &TLI)) {
4329 eraseInstFromFunction(*I);
4330 } else {
4331 Worklist.pushUsersToWorkList(*I);
4332 Worklist.push(I);
4333 }
4334 }
4335 MadeIRChange = true;
4336 }
4337 }
4338
4339 Worklist.zap();
4340 return MadeIRChange;
4341 }
4342
4343 // Track the scopes used by !alias.scope and !noalias. In a function, a
4344 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
4345 // by both sets. If not, the declaration of the scope can be safely omitted.
4346 // The MDNode of the scope can be omitted as well for the instructions that are
4347 // part of this function. We do not do that at this point, as this might become
4348 // too time consuming to do.
4349 class AliasScopeTracker {
4350 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
4351 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
4352
4353 public:
analyse(Instruction * I)4354 void analyse(Instruction *I) {
4355 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
4356 if (!I->hasMetadataOtherThanDebugLoc())
4357 return;
4358
4359 auto Track = [](Metadata *ScopeList, auto &Container) {
4360 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
4361 if (!MDScopeList || !Container.insert(MDScopeList).second)
4362 return;
4363 for (auto &MDOperand : MDScopeList->operands())
4364 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
4365 Container.insert(MDScope);
4366 };
4367
4368 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
4369 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
4370 }
4371
isNoAliasScopeDeclDead(Instruction * Inst)4372 bool isNoAliasScopeDeclDead(Instruction *Inst) {
4373 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
4374 if (!Decl)
4375 return false;
4376
4377 assert(Decl->use_empty() &&
4378 "llvm.experimental.noalias.scope.decl in use ?");
4379 const MDNode *MDSL = Decl->getScopeList();
4380 assert(MDSL->getNumOperands() == 1 &&
4381 "llvm.experimental.noalias.scope should refer to a single scope");
4382 auto &MDOperand = MDSL->getOperand(0);
4383 if (auto *MD = dyn_cast<MDNode>(MDOperand))
4384 return !UsedAliasScopesAndLists.contains(MD) ||
4385 !UsedNoAliasScopesAndLists.contains(MD);
4386
4387 // Not an MDNode ? throw away.
4388 return true;
4389 }
4390 };
4391
4392 /// Populate the IC worklist from a function, by walking it in depth-first
4393 /// order and adding all reachable code to the worklist.
4394 ///
4395 /// This has a couple of tricks to make the code faster and more powerful. In
4396 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4397 /// them to the worklist (this significantly speeds up instcombine on code where
4398 /// many instructions are dead or constant). Additionally, if we find a branch
4399 /// whose condition is a known constant, we only visit the reachable successors.
prepareICWorklistFromFunction(Function & F,const DataLayout & DL,const TargetLibraryInfo * TLI,InstructionWorklist & ICWorklist)4400 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
4401 const TargetLibraryInfo *TLI,
4402 InstructionWorklist &ICWorklist) {
4403 bool MadeIRChange = false;
4404 SmallPtrSet<BasicBlock *, 32> Visited;
4405 SmallVector<BasicBlock*, 256> Worklist;
4406 Worklist.push_back(&F.front());
4407
4408 SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4409 DenseMap<Constant *, Constant *> FoldedConstants;
4410 AliasScopeTracker SeenAliasScopes;
4411
4412 do {
4413 BasicBlock *BB = Worklist.pop_back_val();
4414
4415 // We have now visited this block! If we've already been here, ignore it.
4416 if (!Visited.insert(BB).second)
4417 continue;
4418
4419 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4420 // ConstantProp instruction if trivially constant.
4421 if (!Inst.use_empty() &&
4422 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4423 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) {
4424 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4425 << '\n');
4426 Inst.replaceAllUsesWith(C);
4427 ++NumConstProp;
4428 if (isInstructionTriviallyDead(&Inst, TLI))
4429 Inst.eraseFromParent();
4430 MadeIRChange = true;
4431 continue;
4432 }
4433
4434 // See if we can constant fold its operands.
4435 for (Use &U : Inst.operands()) {
4436 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4437 continue;
4438
4439 auto *C = cast<Constant>(U);
4440 Constant *&FoldRes = FoldedConstants[C];
4441 if (!FoldRes)
4442 FoldRes = ConstantFoldConstant(C, DL, TLI);
4443
4444 if (FoldRes != C) {
4445 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4446 << "\n Old = " << *C
4447 << "\n New = " << *FoldRes << '\n');
4448 U = FoldRes;
4449 MadeIRChange = true;
4450 }
4451 }
4452
4453 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4454 // these call instructions consumes non-trivial amount of time and
4455 // provides no value for the optimization.
4456 if (!Inst.isDebugOrPseudoInst()) {
4457 InstrsForInstructionWorklist.push_back(&Inst);
4458 SeenAliasScopes.analyse(&Inst);
4459 }
4460 }
4461
4462 // Recursively visit successors. If this is a branch or switch on a
4463 // constant, only visit the reachable successor.
4464 Instruction *TI = BB->getTerminator();
4465 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4466 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4467 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4468 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4469 Worklist.push_back(ReachableBB);
4470 continue;
4471 }
4472 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4473 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4474 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4475 continue;
4476 }
4477 }
4478
4479 append_range(Worklist, successors(TI));
4480 } while (!Worklist.empty());
4481
4482 // Remove instructions inside unreachable blocks. This prevents the
4483 // instcombine code from having to deal with some bad special cases, and
4484 // reduces use counts of instructions.
4485 for (BasicBlock &BB : F) {
4486 if (Visited.count(&BB))
4487 continue;
4488
4489 unsigned NumDeadInstInBB;
4490 unsigned NumDeadDbgInstInBB;
4491 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4492 removeAllNonTerminatorAndEHPadInstructions(&BB);
4493
4494 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4495 NumDeadInst += NumDeadInstInBB;
4496 }
4497
4498 // Once we've found all of the instructions to add to instcombine's worklist,
4499 // add them in reverse order. This way instcombine will visit from the top
4500 // of the function down. This jives well with the way that it adds all uses
4501 // of instructions to the worklist after doing a transformation, thus avoiding
4502 // some N^2 behavior in pathological cases.
4503 ICWorklist.reserve(InstrsForInstructionWorklist.size());
4504 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4505 // DCE instruction if trivially dead. As we iterate in reverse program
4506 // order here, we will clean up whole chains of dead instructions.
4507 if (isInstructionTriviallyDead(Inst, TLI) ||
4508 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4509 ++NumDeadInst;
4510 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4511 salvageDebugInfo(*Inst);
4512 Inst->eraseFromParent();
4513 MadeIRChange = true;
4514 continue;
4515 }
4516
4517 ICWorklist.push(Inst);
4518 }
4519
4520 return MadeIRChange;
4521 }
4522
combineInstructionsOverFunction(Function & F,InstructionWorklist & Worklist,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,TargetTransformInfo & TTI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,unsigned MaxIterations,LoopInfo * LI)4523 static bool combineInstructionsOverFunction(
4524 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4525 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4526 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4527 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4528 auto &DL = F.getParent()->getDataLayout();
4529 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4530
4531 /// Builder - This is an IRBuilder that automatically inserts new
4532 /// instructions into the worklist when they are created.
4533 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4534 F.getContext(), TargetFolder(DL),
4535 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4536 Worklist.add(I);
4537 if (auto *Assume = dyn_cast<AssumeInst>(I))
4538 AC.registerAssumption(Assume);
4539 }));
4540
4541 // Lower dbg.declare intrinsics otherwise their value may be clobbered
4542 // by instcombiner.
4543 bool MadeIRChange = false;
4544 if (ShouldLowerDbgDeclare)
4545 MadeIRChange = LowerDbgDeclare(F);
4546
4547 // Iterate while there is work to do.
4548 unsigned Iteration = 0;
4549 while (true) {
4550 ++NumWorklistIterations;
4551 ++Iteration;
4552
4553 if (Iteration > InfiniteLoopDetectionThreshold) {
4554 report_fatal_error(
4555 "Instruction Combining seems stuck in an infinite loop after " +
4556 Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4557 }
4558
4559 if (Iteration > MaxIterations) {
4560 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4561 << " on " << F.getName()
4562 << " reached; stopping before reaching a fixpoint\n");
4563 break;
4564 }
4565
4566 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4567 << F.getName() << "\n");
4568
4569 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4570
4571 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4572 ORE, BFI, PSI, DL, LI);
4573 IC.MaxArraySizeForCombine = MaxArraySize;
4574
4575 if (!IC.run())
4576 break;
4577
4578 MadeIRChange = true;
4579 }
4580
4581 return MadeIRChange;
4582 }
4583
InstCombinePass()4584 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4585
InstCombinePass(unsigned MaxIterations)4586 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4587 : MaxIterations(MaxIterations) {}
4588
run(Function & F,FunctionAnalysisManager & AM)4589 PreservedAnalyses InstCombinePass::run(Function &F,
4590 FunctionAnalysisManager &AM) {
4591 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4592 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4593 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4594 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4595 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4596
4597 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4598
4599 auto *AA = &AM.getResult<AAManager>(F);
4600 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4601 ProfileSummaryInfo *PSI =
4602 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4603 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4604 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4605
4606 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4607 BFI, PSI, MaxIterations, LI))
4608 // No changes, all analyses are preserved.
4609 return PreservedAnalyses::all();
4610
4611 // Mark all the analyses that instcombine updates as preserved.
4612 PreservedAnalyses PA;
4613 PA.preserveSet<CFGAnalyses>();
4614 return PA;
4615 }
4616
getAnalysisUsage(AnalysisUsage & AU) const4617 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4618 AU.setPreservesCFG();
4619 AU.addRequired<AAResultsWrapperPass>();
4620 AU.addRequired<AssumptionCacheTracker>();
4621 AU.addRequired<TargetLibraryInfoWrapperPass>();
4622 AU.addRequired<TargetTransformInfoWrapperPass>();
4623 AU.addRequired<DominatorTreeWrapperPass>();
4624 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4625 AU.addPreserved<DominatorTreeWrapperPass>();
4626 AU.addPreserved<AAResultsWrapperPass>();
4627 AU.addPreserved<BasicAAWrapperPass>();
4628 AU.addPreserved<GlobalsAAWrapperPass>();
4629 AU.addRequired<ProfileSummaryInfoWrapperPass>();
4630 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4631 }
4632
runOnFunction(Function & F)4633 bool InstructionCombiningPass::runOnFunction(Function &F) {
4634 if (skipFunction(F))
4635 return false;
4636
4637 // Required analyses.
4638 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4639 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4640 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4641 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4642 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4643 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4644
4645 // Optional analyses.
4646 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4647 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4648 ProfileSummaryInfo *PSI =
4649 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4650 BlockFrequencyInfo *BFI =
4651 (PSI && PSI->hasProfileSummary()) ?
4652 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4653 nullptr;
4654
4655 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4656 BFI, PSI, MaxIterations, LI);
4657 }
4658
4659 char InstructionCombiningPass::ID = 0;
4660
InstructionCombiningPass()4661 InstructionCombiningPass::InstructionCombiningPass()
4662 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4663 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4664 }
4665
InstructionCombiningPass(unsigned MaxIterations)4666 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4667 : FunctionPass(ID), MaxIterations(MaxIterations) {
4668 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4669 }
4670
4671 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4672 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4673 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4674 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4675 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4676 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4677 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4678 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4679 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4680 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4681 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4682 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4683 "Combine redundant instructions", false, false)
4684
4685 // Initialization Routines
4686 void llvm::initializeInstCombine(PassRegistry &Registry) {
4687 initializeInstructionCombiningPassPass(Registry);
4688 }
4689
LLVMInitializeInstCombine(LLVMPassRegistryRef R)4690 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4691 initializeInstructionCombiningPassPass(*unwrap(R));
4692 }
4693
createInstructionCombiningPass()4694 FunctionPass *llvm::createInstructionCombiningPass() {
4695 return new InstructionCombiningPass();
4696 }
4697
createInstructionCombiningPass(unsigned MaxIterations)4698 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4699 return new InstructionCombiningPass(MaxIterations);
4700 }
4701
LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM)4702 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4703 unwrap(PM)->add(createInstructionCombiningPass());
4704 }
4705